1
|
Cong F, Huang J, Wu C, Zhong H, Qiu G, Luo T, Tang W. Integrin α6 and integrin β4 in exosomes promote lung metastasis of colorectal cancer. J Cancer Res Ther 2024; 20:2082-2093. [PMID: 39792419 DOI: 10.4103/jcrt.jcrt_230_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive. METHODS We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC. We measured ITGA6 and ITGB4 expression levels in highly metastatic (i.e., HCT116 and SW620) and lowly metastatic (i.e., SW480 and Caco2) CRC cell lines. Exosomes were isolated from cell culture media and characterized using western blotting and nanoparticle analyses. The role of exosomes in lung metastasis was investigated using xenograft experiments in mice models, which received CRC cell injection and were treated with exosomes. RESULTS ITGA6 and ITGB4 were significantly overexpressed in CRC tissues, and ITGA6 was associated with the American Joint Committee on Cancer (AJCC) stage and outcome. ITGA6 and ITGB4, as well as exosomal ITGA6 and ITGB4, were significantly more highly expressed in HCT116 and SW620 cells than in SW480 and Caco2 cells. The proliferation and tubulogenesis of vascular endothelial cells were markedly decreased by disruption of ITGA6 and ITGB4 but were markedly increased by ectopic expression of ITGA6 and ITGB4. Exosomal ITGA6 and ITGB4 promoted CRC metastasis to the lung in vivo. CONCLUSIONS Taken together, our findings suggested that exosomal ITGA6 and ITGB4 displayed organotropism to the lung and upregulated proliferation and tubulogenic capacities, which might help reduce lung metastasis from CRC. These findings provided new insights into the mechanisms of CRC metastasis and provided novel potential therapeutic targets.
Collapse
Affiliation(s)
- Fengyun Cong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiahao Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Changtao Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, China
| | - Guanhua Qiu
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, China
| |
Collapse
|
2
|
Huang G, Zhou M, Lu D, Li J, Tang Q, Xiong C, Liang F, Chen R. The mechanism of ITGB4 in tumor migration and invasion. Front Oncol 2024; 14:1421902. [PMID: 39169946 PMCID: PMC11335651 DOI: 10.3389/fonc.2024.1421902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Integrin β4 (ITGB4) is a transmembrane protein that functions as a mechanosensor, mediating the bidirectional exchange of information between the intracellular and extracellular matrices. ITGB4 plays a critical role in cell adhesion, migration, and signaling. Numerous studies have implicated ITGB4 as a key facilitator of tumor migration and invasion. This review provides a foundational description of the mechanisms by which ITGB4 regulates tumor migration and invasion through pathways involving focal adhesion kinase (FAK), protein kinase B (AKT), and matrix metalloproteinases (MMPs). These mechanisms encompass epithelial-mesenchymal transition (EMT), phosphorylation, and methylation of associated molecules. Additionally, this review explores the role of ITGB4 in the migration and invasion of prevalent clinical tumors, including those of the digestive system, breast, and prostate.
Collapse
Affiliation(s)
- Guichen Huang
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Damin Lu
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Jinxiao Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Tang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Chutong Xiong
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gu R, Kim TD, Song H, Sui Y, Shin S, Oh S, Janknecht R. SET7/9-mediated methylation affects oncogenic functions of histone demethylase JMJD2A. JCI Insight 2023; 8:e164990. [PMID: 37870957 PMCID: PMC10619491 DOI: 10.1172/jci.insight.164990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
The histone demethylase JMJD2A/KDM4A facilitates prostate cancer development, yet how JMJD2A function is regulated has remained elusive. Here, we demonstrate that SET7/9-mediated methylation on 6 lysine residues modulated JMJD2A. Joint mutation of these lysine residues suppressed JMJD2A's ability to stimulate the MMP1 matrix metallopeptidase promoter upon recruitment by the ETV1 transcription factor. Mutation of just 3 methylation sites (K505, K506, and K507) to arginine residues (3xR mutation) was sufficient to maximally reduce JMJD2A transcriptional activity and also decreased its binding to ETV1. Introduction of the 3xR mutation into DU145 prostate cancer cells reduced in vitro growth and invasion and also severely compromised tumorigenesis. Consistently, the 3xR genotype caused transcriptome changes related to cell proliferation and invasion pathways, including downregulation of MMP1 and the NPM3 nucleophosmin/nucleoplasmin gene. NPM3 downregulation phenocopied and its overexpression rescued, to a large degree, the 3xR mutation in DU145 cells, suggesting that NPM3 was a seminal downstream effector of methylated JMJD2A. Moreover, we found that NPM3 was overexpressed in prostate cancer and might be indicative of disease aggressiveness. SET7/9-mediated lysine methylation of JMJD2A may aggravate prostate tumorigenesis in a manner dependent on NPM3, implying that the SET7/9→JMJD2A→NPM3 axis could be targeted for therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sook Shin
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sangphil Oh
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Cell Biology
- Department of Pathology, and
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Erden Tayhan S, Bilgin S, Yıldırım A, Koç E. Biological Screening of Polyphenol Derivatives for Anti-Proliferative, Anti-Apoptotic and Anti-Migrative Activities in Human Breast Cancer Cell Lines MCF-7. Chem Biodivers 2023; 20:e202200872. [PMID: 36594615 DOI: 10.1002/cbdv.202200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Breast cancer is known as the most common type of invasive cancer in women. It is well-known that phenolic compounds play an important role in the treatment of this disease. This study hypothesized that isoeugenol based two polyphenolic compounds 1 and 2 exerts its anti-proliferative effects through the induction of apoptosis and cell migration arrest on human breast cancer cell. Based on this hypothesis, the study aimed to investigate the anti-proliferative, anti-migrative effects of these compounds and their possible basic molecular mechanisms of action in MCF-7 cell lines. As a result, isoeugenol-based compounds 1 and 2 showed anti-proliferative, anti-apoptotic and anti-migrative effects in MCF-7 breast cancer cells. This result was supported by molecular analyzes and it was determined that there were changes in the expression of some gene regions involved in apoptosis and migration. Additionally, it was a remarkable result that cell viability inhibition did not occur in healthy breast tissue cells and no cytotoxic effect was observed. The existence of such a differentiation between cancer cells and healthy cells significantly increases the potential of these compounds to be used as chemotherapeutic drug active ingredients without side effects.
Collapse
Affiliation(s)
- Seçil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Sema Bilgin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Aslı Yıldırım
- Department of Bioengineering, Institute of Graduate Studies, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Esra Koç
- Department of Chemistry, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| |
Collapse
|
5
|
Wang NF, Jue TR, Holst J, Gunter JH. Systematic review of antitumour efficacy and mechanism of metformin activity in prostate cancer models. BJUI COMPASS 2023; 4:44-58. [PMID: 36569495 PMCID: PMC9766874 DOI: 10.1002/bco2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022] Open
Abstract
Metformin, the first line pharmacotherapy for type 2 diabetes has demonstrated favourable effects in prostate cancer (PCa) across a range of studies evaluating PCa patient outcomes amongst metformin users. However, a lack of rigorously conducted prospective studies has stalled clinical use in this setting. Despite multiple studies evaluating the mechanisms underpinning antitumour effects of metformin in PCa, to date, no reviews have compared these findings. This systematic review and meta-analysis consolidates the mechanisms accounting for the antitumour effect of metformin in PCa and evaluates the antitumour efficacy of metformin in preclinical PCa studies. Data were obtained through Medline and EMBASE, extracted by two independent assessors. Risk of bias was assessed using the TOXR tool. Meta-analysis compared in vivo reductions of PCa tumour volume with metformin. In total, 447 articles were identified with 80 duplicates, and 261 articles excluded based on eligibility criteria. The remaining 106 articles were assessed and 71 excluded, with 35 articles included for systematic review, and eight included for meta-analysis. The mechanisms of action of metformin regarding tumour growth, viability, migration, invasion, cell metabolism, and activation of signalling cascades are individually discussed. The mechanisms by which metformin inhibits PCa cell growth are multimodal. Metformin regulates expression of multiple proteins/genes to inhibit cellular proliferation, cell cycle progression, and cellular invasion and migration. Published in vivo studies also conclusively demonstrate that metformin inhibits PCa growth. This highlights the potential of metformin to be repurposed as an anticancer agent, warranting further investigation of metformin in the setting of PCa.
Collapse
Affiliation(s)
- Nan Fang Wang
- School of Medical SciencesUNSW SydneySydneyNSWAustralia
- Prince of Wales Clinical SchoolUNSW SydneySydneyNSWAustralia
| | - Toni Rose Jue
- Prince of Wales Clinical SchoolUNSW SydneySydneyNSWAustralia
| | - Jeff Holst
- School of Medical SciencesUNSW SydneySydneyNSWAustralia
- Prince of Wales Clinical SchoolUNSW SydneySydneyNSWAustralia
| | - Jennifer H. Gunter
- Australian Prostate Cancer Research Centre‐Queensland, Centre for Genomic and Personalised Health, School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of Technology (QUT)BrisbaneQLDAustralia
| |
Collapse
|
6
|
Synthetic Evaluation of MicroRNA-1-3p Expression in Head and Neck Squamous Cell Carcinoma Based on Microarray Chips and MicroRNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6529255. [PMID: 34485523 PMCID: PMC8410410 DOI: 10.1155/2021/6529255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
Background MicroRNA-1-3p (miR-1-3p) exerts significant regulation in various tumor cells, but its molecular mechanisms in head and neck squamous cell carcinoma (HNSCC) are still ill defined. This study is aimed at detecting the expression of miR-1-3p in HNSCC and at determining its significant regulatory pathways. Methods Data were obtained from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Oncomine, ArrayExpress, Sequence Read Archive (SRA) databases, and additional literature. Expression values of miR-1-3p in HNSCC were analyzed comprehensively. The R language software was employed to screen differentially expressed genes, and bioinformatics assessment was performed. One sequence dataset (HNSCC: n = 484; noncancer: n = 44) and 18 chip datasets (HNSCC: n = 656; noncancer: n = 199) were obtained. Results The expression of miR-1-3p in HNSCC was visibly decreased in compare with noncancerous tissues. There were distinct differences in tumor state (P = 0.0417), pathological stage (P = 0.0058), and T stage (P = 0.0044). Comprehensive analysis of sequence and chip data also indicated that miR-1-3p was lowly expressed in HNSCC. The diagnostic performance of miR-1-3p in HNSCC is reflected in the sensitivity and specificity of the collection, etc. Bioinformatics analysis showed the possible biological process, cellular component, molecular function, and KEGG pathways of miR-1-3p in HNSCC. And ITGB4 was a possible target of miR-1-3p. Conclusions miR-1-3p's low expression may facilitate tumorigenesis and evolution in HNSCC through signaling pathways. ITGB4 may be a key gene in targeting pathways but still needs verification through in vitro experiments.
Collapse
|
7
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
8
|
Chung I, Zhou K, Barrows C, Banyard J, Wilson A, Rummel N, Mizokami A, Basu S, Sengupta P, Shaikh B, Sengupta S, Bielenberg DR, Zetter BR. Unbiased Phenotype-Based Screen Identifies Therapeutic Agents Selective for Metastatic Prostate Cancer. Front Oncol 2021; 10:594141. [PMID: 33738243 PMCID: PMC7962607 DOI: 10.3389/fonc.2020.594141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023] Open
Abstract
In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients' prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases - two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.
Collapse
Affiliation(s)
- Ivy Chung
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Kun Zhou
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Courtney Barrows
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
| | - Jacqueline Banyard
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Arianne Wilson
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
| | - Nathan Rummel
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Washington, DC, United States
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sudipta Basu
- Laboratory for Nanomedicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Poulomi Sengupta
- Laboratory for Nanomedicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Badaruddin Shaikh
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Washington, DC, United States
| | - Shiladitya Sengupta
- Laboratory for Nanomedicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Bruce R. Zetter
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Guo G, Li L, Song G, Wang J, Yan Y, Zhao Y. miR‑7/SP1/TP53BP1 axis may play a pivotal role in NSCLC radiosensitivity. Oncol Rep 2020; 44:2678-2690. [PMID: 33125142 PMCID: PMC7640372 DOI: 10.3892/or.2020.7824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNA‑7 (miR‑7) has been identified as a tumor suppressor in non‑small cell lung cancer (NSCLC) and a radiosensitivity regulator. Numerous studies have revealed that specific protein 1 (SP1) plays a critical role in the tumorigenesis of various types of cancers and regulates radiosensitivity and tumor suppressor p53‑binding protein 1 (TP53BP1), which plays an essential role in DNA repair. However, it is not clear whether miR‑7 has a regulatory effect on SP1 and TP53BP1 in NSCLC. In the present study it was revealed that miR‑7 directly binds to the 3'UTR of SP1, thereby suppressing SP1 expression to regulate radiosensitivity. Overexpression of miR‑7 and SP1 and knockdown of miR‑7 and SP1 were performed using lentiviral transfection. Protein and mRNA abundance of SP1 and TP53BP1 were determined using western blotting and RT‑qPCR, respectively, while miR‑7 binding to SP1 was validated using a luciferase reporter assay. Biological function analysis indicated that miR‑7 negatively regulated SP1 and inhibited cell proliferation, migration, and invasion when combined with radiation. It was also revealed that the expression of TP53BP1 was positively regulated by SP1 or negatively regulated by miR‑7. In conclusion, SP1 was a target of miR‑7, and the decreased expression of SP1 resulting from miR‑7 overexpression in NSCLC was vital for improving radiosensitivity in NSCLC cells. Moreover, SP1 expression was detected in 95 paired NSCLC and adjacent normal tissues, and it was determined that SP1 was significantly upregulated in NSCLC tissues and that its upregulation was correlated with the degree of tissue differentiation. Thus, SP1 and/or miR‑7 may be potential molecular targets in NSCLC radiotherapy.
Collapse
Affiliation(s)
- Genyan Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Lingling Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Guanchu Song
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Radiation Oncology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Ying Yan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Radiation Oncology, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yuxia Zhao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
10
|
Xenograft-derived mRNA/miR and protein interaction networks of systemic dissemination in human prostate cancer. Eur J Cancer 2020; 137:93-107. [PMID: 32750503 DOI: 10.1016/j.ejca.2020.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Distant metastasis formation is the major clinical problem in prostate cancer (PCa) and the underlying mechanisms remain poorly understood. Our aim was to identify novel molecules that functionally contribute to human PCa systemic dissemination based on unbiased approaches. METHODS We compared mRNA, microRNA (miR) and protein expression levels in established human PCa xenograft tumours with high (PC-3), moderate (VCaP) or weak (DU-145) spontaneous micrometastatic potential. By focussing on those mRNAs, miRs and proteins that were differentially regulated among the xenograft groups and known to interact with each other we constructed dissemination-related mRNA/miR and protein/miR networks. Next, we clinically and functionally validated our findings. RESULTS Besides known determinants of PCa progression and/or metastasis, our interaction networks include several novel candidates. We observed a clear role of epithelial-to-mesenchymal transition (EMT) pathways for PCa dissemination, which was additionally confirmed by an independent human PCa model (ARCAP-E/-M). Two converging nodes, CD46 (decreasing with metastatic potential) and DDX21 (increasing with metastatic potential), were used to test the clinical relevance of the networks. Intriguingly, both network nodes consistently added prognostic information for patients with PCa whereas CD46 loss predicted poor outcome independent of established parameters. Accordingly, depletion of CD46 in weakly metastatic PCa cells induced EMT-like properties in vitro and spontaneous micrometastasis formation in vivo. CONCLUSIONS The clinical and functional relevance of the dissemination-related interaction networks shown here could be successfully validated by proof-of-principle experiments. Therefore, we suggest a direct pro-metastatic, clinically relevant role for the multiple novel candidates included in this study; these should be further exploited by future studies.
Collapse
|
11
|
Wilkinson EJ, Woodworth AM, Parker M, Phillips JL, Malley RC, Dickinson JL, Holloway AF. Epigenetic regulation of the ITGB4 gene in prostate cancer. Exp Cell Res 2020; 392:112055. [PMID: 32376286 DOI: 10.1016/j.yexcr.2020.112055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Examination of epigenetic changes at the ITGB4 gene promoter reveals altered methylation at different stages of prostate tumour progression and these changes may, in part, explain the complex patterns of gene expression of this integrin observed. Transcriptional re-programming perturbs expression of cell adhesion molecules and underpins metastatic tumour cell behaviour. Decreasing expression of the cell adhesion molecule ITGB4, which encodes the beta subunit of the integrin, alpha6 beta4 (α6β4), has been correlated with increased tumour aggressiveness and metastasis in multiple tumour types including prostate cancer. Paradoxically, in vitro studies in tumour cell models demonstrate that ITGB4 mediates cell mobility and invasion. Herein we examined whether transcriptional re-programming by methylation influenced ITGB4 gene expression at different stages of prostate cancer progression. Bisulphite sequencing of a large CpG island in the ITGB4 gene promoter identified differentially methylated regions in prostate cancer cell lines representing a localised tumour (22Rv1), lymph node metastasis (LNCaP), and a bone metastasis (PC-3). The highest levels of methylation were observed in the CpG island surrounding the ITGB4 transcription start site in PC-3 cells, and this observation also correlated with higher gene expression of ITGB4 in these cells. Furthermore, PC-3 cells expressed two distinct transcripts, using an alternate transcription start site, which was not detected in other cell lines. In prostate tumour biopsy samples, patterns of methylation across the ITGB4 promoter were similar overall in matched primary and metastatic samples (n = 4 pairs), with a trend toward loss of methylation at specific sites in metastatic lesions.
Collapse
Affiliation(s)
- Emma J Wilkinson
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Alexandra M Woodworth
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Madeline Parker
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Jessica L Phillips
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Roslyn C Malley
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000.
| | - Adele F Holloway
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| |
Collapse
|
12
|
Jain P, Ballare C, Blanco E, Vizan P, Di Croce L. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife 2020; 9:51373. [PMID: 32155117 PMCID: PMC7064337 DOI: 10.7554/elife.51373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
The Polycomb-like protein PHF19/PCL3 associates with PRC2 and mediates its recruitment to chromatin in embryonic stem cells. PHF19 is also overexpressed in many cancers. However, neither PHF19 targets nor misregulated pathways involving PHF19 are known. Here, we investigate the role of PHF19 in prostate cancer cells. We find that PHF19 interacts with PRC2 and binds to PRC2 targets on chromatin. PHF19 target genes are involved in proliferation, differentiation, angiogenesis, and extracellular matrix organization. Depletion of PHF19 triggers an increase in MTF2/PCL2 chromatin recruitment, with a genome-wide gain in PRC2 occupancy and H3K27me3 deposition. Transcriptome analysis shows that PHF19 loss promotes deregulation of key genes involved in growth, metastasis, invasion, and of factors that stimulate blood vessels formation. Consistent with this, PHF19 silencing reduces cell proliferation, while promotes invasive growth and angiogenesis. Our findings reveal a role for PHF19 in controlling the balance between cell proliferation and invasiveness in prostate cancer.
Collapse
Affiliation(s)
- Payal Jain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cecilia Ballare
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
13
|
Proteomics Identification and Validation of Desmocollin‐1 and Catechol‐O‐Methyltransferase as Proteins Associated with Breast Cancer Cell Migration and Metastasis. Proteomics 2019; 19:e1900073. [DOI: 10.1002/pmic.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/26/2019] [Indexed: 12/16/2022]
|
14
|
Kramer B, Haan LD, Vermeer M, Olivier T, Hankemeier T, Vulto P, Joore J, Lanz HL. Interstitial Flow Recapitulates Gemcitabine Chemoresistance in A 3D Microfluidic Pancreatic Ductal Adenocarcinoma Model by Induction of Multidrug Resistance Proteins. Int J Mol Sci 2019; 20:ijms20184647. [PMID: 31546820 PMCID: PMC6770899 DOI: 10.3390/ijms20184647] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.
Collapse
Affiliation(s)
- Bart Kramer
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Luuk de Haan
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | | | - Thomas Olivier
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Paul Vulto
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Jos Joore
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | | |
Collapse
|
15
|
Yao S, Huang HY, Han X, Ye Y, Qin Z, Zhao G, Li F, Hu G, Hu L, Ji H. Keratin 14-high subpopulation mediates lung cancer metastasis potentially through Gkn1 upregulation. Oncogene 2019; 38:6354-6369. [PMID: 31320708 DOI: 10.1038/s41388-019-0889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Metastasis is the leading cause of lung cancer-related death. Elucidating the metastasis process can provide new avenues to inhibit this malignant behavior of cancer cells. Here we found that human lung cancers with high Keratin 14 (K14) expression were associated with nodal metastasis and poor survival. Using the KrasG12D/Trp53L/L lung cancer mouse model, we confirmed that K14-high cancer cells harbored increased metastatic potential. Mechanistic investigation revealed that Gastrokine 1 (Gkn1) expression positively correlated with K14 level, cancer metastasis, and poor patient survival. Importantly, ectopic expression of Gkn1 enhanced the metastatic capability of K14-low cells in vitro and in vivo, whereas knockdown of Gkn1 did the opposite, indicating the importance of Gkn1 in mediating the metastasis of K14-high cells. Further study demonstrated that Gkn1 expression conferred K14-high cells resistance to anoikis, which is critical for cancer metastasis. Collectively, our findings demonstrate that K14-high cells contribute to lung cancer metastasis potentially through inhibition of anoikis via upregulation of Gkn1.
Collapse
Affiliation(s)
- Shun Yao
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiangkun Han
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yi Ye
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, 200120, Shanghai, China
| | - Zhen Qin
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Gaoxiang Zhao
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fuming Li
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 200031, Shanghai, China
| | - Liang Hu
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China. .,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China. .,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China. .,Innovation Center for Cell Signaling Network. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China. .,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, Shanghai Tech University, 200120, Shanghai, China.
| |
Collapse
|
16
|
A tumorsphere model of glioblastoma multiforme with intratumoral heterogeneity for quantitative analysis of cellular migration and drug response. Exp Cell Res 2019; 379:73-82. [DOI: 10.1016/j.yexcr.2019.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
|
17
|
Dalton GN, Massillo C, Scalise GD, Duca R, Porretti J, Farré PL, Gardner K, Paez A, Gueron G, De Luca P, De Siervi A. CTBP1 depletion on prostate tumors deregulates miRNA/mRNA expression and impairs cancer progression in metabolic syndrome mice. Cell Death Dis 2019; 10:299. [PMID: 30931931 PMCID: PMC6443782 DOI: 10.1038/s41419-019-1535-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
About 20% of prostate cancer (PCa) patients progress to metastatic disease. Metabolic syndrome (MeS) is a pathophysiological disorder that increases PCa risk and aggressiveness. C-terminal binding protein (CTBP1) is a transcriptional corepressor that is activated by high-fat diet (HFD). Previously, our group established a MeS/PCa mice model that identified CTBP1 as a novel link associating both diseases. Here, we integrated in vitro (prostate tumor cell lines) and in vivo (MeS/PCa NSG mice) models with molecular and cell biology techniques to investigate MeS/CTBP1 impact over PCa progression, particularly over cell adhesion, mRNA/miRNA expression and PCa spontaneous metastasis development. We found that CTBP1/MeS regulated expression of genes relevant to cell adhesion and PCa progression, such as cadherins, integrins, connexins, and miRNAs in PC3 xenografts. CTBP1 diminished PCa cell adhesion, membrane attachment to substrate and increased filopodia number by modulating gene expression to favor a mesenchymal phenotype. NSG mice fed with HFD and inoculated with CTBP1-depleted PC3 cells, showed a decreased number and size of lung metastases compared to control. Finally, CTBP1 and HFD reduce hsa-mir-30b-5p plasma levels in mice. This study uncovers for the first time the role of CTBP1/MeS in PCa progression and its molecular targets.
Collapse
Affiliation(s)
- Guillermo Nicolás Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Georgina Daniela Scalise
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Rocío Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Juliana Porretti
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Paula Lucia Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Alejandra Paez
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratorio de inflamación y Cáncer, Buenos Aires, Argentina
| | - Geraldine Gueron
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratorio de inflamación y Cáncer, Buenos Aires, Argentina
| | - Paola De Luca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.
| |
Collapse
|
18
|
Gerashchenko GV, Grygoruk OV, Rosenberg EE, Bondarenko YM, Kashuba EV, Kashuba VI. Expression of cancer-associated genes in prostate tumors at mRNA and protein levels. ACTA ACUST UNITED AC 2019. [DOI: 10.7124/bc.000995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - E. V. Kashuba
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine
- Karolinska Institutet
| | - V. I. Kashuba
- Institute of Molecular Biology and Genetics, NAS of Ukraine
- Karolinska Institutet
| |
Collapse
|
19
|
Jain S, Dash P, Minz AP, Satpathi S, Samal AG, Behera PK, Satpathi PS, Senapati S. Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF-κB activation and recurrent dexamethasone administration fails to suppress it in vivo. Prostate 2019; 79:168-182. [PMID: 30264470 DOI: 10.1002/pros.23722] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies have shown the effect of bacterial lipopolysaccharide (LPS) on enhanced cancer cells' growth and metastasis. However, the effect of LPS on prostate cancer (PCa) cells metastasis has not been investigated in details. This study aimed to investigate the functional role of LPS on PCa cells metastasis and determine the effect of dexamethasone (DEX) on this event. METHODS Two different PCa reporter cells lines (DU145-NF-κB-Luc and MAT-LyLu- NF-κB-Luc) were used to assess the direct effect of LPS on NF-κB activation in PCa cells. Plasma collected from LPS-stimulated human and rodent blood were used to check the indirect effect of LPS on NF-κB activation in PCa cells. Trans-well migration assay and two different orthotopic PCa animal models were used to investigate the effect of LPS on DU145 and MAT-LyLu cells migration or metastasis in vitro and in vivo, respectively. In all the studies DEX was used with or without LPS stimulation. RESULTS LPS and secretory factors present in plasma collected from LPS-stimulated blood, significantly activated NF-κB in DU145, and MAT-LyLu cells and enhanced their migration in vitro. DEX significantly suppressed LPS-mediated activation of cancer and blood cells and abrogated the direct and indirect pro-migratory effect of LPS on PCa cells. Systemic administration of LPS activated NF-κB in DU145 cells in vivo; however, failed to alter the metastatic properties of these cells. On the other hand, systemic administration of LPS to MAT-LyLu tumor bearing animals significantly enhanced the incidence of metastasis without altering the overall growth of primary tumors. Unexpectedly, though DEX significantly suppressed MAT-LyLu primary tumor weights, it aggravated metastasis of cancer cells in presence and absence of LPS. Moreover, consecutive DEX pre-treatment enhanced experimental peritoneal metastasis of MAT-LyLu cells. At the molecular level, LPS, and/or DEX induced overexpression of immunosuppressive molecules in MAT-LyLu tumors. CONCLUSIONS Overall, our study has shown that LPS and/or LPS induced inflammation can increase PCa metastasis and immunosuppressive dose of DEX might further enhance cancer metastasis.
Collapse
Affiliation(s)
- Sumeet Jain
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pujarini Dash
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Aliva P Minz
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Ajit G Samal
- Department of Surgery, Hitech Medical College, Rourkela, Odisha, India
| | - Prativa K Behera
- Department of Pathology, Ispat General Hospital, Rourkela, Odisha, India
| | - Partha S Satpathi
- Department of Microbiology, Midnapore Medical College, Midnapore, West Bengal, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
Lin D, Wang X, Li X, Meng L, Xu F, Xu Y, Xie X, He H, Xu D, Wang C, Zhu Y. Apogossypolone acts as a metastasis inhibitor via up-regulation of E-cadherin dependent on the GSK-3/AKT complex. Am J Transl Res 2019; 11:218-232. [PMID: 30787981 PMCID: PMC6357321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Malignant pheochromocytoma is exactly diagnosed only upon the occurrence of metastatic foci. At that point, however, patients are less likely to experience many benefits from traditional chemotherapy. Therefore, a strategy worthy of consideration is inhibition or delay of metastasis with drugs. Recently, numerous studies have indicated that epithelial-to-mesenchymal transition (EMT) is involved in malignant pheochromocytoma, where there is over-expression of metastatic promoting genes and low expression of metastatic suppressor genes. In previous research, we confirmed that apogossypolone (ApoG2) could effectively inhibit tumor movement capabilities, but potential mechanisms for the inhibition were unknown. Here, we initially corroborated that ApoG2 could induce GSK-3/AKT complex formation to down-regulate phosphorylation of the PI3K/AKT pathway. Subsequently, ApoG2 inhibited cell mobilities via promotion of E-cadherin and β-catenin translocation from cytoplasm to membrane dependent on down-regulate of the PI3K/AKT pathway. Unexpectedly, ApoG2 seemed to promote tumor progression, instead of suppression when there were circulating tumor cells in vivo. Our results indicated that ApoG2 might be an effective target agent early in the disease rather than at the advanced stage where there are a majority of circulating tumor cells. Those cells rely on the mesenchymal-epithelial transition (MET) process to anchor to distant new sites. Hence, the so-called anti-tumor drugs with inhibition of migration and invasion should be carefully distinguished as to whether they are involved in EMT and MET processes or not. Most importantly, we identified that GSK-3 is not only a downstream effector but also an upstream regulator of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Dengqiang Lin
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Xiaoxia Li
- Department of Radiology, Shanghai Ninth People’s Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 639, Zhizaoju Road, Huangpu District, Shanghai 200001, China
| | - Li Meng
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Feifei Xu
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Yunze Xu
- Department of Urology, Renji Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 1630, Dongfang Road, Pudong District, Shanghai 200120, China
| | - Xin Xie
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Chenghe Wang
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital Affiliated to Medical School of Shanghai Jiaotong UniversityNumber 197, Ruijin’er Road, Huangpu District, Shanghai 200001, China
| |
Collapse
|
21
|
Chen Z, Chen X, Xie R, Huang M, Dong W, Han J, Zhang J, Zhou Q, Li H, Huang J, Lin T. DANCR Promotes Metastasis and Proliferation in Bladder Cancer Cells by Enhancing IL-11-STAT3 Signaling and CCND1 Expression. Mol Ther 2019; 27:326-341. [PMID: 30660488 DOI: 10.1016/j.ymthe.2018.12.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
The prognosis for patients with bladder cancer (BCa) with lymph node (LN) metastasis is poor, and it is not improved by current treatments. Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumors, including BCa. However, the role of Differentiation antagonizing non-protein coding RNA (DANCR) in BCa LN metastasis remains unclear. In this study, we discover that DANCR was significantly upregulated in BCa tissues and cases with LN metastasis. DANCR expression was positively correlated with LN metastasis status, tumor stage, histological grade, and poor patient prognosis. Functional assays demonstrated that DANCR promoted BCa cell migration, invasion, and proliferation in vitro and enhanced tumor LN metastasis and growth in vivo. Mechanistic investigations revealed that DANCR activated IL-11-STAT3 signaling and increased cyclin D1 and PLAU expression via guiding leucine-rich pentatricopeptide repeat containing (LRPPRC) to stabilize mRNA. Moreover, oncogenesis facilitated by DANCR was attenuated by anti-IL-11 antibody or a STAT3 inhibitor (BP-1-102). In conclusion, our findings indicate that DANCR induces BCa LN metastasis and proliferation via an LRPPRC-mediated mRNA stabilization mechanism. DANCR may serve as a multi-potency target for clinical intervention in LN-metastatic BCa.
Collapse
Affiliation(s)
- Ziyue Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
22
|
Anti-Cancer Effects of Green Tea Polyphenols Against Prostate Cancer. Molecules 2019; 24:molecules24010193. [PMID: 30621039 PMCID: PMC6337309 DOI: 10.3390/molecules24010193] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most common cancer among men. Green tea consumption is reported to play an important role in the prevention of carcinogenesis in many types of malignancies, including prostate cancer; however, epidemiological studies show conflicting results regarding these anti-cancer effects. In recent years, in addition to prevention, many investigators have shown the efficacy and safety of green tea polyphenols and combination therapies with green tea extracts and anti-cancer agents in in vivo and in vitro studies. Furthermore, numerous studies have revealed the molecular mechanisms of the anti-cancer effects of green tea extracts. We believe that improved understanding of the detailed pathological roles at the molecular level is important to evaluate the prevention and treatment of prostate cancer. Therefore, in this review, we present current knowledge regarding the anti-cancer effects of green tea extracts in the prevention and treatment of prostate cancer, with a particular focus on the molecular mechanisms of action, such as influencing tumor growth, apoptosis, androgen receptor signaling, cell cycle, and various malignant behaviors. Finally, the future direction for the use of green tea extracts as treatment strategies in patients with prostate cancer is introduced.
Collapse
|
23
|
Alix-Panabières C, Pantel K. 11th International Symposium on Minimal Residual Cancer (ISMRC): 3-5 May 2018, Montpellier, France. Clin Exp Metastasis 2018; 35:87-90. [PMID: 29980892 DOI: 10.1007/s10585-018-9909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, University of Montpellier, EA2415, Montpellier, France.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Dapper homolog 1 alpha suppresses metastasis ability of gastric cancer through inhibiting planar cell polarity pathway. Oncotarget 2018; 7:81423-81434. [PMID: 27833078 PMCID: PMC5348403 DOI: 10.18632/oncotarget.13234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
Dapper homolog 1 alpha (DACT1α) is a member of DACT family and an important regulator in the planar cell polarity pathway. We aim to clarify its functional role in metastasis ability of gastric cancer. DACT1α was silenced in all gastric cancer cell lines (8/8), but expressed in normal gastric tissue. Ectopic expression of DACT1α in silenced gastric cancer cell lines (AGS, BGC823 and MGC803) by stable transfection significantly suppressed cancer cell spreading (P < 0.05), migration (P < 0.01) and invasion (P < 0.01). These effects were associated with downregulation of planar cell polarity pathway related genes involved in cell proliferation (PDGFB, VEGFA), adhesion (ITGA1, ITGA2, ITGA3, ITGB3) and migration/invasion (PLAU, MMP9, MCAM, Dvl-2 and JNK). DACT1α promoter methylation was detected in 205 gastric cancers and 20 normal controls by direct bisulfite genomic sequencing. DACT1α methylation was detected in 29.3% (60/205) of gastric cancer patients, but not in normal tissues. DACT1α methylation was associated with poor survival of gastric cancer patients. In conclusion, DACT1α plays a pivotal role as a potential tumor suppressor in migration and invasion of gastric cancer. DACT1α methylation may serve as a biomarker for the prognosis of gastric cancer.
Collapse
|
25
|
Xie N, Vikhreva P, Annicchiarico-Petruzzelli M, Amelio I, Barlev N, Knight RA, Melino G. Integrin-β4 is a novel transcriptional target of TAp73. Cell Cycle 2018; 17:589-594. [PMID: 29233040 DOI: 10.1080/15384101.2017.1403684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a member of p53 family, p73 has attracted intense investigations due to its structural and functional similarities to p53. Among more than ten p73 variants, the transactivation (TA) domain-containing isoform TAp73 is the one that imitates the p53's behavior most. TAp73 induces apoptosis and cell cycle arrest, which endows it the capacity of tumour suppression. Also, it can exert diverse biological influences on cells through activating a complex and context dependent transcriptional programme. The transcriptional activities further broaden its roles in more intricate biological processes. In this article, we report that p73 is a positive regulator of a cell adhesion related gene named integrin β4 (ITGB4). This finding may have implications for the dissection of the biological mechanisms underlining p73 functions.
Collapse
Affiliation(s)
- Ningxia Xie
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom.,b Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome 00133 , Italy
| | - Polina Vikhreva
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | | | - Ivano Amelio
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | - Nicolai Barlev
- d Institute of Cytology Russian Academy of Sciences , Saint-Petersburg , 194064 , Russia
| | - Richard A Knight
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | - Gerry Melino
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom.,b Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome 00133 , Italy.,d Institute of Cytology Russian Academy of Sciences , Saint-Petersburg , 194064 , Russia
| |
Collapse
|
26
|
Hara T, Iwadate M, Tachibana K, Waguri S, Takenoshita S, Hamada N. Metastasis of breast cancer cells to the bone, lung, and lymph nodes promotes resistance to ionizing radiation. Strahlenther Onkol 2017. [PMID: 28642964 DOI: 10.1007/s00066-017-1165-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Metastasis represents the leading cause of breast cancer deaths, necessitating strategies for its treatment. Although radiotherapy is employed for both primary and metastatic breast cancers, the difference in their ionizing radiation response remains incompletely understood. This study is the first to compare the radioresponse of a breast cancer cell line with its metastatic variants and report that such metastatic variants are more radioresistant. MATERIALS AND METHODS A luciferase expressing cell line was established from human basal-like breast adenocarcinoma MDA-MB-231 and underwent in vivo selections, whereby a cycle of inoculations into the left cardiac ventricle or the mammary fat pad of athymic nude mice, isolation of metastases to the bone, lung and lymph nodes visualized with bioluminescence imaging, and expansion of obtained cells was repeated twice or three times. The established metastatic cell lines were assessed for cell proliferation, wound healing, invasion, clonogenic survival, and apoptosis. RESULTS The established metastatic cell lines possessed an increased proliferative potential in vivo and were more chemotactic, invasive, and resistant to X‑ray-induced clonogenic inactivation and apoptosis in vitro. CONCLUSION Breast cancer metastasis to the bone, lung, and lymph nodes promotes radioresistance.
Collapse
Affiliation(s)
- Takamitsu Hara
- Department of Radiological Technology, School of Radiological Technology, Gunma Prefectural College of Health Sciences, 1-323 Kamioki, 371-0052, Gunma, Maebashi, Japan
| | - Manabu Iwadate
- Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, 960-1295, Fukushima, Japan
| | - Kazunoshin Tachibana
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, 960-1295, Fukushima, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, 960-1295, Fukushima, Japan
| | - Seiichi Takenoshita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, 960-1295, Fukushima, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, 201-8511, Tokyo, Komae, Japan.
| |
Collapse
|
27
|
Jie XX, Zhang XY, Xu CJ. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget 2017; 8:81558-81571. [PMID: 29113414 PMCID: PMC5655309 DOI: 10.18632/oncotarget.18277] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) endows epithelial cells with enhanced motility and invasiveness, allowing them to participate in many physiological and pathological processes. Epithelial-to-mesenchymal transition contributes to the generation of circulating tumor cells (CTCs) in epithelial cancers because it increases tumor cell invasiveness, promotes tumor cell intravasation and ensures tumor cell survival in the peripheral system. Although the contribution of epithelial-to-mesenchymal transition to tumor cell invasiveness has been confirmed, the role epithelial-to-mesenchymal transition plays in metastasis remains debated. As a favorable material for a “liquid biopsy”, circulating tumor cells have been shown to have promising values in the clinical management of tumors. Furthermore, an increasing number of studies have begun to explore the value of CTC-related biomarkers, and some studies have found that the expression of EMT and stemness markers in circulating tumor cells, in addition to CTC detection, can provide more information on tumor diagnosis, treatment, prognosis and research.
Collapse
Affiliation(s)
- Xiao-Xiang Jie
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Xiao-Yan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Cong-Jian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
28
|
Yang B, Chen Z, Huang Y, Han G, Li W. Identification of potential biomarkers and analysis of prognostic values in head and neck squamous cell carcinoma by bioinformatics analysis. Onco Targets Ther 2017; 10:2315-2321. [PMID: 28490889 PMCID: PMC5414612 DOI: 10.2147/ott.s135514] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to find disease-associated genes and potential mechanisms in head and neck squamous cell carcinoma (HNSCC) with deoxyribonucleic acid microarrays. The gene expression profiles of GSE6791 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were obtained with packages in R language and STRING constructed protein–protein interaction (PPI) network of the DEGs with combined score >0.8. Subsequently, module analysis of the PPI network was performed by Molecular Complex Detection plugin and functions and pathways of the hub gene in subnetwork were studied. Finally, overall survival analysis of hub genes was verified in TCGA HNSCC cohort. A total of 811 DEGs were obtained, which were mainly enriched in the terms related to extracellular matrix (ECM)–receptor interaction, ECM structural constituent, and ECM organization. A PPI network was constructed, consisting of 401 nodes and 1,254 edges and 15 hub genes with high degrees in the network. High expression of 4 genes of the 15 genes was associated with poor OS of patients in HNSCC, including PSMA7, ITGA6, ITGB4, and APP. Two significant modules were detected from the PPI network, and the enriched functions and pathways included proteasome, ECM organization, and ECM–receptor interaction. In conclusion, we propose that PSMA7, ITGA6, ITGB4, and APP may be further explored as potential biomarkers to aid HNSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhifeng Chen
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu Huang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guoxu Han
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Weizhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Fietz ER, Keenan CR, López-Campos G, Tu Y, Johnstone CN, Harris T, Stewart AG. Glucocorticoid resistance of migration and gene expression in a daughter MDA-MB-231 breast tumour cell line selected for high metastatic potential. Sci Rep 2017; 7:43774. [PMID: 28262792 PMCID: PMC5338339 DOI: 10.1038/srep43774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are commonly used to prevent chemotherapy-induced nausea and vomiting despite a lack of understanding of their direct effect on cancer progression. Recent studies suggest that glucocorticoids inhibit cancer cell migration. However, this action has not been investigated in estrogen receptor (ER)-negative breast tumour cells, although activation of the glucocorticoid receptor (GR) is associated with a worse prognosis in ER-negative breast cancers. In this study we have explored the effect of glucocorticoids on the migration of the ER-negative MDA-MB-231 human breast tumour cell line and the highly metastatic MDA-MB-231-HM.LNm5 cell line that was generated through in vivo cycling. We show for the first time that glucocorticoids inhibit 2- and 3-dimensional migration of MDA-MB-231 cells. Selection of cells for high metastatic potential resulted in a less migratory cell phenotype that was resistant to regulation by glucocorticoids and showed decreased GR receptor expression. The emergence of glucocorticoid resistance during metastatic selection may partly explain the apparent disparity between the clinical and in vitro evidence regarding the actions of glucocorticoids in cancer. These findings highlight the highly plastic nature of tumour cells, and underscore the need to more fully understand the direct effect of glucocorticoid treatment on different stages of metastatic progression.
Collapse
Affiliation(s)
- Ebony R Fietz
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine R Keenan
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Guillermo López-Campos
- Health and Biomedical Informatics Centre, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Trudi Harris
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
de Groot AE, Roy S, Brown JS, Pienta KJ, Amend SR. Revisiting Seed and Soil: Examining the Primary Tumor and Cancer Cell Foraging in Metastasis. Mol Cancer Res 2017; 15:361-370. [PMID: 28209759 DOI: 10.1158/1541-7786.mcr-16-0436] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022]
Abstract
Metastasis is the consequence of a cancer cell that disperses from the primary tumor, travels throughout the body, and invades and colonizes a distant site. On the basis of Paget's 1889 hypothesis, the majority of modern metastasis research focuses on the properties of the metastatic "seed and soil," but the implications of the primary tumor "soil" have been largely neglected. The rare lethal metastatic "seed" arises as a result of the selective pressures in the primary tumor. Optimal foraging theory describes how cancer cells adopt a mobile foraging strategy to balance predation risk and resource reward. Further selection in the dispersal corridors leading out of the primary tumor enhances the adaptive profile of the potentially metastatic cell. This review focuses on the selective pressures of the primary tumor "soil" that generate lethal metastatic "seeds" which is essential to understanding this critical component of prostate cancer metastasis.Implication: Elucidating the selective pressures of the primary tumor "soil" that generate lethal metastatic "seeds" is essential to understand how and why metastasis occurs in prostate cancer. Mol Cancer Res; 15(4); 361-70. ©2017 AACR.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sounak Roy
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joel S Brown
- Department of Biological Sciences and UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois.,Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
31
|
Yamada Y, Takayama KI, Fujimura T, Ashikari D, Obinata D, Takahashi S, Ikeda K, Kakutani S, Urano T, Fukuhara H, Homma Y, Inoue S. A novel prognostic factor TRIM44 promotes cell proliferation and migration, and inhibits apoptosis in testicular germ cell tumor. Cancer Sci 2016; 108:32-41. [PMID: 27754579 PMCID: PMC5276827 DOI: 10.1111/cas.13105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Tripartite motif 44 (TRIM44) is one of the TRIM family proteins that are involved in ubiquitination and degradation of target proteins by modulating E3 ubiquitin ligases. TRIM44 overexpression has been observed in various cancers. However, its association with testicular germ cell tumor (TGCT) is unknown. We aimed to investigate the clinical significance of TRIM44 and its function in TGCT. High expression of TRIM44 was significantly associated with α feto-protein levels, clinical stage, nonseminomatous germ cell tumor (NSGCT), and cancer-specific survival (P = 0.0009, P = 0.0035, P = 0.0004, and P = 0.0140, respectively). Multivariate analysis showed that positive TRIM44 IR was an independent predictor of cancer-specific mortality (P = 0.046). Gain-of-function study revealed that overexpression of TRIM44 promoted cell proliferation and migration of NTERA2 and NEC8 cells. Knockdown of TRIM44 using siRNA promoted apoptosis and repressed cell proliferation and migration in these cells. Microarray analysis of NTERA2 cells revealed that tumor suppressor genes such as CADM1, CDK19, and PRKACB were upregulated in TRIM44-knockdown cells compared to control cells. In contrast, oncogenic genes including C3AR1, ST3GAL5, and NT5E were downregulated in those cells. These results suggest that high expression of TRIM44 is associated with poor prognosis and that TRIM44 plays significant role in cell proliferation, migration, and anti-apoptosis in TGCT.
Collapse
Affiliation(s)
- Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisaku Ashikari
- Department of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Urology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Daisuke Obinata
- Department of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Urology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Satoru Takahashi
- Urology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Shigenori Kakutani
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Urano
- Department of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine and Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
32
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
33
|
Kaseb HO, Fohrer-Ting H, Lewis DW, Lagasse E, Gollin SM. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp Cell Res 2016; 348:75-86. [PMID: 27619333 DOI: 10.1016/j.yexcr.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Hatem O Kaseb
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Helene Fohrer-Ting
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America
| | - Eric Lagasse
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, United States of America
| |
Collapse
|
34
|
Côté MF, Turcotte A, Doillon C, Gobeil S. Three-Dimensional Culture Assay to Explore Cancer Cell Invasiveness and Satellite Tumor Formation. J Vis Exp 2016. [PMID: 27585303 DOI: 10.3791/54322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mammalian cell culture in monolayers is widely used to study various physiological and molecular processes. However, this approach to study growing cells often generates unwanted artifacts. Therefore, cell culture in a three-dimensional (3D) environment, often using extracellular matrix components, emerged as an interesting alternative due to its close similarity to the native in vivo tissue or organ. We developed a 3D cell culture system using two compartments, namely (i) a central compartment containing cancer cells embedded in a collagen gel acting as a pseudo-primary macrospherical tumor and (ii) a peripheral cell-free compartment made of a fibrin gel, i.e. an extracellular matrix component different from that used in the center, in which cancer cells can migrate (invasion front) and/or form microspherical tumors representing secondary or satellite tumors. The formation of satellite tumors in the peripheral compartment is remarkably correlated to the known aggressiveness or metastatic origin of the native tumor cells, which makes this 3D culture system unique. This cell culture approach might be considered to assess cancer cell invasiveness and motility, cell-extracellular matrix interactions and as a method to evaluate anti-cancer drug properties.
Collapse
Affiliation(s)
| | - Audrey Turcotte
- CHU de Québec Research Centre; Department of Molecular Medicine, Laval University
| | - Charles Doillon
- CHU de Québec Research Centre; Department of Surgery, Laval University
| | - Stephane Gobeil
- CHU de Québec Research Centre; Department of Molecular Medicine, Laval University;
| |
Collapse
|
35
|
Huang Q, Wei H, Wu Z, Li L, Yao L, Sun Z, Li L, Lin Z, Xu W, Han S, Cao W, Xu Y, Song D, Yang X, Xiao J. Preferentially Expressed Antigen of Melanoma Prevents Lung Cancer Metastasis. PLoS One 2016; 11:e0149640. [PMID: 27391090 PMCID: PMC4938541 DOI: 10.1371/journal.pone.0149640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is the most common cause of cancer death worldwide. The poor survival rate is largely due to the extensive local invasion and metastasis. However, the mechanisms underlying the invasion and metastasis of lung cancer cells remain largely elusive. In this study, we examined the role of preferentially expressed antigen of melanoma (PRAME) in lung cancer metastasis. Our results show that PRAME is downregulated in lung adenocarcinoma and lung bone metastasis compared with normal human lung. Knockdown of PRAME decreases the expression of E-Cadherin and promotes the proliferation, invasion, and metastasis of lung cancer cells by regulating multiple critical genes, most of which are related to cell migration, including MMP1, CCL2, CTGF, and PLAU. Clinical data analysis reveals that the expression of MMP1 correlates with the clinical features and outcome of lung adenocarcinoma. Taken together, our data demonstrate that PRAME plays a role in preventing the invasion and metastasis of lung adenocarcinoma and novel diagnostic or therapeutic strategies can be developed by targeting PRAME.
Collapse
Affiliation(s)
- Quan Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- * E-mail: (YFX); (DWS); (HFW); (XHY); (JRX)
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Lin Li
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Liangfang Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhengwang Sun
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Zaijun Lin
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Shuai Han
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Wenjiao Cao
- The International Peace Maternity& Child Health Hospital of China welfare institute (IPMCH), Shanghai, China
| | - Yunfei Xu
- Urology Department, Tenth People's Hospital of Tongji University, Shanghai, PR China
- * E-mail: (YFX); (DWS); (HFW); (XHY); (JRX)
| | - Dianwen Song
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- * E-mail: (YFX); (DWS); (HFW); (XHY); (JRX)
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- * E-mail: (YFX); (DWS); (HFW); (XHY); (JRX)
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- * E-mail: (YFX); (DWS); (HFW); (XHY); (JRX)
| |
Collapse
|
36
|
Han M, Song Y, Zhang X. Quercetin Suppresses the Migration and Invasion in Human Colon Cancer Caco-2 Cells Through Regulating Toll-like Receptor 4/Nuclear Factor-kappa B Pathway. Pharmacogn Mag 2016; 12:S237-44. [PMID: 27279714 PMCID: PMC4883086 DOI: 10.4103/0973-1296.182154] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Objective: The migration and invasion features, which were associated with inflammatory response, acted as vital roles in the development of colon cancer. Quercetin, a bioflavonoid compound, was widely spread in vegetables and fruits. Although quercetin exerts antioxidant and anticancer activities, the molecular signaling pathways in human colon cancer cells remain unclear. Hence, the present study was conducted to investigate the suppression of quercetin on migratory and invasive activity of colon cancer and the underlying mechanism. Materials and Methods: The effect of quercetin on cell viability, migration, and invasion of Caco-2 cells was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound-healing assay, and transwell chambers assay, respectively. The protein expressions of toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) p65, mitochondrial membrane potential-2 (MMP-2), and MMP-9 were detected by Western blot assay. The inflammatory factors, such as tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-2), and interleukin-6 (IL-6), in cell supernatant were detected by enzyme-linked immunosorbent assay. Results: The concentration of quercetin <20 μM was chosen for further experiments. Quercetin (5 μM) could remarkably suppress the migratory and invasive capacity of Caco-2 cells. The expressions of metastasis-related proteins of MMP-2, MMP-9 were decreased, whereas the expression of E-cadherin protein was increased by quercetin in a dose-dependent manner. Interestingly, the anti-TLR4 (2 μg) antibody or pyrrolidine dithiocarbamate (PDTC; 1 μM) could affect the inhibition of quercetin on cell migration and invasion, as well as the protein expressions of MMP-2, MMP-9, E-cadherin, TLR4, and NF-κB p65. In addition, quercetin could reduce the inflammation factors production of TNF-α, Cox-2, and IL-6. Conclusion: The findings suggested for the 1st time that quercetin might exert its anticolon cancer activity via the TLR4- and/or NF-κB-mediated signaling pathway. SUMMARY Quercetin could remarkably suppress the migratory and invasive capacity of Caco-2 cells The expressions of metastasis-related proteins of mitochondrial membrane potential-2 (MMP-2), MMP-9 were decreased, whereas the expression of E-cadherin protein was increased by quercetin in a dose-dependent manner The anti-toll-like receptor 4 (TLR4) antibody or pyrrolidine dithiocarbamate affected the inhibition of quercetin on cell migration and invasion, as well as the protein expressions of MMP-2, MMP-9, E-cadherin, TLR4, and nuclear factor-kappa B p65 Quercetin could reduce the inflammation factors production of tumor necrosis factors-α, cyclooxygenase-2, and interleukin-6.
Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphen yltetrazolium bromide, TLR4: Toll-like receptor 4, NF-κB: Nuclear factor-kappa B, MMP-2: Mitochondrial membrane potential-2, MMP-9: Mitochondrial membrane potential-9, TNF-α: Tumor necrosis factor-α, Cox-2: Cyclooxygenase-2, IL-6: Interleukin-6, ELISA: Enzyme-linked immunosorbent assay, PDTC: Pyrrolidine dithiocarbamate, ROS: Reactive oxygen species, DMSO: Dimethyl sulfoxide, FBS: Fetal bovine serum, DMEM: Dulbecco modified Eagle medium, OD: Optical density, IPP: Image Pro-plus, PBS: Phosphate buffered saline, SD: Standard deviation, ANOVA: One-way analysis of variance, SPSS: Statistical Package for the Social Sciences, ECM: Extracellular matrix, TLRs: Toll-like receptors, LPS: Lipopolysaccharide.
Collapse
Affiliation(s)
- Mingyang Han
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China
| | - Yucheng Song
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China
| | - Xuedong Zhang
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China
| |
Collapse
|
37
|
Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1055-64. [PMID: 26877262 DOI: 10.1016/j.ajpath.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells.
Collapse
|
38
|
Wang ZD, Wei SQ, Wang QY. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis. Am J Cancer Res 2015; 5:3339-3349. [PMID: 26807315 PMCID: PMC4697681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023] Open
Abstract
Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and in vivo. The extracellular regulated protein kinases (ERK) signaling is known to be a major cellular target of biguanides. Based on KRAS activates several down-stream effectors leading to the stimulation of the RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) and phosphatidylinositol-3-kinase (PI3K) pathways, we investigated the anti-tumor effects of biguanides on the proliferation of KRAS-mutated tumor cells in vitro and on KRAS-driven tumor growth in vivo. In cancer cells harboring oncogenic KRAS, phenformin switches off the ERK pathway and inhibit the expression of pro-angiogenic molecules. In tumor xenografts harboring the KRAS mutation, phenformin extensively modifies the tumor growth causing abrogation of angiogenesis. These results strongly suggest that significant therapeutic advantage may be achieved by phenformin anti-angiogenesis for the treatment of tumor.
Collapse
Affiliation(s)
- Zhi Dong Wang
- Department of Oncology, Eighth Hospital of ChangshaNo. 22 Xingsha Avenue, Changsha 410100, Hunan Province, China
| | - Sheng Quan Wei
- Department of Respiration, Shanxi Baoji People’s HospitalNo. 24 Xinhua Lane, Jinger Road, Baoji 721000, Shanxi Province, China
| | - Qin Yi Wang
- Department of Chemical Engineering, University of Missouri-ColumbiaMO 65211-2200, USA
| |
Collapse
|
39
|
Suppression of ITGB4 Gene Expression in PC-3 Cells with Short Interfering RNA Induces Changes in the Expression of β-Integrins Associated with RGD-Receptors. Bull Exp Biol Med 2015; 159:541-5. [DOI: 10.1007/s10517-015-3011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 10/23/2022]
|
40
|
Lee NS, Evgrafov OV, Souaiaia T, Bonyad A, Herstein J, Lee JY, Kim J, Ning Y, Sixto M, Weitz AC, Lenz HJ, Wang K, Knowles JA, Press MF, Salvaterra PM, Shung KK, Chow RH. Non-coding RNAs derived from an alternatively spliced REST transcript (REST-003) regulate breast cancer invasiveness. Sci Rep 2015; 5:11207. [PMID: 26053433 PMCID: PMC4459148 DOI: 10.1038/srep11207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/17/2015] [Indexed: 11/29/2022] Open
Abstract
RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30–200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Nan Sook Lee
- 1] Physiology &Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles [2] Dept of Biomedical Engineering, University of Southern California, Los Angeles
| | - Oleg V Evgrafov
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Tade Souaiaia
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Adrineh Bonyad
- Physiology &Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles
| | - Jennifer Herstein
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Joo Yeun Lee
- Neuroscience Graduate Program, University of Southern California, Los Angeles
| | - Jihong Kim
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Yan Ning
- Dept of Medicine, Norris Cancer Center, University of Southern California, Los Angeles
| | | | - Andrew C Weitz
- Dept of Ophthalmology, University of Southern California, Los Angeles, CA
| | - Heinz-Josef Lenz
- Dept of Medicine, Norris Cancer Center, University of Southern California, Los Angeles
| | - Kai Wang
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - James A Knowles
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Michael F Press
- Dept of Pathology, Norris Cancer Center, University of Southern California, Los Angeles
| | - Paul M Salvaterra
- Department of Neuroscience, Beckman Research Institute of the City of Hope, Duarte, CA
| | - K Kirk Shung
- Dept of Biomedical Engineering, University of Southern California, Los Angeles
| | - Robert H Chow
- Physiology &Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles
| |
Collapse
|
41
|
Tang K, Cai Y, Joshi S, Tovar E, Tucker SC, Maddipati KR, Crissman JD, Repaskey WT, Honn KV. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol Cancer 2015; 14:111. [PMID: 26037302 PMCID: PMC4453211 DOI: 10.1186/s12943-015-0382-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/08/2015] [Indexed: 11/28/2022] Open
Abstract
Background Integrins and enzymes of the eicosanoid pathway are both well-established contributors to cancer. However, this is the first report of the interdependence of the two signaling systems. In a screen for proteins that interacted with, and thereby potentially regulated, the human platelet-type 12-lipoxygenase (12-LOX, ALOX12), we identified the integrin β4 (ITGB4). Methods Using a cultured mammalian cell model, we have demonstrated that ITGB4 stimulation leads to recruitment of 12-LOX from the cytosol to the membrane where it physically interacts with the integrin to become enzymatically active to produce 12(S)-HETE, a known bioactive lipid metabolite that regulates numerous cancer phenotypes. Results The net effect of the interaction was the prevention of cell death in response to starvation. Additionally, regulation of β4-mediated, EGF-stimulated invasion was shown to be dependent on 12-LOX, and downstream Erk signaling in response to ITGB4 activation also required 12-LOX. Conclusions This is the first report of an enzyme of the eicosanoid pathway being recruited to and regulated by activated β4 integrin. Integrin β4 has recently been shown to induce expansion of prostate tumor progenitors and there is a strong correlation between stage/grade of prostate cancer and 12-LOX expression. The 12-LOX enzymatic product, 12(S)-HETE, regulates angiogenesis and cell migration in many cancer types. Therefore, disruption of integrin β4-12LOX interaction could reduce the pro-inflammatory oncogenic activity of 12-LOX. This report on the consequences of 12-LOX and ITGB4 interaction sets a precedent for the linkage of integrin and eicosanoid biology through direct protein-protein association. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keqin Tang
- Department of Radiation Oncology, John D. Dingell VA Medical Center, 48201, Detroit, MI, USA. .,Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Yinlong Cai
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Sangeeta Joshi
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA. .,Present address: Roswell Park Cancer Institute, 14263, Buffalo, New York, USA.
| | - Elizabeth Tovar
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA. .,Program in Cancer Biology, Wayne State University School of Medicine, 48202, Detroit, MI, USA. .,Present address: Van Andel Institute, 49503, Grand Rapids, MI, USA.
| | - Stephanie C Tucker
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Krishna Rao Maddipati
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - John D Crissman
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - William T Repaskey
- Department of Internal Medicine, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| |
Collapse
|
42
|
Kawakami K, Fujita Y, Kato T, Mizutani K, Kameyama K, Tsumoto H, Miura Y, Deguchi T, Ito M. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int J Oncol 2015; 47:384-90. [PMID: 25997717 DOI: 10.3892/ijo.2015.3011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Treatment with taxanes for castration-resistant prostate cancer often leads to the development of resistance. It has been recently demonstrated that exosomes present in the body fluids contain proteins and RNAs in the cells from which they are derived and could serve as a diagnostic marker for various diseases. In the present study, we aimed to identify proteins contained in exosomes that could be markers for progression and taxane-resistance of prostate cancer. Exosomes were isolated by differential centrifugation from the culture medium of taxane-resistant human prostate cancer PC-3 cells (PC-3R) and their parental PC-3 cells. Isolated exosomes were subjected to iTRAQ-based quantitative proteomic analysis. Exosomes were also isolated from the culture medium by using anti-CD9 antibody-conjugated magnetic beads. Protein expression was knocked down by siRNA transfection followed by analysis of the silencing effects. Proteomic analysis showed that integrin β4 (ITGB4) and vinculin (VCL) were upregulated in exosomes derived from PC-3R cells compared to PC-3 cells. The elevation of ITGB4 and VCL was confirmed in exosomes captured by anti-CD9 antibody from the culture medium of PC-3R cells. Silencing of ITGB4 and VCL expression did not affect proliferation and taxane-resistance of PC-3R cells, but ITGB4 knockdown attenuated both cell migration and invasion and VCL knockdown reduced invasion. Our results suggest that ITGB4 and VCL in exosomes could be useful markers for progression of prostate cancer associated with taxane-resistance, providing the basis for development of an exosome-based diagnostic system.
Collapse
Affiliation(s)
- Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yasunori Fujita
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Taku Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Koji Kameyama
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Takashi Deguchi
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Gifu 501-1193, Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
43
|
Liu JP, Liu D, Gu JF, Zhu MM, Cui L. Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway. J Pharm Pharmacol 2015; 67:1143-55. [PMID: 25880237 DOI: 10.1111/jphp.12402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/25/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. KEY FINDINGS Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. CONCLUSIONS The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC.
Collapse
Affiliation(s)
- Ji Ping Liu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China.,Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Liu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Jun Fei Gu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Mao Mao Zhu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Li Cui
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| |
Collapse
|
44
|
Abstract
Metastatic cancer cells are lethal. Understanding the molecular mechanisms that bolster the conversion from benign to malignant progression is key for treating these heterogeneous and resistant neoplasms. The epithelial-mesenchymal transition (EMT) is a conserved cellular program that alters cell shape, adhesion and movement. The shift to a more mesenchymal-like phenotype can promote tumor cell intravasation of surrounding blood vessels and emigration to a new organ, yet may not be necessary for extravasation or colonization into that environment. Lymphatic dissemination, on the other hand, may not require EMT. This review presents emerging data on the modes by which tumor cells promote EMT/MET via microRNA and prepare the pre-metastatic niche via exosomes.
Collapse
Affiliation(s)
- Jacqueline Banyard
- a Vascular Biology Program, Department of Surgery , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - Diane R Bielenberg
- a Vascular Biology Program, Department of Surgery , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
45
|
Kacsinta AD, Rubenstein CS, Sroka IC, Pawar S, Gard JM, Nagle RB, Cress AE. Intracellular modifiers of integrin alpha 6p production in aggressive prostate and breast cancer cell lines. Biochem Biophys Res Commun 2014; 454:335-40. [PMID: 25450398 DOI: 10.1016/j.bbrc.2014.10.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 02/03/2023]
Abstract
Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent "inside-out" signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent "inside-out" signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype.
Collapse
Affiliation(s)
- Apollo D Kacsinta
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Cynthia S Rubenstein
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Isis C Sroka
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Sangita Pawar
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Jaime M Gard
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Raymond B Nagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pathology, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
46
|
Cheng X, Gu J, Zhang M, Yuan J, Zhao B, Jiang J, Jia X. Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-α-ERK1/2-NF-κB pathway. Int Immunopharmacol 2014; 23:304-13. [PMID: 25218161 DOI: 10.1016/j.intimp.2014.08.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 01/27/2023]
Abstract
The migration and invasion characteristics that are related to inflammatory response play important roles in the development of lung cancer. Astagaloside IV (AS-IV), an effective saponin component isolated from Astragali Radix, has been reported to inhibit metastasis of tumor cells. However, little is known about the underlying mechanism of AS-IV on inhibiting the migration and invasion characteristics of lung cancer cells. In the present study, cell proliferation was assessed by MTT colorimetric assay. Wound-healing assay and transwell chambers assay were used to detect the effects of AS-IV on the migration capacity and invasiveness of A549 cells. Metastasis-related bio-markers expressions were detected by Western blot analysis. Levels of inflammatory factors including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell supernatant were tested by enzyme linked immunosorbent assay (ELISA). The expressions of PKC-α, ERK1/2 and NF-κB were analyzed by Western blot analysis. The results showed that the migration and invasion ability of A549 has been suppressed in presence of AS-IV. The levels of MMP-2, MMP-9 and integrin β1 were decreased significantly, whereas E-cadherin was increased by the treatment of different concentrations AS-IV. Furthermore, AS-IV also significantly decreased TGF-β1, TNF-α and IL-6 levels. Interestingly, PKC pathway inhibitor AEB071 (Sotrastaurin) (0.1 μM) or ERK inhibitor U0126 (1 μM) or NF-κB inhibitor PDTC (1 μM) could affect suppression of AS-IV on cell invasion, at least partially. Our results suggested that the migration and invasion of AS-IV in A549 cells might be related to the PKC-α-ERK1/2-NF-κB pathway. The result indicated that AS-IV could be used as a candidate for the inhibition of metastasis of human lung cancer.
Collapse
Affiliation(s)
- Xudong Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Junfei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Minghua Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China
| | - Jiarui Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China
| | - Bingjie Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Jun Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Xiaobin Jia
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China.
| |
Collapse
|
47
|
Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis--a closer look at the neuropilin/semaphorin3 axis. Microvasc Res 2014; 96:68-76. [PMID: 25087623 DOI: 10.1016/j.mvr.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.
Collapse
Affiliation(s)
- Matthew T Migliozzi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|