1
|
Patel A, Mahapatra S, Bishoyi AK, Sharma A, Makwana A, Swarnkar T, Gupta A, Sahoo PK, Shah S. Harnessing machine learning technique to authenticate differentially expressed genes in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024:S2212-4403(24)00590-X. [PMID: 39505585 DOI: 10.1016/j.oooo.2024.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Advancements in early detection of the disease, prognosis and the development of therapeutic strategies necessitate tumor-specific biomarkers. Despite continuous efforts, no molecular marker has been proven to be an effective therapeutic tool for the early detection of cancer. The study aims to determine diagnostic and prognostic signature genes that may be involved in cancer pathology and hence, may serve as molecular markers. STUDY DESIGN Eight candidate genes were selected based on our prior study of transcriptomic sequencing and validated in 100 matched pair samples of oral squamous cell carcinoma (OSCC). We further utilized machine learning approaches and examined the diagnostic presentation and predictive ability of the OSCC genes retrieved from publicly available The Cancer Genome Atlas (TCGA) database and compared with our results. RESULTS We conducted qPCR analysis to validate the expression of each gene and observed that each gene was present in the majority of OSCC samples. The predictive ability of selected genes was stable (with an average accuracy of 84%) across different classifiers. However, on validation with our dataset, it showed 75% accuracy, which might be because of the demographic variation of the samples. CONCLUSIONS The present research outlines cancer-associated molecular biomarkers that might eventually contribute to an enhanced prognosis of cancer patient by identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Amisha Patel
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat 360020, India
| | - Saswati Mahapatra
- Department of Computer Application, Faculty of Technology, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha 751030, India
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Abhijit Makwana
- Shree Nathalal Parekh Cancer Institute, Rajkot Cancer Society, Rajkot, Gujarat 360003, India
| | - Tripti Swarnkar
- Department of Computer Application, National Institute of Technology, Raipur CG (NITRR), Chhattisgarh 492010, India
| | - Anubha Gupta
- SBILab, Department of ECE, and Centre of Excellence in Healthcare, IIIT, Delhi, 110020, India
| | - Prasan Kumar Sahoo
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India.
| |
Collapse
|
2
|
Labat-de-Hoz L, Rubio-Ramos A, Correas I, Alonso MA. The MAL Family of Proteins: Normal Function, Expression in Cancer, and Potential Use as Cancer Biomarkers. Cancers (Basel) 2023; 15:2801. [PMID: 37345137 DOI: 10.3390/cancers15102801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The MAL family of integral membrane proteins consists of MAL, MAL2, MALL, PLLP, CMTM8, MYADM, and MYADML2. The best characterized members are elements of the machinery that controls specialized pathways of membrane traffic and cell signaling. This review aims to help answer the following questions about the MAL-family genes: (i) is their expression regulated in cancer and, if so, how? (ii) What role do they play in cancer? (iii) Might they have biomedical applications? Analysis of large-scale gene expression datasets indicated altered levels of MAL-family transcripts in specific cancer types. A comprehensive literature search provides evidence of MAL-family gene dysregulation and protein function repurposing in cancer. For MAL, and probably for other genes of the family, dysregulation is primarily a consequence of gene methylation, although copy number alterations also contribute to varying degrees. The scrutiny of the two sources of information, datasets and published studies, reveals potential prognostic applications of MAL-family members as cancer biomarkers-for instance, MAL2 in breast cancer, MAL2 and MALL in pancreatic cancer, and MAL and MYADM in lung cancer-and other biomedical uses. The availability of validated antibodies to some MAL-family proteins sanctions their use as cancer biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Li X, Fang J, Tao X, Xia J, Cheng B, Wang Y. Splice site m 6A methylation prevents binding of DGCR8 to suppress KRT4 pre-mRNA splicing in oral squamous cell carcinoma. PeerJ 2023; 11:e14824. [PMID: 36811004 PMCID: PMC9939020 DOI: 10.7717/peerj.14824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/08/2023] [Indexed: 02/18/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the 11th most prevalent tumor worldwide. Despite advantages of therapeutic approaches, the 5-year survival rate of patients with OSCC is less than 50%. It is urgent to elucidate mechanisms underlying OSCC progression for developing novel treatment strategies. Our recent study has revealed that Keratin 4 (KRT4) suppresses OSCC development, which is downregulated in OSCC. Nevertheless, the mechanism downregulating KRT4 in OSCC remains unknown. In this study, touchdown PCR was utilized to detect KRT4 pre-mRNA splicing, while m6A RNA methylation was identified by methylated RNA immunoprecipitation (MeRIP). Besides, RNA immunoprecipitation (RIP) was used to determine RNA-protein interaction. Herein, this study indicated that intron splicing of KRT4 pre-mRNA was suppressed in OSCC. Mechanistically, m6A methylation of exon-intron boundaries prevented intron splicing of KRT4 pre-mRNA in OSCC. Besides, m6A methylation suppressed the binding of splice factor DGCR8 microprocessor complex subunit (DGCR8) to exon-intron boundaries in KRT4 pre-mRNA to prohibit intron splicing of KRT4 pre-mRNA in OSCC. These findings revealed the mechanism downregulating KRT4 in OSCC and provided potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Xiaoxu Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Fang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoan Tao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Monea M, Pop AM. The Use of Salivary Levels of Matrix Metalloproteinases as an Adjuvant Method in the Early Diagnosis of Oral Squamous Cell Carcinoma: A Narrative Literature Review. Curr Issues Mol Biol 2022; 44:6306-6322. [PMID: 36547091 PMCID: PMC9776994 DOI: 10.3390/cimb44120430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with increased mortality, in which the early diagnosis is the most important step in increasing patients' survival rate. Extensive research has evaluated the role of saliva as a source of diagnostic biomarkers, among which matrix metalloproteinases (MMPs) have shown a valuable potential for detecting even early stages of OSCC. The aim of this review was to present recent clinical data regarding the significance of salivary MMPs in the detection of early malignant transformation of the oral mucosa. A narrative review was conducted on articles published in PubMed, Cochrane Library, Web of Science, EBSCO and SciELO databases, using specific terms. Our search revealed that MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12 and MMP-13 had significantly higher levels in saliva from patients with OSCC compared to controls. However, the strength of evidence is limited, as most information regarding their use as adjuvant diagnostic tools for OSCC comes from studies with a low number of participants, variable methodologies for saliva sampling and diagnostic assays, and insufficient adjustment for all covariates. MMP-1, MMP-3 and MMP-9 were considered the most promising candidates for salivary diagnosis of OSCC, but larger studies are needed in order to validate their clinical application.
Collapse
Affiliation(s)
- Monica Monea
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Anca Maria Pop
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
5
|
Osteonectin/SPARC Expression in Head and Neck Squamous Cell Carcinoma: A Tissue Microarray Study. Appl Immunohistochem Mol Morphol 2022; 30:317-325. [PMID: 35510770 DOI: 10.1097/pai.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Some studies have correlated secreted protein acidic and rich in cysteine (SPARC) expression with more aggressive behavior in head and neck squamous cell carcinoma (SCC). We investigated the impact of SPARC expression on patient outcomes in a large cohort of SCCs. MATERIALS AND METHODS Patients with SCC were identified by searching institutional databases. A tissue microarray of paraffin-embedded tumor specimens was constructed, and SPARC immunohistochemistry was performed. Cellular and stromal SPARC expression were quantitated and correlated with clinicopathologic features. RESULTS Of 191 cases, 171 were adequate for SPARC evaluation. A total of 112 (65%) cases showed SPARC tumor cell staining, and 167 (98%) cases showed stromal staining. Increased SPARC stromal expression was correlated with poorer overall survival (OS) [mean (SD) survival, 64.3 (3.25) vs. 42.8 (3.25) mo; P=0.0015] and poorer disease-specific survival (DSS) [mean (SD) survival, 51.1 (1.58) vs. 38.3 (1.832) mo; P=0.0381]. Human papillomavirus-positive status correlated with both stromal and tumor SPARC expression (P=0.0047 and 0.0408, respectively). SPARC staining did not correlate with OS or DSS in multivariate analyses. Among nonchemotherapy patients, SPARC stromal expression was associated with poorer OS and DSS (P=0.0074 and 0.033, respectively). In multivariate analyses, increased stromal SPARC expression was associated with a longer disease-free interval [P=0.0170 (hazard ratio, 1.384)]. CONCLUSIONS SPARC expression is frequently present in tumoral stroma of head and neck SCCs. In contravention to prior studies, we found that SPARC expression did not correlate with survival overall. This suggests that previously reported associations may not, in fact, exist highlighting the need to meticulously adjust for confounding variables in novel biomarker studies. However, subgroup analysis showed that stromal SPARC expression is associated with better disease-free survival among patients who are not treated with chemotherapy.
Collapse
|
6
|
Zhang G, Li T, Tan G, Song Y, Liu Q, Wang K, Ai J, Zhou Z, Li W. Identity of
MMP1
and its effects on tumor progression in head and neck squamous cell carcinoma. Cancer Med 2022; 11:2516-2530. [PMID: 35426219 PMCID: PMC9189457 DOI: 10.1002/cam4.4623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Gehou Zhang
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Tieqi Li
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Guolin Tan
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Yexun Song
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Qian Liu
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Kai Wang
- Department of Otolaryngology‐Head Neck Surgery The First Affiliated Hospital of Shaoyang University Shaoyang China
| | - Jingang Ai
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Zheng Zhou
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| | - Wei Li
- Department of Otolaryngology‐Head Neck Surgery Third Xiangya Hospital of Central South University Changsha Hunan Province China
| |
Collapse
|
7
|
Niklander SE. Inflammatory Mediators in Oral Cancer: Pathogenic Mechanisms and Diagnostic Potential. FRONTIERS IN ORAL HEALTH 2022; 2:642238. [PMID: 35047997 PMCID: PMC8757707 DOI: 10.3389/froh.2021.642238] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 15% of cancers are attributable to the inflammatory process, and growing evidence supports an association between oral squamous cell carcinoma (OSCC) and chronic inflammation. Different oral inflammatory conditions, such as oral lichen planus (OLP), submucous fibrosis, and oral discoid lupus, are all predisposing for the development of OSCC. The microenvironment of these conditions contains various transcription factors and inflammatory mediators with the ability to induce proliferation, epithelial-to-mesenchymal transition (EMT), and invasion of genetically predisposed lesions, thereby promoting tumor development. In this review, we will focus on the main inflammatory molecules and transcription factors activated in OSCC, with emphasis on their translational potential.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
8
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Wiechec E, Magan M, Matic N, Ansell-Schultz A, Kankainen M, Monni O, Johansson AC, Roberg K. Cancer-Associated Fibroblasts Modulate Transcriptional Signatures Involved in Proliferation, Differentiation and Metastasis in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133361. [PMID: 34283070 PMCID: PMC8269044 DOI: 10.3390/cancers13133361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are the major cellular component of the tumor microenvironment and have been shown to stimulate tumor growth, epithelial-to-mesenchymal transition (EMT), invasion, and radio-resistance. Radio-resistance leading to disease relapse is one of the major challenges in long-term survival and outcome in head and neck squamous cell carcinoma (HNSCC). Therefore, it is essential to search for predictive markers and new targets for treatment using clinically relevant in vitro tumor models. We show that CAFs alter the expression of HNSCC tumor cell genes, many of which are associated with proliferation, differentiation, and metastasis. Moreover, the expression pattern of selected CAF-regulated genes differed between HNSCC tumor tissue and the adjacent non-tumoral tissue. Two CAF-regulated genes, MMP9 and FMOD, were found to be associated with overall survival (OS) in patients treated with radiotherapy. Abstract Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan–Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue.
Collapse
Affiliation(s)
- Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Mustafa Magan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Natasa Matic
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
| | - Anna Ansell-Schultz
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Matti Kankainen
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, 00290 Helsinki, Finland;
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00029 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland;
| | - Outi Monni
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland;
- Applied Tumor Genomics Research Program and Department of Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ann-Charlotte Johansson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Karin Roberg
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-10-1031534
| |
Collapse
|
10
|
Niklander SE, Crane HL, Darda L, Lambert DW, Hunter KD. The role of icIL-1RA in keratinocyte senescence and development of the senescence-associated secretory phenotype. J Cell Sci 2021; 134:jcs.252080. [PMID: 33526711 DOI: 10.1242/jcs.252080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.
Collapse
Affiliation(s)
- Sven E Niklander
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK.,Departamento de Cirugia y Patologia Oral, Facultad de Odontologia, Universidad Andres Bello, 2520000 Viña del Mar, Chile
| | - Hannah L Crane
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Lav Darda
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield S10 2TA, UK .,Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Chang YT, Chu LJ, Liu YC, Chen CJ, Wu SF, Chen CH, Chang IYF, Wang JS, Wu TY, Dash S, Chiang WF, Chiu SF, Gou SB, Chien CY, Chang KP, Yu JS. Verification of Saliva Matrix Metalloproteinase-1 as a Strong Diagnostic Marker of Oral Cavity Cancer. Cancers (Basel) 2020; 12:cancers12082273. [PMID: 32823758 PMCID: PMC7463746 DOI: 10.3390/cancers12082273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for >90% of cases of oral cancer, including cancer at the lip and oral cavity and cancer at the oropharynx. Most OSCCs develop from oral potentially malignant disorders (OPMDs), which consist of heterogeneous lesions with different malignant transformation potentials that make early detection of OSCC a challenge. Using a targeted mass spectrometry-based assay to compare multiple candidate proteins, we previously identified matrix metalloproteinase-1 (MMP-1) as one of the most promising salivary OSCC biomarkers. To explore the clinical utility of MMP-1 in OSCC detection, we developed an in-house, sensitive enzyme-linked immunosorbent assay (ELISA) for measuring MMP-1 content, and tested it on saliva samples from 1160 subjects (313 healthy controls, and 578 OPMD and 269 OSCC patients) collected at two medical centers. Salivary MMP-1 levels measured by our in-house ELISA significantly discriminated OSCC patients from non-cancerous groups. A receiver operating characteristic curve analysis showed that MMP-1 was effective in separating non-cancer groups from patients with OSCCs at the oral cavity. Additionally, salivary MMP-1 levels in oral cavity cancer patients were highly correlated with tumor progression (tumor size, lymph node metastasis, and overall stage). Collectively, our results indicate that salivary MMP-1 is an effective biomarker for OSCC that can be sensitively detected using our newly developed ELISA. The newly developed MMP-1 ELISA may be used as a new adjunctive tool to aid in detecting and monitoring OSCC.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Yen-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
| | - Chih-Jou Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
| | - Shu-Fang Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
| | - Chien-Hua Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
| | - Jun-Sheng Wang
- National Applied Research Laboratories, Taiwan Instrument Research Institute, Zhubei City, Hsinchu 30261, Taiwan;
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Wei-Fan Chiang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan; (W.-F.C.); (S.-F.C.); (S.-B.G.)
- School of Dentistry, National Yang Ming University, Taipei 11221, Taiwan
| | - Sheng-Fu Chiu
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan; (W.-F.C.); (S.-F.C.); (S.-B.G.)
| | - Shin-Bin Gou
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan; (W.-F.C.); (S.-F.C.); (S.-B.G.)
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.C.); (L.J.C.); (Y.-C.L.); (C.-J.C.); (S.-F.W.); (C.-H.C.); (I.Y.-F.C.); (K.-P.C.)
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5171); Fax: +886-3-2118891
| |
Collapse
|
12
|
Transglutaminase 3 contributes to malignant transformation of oral leukoplakia to cancer. Int J Biochem Cell Biol 2018; 104:34-42. [DOI: 10.1016/j.biocel.2018.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
|
13
|
Shan J, Sun Z, Yang J, Xu J, Shi W, Wu Y, Fan Y, Li H. Discovery and preclinical validation of proteomic biomarkers in saliva for early detection of oral squamous cell carcinomas. Oral Dis 2018; 25:97-107. [PMID: 30169911 DOI: 10.1111/odi.12971] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/18/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Shan
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Jingjing Yang
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Wei Shi
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - You Wu
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral Medicine, Affiliated Hospital of Stomatology Nanjing Medical University Nanjing Jiangsu China
| | - Huaiqi Li
- Jiangsu Key Laboratory of Oral Diseases Nanjing Medical University Nanjing Jiangsu China
- Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
14
|
Oral Health May Affect the Performance of mRNA-Based Saliva Biomarkers for Oral Squamous Cell Cancer. Pathol Oncol Res 2017; 24:833-842. [PMID: 28861772 DOI: 10.1007/s12253-017-0296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Oral squamous cell carcinoma (OSCC) has a dismal 50% five-year survival rate, emphasizing the need to develop reliable and sensitive tools for early diagnosis. In this study we evaluated the performance of 7 previously identified, potential mRNA biomarkers of OSCC in saliva samples of Hungarian patients. Expression of the putative OSCC biomarkers (DUSP1, OAZ1, H3F3A, IL1B, IL8, SAT and S100P), 2 biomarkers of inflammation (IL6 and TNFα) and 8 putative normalizing genes was quantified from each sample using real-time quantitative PCR. In contrast with previous studies, the expression pattern of the 7 mRNA biomarkers was similar between OSCC patients and age-matched control patients in the Hungarian patient population. On the other hand, 5 of the 7 mRNA biomarkers were present at significantly higher levels in saliva samples of OSCC patients when compared to young control patients. The best biomarker combination could distinguish only the OSCC vs. young control patients, but not the OSCC vs. age-matched control patients. In conclusion, the significant differences between our results and previous studies, and the clinical characteristics of the patients suggest that inflammatory processes in the oral cavity may affect the performance of the 7 putative salivary mRNA biomarkers. Lastly, since IL6 mRNA was quantifiable in the majority of OSCC cases, but only in a few control samples, salivary IL6 mRNA may be utilized as part of a biomarker combination to detect OSCC.
Collapse
|
15
|
Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases. Exp Biol Med (Maywood) 2016; 241:783-99. [PMID: 27013544 DOI: 10.1177/1535370216638770] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
16
|
Gualtero DF, Suarez Castillo A. Biomarkers in saliva for the detection of oral squamous cell carcinoma and their potential use for early diagnosis: a systematic review. Acta Odontol Scand 2015; 74:170-7. [PMID: 26577643 DOI: 10.3109/00016357.2015.1110249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective To determine the capacity of salivary biomarkers in the early diagnosis of oral squamous cell carcinoma. Study design A systematic review of the literature was performed based on the English titles listed in the PubMed, EBSCO, Cochrane, Science Direct, ISI web Science and SciELO databases using the following search descriptors: Oral cancer, diagnosis, biomarkers, saliva and oral squamous cell carcinoma. Abstracts and full-text articles were assessed independently by two reviewers. International checklists for assessment of methodological quality were used. Levels of evidence and grades of recommendation through the Scottish Intercollegiate Guidelines Network (SIGN) template were recognized. The units of analysis were identified through a reference matrix. Results Through the research strategy and after application of different filters and considering choosing criteria, six studies were obtained for analysis. Salivary biomarkers for oral cancer most frequently found were mRNA and proteins for IL-8, CD44, MMP-1 and MMP-3. New peptide-biomarkers such as Cyfra 21-1 and ZNF510 were found. ZNF 510 was the only biomarker which increased in the population with tumour stage T1 + T2 and T3 + T4. Only one study showed a sensitivity and specificity of 96% when the biomarker ZNF 510 is employed to discriminate early and late tumour stages. Conclusions There is no sufficient scientific evidence to support the capacity of the identified salivary biomarkers for the early diagnosis of oral cancer (sub-clinical stages of the pathogenic period before cancer phenotypes are manifested). Salivary biomarkers, however, may be employed to discriminate between healthy and cancer patients.
Collapse
Affiliation(s)
- Diego F Gualtero
- a Dental Sciences Research Group , Institución Universitaria Colegios De Colombia (UNICOC) School of Dentistry , Bogotá , D.C , Colombia
- b Unit of Basic Oral Investigation-UIBO, School of Dentistry , El Bosque University , Bogota , D.C , Colombia
| | - Angela Suarez Castillo
- a Dental Sciences Research Group , Institución Universitaria Colegios De Colombia (UNICOC) School of Dentistry , Bogotá , D.C , Colombia
| |
Collapse
|
17
|
Farrukh S, Syed S, Pervez S. Differential Expression of Cytokeratin 13 in Non-Neoplastic, Dysplastic and Neoplastic Oral Mucosa in a High Risk Pakistani Population. Asian Pac J Cancer Prev 2015. [PMID: 26225699 DOI: 10.7314/apjcp.2015.16.13.5489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gradual loss of cytokeratin 13 (CK13) may be linked with the severity of dysplastic changes and transformation to malignancy. In this study we assessed the differential expression of CK13 in normal, hyperplastic, dysplastic and cancerous oral mucosa. MATERIALS AND METHODS A total of 93 oral biopsies were collected during the 2011-2014 period. The biopsies were characterized as normal (19), hyperplastic (21), severely dysplastic/carcinoma in situ (16) and invasive oral squamous cell carcinoma (OSCC) (37) after morphological assessment. Formalin fixed paraffin embedded sections were stained with a monoclonal antibody against CK13 using the Envision technique. Immunohistochemically stained slides were then analyzed for CK13 expression. RESULTS CK13 was consistently and diffusely expressed in all normal and hyperplastic tissue biopsies from oral mucosa. Severely dysplastic/carcinoma in situ biopsies showed complete loss in 50% of cases, while in the remaining 50% expression was very focal and weak. OSCC cases showed complete or near complete loss of CK13 in all cases. Few cases showed weak expression in keratin pearls only. CONCLUSIONS This study validates the utility of CK13 IHC as a useful immunohistochemical marker in routine diagnostic practice to make distinction between non-neoplastic from dysplastic and neoplastic (malignant) oral lesions.
Collapse
Affiliation(s)
- Sanniya Farrukh
- Department of Pathology, Ziauddin University, Karachi, Pakistan E-mail :
| | | | | |
Collapse
|
18
|
Nair J, Jain P, Chandola U, Palve V, Vardhan NRH, Reddy RB, Kekatpure VD, Suresh A, Kuriakose MA, Panda B. Gene and miRNA expression changes in squamous cell carcinoma of larynx and hypopharynx. Genes Cancer 2015; 6:328-40. [PMID: 26413216 PMCID: PMC4575920 DOI: 10.18632/genesandcancer.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022] Open
Abstract
Laryngo-pharyngeal squamous cell carcinomas are one of the most common head and neck cancers. Despite the presence of a large body of information, molecular biomarkers are not currently used in the diagnosis, treatment and management of patients for this group of cancer. Here, we have profiled expression of genes and microRNAs of larynx and hypopharynx tumors using high-throughput sequencing experiments. We found that matrix metalloproteinases along with SCEL, CRNN, KRT4, SPINK5, and TGM3 among others have significantly altered expression in these tumors. Alongside gene expression, the microRNAs hsa-miR-139, hsa-miR-203 and the hsa-miR-424/503 cluster have aberrant expression in these cancers. Using target genes for these microRNAs, we found the involvement of pathways linked to cell cycle, p53 signaling, and viral carcinogenesis significant (P-values 10(-13), 10(-9) and 10(-7) respectively). Finally, using an ensemble machine-learning tool, we discovered a unique 8-gene signature for this group of cancers that differentiates the group from the other tumor subsites of head and neck region. We investigated the role of promoter methylation in one of these genes, WIF1, and found no correlation between DNA methylation and down-regulation of WIF1. We validated our findings of gene expression, 8-gene signature and promoter methylation using q-PCR, data from TCGA and q-MSP respectively. Data presented in this manuscript has been submitted to the NCBI Geo database with the accession number GSE67994.
Collapse
Affiliation(s)
- Jayalakshmi Nair
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Prachi Jain
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Udita Chandola
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Vinayak Palve
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - N R. Harsha Vardhan
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Ram Bhupal Reddy
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Vikram D. Kekatpure
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Amritha Suresh
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Moni Abraham Kuriakose
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Binay Panda
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
- Strand Life Sciences, Bellary Road, Hebbal, Bangalore, India
| |
Collapse
|
19
|
Shiiba M, Saito K, Yamagami H, Nakashima D, Higo M, Kasamatsu A, Sakamoto Y, Ogawara K, Uzawa K, Takiguchi Y, Tanzawa H. Interleukin-1 receptor antagonist (IL1RN) is associated with suppression of early carcinogenic events in human oral malignancies. Int J Oncol 2015; 46:1978-84. [PMID: 25738940 DOI: 10.3892/ijo.2015.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 11/05/2022] Open
Abstract
Inflammatory abnormalities have been implicated in the pathogenesis of various human diseases, including cancer. Interleukin-1 receptor antagonist (IL1RN) is a potent anti-inflammatory molecule that modulates the biological activity of the proinflammatory cytokine, interleukin-1. The aim of this study was to examine the expression of IL1RN in oral squamous cell carcinomas (OSCCs), and to determine its clinical significance. Expression levels of IL1RN in matched normal and tumor specimens from 39 OSCCs were evaluated using real-time quantitative polymerase chain reaction methods, and immunohistochemical analysis. Protein expression of IL1RN was also examined in 18 oral premalignant lesions (OPLs). Expression of IL1RN mRNA was significantly downregulated in OSCCs compared with normal tissues. Decreased expression of IL1RN protein was also observed in OPLs and OSCCs. The IL1RN expression level was lower in the OPL cases with severe dysplasia compared to those with mild/moderate dysplasia. Significantly downregulated IL1RN expression was observed in all OSCC lesion sites examined when compared with the matched normal tissues. However, the decreased level of IL1RN expression did not correspond with tumor progression. Noteworthy, IL1RN expression was higher in the advanced OSCC cases (T3/T4) compared to early cases (T1/T2). Among OSCC samples, relatively higher IL1RN expression was associated with active tumor development in the OSCCs occurring in the buccal mucosa, oral floor, fauces and gingiva, but not the tongue. These data suggest that IL1RN may exhibit opposing characteristics in oral malignancies depending on the stage of cancer development, suppressing early carcinogenic events, yet promoting tumor development in some lesion sites. Thus, IL1RN could represent a reliable biomarker for the early diagnosis of OSCCs. Furthermore, IL1RN may possess unknown and complex functions in the developed OSCC.
Collapse
Affiliation(s)
- Masashi Shiiba
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hitomi Yamagami
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Morihiro Higo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Yosuke Sakamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Katsunori Ogawara
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
20
|
Hartanto FK, Karen-Ng LP, Vincent-Chong VK, Ismail SM, Mustafa WMW, Abraham MT, Tay KK, Zain RB. KRT13, FAIM2 and CYP2W1 mRNA Expression in Oral Squamous Cell Carcinoma Patients with Risk Habits. Asian Pac J Cancer Prev 2015; 16:953-8. [DOI: 10.7314/apjcp.2015.16.3.953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Graves CA, Abboodi FF, Tomar S, Wells J, Pirisi L. The translational significance of epithelial-mesenchymal transition in head and neck cancer. Clin Transl Med 2014; 3:60. [PMID: 25632320 PMCID: PMC4302251 DOI: 10.1186/s40169-014-0039-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023] Open
Abstract
Positive markers of epithelial-mesenchymal transition (EMT) in head and neck cancers complicate clinical management and are associated with reduced survival. We discuss recent translational discoveries in EMT and suggest additional actionable molecular pathways, biomarkers, and clinical agents.
Collapse
Affiliation(s)
- Christian A Graves
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA ; Department of Head and Neck Surgery, Wm. Jennings Dorn VA Medical Center, Columbia, SC 29208 USA
| | - Fadi F Abboodi
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA
| | - Swati Tomar
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA
| | - James Wells
- Department of Head and Neck Surgery, Wm. Jennings Dorn VA Medical Center, Columbia, SC 29208 USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA
| |
Collapse
|
22
|
Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. ACTA ACUST UNITED AC 2014; 1:133-141. [PMID: 24883261 DOI: 10.1007/s40496-014-0014-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm of the oral cavity. Detection of OSCC is currently based on thorough clinical oral examination combined with biopsy for histological analysis. Most cases of OSCC are not detected until the cancer has developed into advanced stages; thus, a reliable early stage diagnostic marker is needed. This literature review presents an overview of the status of current advances in salivary diagnostics for OSCC. Though many protein and mRNA salivary biomarkers have been identified that can detect OSCC with high sensitivity and specificity, the most discernable findings occur with the use of multiple markers. Studies that incorporate proteomic, transcriptomic, and potentially additional "omics", including methylomics, need to be initiated to bring technology to clinical applications and allow the best use of saliva in diagnosing OSCC.
Collapse
|
23
|
Casein kinase 1 epsilon expression predicts poorer prognosis in low T-stage oral cancer patients. Int J Mol Sci 2014; 15:2876-91. [PMID: 24557581 PMCID: PMC3958887 DOI: 10.3390/ijms15022876] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022] Open
Abstract
Casein kinase 1 is a group of ubiquitous serine/threonine kinases that are involved in normal cellular functions and several pathological conditions, such as DNA repair, cell cycle progression, cytokinesis, differentiation, and apoptosis. Recent studies have indicated that casein kinase 1-epsilon (CK1ε) and casein kinase 1-delta (CK1δ) expression has a role in human cancers. We investigated the associations between CK1ε and CK1δ expression and the clinical parameters of oral cancer using immunohistochemical study methods on oral squamous cell carcinoma specimens. The results of our immunohistochemical analysis showed that the loss of CK1ε expression was greatly associated with a poor four-year survival rate in oral cancer patients (p = 0.002). A Kaplan-Meier analysis showed that patients who had a loss of CK1ε expression had a considerably poorer overall survival rate than patients who had positive CK1ε expressions (p = 0.022). A univariate analysis revealed that patients who had a loss of CK1ε expression had considerably poorer overall survival (OS) than patients who had positive expression (p = 0.024, hazard ratio (HR) = 1.7). In conclusion, our data indicated that the loss of cytoplasmic CK1ε expression is greatly associated with poor survival and might be an adverse survival factor.
Collapse
|
24
|
Expression analysis of SPARC/osteonectin in oral squamous cell carcinoma patients: from saliva to surgical specimen. BIOMED RESEARCH INTERNATIONAL 2013; 2013:736438. [PMID: 24396828 PMCID: PMC3876772 DOI: 10.1155/2013/736438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 02/04/2023]
Abstract
Oral squamous cell carcinoma (OSCC) remains a significant cause of morbidity and mortality, with approximately 540,000 new cases annually worldwide. The molecular mechanisms related to the pathogenesis of this disease are still poorly understood. The discovery of a molecular marker that allows the early detection of this cancer, which can be easily identified in biological samples, such as saliva, without intervening in advanced stages, is a challenge. Numerous studies have identified a panel of molecular markers differently expressed in OSCC and normal oral mucosa. In particular, it was found an aberrant expression of matricellular glycoprotein SPARC. SPARC is involved in normal tissue remodeling, regulating the deposition of extracellular matrix, but also in neoplastic transformation. In fact, aberrant SPARC expression was detected both in stromal cells associated with cancer and in tumor cells. The aim of our study was the evaluation of SPARC on a retrospective series of 119 OSCC cases and the validation of the obtained data on a prospective series of 27 patients with OSCC, of whom we have previously collected saliva, and smeared material. The obtained results were correlated with each other and with clinical pathological parameters at our disposal. The study demonstrated a prognostic value of SPARC, especially with regard to its expression in the stroma surrounding OSCC (P < 0.05).
Collapse
|
25
|
Wu X, Cao W, Wang X, Zhang J, Lv Z, Qin X, Wu Y, Chen W. TGM3, a candidate tumor suppressor gene, contributes to human head and neck cancer. Mol Cancer 2013; 12:151. [PMID: 24289313 PMCID: PMC4176127 DOI: 10.1186/1476-4598-12-151] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In our previous study using oligonucleotide microarrays, we revealed that transglutaminase 3 (TGM3) was remarkably down-regulated in head and neck cancer (HNC). However, the potential of TGM3 as a useful biomarker or molecular target for HNC is unclear. METHODS The transcriptional and post-translational status of TGM3 in HNC cell lines and specimens was detected using real-time PCR and western blot analysis. Bisulfate-treated DNA sequencing was used to analyze the molecular mechanism of TGM3 gene silencing. In addition, the effects of TGM3 on the proliferation, colony formation and induction of apoptosis in vitro and tumorigenicity in vivo were investigated through exogenous expression of TGM3 in HNC cells. Immunohistochemistry was used to evaluate TGM3 expression in large HNC samples. RESULTS TGM3 was down-regulated in HNC samples and cell lines (P < 0.0001). The hypermethylation of a promoter CpG island was one of the mechanisms of silencing the TGM3 gene in HNC. Exogenous expression of TGM3 in HNC cells could inhibit the proliferation and enhance the apoptosis of HNC cells in vitro and suppress tumor growth in vivo. In addition, TGM3 protein levels were strongly associated with the pathological differentiation of HNC tissues (P = 0.0037). Survival analysis revealed that low TGM3 expression was associated with worse overall survival (P = 0.0002), and TGM3 expression level was an independent predictor in patients with HNC. CONCLUSIONS The studies prove that TGM3, as a candidate tumor suppressor, contributes to the carcinogenesis and development of HNC and may serve as a useful biomarker for patients with HNC.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/secondary
- Cell Line, Tumor
- DNA Methylation
- Down-Regulation
- Enzyme Repression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/mortality
- Head and Neck Neoplasms/pathology
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm Transplantation
- Promoter Regions, Genetic
- Proportional Hazards Models
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transglutaminases/genetics
- Tumor Burden
Collapse
Affiliation(s)
- Xiangbing Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhongjing Lv
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yadi Wu
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology and Facuty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
26
|
Yan B, Broek RV, Saleh AD, Mehta A, Van Waes C, Chen Z. Signaling Networks of Activated Oncogenic and Altered Tumor Suppressor Genes in Head and Neck Cancer. JOURNAL OF CARCINOGENESIS & MUTAGENESIS 2013; Suppl 7:4. [PMID: 25587491 PMCID: PMC4289631 DOI: 10.4172/2157-2518.s7-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the upper aerodigestive tract and is the six most common cancers worldwide. HNSCC is associated with high morbidity and mortality, as standard surgery, radiation, and chemotherapy can cause significant disfigurement and only provide 5-year survival rates of ~50-60%. The heterogeneity of HNSCC subsets with different potentials for recurrence and metastasis challenges the traditional pathological classification system, thereby increasing demand for the development of new diagnostic, prognostic, and therapeutic tools based on global molecular signatures of HNSCC. Historically, using classical biological techniques, it has been extremely difficult and time-consuming to survey hundreds or thousands of genes in a given disease. However, the development of high throughput technologies and high-powered computation throughout the last two decades has enabled us to investigate hundreds or thousands of genes simultaneously. Using high throughput technologies, our laboratory has identified the gene signatures and protein networks, which significantly affect HNSCC malignant phenotypes, including TP53/p63/p73 family members, IL-1/TNF-β/NF-κB, PI3K/AKT/mTOR, IL-6/IL-6R/JAK/STAT3, EGFR/MAPK/AP1, HGF/cMET/EGR1, and TGFβ/TGFβR/TAK1/SMAD pathways. This review summarizes the results from high-throughput technological assays conducted on HNSCC samples, including microarray, DNA methylation, miRNA profiling, and protein array, using primarily experimental data and conclusions generated in our own laboratory. The use of bioinformatics and integrated analyses of data sets from different platforms, as well as meta-analysis of large datasets pulled from multiple publicly available studies, provided significantly higher statistical power to extract biologically relevant information. The data suggested that the heterogeneity of HNSCC genotype and phenotype are much more complex than we previously thought. Understanding of global molecular signatures and disease classification for specific subsets of HNSCC will be essential to provide accurate diagnoses for targeted therapy and personalized treatment, which is an important effort toward improving patient outcomes.
Collapse
Affiliation(s)
- Bin Yan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
- NIH Medical Research Scholars Program, Bethesda, MD USA
| | - Anthony D Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Arpita Mehta
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| |
Collapse
|
27
|
Schussel J, Zhou XC, Zhang Z, Pattani K, Bermudez F, Jean-Charles G, McCaffrey T, Padhya T, Phelan J, Spivakovsky S, Brait M, Li R, Bowne HY, Goldberg JD, Rolnitzky L, Robbins M, Kerr AR, Sirois D, Califano JA. EDNRB and DCC salivary rinse hypermethylation has a similar performance as expert clinical examination in discrimination of oral cancer/dysplasia versus benign lesions. Clin Cancer Res 2013; 19:3268-75. [PMID: 23637120 DOI: 10.1158/1078-0432.ccr-12-3496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Promoter hypermethylation has been recently proposed as a means for head and neck squamous cell carcinoma (HNSCC) detection in salivary rinses. In a prospective study of a high-risk population, we showed that endothelin receptor type B (EDNRB) promoter methylation in salivary rinses is a useful biomarker for oral cancer and premalignancy. EXPERIMENTAL DESIGN Using that cohort, we evaluated EDNRB methylation status and 8 additional genes. Clinical risk assessment by expert clinicians was conducted and compared with biomarker performance in the prediction of premalignant and malignant disease. Methylation status of 9 genes was analyzed in salivary rinses of 191 patients by quantitative methylation-specific PCR. RESULTS HOXA9, EDNRB, and deleted in colorectal cancer (DCC) methylation were associated (P = 0.012; P < 0.0001; P = 0.0005) with premalignant or malignant disease. On multivariable modeling, histological diagnosis was only independently associated with EDNRB (P = 0.0003) or DCC (P = 0.004) methylation. A subset of patients received clinical risk classification (CRC) by expert clinicians based on lesion examination. CRC, DCC, and EDNRB were associated with diagnosis of dysplasia/cancer on univariate (P = 0.008; P = 0.026; P = 0.046) and multivariate analysis (P = 0.012; P = 0.037; P = 0.047). CRC identified dysplasia/cancer with 56% of sensitivity and 66% of specificity with a similar area under curve [AUC; 0.61, 95% confidence interval (CI) = 0.60-0.81] when compared to EDNRB and DCC combined AUC (0.60, 95% CI = 0.51-0.69), sensitivity of 46% and specificity of 72%. A combination of EDNRB, DCC, and CRC was optimal AUC (0.67, 95% CI = 0.58-0.76). CONCLUSIONS EDNRB and/or DCC methylation in salivary rinses compares well to examination by an expert clinician in CRC of oral lesions. These salivary biomarkers may be particularly useful in oral premalignancy and malignancy screening in clinical care settings in which expert clinicians are not available.
Collapse
Affiliation(s)
- Juliana Schussel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Expression of myelin and lymphocyte protein (MAL) in oral carcinogenesis. Med Mol Morphol 2012; 45:222-8. [DOI: 10.1007/s00795-011-0563-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/12/2011] [Indexed: 11/26/2022]
|
29
|
Adami GR, Adami AJ. Looking in the mouth for noninvasive gene expression-based methods to detect oral, oropharyngeal, and systemic cancer. ISRN ONCOLOGY 2012; 2012:931301. [PMID: 23050165 PMCID: PMC3462394 DOI: 10.5402/2012/931301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/12/2012] [Indexed: 01/15/2023]
Abstract
Noninvasive diagnosis, whether by sampling body fluids, body scans, or other technique, has the potential to simplify early cancer detection. A classic example is Pap smear screening, which has helped to reduce cervical cancer 75% over the last 50 years. No test is error-free; the real concern is sufficient accuracy combined with ease of use. This paper will discuss methods that measure gene expression or epigenetic markers in oral cells or saliva to diagnose oral and pharyngeal cancers, without requiring surgical biopsy. Evidence for lung and other distal cancer detection is also reviewed.
Collapse
Affiliation(s)
- Guy R Adami
- Department of Oral Medicine and Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
30
|
Schutt C, Bumm K, Mirandola L, Bernardini G, Cunha ND, Tijani L, Nguyen D, Cordero J, Jenkins MR, Cobos E, Kast WM, Chiriva-Internati M. Immunological treatment options for locoregionally advanced head and neck squamous cell carcinoma. Int Rev Immunol 2012; 31:22-42. [PMID: 22251006 DOI: 10.3109/08830185.2011.637253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patients with squamous cell carcinoma of the head and neck (HNSCC) are usually treated by a multimodal approach with surgery and/or radiochemotherapy as the mainstay of local-regional treatment in cases with advanced disease. Both chemotherapy and radiation therapy have the disadvantage of causing severe side effects, while the clinical outcome of patients diagnosed with HNSCC has remained essentially unchanged over the last decade. The potential of immunotherapy is still largely unexplored. Here the authors review the current status of the art and discuss the future challenges in HNSCC treatment and prevention.
Collapse
Affiliation(s)
- Christopher Schutt
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Department of Surgery at the Division of Otolaryngology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Klaus Bumm
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Leonardo Mirandola
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA; and Department of Medicine Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Molecular Science, University of Insubria, Varese, Italy
| | - Nicholas D' Cunha
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Lukman Tijani
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Diane Nguyen
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Joehassin Cordero
- Division of Surgery, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA
| | - Marjorie R Jenkins
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Everardo Cobos
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA; Department of Obstetrics & Gynecology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA; and Cancer Research Center of Hawaii, University of Hawaii at Manao, Honolulu, Hawaii, USA
| | - Maurizio Chiriva-Internati
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; Division of Surgery, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas, USA; and Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
31
|
Lucs A, Saltman B, Chung CH, Steinberg BM, Schwartz DL. Opportunities and challenges facing biomarker development for personalized head and neck cancer treatment. Head Neck 2012; 35:294-306. [PMID: 22287320 DOI: 10.1002/hed.21975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/08/2011] [Indexed: 12/25/2022] Open
Abstract
Head and neck oncologists have traditionally relied on clinical tumor features and patient characteristics to guide care of individual patients. As surgical, radiotherapeutic, and systemic treatments have evolved to become more anatomically precise and mechanistically specific, the opportunity for improved cure and functional patient recovery has never been more promising for this historically debilitating cancer. However, personalized treatment must be accompanied by sophisticated patient selection to triage the application of advanced therapies toward ideal patient candidates. In this monograph, we review current progress, investigative themes, and key challenges facing head and neck cancer biomarker development intended to make personalized head and neck cancer treatment a clinical reality.
Collapse
Affiliation(s)
- Alexandra Lucs
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Benjamin Saltman
- Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Christine H Chung
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bettie M Steinberg
- The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - David L Schwartz
- The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Radiation Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| |
Collapse
|
32
|
Loss of nuclear expression of Krüppel-like factor 4 is associated with poor prognosis in patients with oral cancer. Hum Pathol 2011; 43:1119-25. [PMID: 22209344 DOI: 10.1016/j.humpath.2011.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022]
Abstract
Krüppel-like factor 4 is not only involved in cell proliferation but also affects cell differentiation and extracellular matrix production via positive and negative regulation of the expression of a wide range of genes. To our knowledge, little information is available regarding the role of Krüppel-like factor 4 in oral squamous cell carcinoma. In this study, we investigated the associations between Krüppel-like factor 4 expression and clinical parameters of oral cancer using immunohistochemical assays in 215 surgical specimens. Compared with positive nuclear Krüppel-like factor 4 expression, we observed that negative nuclear Krüppel-like factor 4 expression was significantly associated with an advanced cancer stage (P = .046), a high tumor recurrence rate (P = .009), and a worse 3-year survival rate in patients with oral cancer (P = .046). Nuclear expression of Krüppel-like factor 4 was shown to have an inverse relationship with Ki67 expression (P = .046). Patients with negative nuclear expression of Krüppel-like factor 4 had significantly worse overall survival rates as defined by the log-rank test (P = .014). Patients with oral cancer with negative nuclear Krüppel-like factor 4 expression in tumor cells had poor prognoses and a 2.5-fold higher death risk. Compared with disease stage (P = .025), negative nuclear Krüppel-like factor 4 expression (P = .006) was an independent prognostic factor. Our results revealed that the loss of nuclear expression of Krüppel-like factor 4 is significantly associated with aggressive clinical manifestations and might be an adverse survival factor.
Collapse
|
33
|
Kasaian K, Jones SJ. A new frontier in personalized cancer therapy: mapping molecular changes. Future Oncol 2011; 7:873-94. [PMID: 21732758 DOI: 10.2217/fon.11.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the genome of a normal cell can affect the function of its many genes and pathways. These alterations could eventually transform the cell from a normal to a malignant state by allowing an uncontrolled proliferation of the cell and formation of a cancer tumor. Each tumor in an individual patient can have hundreds of mutated genes and perturbed pathways. Cancers clinically presenting as the same type or subtype could potentially be very different at the molecular level and thus behave differently in response to therapy. The challenge is to distinguish the key mutations driving the cancer from the background of mutational noise and find ways to effectively target them. The promise is that such a molecular approach to classifying cancer will lead to better diagnostic, prognostic and personalized treatment strategies. This article provides an overview of advances in the molecular characterization of cancers and their applications in therapy.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
34
|
|
35
|
Stott-Miller M, Houck JR, Lohavanichbutr P, Méndez E, Upton MP, Futran ND, Schwartz SM, Chen C. Tumor and salivary matrix metalloproteinase levels are strong diagnostic markers of oral squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2011; 20:2628-36. [PMID: 21960692 DOI: 10.1158/1055-9965.epi-11-0503] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The matrix metalloproteinases (MMP) cause degradation of the extracellular matrix and basement membranes, and thus may play a key role in cancer development. METHODS In our search for biomarkers for oral squamous cell carcinomas (OSCC), we compared primary OSCC, oral dysplasia and control subjects with respect to: (i) expression of MMP1, MMP3, MMP10, and MMP12 in oral epithelial tissue using Affymetrix U133 2.0 Plus GeneChip arrays, followed by quantitative reverse transcription-PCR (qRT-PCR) for MMP1, and (ii) determination of MMP1 and MMP3 concentrations in saliva. RESULTS MMP1 expression in primary OSCC (n = 119) was >200-fold higher (P = 7.16 × 10(-40)) compared with expression levels in nonneoplastic oral epithelium from controls (n = 35). qRT-PCR results on 30 cases and 22 controls confirmed this substantial differential expression. The exceptional discriminatory power to separate OSCC from controls was validated in two independent testing sets (AUC% = 100; 95% CI: 100-100 and AUC% = 98.4; 95% CI: 95.6-100). Salivary concentrations of MMP1 and MMP3 in OSCC patients (33 stage I/II, 26 stage III/IV) were 6.2 times (95% CI: 3.32-11.73) and 14.8 times (95% CI: 6.75-32.56) higher, respectively, than in controls, and displayed an increasing trend with higher stage disease. CONCLUSION Tumor and salivary MMPs are robust diagnostic biomarkers of OSCC. IMPACT The capacity of MMP gene expression to identify OSCC provides support for further investigation into MMPs as potential markers for OSCC development. Detection of MMP proteins in saliva in particular may provide a promising means to detect and monitor OSCC noninvasively.
Collapse
Affiliation(s)
- Marni Stott-Miller
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
DAPK promoter hypermethylation in tissues and body fluids of oral precancer patients. Med Oncol 2011; 29:729-33. [DOI: 10.1007/s12032-011-9953-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
37
|
Cao W, Zhang ZY, Xu Q, Sun Q, Yan M, Zhang J, Zhang P, Han ZG, Chen WT. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma. Mol Cancer 2010; 9:296. [PMID: 21092172 PMCID: PMC3002926 DOI: 10.1186/1476-4598-9-296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/22/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC), we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL) was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. RESULTS MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004). Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2) located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%), and only one CpG island (that is, M1) was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%). A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose) polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. CONCLUSION Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor suppressor gene, can contribute to human epithelial cell carcinoma and may be served as a biomarker in HNSCC.
Collapse
MESH Headings
- Apoptosis/genetics
- Apoptosis/physiology
- Blotting, Western
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma, Squamous Cell
- Cell Cycle/genetics
- Cell Cycle/physiology
- Cell Line, Tumor
- Cell Proliferation
- DNA Methylation/genetics
- Epigenesis, Genetic/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Humans
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Microscopy, Confocal
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Myelin and Lymphocyte-Associated Proteolipid Proteins
- Neoplasms, Squamous Cell/genetics
- Neoplasms, Squamous Cell/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Proteolipids/genetics
- Proteolipids/metabolism
- RNA, Messenger/genetics
- Squamous Cell Carcinoma of Head and Neck
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhi-yuan Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Qin Xu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ze-guang Han
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Chinese National Human Genome Center at Shanghai, 201203, China
| | - Wan-tao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
38
|
Pattani KM, Zhang Z, Demokan S, Glazer C, Loyo M, Goodman S, Sidransky D, Bermudez F, Jean-Charles G, McCaffrey T, Padhya T, Phelan J, Spivakovsky S, Bowne HY, Goldberg JD, Rolnitzky L, Robbins M, Kerr AR, Sirois D, Califano JA. Endothelin receptor type B gene promoter hypermethylation in salivary rinses is independently associated with risk of oral cavity cancer and premalignancy. Cancer Prev Res (Phila) 2010; 3:1093-103. [PMID: 20798208 DOI: 10.1158/1940-6207.capr-10-0115] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin receptor type B (EDNRB) and kinesin family member 1A (KIF1A) are candidate tumor suppressor genes that are inactivated in cancers. In this study, we evaluated the promoter hypermethylation of EDNRB and KIF1A and their potential use for risk classification in prospectively collected salivary rinses from patients with premalignant/malignant oral cavity lesions. Quantitative methylation-specific PCR was performed to analyze the methylation status of EDNRB and KIF1A in salivary rinses of 191 patients. We proceeded to determine the association of methylation status with histologic diagnosis and estimate classification accuracy. On univariate analysis, diagnosis of dysplasia/cancer was associated with age and KIF1A or EDNRB methylation. Methylation of EDNRB highly correlated with that of KIF1A (P < 0.0001). On multivariable modeling, histologic diagnosis was independently associated with EDNRB (P = 0.0003) or KIF1A (P = 0.027) methylation. A subset of patients analyzed (n = 161) without prior biopsy-proven malignancy received clinical risk classification based on examination. On univariate analysis, EDNRB and risk classification were associated with diagnosis of dysplasia/cancer and remained significant on multivariate analysis (EDNRB: P = 0.047, risk classification: P = 0.008). Clinical risk classification identified dysplasia/cancer with a sensitivity of 71% and a specificity of 58%. The sensitivity of clinical risk classification combined with EDNRB methylation improved to 75%. EDNRB methylation in salivary rinses was independently associated with histologic diagnosis of premalignancy and malignancy and may have potential in classifying patients at risk for oral premalignant and malignant lesions in settings without access to a skilled dental practitioner. This may also potentially identify patients with premalignant and malignant lesions that do not meet the criteria for high clinical risk based on skilled dental examination.
Collapse
Affiliation(s)
- Kavita Malhotra Pattani
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, 601 North Caroline Street, 6th Floor, Baltimore, MD 21287-0910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Capper D, Mittelbronn M, Goeppert B, Meyermann R, Schittenhelm J. Secreted protein, acidic and rich in cysteine (SPARC) expression in astrocytic tumour cells negatively correlates with proliferation, while vascular SPARC expression is associated with patient survival. Neuropathol Appl Neurobiol 2010; 36:183-97. [DOI: 10.1111/j.1365-2990.2010.01072.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|