1
|
Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci 2024; 25:4253. [PMID: 38673838 PMCID: PMC11050399 DOI: 10.3390/ijms25084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.
Collapse
Affiliation(s)
- Adrianna Romanowicz
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Marta Lukaszewicz-Zajac
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Li S, Hoefnagel SJM, Krishnadath KK. Molecular Biology and Clinical Management of Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:5410. [PMID: 38001670 PMCID: PMC10670638 DOI: 10.3390/cancers15225410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly lethal malignancy. Due to its rising incidence, EAC has become a severe health challenge in Western countries. Current treatment strategies are mainly chosen based on disease stage and clinical features, whereas the biological background is hardly considered. In this study, we performed a comprehensive review of existing studies and discussed how etiology, genetics and epigenetic characteristics, together with the tumor microenvironment, contribute to the malignant behavior and dismal prognosis of EAC. During the development of EAC, several intestinal-type proteins and signaling cascades are induced. The anti-inflammatory and immunosuppressive microenvironment is associated with poor survival. The accumulation of somatic mutations at the early phase and chromosomal structural rearrangements at relatively later time points contribute to the dynamic and heterogeneous genetic landscape of EAC. EAC is also characterized by frequent DNA methylation and dysregulation of microRNAs. We summarize the findings of dysregulations of specific cytokines, chemokines and immune cells in the tumor microenvironment and conclude that DNA methylation and microRNAs vary with each different phase of BE, LGD, HGD, early EAC and invasive EAC. Furthermore, we discuss the suitability of the currently employed therapies in the clinic and possible new therapies in the future. The development of targeted and immune therapies has been hampered by the heterogeneous genetic characteristics of EAC. In view of this, the up-to-date knowledge revealed by this work is absolutely important for future EAC studies and the discovery of new therapeutics.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Kausilia Krishnawatie Krishnadath
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2000 Antwerpen, Belgium
| |
Collapse
|
3
|
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4. Life Sci 2022; 303:120661. [PMID: 35643380 DOI: 10.1016/j.lfs.2022.120661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
AIM The C-X-C chemokine-receptor type 4 (CXCR4) is an emerging target for cancer drug discovery due to its high expression in cancer cells. The present study aimed to produce CXCR4 overexpressing HEK293T cells for a non-radioactive binding assay as a platform to identify drug candidates targeting CXCR4. MAIN METHODS HEK293T cells stably expressing human CXCR4 were constructed by transfection of CXCR4 plasmids from the human CXCR4 gene. The CXCR4 overexpressing HEK293T cells were obtained by fluorescence-activated sorting and verified by conducting the competition binding assay of a known CXCR4 inhibitor, AMD3100 (plerixafor), to determine the IC50 value against monoclonal anti-human CD184 (hCD184) antibody tagged with fluorescence probe, phycoerythrin (PE). The non-radioactive binding assay using CXCR4 overexpressing HEK293T cells and PE-anti hCD184 was applied as a platform for identifying the target of natural compounds that exhibited cytotoxicity against cancer cell lines. KEY FINDINGS The CXCR4 overexpressing HEK293T cells were produced with high expression (99.8%). The IC50 value of plerixafor determined by fluorescence tagged antibody-based competition assay using our developed cells agree with previously reported values using a radioligand binding assay. We observed no significant displacement of bound PE-anti-hCD184 by the test natural compounds which could be due to non-specific binding to other functional targets or organelles, low potency of the natural compounds, or binding to CXCR4 at deeper pockets. SIGNIFICANCE The verified non-radioactive binding assay can serve as an alternative screening tool for anticancer lead compounds targeting CXCR4 and an essential tool for proof of mechanism study in the drug discovery.
Collapse
|
4
|
Marcazzan S, Braz Carvalho MJ, Konrad M, Strangmann J, Tenditnaya A, Baumeister T, Schmid RM, Wester HJ, Ntziachristos V, Gorpas D, Wang TC, Schottelius M, Quante M. CXCR4 peptide-based fluorescence endoscopy in a mouse model of Barrett's esophagus. EJNMMI Res 2022; 12:2. [PMID: 35006394 PMCID: PMC8748556 DOI: 10.1186/s13550-021-00875-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Near-infrared (NIR) fluorescence imaging has been emerging as a promising strategy to overcome the high number of early esophageal adenocarcinomas missed by white light endoscopy and random biopsy collection. We performed a preclinical assessment of fluorescence imaging and endoscopy using a novel CXCR4-targeted fluorescent peptide ligand in the L2-IL1B mouse model of Barrett’s esophagus. Methods Six L2-IL1B mice with advanced stage of disease (12–16 months old) were injected with the CXCR4-targeted, Sulfo-Cy5-labeled peptide (MK007), and ex vivo wide-field imaging of the whole stomach was performed 4 h after injection. Before ex vivo imaging, fluorescence endoscopy was performed in three L2-IL1B mice (12–14 months old) by a novel imaging system with two L2-IL1B mice used as negative controls. Results Ex vivo imaging and endoscopy in L2-IL1B mice showed that the CXCR4-targeted MK007 accumulated mostly in the dysplastic lesions with a mean target-to-background ratio > 2. The detection of the Sulfo-Cy5 signal in dysplastic lesions and its co-localization with CXCR4 stained cells by confocal microscopy further confirmed the imaging results. Conclusions This preliminary preclinical study shows that CXCR4-targeted fluorescence endoscopy using MK007 can detect dysplastic lesions in a mouse model of Barrett’s esophagus. Further investigations are needed to assess its use in the clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00875-7.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany.,Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany.,Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020, Innsbruck, Austria
| | - Marcos J Braz Carvalho
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Matthias Konrad
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany.,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| | - Anna Tenditnaya
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Roland M Schmid
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Margret Schottelius
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany.,Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michael Quante
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany. .,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
5
|
Peng T, Wang X, Li Z, Bi L, Gao J, Yang M, Wang Y, Yao X, Shan H, Jin H. Preclinical Evaluation of [ 64Cu]NOTA-CP01 as a PET Imaging Agent for Metastatic Esophageal Squamous Cell Carcinoma. Mol Pharm 2021; 18:3638-3648. [PMID: 34424706 DOI: 10.1021/acs.molpharmaceut.1c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting metastatic esophageal squamous cell carcinoma (ESCC) has been a challenge in clinical practice. Emerging evidence demonstrates that C-X-C chemokine receptor 4 (CXCR4) highly expresses in ESCC and plays a pivotal role in the process of tumor metastasis. We developed a copper-64 (t1/2 = 12.7 h, 19% beta+) labeling route of NOTA-CP01 derived from LY2510924, a cyclopeptide-based CXCR4 potent antagonist, in an attempt to noninvasively visualize CXCR4 expression in metastatic ESCC. Precursor NOTA-CP01 was designed by modifying the C-terminus of LY2510925 with bis-t-butyl NOTA via a butane-1,4-diamine linker. The radiolabeling process was finished within 15 min with high radiochemical yield (>95%), radiochemical purity (>99%), and specific activity (10.5-21 GBq/μmol) (non-decay-corrected). The in vitro solubility and stability tests revealed that [64Cu]NOTA-CP01 had a high water solubility (log P = -3.44 ± 0.12, n = 5) and high stability in saline and fetal bovine serum. [64Cu]NOTA-CP01 exhibited CXCR4-specific binding with a nanomolar affinity (IC50 = 1.61 ± 0.96 nM, Kd = 0.272 ± 0.14 nM) similar to that of the parental LY2510924. The in vitro cell uptake assay indicated that the [64Cu]NOTA-CP01-selective accumulation in EC109 cells was CXCR4-specific. Molecular docking of the CXCR4/NOTA-CP01 complex suggested that the Lys, Arg, and NOTA of this ligand have a strong polar interaction with the key residues of CXCR4, which explains the tight affinity of [64Cu]NOTA-CP01 for CXCR4. To test the target engagement in vivo, prolonged-time positron emission computed tomography (PET) imaging was performed at 0.5, 4, 6, 8, 12, 16, and 24 h postinjection of [64Cu]NOTA-CP01 to the EC109 tumor-bearing mice. The EC109 tumors were most visible with high contrast to the contralateral background at 6 h postinjection. The tracer revealed receptor-specific tumor accumulation, which was illustrated by effective blocking via coinjection with a blocking dose of LY2510924. Quantification analysis of the prolonged-time images showed that there was obvious radioactivity accumulation in the tumor (1.27 ± 0.19%ID/g) with the best tumor-to-blood ratio (4.79 ± 0.06) and tumor-to-muscle ratio (15.44 ± 2.94) at 6 h postinjection of the probe. The immunofluorescence and immunohistochemistry confirmed the positive expression of CXCR4 in the EC109 tumor and ESCC and metastatic lymph nodes of patients, respectively. We concluded that [64Cu]NOTA-CP01 possessed a very high target engagement for CXCR4-positive ESCC and could be a potential candidate in the clinical detection of metastatic ESCC.
Collapse
Affiliation(s)
- Tukang Peng
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiebing Gao
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China.,College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-Xianyang New Economic Zone, Xianyang, Shaanxi Province 712046, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
6
|
Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, Reynolds JV. The tumour immune microenvironment in oesophageal cancer. Br J Cancer 2021; 125:479-494. [PMID: 33903730 PMCID: PMC8368180 DOI: 10.1038/s41416-021-01331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.
Collapse
Affiliation(s)
- Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Robert Power
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
7
|
Wu X, Zhang H, Sui Z, Wang Y, Yu Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0140. [PMID: 33710803 PMCID: PMC8185864 DOI: 10.20892/j.issn.2095-3941.2020.0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Xianxian Wu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hongdian Zhang
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhilin Sui
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhentao Yu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
8
|
Goto M, Shibahara Y, Baciu C, Allison F, Yeung JC, Darling GE, Liu M. Prognostic Impact of CXCR7 and CXCL12 Expression in Patients with Esophageal Adenocarcinoma. Ann Surg Oncol 2021; 28:4943-4951. [PMID: 33709176 DOI: 10.1245/s10434-021-09775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chemokines are major regulators of cell trafficking and adhesion. The chemokine CXCL12 and its receptors, CXCR4 and CXCR7, have been reported as biomarkers in various cancers, including esophageal cancer; however, there are few studies in esophageal adenocarcinoma (EAC). In this study, we investigated the relationship between expression of CXCL12, CXCR4, and CXCR7, and prognosis in patients with EAC. METHODS This study examined 55 patients with EAC who were treated in Toronto General Hospital from 2001 to 2010. Tissue microarray immunohistochemistry was used to evaluate the expression of CXCL12, CXCR4, and CXCR7. Evaluation of immunohistochemistry was performed by a pathologist without knowledge of patients' information and results were compared with the patients' clinicopathological features and survival. RESULTS High CXCR7 expression was significantly associated with lymphatic invasion (present vs absent, P = 0.005) and higher number of lymph node metastases (pN0-1 vs pN2-3, P = 0.0014). Patients with high CXCR7 expression (n = 23) were associated with worse overall (OS) and disease-free survival (DFS) (P = 0.0221, P = 0.0090, respectively), and patients with high CXCL12 (n = 24) tended to have worse OS and DFS (P = 0.1091, P = 0.1477, respectively). High expression of both CXCR7 and CXCL12 was an independent prognostic factor for OS and DFS on multivariate analysis (HR = 0.3, 95% CI: 0.1-0.9, P = 0.0246, HR = 0.3, 95% CI: 0.1-0.8, P = 0.0134, respectively). CONCLUSIONS High CXCR7 expression was associated with poor prognosis in patients with EAC, and high expression of CXCR7 with its ligand CXCL12 had a stronger association with prognosis. Further study of this potential biomarker using whole tissue samples and a larger sample size is warranted.
Collapse
Affiliation(s)
- Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yukiko Shibahara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Pathology, University Health Network, Toronto, Canada
| | - Cristina Baciu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Frances Allison
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Jonathan C Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Gail E Darling
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Departments of Surgery, Medicine, and Physiology, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Linde P, Baues C, Wegen S, Trommer M, Quaas A, Rosenbrock J, Celik E, Marnitz S, Bruns CJ, Fischer T, Schomaecker K, Wester HJ, Drzezga A, van Heek L, Kobe C. Pentixafor PET/CT for imaging of chemokine receptor 4 expression in esophageal cancer - a first clinical approach. Cancer Imaging 2021; 21:22. [PMID: 33579381 PMCID: PMC7881561 DOI: 10.1186/s40644-021-00391-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Expression of CXCR4, a chemokine (C-X-C motif) receptor that plays a central role in tumor growth and metastasis of circulating tumor cells, has been described in a variety of solid tumors. A high expression of CXCR4 has a prognostic significance with regard to overall and progression-free survival and offers a starting point for targeted therapies. In this context, [68]Ga-Pentixafor-Positron Emission Tomography/Computer Tomography (PET/CT) offers promising possibility of imaging the CXCR4 expression profile. We set out to compare a [18F] fluorodeoxyglucose (FDG)-PET/CT and a [68Ga]Pentixafor-PET/CT in (re-)staging and radiation planning of patients with localized esophageal cancer. Materials and methods In this retrospective analysis, ten patients, with adeno- or squamous cell carcinoma of the esophagus (n = 3 and n = 7, respectively), which were scheduled for radio (chemo) therapy, were imaged using both Pentixafor and FDG PET/CT examinations. All lesions were visually rated as Pentixafor and FDG positive or negative. For both tracers, SUVmax was measured all lesions and compared to background. Additionally, immunohistochemistry of CXCR4 was obtained in patients undergoing surgery. Results FDG-positive tumor-suspicious lesions were detected in all patients and a total of 26 lesions were counted. The lesion-based analysis brought equal status in 14 lesions which were positive for both tracers while five lesions were FDG positive and Pentixafor negative and seven lesions were FDG negative, but Pentixafor positive. Histopathologic correlation was available in seven patients. The CXCR4 expression of four non-pretreated tumour lesion samples was confirmed immunohistochemically. Conclusion Our data shows that additional PET/CT imaging with Pentixafor for imaging the CXCR4 chemokine receptor is feasible but heterogeneous in both newly diagnosed and pretreated recurrent esophageal cancer. In addition, the Pentixafor PET/CT may serve as complementary tool for radiation field expansion in radiooncology. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-021-00391-w.
Collapse
Affiliation(s)
- Philipp Linde
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany.
| | - Christian Baues
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Simone Wegen
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Maike Trommer
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Johannes Rosenbrock
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Eren Celik
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology, University Hospital of Cologne, University of Cologne, Kerpener St 62, 50937, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thomas Fischer
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Schomaecker
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Hans-Juergen Wester
- Department of Radiochemistry, Technische Universität München, Garching, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lutz van Heek
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Yashiro M, Kinoshita H, Tsujio G, Fukuoka T, Yamamoto Y, Sera T, Sugimoto A, Nishimura S, Kushiyama S, Togano S, Kuroda K, Toyokawa T, Ohira M. SDF1α/CXCR4 axis may be associated with the malignant progression of gastric cancer in the hypoxic tumor microenvironment. Oncol Lett 2020; 21:38. [PMID: 33262830 PMCID: PMC7693388 DOI: 10.3892/ol.2020.12299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Stromal cell-derived factor 1α (SDF1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) have been reported to form an important chemokine signaling pathway. Our previous study reported that SDF1α from tumor stromal cells may stimulate the proliferation of gastric cancer (GC) cells through the CXCR4 axis in a hypoxic microenvironment. However, a limited number of studies have addressed the clinicopathological significance of the expression of SDF1α and CXCR4 in GC, particularly at hypoxic regions. Immunohistochemistry was used to investigate the expression levels of SDF1α, CXCR4 and the hypoxic marker carbonic anhydrase 9 (CA9) in 185 patients with stage II and III GC. The results demonstrated that CA9 was expressed on cancer and stromal cells in hypoxic lesions, CXCR4 was mainly expressed in cancer cells, and SDFα was mainly expressed in stromal cells. CXCR4 expression in cancer cells and SDFα expression in stromal cells were associated with the hypoxic regions with CA9 expression. The CA9 and CXCR4 expression in the cancer cells, and the SDF1α expression in the stromal cells (CA9/CXCR4/SDF1α) was significantly associated with macroscopic type 4 tumor (P=0.012) and the pattern of tumor infiltration into the surrounding tissue (P<0.001). The prognosis of the all CA9/CXCR4/SDF1α-positive patients was significantly poorer compared with that of patients with CA9-, CXCR4- or SDF1α-negative GC at Stage III (P=0.041). These results indicated that hypoxia may upregulate SDFα production in stromal cells and CXCR4 expression in cancer cells. The SDF1α/CXCR4 axis may serve an important role in the progression of GC.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Haruhito Kinoshita
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yurie Yamamoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
11
|
Zhu L, Dong L, Feng M, Yang F, Jiang W, Huang Z, Liu F, Wang L, Wang G, Li Q. Profiles of autophagy-related genes in esophageal adenocarcinoma. BMC Cancer 2020; 20:943. [PMID: 32998713 PMCID: PMC7528598 DOI: 10.1186/s12885-020-07416-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Several studies have demonstrated autophagy was involved in the process of esophageal adenocarcinoma (EAC). The aim of this study was to explore autophagy-related genes (ARGs) correlated with overall survival (OS) in EAC patients. Methods Expressions of ARGs in EAC and normal samples were downloaded from TCGA database. GO and KEGG enrichment analyses were used to investigate the ARGs bioinformatics functions. Univariate and multivariate cox regressions were performed to identify prognostic ARGs and the independent risk factors. ROC curve was established to evaluate the feasibility to predict the prognosis. Finally, the correlations between ARGs and clinical features were further explored. In addition, significantly different ARGs were verified in EAC specimens and normal esophageal mucosal tissues. Results Thirty significantly different ARGs were selected from EAC and normal tissues. Functional enrichments showed these ARGs were mainly related apoptosis. Multivariate cox regression analyses demonstrated eight ARGs were significantly associated with OS. Among these eight genes, BECN1 (HR = 0.321, P = 0.046), DAPK1 (HR = 0.636, P = 0.025) and CAPN1 (HR = 0.395, P = 0.004) played protective roles in survival. Gender (HR = 0.225, P = 0.032), stage (HR = 5.841, P = 0.008) and risk score (HR = 1.131, P < 0.001) were independent prognostic risk factors. ROC curves showed better efficacy to predict survival using the risk score. Additionally, we found BECN1, DAPK1, VAMP7 and SIRT1 genes were correlated significantly with survival status, gender, primary tumor and tumor stage (all P < 0.05). The experimental results confirmed the BIRC5 was overexpressed and the ITPR1, PRKN were downregulated in the EAC tissues compared with the normal esophageal mucosal tissues (all P < 0.05). Conclusion Our findings suggested that autophagy was involved in the process of EAC. Several ARGs probably could serve as diagnostic and prognostic biomarkers and may help facilitate therapeutic targets in EAC patients.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lin Dong
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Minghao Feng
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fugui Yang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Wenhao Jiang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhiyuan Huang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fabing Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Lingwei Wang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Qinchuan Li
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China. .,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
12
|
Li Z, Song Y, Xu Y, Shen Y, Zhang N, Yang M, Yu D. Identification of Leukocyte telomere length-related genetic variants contributing to predisposition of Esophageal Squamous Cell Carcinoma. J Cancer 2020; 11:5025-5031. [PMID: 32742450 PMCID: PMC7378929 DOI: 10.7150/jca.45165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Cancers may arise from cells with dysregulated telomeric functions due to shorten telomere length. We and others previously found that short leukocyte telomere length was associated with markedly evaluated risk of esophageal squamous cell carcinoma (ESCC). Hence, we hypothesized that single nucleotide polymorphisms (SNPs) associated with shorter telomere length may contribute to ESCC predisposition. Methods: We systematically evaluated association between seven candidate seven SNPs (CXCR4 rs6430612, TERT rs13172201, TERT rs10069690, TERT rs2853676, TERT rs451360, OBFC1 rs4387287, and VPS34 rs2162440) and ESCC risk in two case-control sets consisting of 1588 ESCC cases and 1600 controls. Logistic regression models were utilized to estimate associations between SNPs and ESCC susceptibility and odds ratios (ORs) and their 95% confidence intervals (95% CIs) were computed. Results: We firstly identified three SNPs (rs6430612, rs13172201 and rs4387287) which are significantly associated with telomere length in Chinese populations (all P<0.05). Importantly, CXCR4 rs6430612 and OBFC1 rs4387287 polymorphisms significantly confer reduced risk of ESCC (P=1.7×10-7 and P=3.9×10-5). On the contrary, we observed an evidently increased risk for ESCC development associated with TERT rs13172201 genetic variant (P=2.2×10-4). Conclusions: In summary, rs6430612, rs13172201 and rs4387287 might be key genetic components in complicated regulation of telomere length and contributing to ESCC predisposition. Our results elucidate the prevalent involvement of genetic variants in telomere biology and further provide pathogenic insights into the role of telomeres in cancer development.
Collapse
Affiliation(s)
- Ziqiang Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:cells9061481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China;
| | - Patrick S. Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (R.T.); (I.G.)
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (R.T.); (I.G.)
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Hans A. Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J. Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Correspondence: ; Tel.: +49-221-4783-0601; Fax: +49-221-4783-0664
| |
Collapse
|
14
|
Abstract
Esophageal cancer (EC) is one of the most lethal malignancies of the digestive tract and remains to be improved poor prognosis. Two histological subtypes, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), are major characteristics of EC. Deep understanding about both subtypes is essential to overcome EC. Here, we focus on chemokines and their receptors as biomarkers and their current applications for the prognosis in EC. We reviewed relevant articles identified using PubMed database for the chemokines and their receptors in EC analyzed by immunohistochemistry. The primary objective is to summarize evidences for them as prognostic biomarkers in EC. A total of twenty-one articles were reviewed after exclusion. Most studies have been done in ESCC, and less in EAC. CXCL12 and its receptor CXCR4 have been shown in both subtypes as biomarkers. CXCR7, CXCL8 and its receptor CXCR2, and CCL21 and its receptor CCR7 have been examined in ESCC. Although it was a small number of reports, CXCL10, CCL4, and CCL5 have been indicated to have anti-tumor effects in ESCC. Chemokines and their receptors have the potential to be the biomarkers in EC. Comparative studies between ESCC and EAC will reveal the similarity and difference in these two subtypes of EC. These studies may indicate whether these molecules play important roles in both subtypes or are unique to one or another.
Collapse
|
15
|
Yue D, Zhang D, Shi X, Liu S, Li A, Wang D, Qin G, Ping Y, Qiao Y, Chen X, Wang F, Chen R, Zhao S, Wang L, Zhang Y. Chloroquine Inhibits Stemness of Esophageal Squamous Cell Carcinoma Cells Through Targeting CXCR4-STAT3 Pathway. Front Oncol 2020; 10:311. [PMID: 32232002 PMCID: PMC7083143 DOI: 10.3389/fonc.2020.00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/21/2020] [Indexed: 12/20/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide. Recent studies have shown that cancer stem cells (CSCs) are present in ESCC, are thought to lead to aggressive tumor behavior and the prognosis. The CXC chemokine receptor 4 (CXCR4), is regarded as a putative CSCs marker in various malignancies. Here, we demonstrate that CXCR4 played a key role in ESCC progression and CXCR4 positive ESCC cells possessed stem-like properties. Furthermore, the anti-malarial agent chloroquine (CQ) targeted CXCR4-positive ESCC cells via STAT3 pathway. Therefore, CQ with anti-CSCs effects may be an effective adjunct to current ESCC chemotherapy regimens.
Collapse
Affiliation(s)
- Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daiqun Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Shi
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anqi Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yamin Qiao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Renyin Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Henan Key Laboratory for Esophageal Cancer Research and State Key Laboratory for Esophageal Cancer Prevention & Treatment of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| |
Collapse
|
16
|
Yang X, Lu Q, Xu Y, Liu C, Sun Q. Clinicopathologic significance of CXCR4 expressions in patients with esophageal squamous cell carcinoma. Pathol Res Pract 2019; 216:152787. [PMID: 31859114 DOI: 10.1016/j.prp.2019.152787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022]
Abstract
AIMS This study was designed to investigate the biological function of CXCR4 in esophageal squamous cell carcinoma and to explore the underlying mechanism to provide potential targets for esophageal squamous cell carcinoma. METHODS A total of 101 patients with esophageal squamous cell carcinoma were included, and the relationship between CXCR4 and clinicopathological factors was analyzed. Laser scanning confocal microscopy was used to observe numbers of autophagosomes in TE-1 cell line and the ability of proliferation and invasion were evaluated meanwhile. RESULTS CXCR4 is overexpressed in ESCC specimens and is associated with poor differentiation and lymphocyte metastasis. In the survival analysis, CXCR4 predicted a poor overall survival prognosis. The number of autophagosomes in the siR-CXCR4 group was decreased compared with negative group (P < 0.05), while was increased in the pcDNA3.1-CXCR4 group (P < 0.05).Western blot result show upregulation of LC3II, the ratio of LC3II/LC3I and Beclin1 in pcDNA3.1-CXCR4 group and decreased expression of LC3II, the ratio of LC3II/LC3I and Beclin1 in siR-CXCR4 group. Transwell assay show CXCR4 overexpression promote the invasion of TE-1 cells and was attenuated by autophagy inhibitor 3-Methyladenine.On the contrary, invasion cell numbers decreased in siR-CXCR4 group and was rescued by autophagy inducer Rapamycin. CONCLUSION CXCR4 is an indicator of poor prognosis for ESCC. CXCR4 promote autophagy and regulate cell invasion through autophagy in ESCC. Our study provides new insights for the treatment of esophageal squamous cell carcinoma and CXCR4 may serve as a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xiaoqing Yang
- Department ofPathology, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Qingyang Lu
- Department of Pathology, LiaoCheng People's Hospital, LiaoCheng, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, China
| | - Can Liu
- Shandong University Medical School, Jinan, Shandong, China
| | - Qing Sun
- Department ofPathology, The First Hospital Affiliated with Shandong First Medical University, Jinan, China.
| |
Collapse
|
17
|
Jiang Q, Sun Y, Liu X. CXCR4 as a prognostic biomarker in gastrointestinal cancer: a meta-analysis. Biomarkers 2019; 24:510-516. [PMID: 31244335 DOI: 10.1080/1354750x.2019.1637941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: CXCR4 is a member of the C-X-C chemokine receptor family, which is associated with multiple types of cancer. Although it has been widely reported, the prognostic value of CXCR4 expression in gastrointestinal (GI) cancer remains controversial. Methods: A meta-analysis was conducted to investigate the relationship between CXCR4 and prognosis of patients with GI cancer. Subgroup analysis was also performed according to tumour subtypes and heterogeneity test. Results: A total of 24 studies including 3637 cases suggested that overexpression of CXCR4 is significantly associated with overall survival (OS) for patients with GI cancer (HR = 1.71, 95% CI = 1.45-2.03, p = 0.000). Subgroup analysis also indicated that high CXCR4 expression in oesophagus, gastric and colorectal cancer all predicted a worse prognosis (HR = 1.52, 95% CI = 1.26-1.84, p = 0.001 for oesophagus cancer; HR = 1.59, 95% CI = 1.10-2.30, p = 0.015 for gastric cancer; HR = 2.21, 95% CI = 1.56-3.14, p = 0.000 for colorectal cancer). Conclusions: CXCR4 may serve as a prognostic indicator in GI cancer patients.
Collapse
Affiliation(s)
- Qingtao Jiang
- a Department of Medicine, Jiangsu Health Vocational College , Nanjing , China
| | - Yun Sun
- b Center for Disease Prevention and Control of Changzhou , Changzhou , China
| | - Xin Liu
- c Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control , Nanjing , China
| |
Collapse
|
18
|
CXCL12 gene silencing down-regulates metastatic potential via blockage of MAPK/PI3K/AP-1 signaling pathway in colon cancer. Clin Transl Oncol 2018; 20:1035-1045. [PMID: 29305742 PMCID: PMC6061162 DOI: 10.1007/s12094-017-1821-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022]
Abstract
Background To investigate the effect of CXCL12 gene silencing on proliferation,invasion, angiogenesis and the relationship of MAPK/PI3K/AP-1 signaling pathway in colon cancer cells. Methods RT-PCR and Western-blot were used to detect the expression of CXCL12 mRNA and protein in four colon cancer cell lines. Human colon cancer cells were transfected with CXCL12 siRNA carrying by Lipofectamine 2000. The expression of CXCL12 protein was confirmed by immunoblotting. WST-1, invasion and angiogenesis assay were used to examine the effect on proliferation, invasion and angiogenesis in colon cancer cells after CXCL12 siRNA silence, respectively. The phosphorylation of MAPK/PI3K/AP-1 protein levels was detected by Western blotting in CXCL12 siRNA suppression DLD-1 cell. Results CXCL12 mRNA and proteins were only expressed in DLD-1 colon cancer cell lines. CXCL12 siRNA were transfected into DLD-1 cells, the expression CXCL12 proteins was significantly inhibited (P < 0.01), and the proliferation, invasion and angiogenesis of DLD-1 cells were inhibited significantly (P < 0.01). CXCL12 gene silencing resulted in blockage of MAPK, PI3K and AP-1 phosphorylation by CXCL12-induced in DLD-1 colon cancer cell. Conclusion The silencing CXCL12 gene significantly inhibits the proliferation, invasion and angiogenesis ability of some types colon carcinoma cells through down-regulation of MAPK/PI3K/AP-1 signaling pathway.
Collapse
|
19
|
Wang C, Wang J, Chen Z, Gao Y, He J. Immunohistochemical prognostic markers of esophageal squamous cell carcinoma: a systematic review. CHINESE JOURNAL OF CANCER 2017; 36:65. [PMID: 28818096 PMCID: PMC5561640 DOI: 10.1186/s40880-017-0232-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy, with a high incidence and poor prognosis. In the past several decades, hundreds of proteins have been reported to be associated with the prognosis of ESCC, but none has been widely accepted to guide clinical care. This study aimed to identify proteins with great potential for predicting prognosis of ESCC. Methods We conducted a systematic review on immunohistochemical (IHC) prognostic markers of ESCC according to the 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines. Literature related to IHC prognostic markers of ESCC were searched from PubMed, Embase, Web of Science, and Cochrane Library until January 30th, 2017. The risk of bias of these original studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. Results We identified 11 emerging IHC markers with reproducible results, including eight markers [epidermal growth factor receptor (EGFR), Cyclin D1, vascular endothelial growth factor (VEGF), Survivin, Podoplanin, Fascin, phosphorylated mammalian target of rapamycin (p-mTOR), and pyruvate kinase M2 (PKM2)] indicating unfavorable prognosis and 3 markers (P27, P16, and E-cadherin) indicating favorable prognosis of ESCC. Conclusion Strong evidence supports that these 11 emerging IHC markers or their combinations may be useful in predicting prognosis and aiding personalized therapy decision-making for ESCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s40880-017-0232-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021, P. R. China
| | - Jingnan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021, P. R. China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021, P. R. China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021, P. R. China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Science Building, No.17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021, P. R. China. .,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| |
Collapse
|
20
|
The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer. DISEASE MARKERS 2016; 2016:7963895. [PMID: 27041792 PMCID: PMC4794565 DOI: 10.1155/2016/7963895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC). Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA) and squamous cell cancer antigen (SCC-Ag) were measured using immunoenzyme assays, while C-reactive protein (CRP) levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.
Collapse
|
21
|
CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget 2016; 6:5022-40. [PMID: 25669980 PMCID: PMC4467131 DOI: 10.18632/oncotarget.3217] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/28/2014] [Indexed: 01/11/2023] Open
Abstract
C-X-C chemokine receptor 4 (CXCR4) is frequently over-expressed in various types of cancer; many agents against CXCR4 are in clinical development currently despite variable data for the prognostic impact of CXCR4 expression. Here eighty-five studies with a total of 11,032 subjects were included to explore the association between CXCR4 and progression-free survival (PFS) or overall survival (OS) in subjects with cancer. Pooled analysis shows that CXCR4 over-expression is significantly associated with poorer PFS (HR 2.04; 95% CI, 1.72-2.42) and OS (HR=1.94; 95% CI, 1.71-2.20) irrespective of cancer types. Subgroup analysis indicates significant association between CXCR4 and shorter PFS in hematological malignancy, breast cancer, colorectal cancer, esophageal cancer, renal cancer, gynecologic cancer, pancreatic cancer and liver cancer; the prognostic effects remained consistent across age, risk of bias, levels of adjustment, median follow-up period, geographical area, detection methods, publication year and size of studies. CXCR4 over-expression predicts unfavorable OS in hematological malignancy, breast cancer, colorectal cancer, esophageal cancer, head and neck cancer, renal cancer, lung cancer, gynecologic cancer, liver cancer, prostate cancer and gallbladder cancer; these effects were independence of age, levels of adjustment, publication year, detection methods and follow-up period. In conclusion, CXCR4 over-expression is associated with poor prognosis in cancer.
Collapse
|
22
|
Guo J, Yu X, Gu J, Lin Z, Zhao G, Xu F, Lu C, Ge D. Regulation of CXCR4/AKT-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer. Tumour Biol 2015; 37:6371-8. [PMID: 26631033 DOI: 10.1007/s13277-015-4504-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
CXC chemokines and their cognate receptors have been implicated wildly in cancer pathogenesis. In the present study, we report a critical cause relationship between CXCR4 expression and tumorigenesis in the setting of human esophageal squamous cell carcinoma (ESCC). In ESCC cells, CXCR4 expression was significantly higher than in human esophageal epithelial cells (HEEC). Reduction of CXCR4 in ESCC cells reduced cell proliferation and invasion in vitro and tumor growth in vivo. Among the potential downstream targets of CXCR4-CXCL12 are RhoA, Rac-1, and Cdc42, which are likely to contribute to the invasiveness of ESCC cells. Finally, we found that CXCR4-CXCL12/AKT axis regulates RhoA, Rac-1, and Cdc42 to modulate cell invasion and tumor metastasis. Together, these results demonstrate a role for CXCR4 in ESCC metastasis and progression and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jing Guo
- Department of Thoracic Surgery, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin RD, Shanghai, 200032, People's Republic of China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin RD, Shanghai, 200032, People's Republic of China
| | - Guangyin Zhao
- Shanghai No.1 Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin RD, Shanghai, 200032, People's Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin RD, Shanghai, 200032, People's Republic of China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin RD, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
23
|
Abstract
Chemokines mediate numerous physiological and pathological processes related primarily to cell homing and migration. The chemokine CXCL12, also known as stromal cell-derived factor-1, binds the G-protein-coupled receptor CXCR4, which, through multiple divergent pathways, leads to chemotaxis, enhanced intracellular calcium, cell adhesion, survival, proliferation, and gene transcription. CXCR4, initially discovered for its involvement in HIV entry and leukocytes trafficking, is overexpressed in more than 23 human cancers. Cancer cell CXCR4 overexpression contributes to tumor growth, invasion, angiogenesis, metastasis, relapse, and therapeutic resistance. CXCR4 antagonism has been shown to disrupt tumor-stromal interactions, sensitize cancer cells to cytotoxic drugs, and reduce tumor growth and metastatic burden. As such, CXCR4 is a target not only for therapeutic intervention but also for noninvasive monitoring of disease progression and therapeutic guidance. This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of CXCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CXCR4 expression.
Collapse
Affiliation(s)
- Samit Chatterjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Babak Behnam Azad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
24
|
Zhou S, Ye W, Ren J, Shao Q, Qi Y, Liang J, Zhang M. MicroRNA-381 increases radiosensitivity in esophageal squamous cell carcinoma. Am J Cancer Res 2014; 5:267-277. [PMID: 25628936 PMCID: PMC4300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Radiation resistance poses a major clinical challenge in treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms of radioresistance has not been fully elucidated. Since accumulating evidence demonstrates that aberrant expression of microRNAs (miRNAs) contributes to cancer sensitivity to radiation, we aimed to identify miRNAs associated with radioresistance of ESCC. METHODS In this study, we used GeneChip miRNA Array to perform an comparison of miRNAs expression in tissues from primary ESCC and recurrent ESCC in situ after radiotherapy. Differential expressions of miRNAs were comfirmed by quantitative Real-Time PCR in tissues and six ESCC cell lines. Cell radiosensitivity were determined by colony formation assay. Functional analyses of miRNA-381 in ESCC cells growth and metastasis were performed by MTT and Transwell Assays. In vivo assays of the functions of miRNA-381 were performed in tumor xenografts. RESULTS One miRNA candidate, miRNA-381, was found to be downregulated in radiation resistance tissues and cells. Enforced expression of miRNA-381 increased radiosensitivity of ESCC cells and promoted nonaggressive phenotype including decreased cellular proliferation and migration. In contrast, inhibition of miRNA-381 in ESCC cells promoted radiation resistance and development of an aggressive phenotype. In vivo assays extended the significance of these results, showing that miRNA-381 overexpression decreased the tumor growth and the resistance to radiation treatment in tumor xenografts. CONCLUSIONS Together, our work reveals miRNA-381 expression as a critical determinant of radiosensitivity in esophageal cancer cells.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Wenguang Ye
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Juan Ren
- Department of Radiotherapy, First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Jun Liang
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Mingxin Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
25
|
Thomaidis T, Maderer A, Al-Batran SE, Kany J, Pauligk C, Steinmetz K, Schad A, Hofheinz R, Schmalenberg H, Homann N, Galle PR, Moehler M. VEGFR-3 and CXCR4 as predictive markers for treatment with fluorouracil, leucovorin plus either oxaliplatin or cisplatin in patients with advanced esophagogastric cancer: a comparative study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). BMC Cancer 2014; 14:476. [PMID: 24981311 PMCID: PMC4094395 DOI: 10.1186/1471-2407-14-476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Combination of fluoropyrimidines and a platinum derivative are currently standards for systemic chemotherapy in advanced adenocarcinoma of the stomach and gastroesophageal junction (GEJ). Nevertheless, individual likelihood for response to these therapeutic regimes remains uncertain. Even more, no predictive markers are available to determine which patients may benefit more from oxaliplatin versus cisplatin or vice versa. The new invasion and stem cell markers VEGFR-3 and CXCR4 have been linked prognostically with more aggressive esophagogastric cancer types. Thus, we aimed to assess correlations of VEGFR-3 and CXCR4 expression levels with clinical outcome in a randomized phase III study of patients with oxaliplatin/leucovorin/5-FU (FLO) versus cisplatin/leucovorin/5-FU (FLP). METHODS The patients data examined in this study (n = 72) were from the collective of the FLO vs. FLP phase III AIO trial. Tumour tissues were stained via immunohistochemistry for VEGFR-3 and CXCR4 expression and results were evaluated by two independent, blinded investigators.Outcome parameter: Survival analysis was calculated for patients receiving FLO vs. FLP in relation to VEGFR-3 and CXCR4 expression. RESULTS 54% and 36% of the examined tumour tissues showed strong positive expression of VEGFR-3 and CXCR4 respectively. No superiority of each regime was detected in terms of overall survival (OS) in the whole population. Patients with strong expression of CXCR4 on their tumour tissues profited more in terms of OS under the treatment of FLP (mOS: 28 vs 15 months, p = 0.05 respectively). Patients with negative VEGFR-3 and CXCR4 expression had a trend to live longer when FLO regime was applied (mOS: 22 vs. 9 months, p = 0.099 and 20 vs. 10 months, p = 0.073 respectively). In an exploratory analysis of patients older than 60 years at diagnosis, we observed a significant benefit in overall survival for VEGFR-3 and CXCR4-positive patients when treated with FLP (p = 0.002, p = 0.021 respectively). CONCLUSIONS CXCR4 positive patients profited in terms of OS from FLP, whereas FLO proved to be more effective in CXCR4 and VEGFR-3 negative patients. Our results suggest, despite the limited size of the study, a predictive value of these biomarkers concerning chemotherapy with FLP or FLO in advanced esophagogastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Markus Moehler
- I, Medical Department, Johannes-Gutenberg University of Mainz, Langenbeckstr,1, 55131 Mainz, Germany.
| |
Collapse
|
26
|
Lu CL, Guo J, Gu J, Ge D, Hou YY, Lin ZW, Ding JY. CXCR4 heterogeneous expression in esophageal squamous cell cancer and stronger metastatic potential with CXCR4-positive cancer cells. Dis Esophagus 2014; 27:294-302. [PMID: 23822165 DOI: 10.1111/dote.12100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CXCR4 belongs to a family of G protein-coupled cell surface receptors and has been proved to a prognostic marker in a various tumors, including esophageal squamous cell cancer. In this study, we analyzed CXCR4 expression in tumor tissue and metastatic tumor tissues of lymph node by immunohistochemistry. CXCR4 was found to be an independent factor of patients' survival and heterogeneously expressed in tumor tissues. Compared with the primary tumor tissues, the scores of CXCR4 expression were significantly higher in corresponding metastatic tumor tissues of lymph nodes (P < 0.01). It was suggested CXCR4-positive cells were prone to migrate to lymph nodes. In the further experiments in vitro, we confirmed heterogeneous expression of CXCR4 in esophageal squamous cell cancer cell lines (KYSE70, Ec109, and CaES17) by flow cytometry analysis. Meanwhile, two subpopulations were isolated from Ec109 based on CXCR4 membrane expression by fluorescence-activated cell sorting. CXCR4-positive cells showed stronger migration ability in Boyden chamber assay than CXCR4 negative ones (P < 0.01). However, no significant difference of cell proliferation was found between the two subpopulations in colony formation assay (P > 0.05). We concluded that CXCR4 might be a key molecule in esophageal squamous cell cancer metastasis.
Collapse
Affiliation(s)
- C-L Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Clinicopathological and prognostic significance of chemokine receptor CXCR4 overexpression in patients with esophageal cancer: a meta-analysis. Tumour Biol 2013; 35:3709-15. [DOI: 10.1007/s13277-013-1490-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
|
28
|
Tachezy M, Zander H, Gebauer F, von Loga K, Pantel K, Izbicki JR, Bockhorn M. CXCR7 expression in esophageal cancer. J Transl Med 2013; 11:238. [PMID: 24074251 PMCID: PMC3851264 DOI: 10.1186/1479-5876-11-238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023] Open
Abstract
Background The chemokine CXCL12 and its receptor CXCR4 play a major role in tumor invasion, proliferation and metastasis in different malignant diseases, including esophageal carcinoma, amongst others. CXCR7 was recently identified as a novel alternate receptor for CXCL12. The aim of this study was to evaluate the prognostic impact of expression of chemokine receptor CXCR7 in patients with esophageal carcinoma (EC). Methods Expression of CXCR7 in primary tumors, lymph nodes and distant metastases of 299 patients with EC was evaluated by immunohistochemistry on a tissue microarray and compared with clinical and histopathological data. Results In esophageal cancer sections, CXCR7-specific reactivity was apparent in 45% of the squamous cell carcinomas (ESCC), but only occasionally in adenocarcinomas. No correlation between CXCR4 and CXCR7 expression was evident. We correlated expression with clinical and histopathological characteristics, but could not find any association. Conclusions Contrary to the other known CXCL12 receptor, CXCR4, CXCR7 is expressed in ESCC only, underlining the divergent mechanisms and backgrounds of EAC and ESCC. The results of the study do not indicate a significant functional role for CXCR7 in EAC or ESCC of the esophagus. However, its variable expression in the main two main types of EC needs to be further investigated.
Collapse
Affiliation(s)
- Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lombardi L, Tavano F, Morelli F, Latiano TP, Di Sebastiano P, Maiello E. Chemokine receptor CXCR4: role in gastrointestinal cancer. Crit Rev Oncol Hematol 2013; 88:696-705. [PMID: 24120239 DOI: 10.1016/j.critrevonc.2013.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 01/29/2023] Open
Abstract
Chemokines (CK)s, small proinflammatory chemoattractant cytokines that bind to specific G-protein coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The CXCL12 [stromal cell-derived factor-1 (SDF-1)] binds primarily to CXC receptor 4 (CXCR4; CD184). The binding of CXCL12 to CXCR4 induces intracellular signaling through several divergent pathways initiating signals related to chemotaxis, cell survival and/or proliferation, increase in intracellular calcium, and gene transcription. CXCR4 is expressed on multiple cell types including lymphocytes, hematopoietic stem cells, endothelial and epithelial cells, and cancer cells. One of the most intriguing and perhaps important roles that CKs and the CK receptors have is in regulating metastasis. Here, CK receptors may potentially facilitate tumor dissemination at each of the key steps of metastasis, including adherence of tumor cells to endothelium, extravasation from blood vessels, metastatic colonization, angiogenesis, proliferation, and protection from the host response via activation of key survival pathways such as ERK/MAPK, PI-3K/Akt/mTOR, or Jak/STAT, etc. In addition, it is increasingly recognized that CKs play an important role in facilitating communication between cancer cells and non-neoplatic cells in the tumor microenvironment (TME), including endothelial cells and fibroblasts, promoting the infiltration, activation of neutrophils, and tumor-associated macrophages within the TME. In this review, we mainly focus on the roles of chemokines CXCL12 and its cognate receptors CXCR4 as they pertain to cancer progression. In particular, we summarizes our current understanding regarding the contribution of CXCR4 and SDF-1 to gastrointestinal tumor behavior and its role in local progression, dissemination, and immune evasion of tumor cells. Also, describes recent therapeutic approaches that target these receptors or their ligands.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Ye SB, Ma G, Tang XF, Chen SP, He J, Liu WL, Xie D, Zeng YX, Li J. The expressions of MIF and CXCR4 protein in tumor microenvironment are adverse prognostic factors in patients with esophageal squamous cell carcinoma. J Transl Med 2013; 11:60. [PMID: 23497377 PMCID: PMC3623724 DOI: 10.1186/1479-5876-11-60] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023] Open
Abstract
Background Tumor-derived cytokines and their receptors usually take important roles in the disease progression and prognosis of cancer patients. In this survey, we aimed to detect the expression levels of MIF and CXCR4 in different cell populations of tumor microenvironments and their association with survivals of patients with esophageal squamous cell carcinoma (ESCC). Methods MIF and CXCR4 levels were measured by immunochemistry in tumor specimens from 136 resected ESCC. Correlation analyses and independent prognostic outcomes were determined using Pearson’s chi-square test and Cox regression analysis. Results The expression of CXCR4 in tumor cells was positively associated with tumor status (P = 0.045) and clinical stage (P = 0.044); whereas the expression of CXCR4 in tumor-infiltrating lymphocytes (TILs) and the expression of MIF in tumor cells and in TILs were not associated with clinical parameters of ESCC patients. High MIF expression in tumor cells or in TILs or high CXCR4 expression in tumor cells was significantly related to poor survival of ESCC patients (P < 0.05). Multivariate analysis showed that the expression of MIF or CXCR4 in tumor cells and the expression of MIF in TILs were adverse independent factors for disease-free survival (DFS) and overall survival (OS) in the whole cohort of patients (P < 0.05). Furthermore, the expression of MIF and CXCR4 in tumor cells were independent factors for reduced DFS and OS in metastatic/recurrent ESCC patients (P < 0.05). Interestingly, the expressions of MIF and CXCR4 in tumor cells and in TILs were significantly positively correlated (P < 0.05), and the combined MIF and CXCR4 expression in tumor cells was an independent adverse predictive factor for DFS and OS (P < 0.05). Conclusion The expressions of MIF and CXCR4 proteins in tumor cells and TILs have different clinically predictive values in ESCC.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuil J, Buckle T, van Leeuwen FWB. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev 2012; 41:5239-61. [PMID: 22743644 DOI: 10.1039/c2cs35085h] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction between the chemokine receptor 4 (CXCR4) and stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is a natural regulatory process in the human body. However, CXCR4 over-expression is also found in diseases such as cancer, where it plays a role in, among others, the metastatic spread. For this reason it is an interesting biomarker for the field of diagnostic oncology, and therefore, it is gaining increasing interest for applications in molecular imaging. Especially "small-molecule" imaging agents based on T140, FC131 and AMD3100 have been extensively studied. SDF-1, antibodies, pepducins and bioluminescence have also been used to visualize CXCR4. In this critical review reported CXCR4 targeting imaging agents are described based on their affinity, specificity and biodistribution. The level wherein CXCR4 is up-regulated in cancer patients and its relation to the different cell lines and animal models used to evaluate the efficacy of the imaging agents is also discussed (221 references).
Collapse
Affiliation(s)
- Joeri Kuil
- Department of Radiology, Interventional Molecular Imaging, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | |
Collapse
|
32
|
Popple A, Durrant LG, Spendlove I, Rolland P, Scott IV, Deen S, Ramage JM. The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer. Br J Cancer 2012; 106:1306-13. [PMID: 22415233 PMCID: PMC3314783 DOI: 10.1038/bjc.2012.49] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/20/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The chemokine CXCL12 and its cognate receptor, CXCR4, have been implicated in numerous tumour types where expression promotes tumour growth, angiogenesis, metastasis and suppresses tumour immunity. METHODS Using a tissue microarray of 289 primary ovarian cancers coupled to a comprehensive database of clinicopathological variables, the expression of CXCL12 and CXCR4 was assessed by immunohistochemistry and its impact in terms of survival and clinicopathological variables was determined. RESULTS Patients whose tumours expressed high levels of CXCL12 had significantly poorer survival (P=0.026) than patients whose tumours failed to produce this chemokine. Lack of CXCL12 expression within tumours was associated with a 51-month survival advantage for patients when compared with patients whose tumours expressed high levels of CXCL12. FIGO stage, adjuvant chemotherapy and the absence of macroscopic disease after surgery were all shown to predict prognosis independently of each other in this cohort of patients. CXCL12 was independently predictive of prognosis on multivariate analysis (P=0.016). There was no correlation between CXCL12 and any clinicopathological variable. CONCLUSION The chemokine CXCL12 is an independent predictor of poor survival in ovarian cancer. High expression of CXCL12 was seen in only 20% of the tumours, suggesting a role for anti-CXCL12/CXCR4 therapy in the management of these patients.
Collapse
Affiliation(s)
- A Popple
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - L G Durrant
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - I Spendlove
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - P Rolland
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| | - I V Scott
- Department of Obstetrics and Gynaecology, Royal Derby Hospital, Derby DE22 3NF, UK
| | - S Deen
- Division of Histopathology, University Hospitals Nottingham, Nottingham NG7 2UH, UK
| | - J M Ramage
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital Campus, University of Nottingham, Nottingham NG5 1PB, UK
| |
Collapse
|
33
|
Verbeke H, Geboes K, Van Damme J, Struyf S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta Rev Cancer 2011; 1825:117-29. [PMID: 22079531 DOI: 10.1016/j.bbcan.2011.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/12/2022]
Abstract
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.
Collapse
Affiliation(s)
- Hannelien Verbeke
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven (K.U.Leuven), Belgium
| | | | | | | |
Collapse
|
34
|
Singh R, Lillard JW, Singh S. Chemokines: key players in cancer progression and metastasis. Front Biosci (Schol Ed) 2011; 3:1569-82. [PMID: 21622291 DOI: 10.2741/246] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Instructed cell migration is a fundamental component of various biological systems and is critical to the pathogenesis of many diseases including cancer. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. However, functional mechanisms of chemokine are not well implicit, which is crucial for designing new therapeutics to control tumor growth and metastasis. Multiple functions and mode of actions have been advocated for chemokines and their receptors in the progression of primary and secondary tumors. In this review, we have discussed current advances in understanding the role of the chemokines and their corresponding receptor in tumor progression and metastasis.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | |
Collapse
|
35
|
Lu CL, Ji Y, Ge D, Guo J, Ding JY. The expression of CXCR4 and its relationship with matrix metalloproteinase-9/vascular endothelial growth factor in esophageal squamous cell cancer. Dis Esophagus 2011; 24:283-90. [PMID: 21087342 DOI: 10.1111/j.1442-2050.2010.01135.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is a highly aggressive neoplasm with poor prognosis. The main reason for this disappointing outcome is the strong behavior of esophageal cancer cell's invasion and metastasis. CXC chemokine receptor 4 (CXCR4) was found to be expressed in many tumors and significantly correlated with invasion, angiogenesis, metastasis, and prognosis. In the present study, we investigated the expressions of CXCR4, matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF) in esophageal squamous cell cancer (ESCC) and analyzed the relationship among the three proteins. Sections of paraffin-embedded tissues were obtained from 127 patients with ESCC undergoing esophagectomy at Zhongshan Hospital, Fudan University in 2005. The CXCR4, MMP-9, and VEGF expressions in EC tissues were evaluated according to the immunohistochemical staining area and intensity. The correlations between patients' prognosis and covariates were analyzed by Kaplan--Meier method (univariate analysis) and Cox regression (multivariate analysis). The overall expression rate of CXCR4, MMP-9, and VEGF was 88.2%, 93.7%, and 79.5%, respectively. CXCR4 expression was significantly associated with tumor grade, tumor size, tumor depth, regional lymph node metastasis, and tumor, node, metastasis (TNM) stage (P < 0.05). MMP-9 expression was significantly associated with age and tumor grade (P < 0.05). VEGF expression was significantly associated with tumor grade, tumor depth, and TNM stage (P < 0.05). CXCR4 expression was positively correlated with MMP-9 expression (P < 0.01, r= 0.365) and VEGF expression (P < 0.01, r= 0.380). However, there was no significant correlation between MMP-9 and VEGF expression (P > 0.05). In univariate analysis, CXCR4 expression, tumor size, tumor depth, lymph node metastasis, and TNM stage were correlated with patients' prognosis (P < 0.05); in multivariate analysis, tumor size and lymph node metastasis were the independent factors of poor prognosis. CXCR4 was highly expressed in ESCC and correlated with MMP-9, VEGF, clinicopathological features and prognosis. We speculated CXCR4 play an important role during the progression of this disease and there might be some regulatory mechanism existing between CXCR4 and MMP-9/VEGF in ESCC.
Collapse
Affiliation(s)
- C L Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
36
|
Bruyère C, Lonez C, Duray A, Cludts S, Ruysschaert JM, Saussez S, Yeaton P, Kiss R, Mijatovic T. Considering temozolomide as a novel potential treatment for esophageal cancer. Cancer 2010; 117:2004-16. [DOI: 10.1002/cncr.25687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/13/2010] [Accepted: 09/07/2010] [Indexed: 12/30/2022]
|
37
|
Abstract
The chemokine receptor CXCR4 belongs to the large superfamily of G protein-coupled receptors and has been identified to play a crucial role in a number of biological processes, including the trafficking and homeostasis of immune cells such as T lymphocytes. CXCR4 has also been found to be a prognostic marker in various types of cancer, including leukemia and breast cancer, and recent evidence has highlighted the role of CXCR4 in prostate cancer. Furthermore, CXCR4 expression is upregulated in cancer metastasis, leading to enhanced signaling. These observations suggest that CXCR4 is important for the progression of cancer. The CXCR4-CXCL12 (stromal cell-derived factor 1 (SDF-1)) axis has additionally been identified to have a role in normal stem cell homing. Interestingly, cancer stem cells also express CXCR4, indicating that the CXCR4-SDF-1 axis may direct the trafficking and metastasis of these cells to organs that express high levels of SDF-1, such as the lymph nodes, lungs, liver, and bone. This review focuses on the current knowledge of CXCR4 regulation and how deregulation of this protein may contribute to the progression of cancer.
Collapse
Affiliation(s)
- Bungo Furusato
- Center for Prostate Disease Research, Department of Surgery, Uniformed Service University of the Health Sciences, 1530 E. Jefferson Street, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
38
|
Verbeke H, De Hertogh G, Li S, Vandercappellen J, Noppen S, Schutyser E, El-Asrar AA, Opdenakker G, Van Damme J, Geboes K, Struyf S. Expression of angiostatic platelet factor-4var/CXCL4L1 counterbalances angiogenic impulses of vascular endothelial growth factor, interleukin-8/CXCL8, and stromal cell-derived factor 1/CXCL12 in esophageal and colorectal cancer. Hum Pathol 2010; 41:990-1001. [PMID: 20334899 DOI: 10.1016/j.humpath.2009.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/11/2009] [Accepted: 09/17/2009] [Indexed: 01/12/2023]
Abstract
Chemokines influence tumor progression through regulation of leukocyte chemotaxis, angiogenesis, and metastasis. In this study, the regulated expression of angiogenic (stromal cell-derived factor [SDF]-1/CXCL12 and interleukin [IL]-8/CXCL8) and angiostatic (platelet factor [PF]-4var/CXCL4L1 and inducible protein [IP-10]/CXCL10) chemokines was examined in human colorectal and esophageal cancer. In HCT 116 and HCT-8 colorectal adenocarcinoma cells, the production of IL-8 immunoreactivity was up-regulated by IL-1beta, tumor necrosis factor (TNF)-alpha, the toll-like receptor (TLR) ligands double-stranded RNA and peptidoglycan and phorbol ester. Increased PF-4 and synergistic IL-8 and IP-10 induction in carcinoma cells after stimulation with IL-1beta plus TNF-alpha or interferon-gamma was demonstrated by enzyme-linked immunosorbent assay, quantitative reverse transcriptase polymerase chain reaction, or immunocytochemistry. In addition, IL-8 from HT-29 colorectal adenocarcinoma cells was molecularly identified as intact chemokine, as well as NH(2)-terminally truncated, more active IL-8(6-77). The presence of PF-4var, SDF-1, and vascular endothelial growth factor (VEGF) was evidenced by immunohistochemistry in surgical samples from 51 patients operated on for colon adenocarcinoma (AC), esophageal AC, or esophageal squamous cell carcinoma (SCC). PF-4var was strongly detected in colorectal cancer, whereas its expression in esophageal cancer was rather weak. Staining for SDF-1 was almost negative in esophageal SCC, whereas a more intense and frequent staining was observed in AC of the esophagus and colon. Staining for VEGF was moderately to strongly positive in all 3 types of cancer, although less prominent in esophageal AC. The heterogenous expression of angiogenic (IL-8, SDF-1) as well as angiostatic (IP-10, PF-4var) chemokines not only within the tumor and between the different cases but also between the different tumor cell types may indicate a distinct role of the various chemokines in the complex process of tumor development.
Collapse
Affiliation(s)
- Hannelien Verbeke
- Rega Institute for Medical Research, Laboratory of Molecular Immunology, K. U. Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu Y, Ji R, Li J, Gu Q, Zhao X, Sun T, Wang J, Li J, Du Q, Sun B. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:16. [PMID: 20181250 PMCID: PMC2845107 DOI: 10.1186/1756-9966-29-16] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/24/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND The chemokine receptors CXCR4 and CCR7 play an important role in cancer invasion and metastasis. This study investigated the expression of CXCR4, CCR7, CXCL12, CCL21, and EGFR to illustrate the role of these biomarkers in breast cancer metastasis and prognosis. METHODS The CXCR4, CCR7, CXCL12, CCL21, and EGFR biomarkers were analyzed along with ER, PR, and HER-2/neu in breast cancer tissue microarray (TMA) specimens, including 200 primary breast cancer specimens by immunohistochemistry. Corresponding lymph nodes from the same patients were also examined using the same method. RESULTS Together with their CXCL12 and CCL21 ligands, CXCR4 and CCR7 were significantly highly expressed in tumor cells with lymph node (LN) metastasis. Similarly, EGFR was expressed highly in tumors with LN metastasis. The ligands were especially expressed in metastatic tumors than in primary tumors from the same patients. Moreover, the expression of both CXCR4 accompanied by CCR7 and CXCL12 accompanied by CCL21 were up-regulated. Kaplan-Meier survival analysis revealed that patients exhibiting high CXCR4, CCR7, and EGFR expression experienced a shorter survival period compared with those with low expression. CONCLUSIONS The expression of CXCR4, CCR7, and EGFR may be associated with LN metastasis. Moreover, the expression of these receptors can serve as an indicator of undesirable prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The CXCR4/CXCL12 axis in endometrial cancer. Clin Exp Metastasis 2009; 26:261-8. [DOI: 10.1007/s10585-009-9240-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 01/22/2009] [Indexed: 12/15/2022]
|
41
|
Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest 2008; 31:809-19. [PMID: 18997494 DOI: 10.1007/bf03349262] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemokines exert their multifunctional role in several physiologic and pathologic processes through interaction with their specific receptors. Much evidence have revealed that metastatic spread tumor cells may use chemokine-mediated mechanisms. In particular, an involvement of stromal cell-derived factor-1 (SDF-1) in growth of primary tumors and in metastatic process has been demonstrated. Indeed, it has been suggested that CXCR4 expression by tumor cells, plays a critical role in cell metastasis by a chemotactic gradient to organs expressing the ligand SDF-1. Moreover, CXCR4 overexpression correlated with poor prognosis in many types of cancer. In physiologic condition, SDF-1 also plays an essential role modulating stem cell proliferation, survival, and homing through its canonical receptor CXCR4. Recently, several studies have demonstrated the existence of a small subset of cancer cells which share many characteristics with stem cells and named cancer stem cells (CSC). They constitute a reservoir of self-sustaining cells with the ability to maintain the tumor growth. In particular, most of them express CXCR4 receptor and respond to a chemotactic gradient of its specific ligand SDF-1, suggesting that CSC probably represent a subpopulation capable of initiating metastasis. This review focuses on the role of SDF-1/CXCR4 axis in cancer and in the metastatic progression by tumoral cells, as well as the role of CSC in tumor pathogenesis and in metastatic process. A better understanding of migratory mechanism involving cancer cells and CSC provides a powerful tool for developing novel therapies reducing both local and distant recurrences.
Collapse
Affiliation(s)
- S Gelmini
- Clinical Biochemistry Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
42
|
Schimanski CC, Galle PR, Moehler M. Chemokine receptor CXCR4-prognostic factor for gastrointestinal tumors. World J Gastroenterol 2008; 14:4721-4. [PMID: 18720530 PMCID: PMC2739331 DOI: 10.3748/wjg.14.4721] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To review the implication of CXCR4 for gastrointestinal cancer, a “Pubmed” analysis was performed in order to evaluate the relevance of CXCR4 and its ligands for gastrointestinal cancers. Search terms applied were “cancer, malignoma, esophageal, gastric, colon, colorectal, hepatic, pancreatic, CXCR4, SDF-1α, and SDF-1β”. CXCR4 expression correlated with dissemination of diverse gastrointestinal malignomas. The CXCR4 ligand SDF-1α might act as “chemorepellent” while SDF-1β might act as "chemorepellent" for CTLs, inducing tumor rejection. The paracrine expression of SDF-1α was furthermore closely associated with neoangiogenesis. CXCR4 and its ligands influence the dissemination, immune rejection, and neoangiogenesis of human gastrointestinal cancers. Inhibition of CXCR4 might be an interesting therapeutic option.
Collapse
|
43
|
Blot E, Laberge-Le Couteulx S, Jamali H, Cornic M, Guillemet C, Duval C, Hellot MF, Pille JY, Picquenot JM, Veyret C. CXCR4 membrane expression in node-negative breast cancer. Breast J 2008; 14:268-74. [PMID: 18373506 DOI: 10.1111/j.1524-4741.2008.00573.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CXC chemokine receptor 4 (CXCR4) has been reported to be involved in organ-specific homing of breast cancer-derived metastasis. We investigated CXCR4 expression by immunohistochemistry as a possible new prognostic factor for primary breast cancer. Two groups of women treated for breast cancer in 1991 at the Centre for the fight against cancer of Upper Normandy-France (Centre de Lutte contre le Cancer de Haute Normandie) were assessed retrospectively. CXCR4 expression was evaluated using standard immunohistochemistry. Usual prognostic factors were recorded in the computer database. Final date of follow-up was December 31, 2001. Tissues were available for 110 node-positive and 84 node-negative breast cancer patients treated in 1991. CXCR4 membrane staining was considered a strong prognostic factor for both 10-year metastasis-free- (p < 0.0001) and overall survival (p < 0.0001) in node-negative but not in node-positive breast cancer patients. CXCR4 cytoplasmic staining was not considered a significant prognostic factor. Our results suggest that CXCR4 membrane staining could be considered a new prognostic factor. Moreover, targeting CXCR4 in primary breast cancer patients may be a new therapeutic concept. However, these results warrant further investigation.
Collapse
Affiliation(s)
- Emmanuel Blot
- Département d'Oncologie Médicale, Centre Henri Becquerel, Rue d'Amiens, Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer 2008; 98:1389-97. [PMID: 18349830 PMCID: PMC2361715 DOI: 10.1038/sj.bjc.6604307] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although CD133 has been shown to be a marker for cancer stem cells in various tumours, its expression in pancreatic cancer has not yet been clinically reported. In this study, we investigated the relationship between CD133 expression and clinicopathological factors in pancreatic cancer. Pancreatic head carcinoma specimens from 80 patients who underwent surgical resection were immunohistochemically assessed for CD133, vascular endothelial growth factor (VEGF)-C, CXCR4, CD34, Ki-67, and cytokeratin (CK) expressions. Sixty percentage (48/80) of specimens were CD133-positive, with less than 15% cells per specimen expressing the marker. CD133-positive cells were found at the peripheral site of adenocarcinoma glandular structures and were negative for CK. There was a significant correlation between CD133 expression and clinicopathological factors, including histological type, lymphatic invasion, and lymph node metastasis (P=0.0215, 0.0023, and 0.0024, respectively). Vascular endothelial growth factor-C expression was also significantly correlated with CD133 expression (P=0.0002). Consequently, the 5-year survival rate of CD133-positive patients was significantly lower than that of CD133-negative patients (P=0.0002) and multivariate analysis revealed that CD133 expression was an independent prognostic factor (P=0.0103). These results suggest that CD133 expression in pancreatic cancer was significantly associated with lymphatic metastasis, VEGF-C expression, and prognosis.
Collapse
|