1
|
Zubieta-Calleja G. Redefining chronic mountain sickness: insights from high-altitude research and clinical experience. MEDICAL REVIEW (2021) 2025; 5:44-65. [PMID: 39974561 PMCID: PMC11834750 DOI: 10.1515/mr-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/31/2024] [Indexed: 02/21/2025]
Abstract
Chronic Mountain Sickness (CMS), characterized by increased red blood cells above average values traditionally attributed to chronic hypobaric hypoxia exposure, is being redefined in light of recent research and clinical experience. We propose a shift in perspective, viewing CMS not as a singular entity but as Poly-erythrocythemia (PEH), as the Hematocrit/Hemoglobin/Red Blood Cells (Ht/Hb/RBCs) increase constitutes a sign, not a disease reflecting a spectrum of oxygen transport alterations in multiple diseases in the chronic hypoxia environment in high-altitude populations. Drawing on over five decades of experience at the High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA) in Bolivia, we advocate for altitude-specific blood parameter norms and emphasize the importance of correct etiological diagnosis for effective management. This updated understanding not only aids in managing chronically hypoxemic patients at various altitudes but also offers valuable insights into global health challenges, including the recovery from COVID-19.
Collapse
|
2
|
Xu H, Yang D, Li S, He K, Bian M, Liu Z, Xu C, Wu D. Protocol for evaluating physiological and psychological acclimatization mechanisms in Tibetan plateau environment: a clinical study of doctors from Peking Union Medical College Hospital. Front Public Health 2024; 12:1490647. [PMID: 39776479 PMCID: PMC11703865 DOI: 10.3389/fpubh.2024.1490647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The transition from low to high altitude environments is associated with a multifaceted series of physiological and psychological alterations that manifest over time. These changes are intricately intertwined, with physiological acclimatization primarily mediated through the regulation of hypoxia-inducible factor (HIF), which orchestrates the expression of critical molecules and hormones. This process extends to encompass the epigenome, metabolism, and other regulatory mechanisms. In the realm of psychological acclimatization, chronic hypoxia and changes in atmospheric pressure at high altitudes may contribute to decreased levels of neurotransmitters, with potential implications for mental health, particularly in relation to sleep quality. Despite significant advancements in our understanding of plateau acclimatization mechanisms in recent years, there remain many uncertain factors that necessitate further research. Methods This study is a single-center prospective observational study. It aims to utilize a series of physiological and medical instruments in conjunction with internationally recognized physiological and psychological questionnaires to monitor the dynamic shifts in the acclimatization ability of doctors from Peking Union Medical College Hospital. The monitoring will occur at seven distinct time points: pre-departure from Beijing, 1-7 days post-arrival at the Tibetan plateau during the acute phase of plateau hypoxic stress, and during the chronic phase of plateau hypoxic stress at 2 weeks, 3 months, 6 months, 12 months of residency in Tibet, and post-return to Beijing. Concurrently, a spectrum of omics analyses will be conducted, including comprehensive genomic, proteomic, and metabolomic assessments of blood leukocytes, fecal, and oral samples.
Collapse
Affiliation(s)
- Hemiao Xu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daiyu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun He
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Macuo Bian
- Department of High Altitude Medicine, The People’s Hospital of Tibetan Autonomous Region, Lhasa, China
| | - Zhijuan Liu
- Department of Clinical Laboratory, The People’s Hospital of Tibetan Autonomous Region, Lhasa, China
| | - Chengli Xu
- United Laboratory of Polar Medical Sciences, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, The People’s Hospital of Tibetan Autonomous Region, Lhasa, China
| |
Collapse
|
3
|
Bai X, Lu H, Cui Y, Yu S, Ma R, Yang S, He J. PRKAA2-mediated mitophagy regulates oxygen consumption in yak renal tubular epithelial cells under chronic hypoxia. Cell Signal 2024; 124:111450. [PMID: 39396565 DOI: 10.1016/j.cellsig.2024.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Hypoxic environments are significant factors in the induction of various kidney diseases and are closely associated with high oxygen consumption in the kidneys. Yaks live at high altitude for a long time, exhibit a unique ability to regulate kidney oxygen consumption, protecting them from hypoxia-induced damage. However, the mechanisms underlying the regulation of oxygen consumption in yak kidneys under hypoxic conditions remain unclear. To explore this hypoxia adaptation mechanism in yak kidneys, this study analyzed the oxygen consumption rate (OCR) of renal tubular epithelial cells (RTECs) under hypoxia. We found that the OCR and apoptosis rates of RTECs under chronic hypoxia (> 24 h) were lower than those under acute hypoxia (≤ 24 h). However, when oxygen consumption was promoted under chronic hypoxia, the apoptosis rate increased, indicating that reducing the cellular OCR is crucial for maintaining RTECs activity under hypoxia. High-throughput sequencing results showed that the mitophagy pathway is likely a key mechanism for inhibiting OCR of yak RTECs, with protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) playing a significant role in this process. Further studies demonstrated that chronic hypoxia activates the mitophagy pathway, which inhibits oxidative phosphorylation (OXPHOS) while increasing glycolytic flux in yak RTECs. Conversely, when the mitophagy pathway was inhibited, there was an increase in the activity of OXPHOS enzymes and OCR. To further explore the role of PRKAA2 in the mitophagy pathway, we inhibited PRKAA2 expression under chronic hypoxia. Results showed that the downregulation of PRKAA2 decreased the expression of mitophagy-related proteins, such as p-FUNDC1/FUNDC1, LC3-II/LC3-I, BNIP3 and ULK1 while upregulating P62 expression. Additionally, there was an increase in the enzyme activities of Complex II, Complex IV, PDH, and SDH, which further promoted oxygen consumption in RTECs. These findings suggest that PRKAA2 mediated mitophagy under chronic hypoxia is crucial mechanism for reducing oxygen consumption in yak RTECs.
Collapse
Affiliation(s)
- Xuefeng Bai
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hongqin Lu
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Sijiu Yu
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Rui Ma
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junfeng He
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Zila-Velasque JP, Grados-Espinoza P, Goicochea-Romero PA, Tapia-Sequeiros G, Pascual-Aguilar JE, Ruiz-Yaringaño AJ, Barros-Sevillano S, Ayca-Mendoza J, Nieto-Gutierrez W. Mountain sickness in altitude inhabitants of Latin America: A systematic review and meta-analysis. PLoS One 2024; 19:e0305651. [PMID: 39316567 PMCID: PMC11421813 DOI: 10.1371/journal.pone.0305651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE Chronic and acute mountain sickness is known worldwide, but most of the available information comes from the eastern continent (Himalayas) without taking into account the west which has the most recent group located at altitude, the Andes. The aim of this study was to synthesize the evidence on the prevalence of acute and chronic mountain sickness in Latin American countries (LATAM). METHODS A systematic search of the variables of interest was performed until July 8, 2023 in the Web of Science, Scopus, PubMed and Embase databases. We included studies that assessed the prevalence of mountain sickness in high-altitude inhabitants (>1500 m.a.s.l) who lived in a place more than 12 months. These were analyzed by means of a meta-analysis of proportions. To assess sources of heterogeneity, subgroup analyses and sensitivity analyses were performed by including only studies with low risk of bias and excluding extreme values (0 or 10,000 ratio). PROSPERO (CRD42021286504). RESULTS Thirty-nine cross-sectional studies (10,549 participants) met the inclusion criteria. We identified 5 334 and 2 945 events out of 10,000 with acute and chronic mountain sickness in LATAM countries. The most common physiological alteration was polycythemia (2,558 events), while cerebral edema was the less common (46 events). Clinical conditions were more prevalent at high altitudes for both types of MS. CONCLUSION Acute mountain sickness (AMS) occurs approximately in 5 out of 10 people at high altitude, while chronic mountain sickness (CMS) occurs in 3 out of 10. The most frequent physiological alteration was polycythemia and the least frequent was cerebral edema.
Collapse
Affiliation(s)
| | | | - P. Alejandra Goicochea-Romero
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
- Facultad de Ciencias de la Salud, Carrera de Medicina Humana, CHANGE Research Working Group, Universidad Científica del Sur, Lima, Peru
| | - Gustavo Tapia-Sequeiros
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
- Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Tacna, Peru
| | | | - Arturo J. Ruiz-Yaringaño
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
- Sociedad Científica de San Fernando, Lima, Peru
- Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Shamir Barros-Sevillano
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad César Vallejo, Trujillo, Perú
| | - Jhon Ayca-Mendoza
- Red Latinoamericana de Medicina en la Altitud e Investigación (REDLAMAI), Pasco, Peru
| | - Wendy Nieto-Gutierrez
- Unidad de Investigación para la Generación de Síntesis de Evidencia en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
5
|
Ma J, Yin Q, Ye F, Ba Z, Geng H. The efficacy of erythrocyte apheresis for treatment of secondary erythrocytosis: An observational study. Medicine (Baltimore) 2024; 103:e38815. [PMID: 39029086 PMCID: PMC11398752 DOI: 10.1097/md.0000000000038815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024] Open
Abstract
To evaluate the efficacy of erythrocyte apheresis on the treatment of secondary erythrocytosis. Patients with secondary erythrocytosis who had visited the Department of Hematology at the Qinghai University Affiliated Hospital between January 2021 and May 2022 were enrolled. Based on the treatment method used, the patients were divided into erythrocytapheresis group and bloodletting group. In total, 50 patients were treated using a hemocyte separator and 36 patients were treated with bloodletting. The outcomes of 2 groups were compared. Compared with the bloodletting group, the clinical symptoms improved, blood routine indicators such as RBC, Hb, and HCT significantly reduced, and the progression rate was lower in the erythrocytapheresis group. Erythrocytic apheresis is effective and safe for the treatment of secondary erythrocytosis.
Collapse
Affiliation(s)
- Jie Ma
- Department of Hematology, Qinghai University Affiliated Hospital, Xining, China
| | - Qichao Yin
- Department of Hematology, Qinghai University Affiliated Hospital, Xining, China
| | - Fang Ye
- Department of Hematology, Qinghai University Affiliated Hospital, Xining, China
| | - Zhenzhen Ba
- Department of Hematology, Qinghai University Affiliated Hospital, Xining, China
| | - Hui Geng
- Department of Hematology, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
6
|
Wu W, Fan D, Que B, Chen Y, Qiu R. Investigation on the relationship between hemoglobin concentration and stroke risk: a bidirectional Mendelian randomization study. Front Neurol 2024; 15:1327873. [PMID: 38725647 PMCID: PMC11079235 DOI: 10.3389/fneur.2024.1327873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Background The relationship between hemoglobin concentration and stroke has garnered significant interest in the research community. However, findings from published observational epidemiological studies on this relationship have been inconclusive. By using publicly available genome-wide association study (GWAS) aggregated statistics, a two-sample Mendelian randomization analysis is conducted to explore the causal relationship between hemoglobin concentration and stroke. Methods Summary statistics data from UK Biobank for hemoglobin concentration and from the FinnGen R9 and MEGASTROKE consortium for stroke are used. A series of quality control steps are taken to select eligible instrumental SNPs closely related to exposure. In order to make the conclusion more robust and reliable, several robust analysis methods are employed including inverse variance weighted, weighted median, MR-Egger regression, which are based on different assumptions of two-sample MR Analysis. Meanwhile, sensitivity analyses such as pleiotropy test and MR-Egg regression, are performed to mitigate horizontal pleiotropy and heterogeneity. Results The two-sample Mendelian randomized study indicates a negative association between hemoglobin concentration and stroke, suggesting that hemoglobin concentration acts as a protective factor against stroke. From the FinnGen database, there is a negative association between hemoglobin concentration and stroke, with an odds ratio (OR) of 0.82 and a 95% confidence interval (CI) of 0.73-0.92, p = 0.0006. Similarly, the MEGASTROKE database findings reinforce this observation. The negative association between hemoglobin concentration and stroke (OR: 0.91, 95%CI: 0.83-1.00, p = 0.040), ischemic stroke (OR: 0.87, 95%CI: 0.79-0.96, p = 0.004), and cardiogenic stroke (OR: 0.82, 95% CI: 0.69-0.99, p = 0.039) further suggests that higher hemoglobin levels might confer a protective effect against these conditions. Conclusion Hemoglobin concentration serves as a protective factor against stroke, and managing abnormal hemoglobin levels can effectively reduce the incidence of stroke.
Collapse
Affiliation(s)
- Wenbao Wu
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Binfu Que
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yangui Chen
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Rui Qiu
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
7
|
Yu S, Ye Y, Wuren T, Yi H. Alteration in the number, morphology, function, and metabolism of erythrocytes in high-altitude polycythemia. Front Physiol 2024; 15:1359357. [PMID: 38426208 PMCID: PMC10902074 DOI: 10.3389/fphys.2024.1359357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model. Methods: Twelve Sprague-Dawley rats were divided into control and HAPC groups. The HAPC group was exposed to hypobaric hypoxia. This HAPC model was assessed using routine blood tests and blood gas analyses. Bone marrow, peripheral blood reticulocytes (RETs), and peripheral blood erythrocyte apoptosis were measured using flow cytometry. Erythrocyte osmotic fragility (EOF) tests were conducted. Abnormal erythrocytes were counted using electron microscopy. Plasma-free hemoglobin, 5'-nucleotidase (CD73), adenosine, erythrocyte cytosolic adenosine, sphingosine-1-phosphate (S1P), and 2,3-bisphosphoglycerate (BPG) levels were measured using enzyme-linked immunosorbent assays. Erythrocyte metabolic pathway-related protein [adenosine A2B receptor (ADORA2B), erythrocyte equilibrative nucleoside transporter 1 (eENT1), sphingosine kinase 1 (SPHK1), phospho-SPHK1, bisphosphoglycerate mutase (BPGM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] levels were assessed by Western blotting. Results: The HAPC rat model was successfully established (Hb > 210 g/L). Indices of bone marrow and peripheral blood RET proportions were significantly higher in the HAPC than the control group (p = 0.04 and p < 0.001, respectively). The proportion of peripheral blood erythrocytes in early apoptosis was significantly lower in the HAPC than the control group (p < 0.001). Vesicular erythrocyte and acanthocyte proportions were significantly higher in the HAPC than the control group (p < 0.001 and p = 0.019, respectively). The EOF tests revealed that 50% erythrocyte hemolysis occurred at 4.0-4.5 and 4.5-5.0 g/L NaCl in the control and HAPC groups, respectively. Plasma-free hemoglobin, CD73, adenosine, erythrocyte cytosolic adenosine, S1P, and 2,3-BPG levels and ADORA2B, eENT1, phospho-SPHK1, S1P, BPGM, and GAPDH erythrocyte expression levels (all p ≤ 0.02) were significantly higher in the HAPC than the control group. Conclusion: In model rats, an HAPC-related erythrocyte increase was associated with enhanced bone marrow hematopoietic function and reduced erythrocyte apoptosis, whereas numerous abnormal erythrocytes, increased EOF, and reduced hemolysis resistance were associated with erythrocyte metabolism. CD73/adenosine/S1P/2,3-BPG and eENT1/adenosine/BPGM/2,3-BPG metabolic pathways in erythrocytes were activated in HAPC rats, facilitating oxygen release. These findings further reveal the intrinsic HAPC mechanism and forms a basis for future development of preventive and therapeutic strategies for HAPC.
Collapse
Affiliation(s)
- Song Yu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Hematology, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| | - Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Hai Yi
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Hematology, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
8
|
Zhang CL, Zhang J, Tuersuntuoheti M, Zhou W, Han Z, Li X, Yang R, Zhang L, Zheng L, Liu S. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166698. [PMID: 37683864 DOI: 10.1016/j.scitotenv.2023.166698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China.
| |
Collapse
|
9
|
Shi J, Jia Z, Sun J, Wang X, Zhao X, Zhao C, Liang F, Song X, Guan J, Jia X, Yang J, Chen Q, Yu K, Jia Q, Wu J, Wang D, Xiao Y, Xu X, Liu Y, Wu S, Zhong Q, Wu J, Cui S, Bo X, Wu Z, Park M, Kellis M, He K. Structural variants involved in high-altitude adaptation detected using single-molecule long-read sequencing. Nat Commun 2023; 14:8282. [PMID: 38092772 PMCID: PMC10719358 DOI: 10.1038/s41467-023-44034-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Structural variants (SVs), accounting for a larger fraction of the genome than SNPs/InDels, are an important pool of genetic variation, enabling environmental adaptations. Here, we perform long-read sequencing data of 320 Tibetan and Han samples and show that SVs are highly involved in high-altitude adaptation. We expand the landscape of global SVs, apply robust models of selection and population differentiation combining SVs, SNPs and InDels, and use epigenomic analyses to predict enhancers, target genes and biological functions. We reveal diverse Tibetan-specific SVs affecting the regulatory circuitry of biological functions, including the hypoxia response, energy metabolism and pulmonary function. We find a Tibetan-specific deletion disrupts a super-enhancer and downregulates EPAS1 using enhancer reporter, cellular knock-out and DNA pull-down assays. Our study expands the global SV landscape, reveals the role of gene-regulatory circuitry rewiring in human adaptation, and illustrates the diverse functional roles of SVs in human biology.
Collapse
Affiliation(s)
- Jinlong Shi
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
- Medical Artificial Intelligence Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinxiu Sun
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoreng Wang
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- State Key Laboratory of Experimental Hematology, Beijing, 100853, China
| | - Xiaojing Zhao
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenghui Zhao
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Research Center for Biomedical Engineering, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Liang
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Xinyu Song
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Medical Artificial Intelligence Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiawei Guan
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xue Jia
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Yang
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kang Yu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Wu
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Depeng Wang
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Yuhui Xiao
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Xiaoman Xu
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Yinzhe Liu
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Shijing Wu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qin Zhong
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jue Wu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Saijia Cui
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | | | | | - Manolis Kellis
- Massachusetts Institute of Technology; MIT Computer Science and Artificial Intelligence Laboratory, Broad Institute of MIT and Harvard, Cambridge, 02139, MA, USA
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China.
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China.
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Song Z, Zhang A, Luo J, Xiong G, Peng H, Zhou R, Li Y, Xu H, Li Z, Zhao W, Zhang H. Prevalence of High-Altitude Polycythemia and Hyperuricemia and Risk Factors for Hyperuricemia in High-Altitude Immigrants. High Alt Med Biol 2023; 24:132-138. [PMID: 37015076 DOI: 10.1089/ham.2022.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Song Zhen, Anxin Zhang, Jie Luo, Guanghai Xiong, Haibo Peng, Rang Zhou, Yuanfeng Li, Hongqiang Xu, Zhen Li, Wei Zhao, and Haoxiang Zhang. Prevalence of high-altitude polycythemia and hyperuricemia and risk factors for hyperuricemia in high-altitude immigrants. High Alt Med Biol. 24:132-138, 2023. Background: Few studies have investigated the epidemiology of chronic mountain sickness (CMS) in high-altitude immigrants. This study evaluated the prevalence of polycythemia and hyperuricemia (HUA) and risk factors for HUA in high-altitude immigrants. Methods: A cross-sectional study was conducted with 7,070 immigrants 15-45 years of age living on the Tibetan Plateau between January and December 2021. Information from routine physical examinations was obtained from each participant. Binary logistic regression analysis was performed to determine the correlation of several risk factors for HUA. Results: The prevalence of high-altitude polycythemia (HAPC) and HUA was 25.8% (28.7% in males and 9.4% in females) and 54.2% (59.9% in males and 22.5% in females), respectively. The highest prevalence of HAPC in males and females was observed in participants 26-30 and 21-25 years of age, respectively. The highest prevalence of HUA in both males and females was observed in participants 26-30 years of age. Binary logistic regression analysis showed that age, sex, and hemoglobin (Hb) concentration were risk factors for HUA, among which age was a negative factor and male sex and Hb concentration were positive factors. Conclusions: Immigrants are more susceptible to HAPC and HUA. The high prevalence of CMS of immigrants may be associated with Hb concentration, age, and sex.
Collapse
Affiliation(s)
- Zhen Song
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Anxin Zhang
- Department of Ultrasonography, The 954th Army Hospital, Shannan, P.R. China
| | - Jie Luo
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Guanghai Xiong
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Haibo Peng
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Rang Zhou
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hongqiang Xu
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Zhen Li
- Department of Clinical Laboratory, The 954th Army Hospital, Shannan, P.R. China
| | - Wei Zhao
- Department of Gastroenterology, The 954th Army Hospital, Shannan, P.R. China
| | - Haoxiang Zhang
- Department of Gastroenterology, The 954th Army Hospital, Shannan, P.R. China
| |
Collapse
|
11
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
12
|
Feng J, Men W, Yu X, Liu W, Zhang S, Liu J, Ma L. High-altitude exposure duration dependent global and regional gray matter volume decrease in healthy immigrants: a cross-sectional study. Acta Radiol 2023; 64:751-759. [PMID: 35369766 DOI: 10.1177/02841851221091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The correlation between brain injury and high-altitude (HA) exposure duration (Dur_HA) as well as peripheral oxygen saturation (SpO2) remains unclear. PURPOSE To evaluate the global and regional brain volume differences between HA immigrants and sea-level residents, and the relationship between brain volume with Dur_HA and SpO2. MATERIAL AND METHODS Structural magnetic resonance imaging (MRI) scans were acquired in 33 healthy male HA immigrants (HA group) and 33 matched sea-level male residents (SL group). Differences in global gray matter volume (GMV), white matter volume (WMV), brain parenchyma volume (BV), total intracranial volume (TIV), and the volume-fraction (the ratio of GMV/TIV, WMV/TIV, BV/TIV) were assessed. Regional gray matter differences were investigated using voxel-based morphology analysis. The volume of clusters with GM loss were calculated as the volume of volume of interest (V_VOI). Student's t-test and partial correlation were adopted for statistic calculation. RESULTS Compared to the SL group, the HA immigrants had larger WMV (P = 0.015), smaller ratio of GMV/WMV (P = 0.022), and regional gray matter loss in bilateral basal ganglion, limbic system, midbrain, and vermis (cluster size >100 voxels, family-wise error corrected at P = 0.01). The global GMV, BV, and V_VOI confined to vermis had negative correlations with the Dur_HA (r = -0.369, P = 0.049; r = -0.380, P = 0.042; and r = -0.471, P = 0.010. Neither global nor regional brain volume correlated with SpO2. CONCLUSION Global and regional brain are affected by long-term HA exposure, and global and regional gray matter have a time-dependent volume loss.
Collapse
Affiliation(s)
- Jie Feng
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
- Department of Radiology, Corps Hospital of Shanxi Province of Chinese People's Armed Police Force, Taiyuan, PR China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, PR China
| | - Xiao Yu
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Wenjia Liu
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Shiyu Zhang
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, Tibet, PR China
| | - Lin Ma
- 104607Medical School of Chinese People's Liberation Army, Beijing, PR China
- Department of Radiology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| |
Collapse
|
13
|
Peng W, Jian W, Li T, Malowany M, Tang X, Huang M, Wang Y, Ren Y. Disparities of obesity and non-communicable disease burden between the Tibetan Plateau and developed megacities in China. Front Public Health 2023; 10:1070918. [PMID: 36703857 PMCID: PMC9873242 DOI: 10.3389/fpubh.2022.1070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background Non-communicable diseases (NCDs) including risk factors, e.g., obesity, are the major causes of preventable deaths in China, yet NCD disparities in China remain under-studied. Objective This study aimed to compare the determinants and burden of NCDs within four selected provinces in mainland China: the least developed Qinghai-Tibet Plateau group (PG, Tibetan Autonomous Region [TAR] and Qinghai Province) and most developed megacity group (MCG, Shanghai, and Beijing). Methods Studies, reports, and other official sources with comparable data for NCD burden and related determinants for the four provinces were searched. Geographic, demographic, socioeconomic, and dietary characteristics and selected health indicators (e.g., life expectancy) were extracted from the China Statistical Yearbook and China Health Statistics Yearbook. Data on NCD burdens were extracted from the National Chronic Disease and Risk Factor Surveillance Study and other nationally representative studies. Results The overall NCD mortality rates and prevalence of metabolic risk factors including obesity, hypertension, and diabetes in mainland China have increased in the past 20 years, and this trend is expected to continue. The PG had the highest level of standardized mortality rates (SMRs) on NCDs (711.6-896.1/100,000, 6th/6-level); the MCG had the lowest (290.6-389.6/100,000, 1st/6-level) in mainland China. The gaps in SMRs were particularly high with regard to chronic respiratory diseases (PG 6th/6-level, MCG 1st/6-level) and cardiovascular diseases (6th/6 and 4th/6 in TAR and Qinghai; 1st/6-level and 2nd/6-level in Shanghai and Beijing). In contrast, the prevalence rates of obesity, hypertension, and diabetes were generally higher or comparable in MCG compared to PG. Diabetes prevalence was particularly high in MCG (5th/5-level, 13.36-14.35%) and low in PG (1st/5-level, 6.20-10.39%). However, awareness, treatment, and control of hypertension were poor in PG. Additionally, PG had much lower and severely inadequate intakes of vegetables, fruits, and dairy products, with additional indicators of lower socioeconomic status (education, income, etc.,) compared with MCG. Conclusion Evidence showed large disparities in NCD burden in China's provinces. Socioeconomic disparity and dietary determinants are probably the reasons. Integrated policies and actions are needed.
Collapse
Affiliation(s)
- Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, China,Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College, Qinghai University, Xining, Qinghai, China,Wen Peng ✉
| | - Wenxiu Jian
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, China
| | - Tiemei Li
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, China
| | - Maureen Malowany
- Faculty of Medicine, Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem—Hadassah Medical Organization, Jerusalem, Israel
| | - Xiao Tang
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, China
| | - Mingyu Huang
- Medical College, Qinghai University, Xining, China
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Yanming Ren
- Medical College, Qinghai University, Xining, China,*Correspondence: Yanming Ren ✉
| |
Collapse
|
14
|
Zhu J, Duan Y, Duo D, Yang J, Bai X, Liu G, Wang Q, Wang X, Qu N, Zhou Y, Li X. High-altitude Hypoxia Influences the Activities of the Drug-Metabolizing Enzyme CYP3A1 and the Pharmacokinetics of Four Cardiovascular System Drugs. Pharmaceuticals (Basel) 2022; 15:ph15101303. [PMID: 36297415 PMCID: PMC9612038 DOI: 10.3390/ph15101303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: High-altitude hypoxia has been shown to affect the pharmacokinetic properties of drugs. Although there is a high incidence of cardiovascular disease among individuals living in high-altitude areas, studies on the effect of high-altitude hypoxia on the pharmacokinetic properties of cardiovascular drugs are limited. (2) Methods: The aim of this study was to evaluate the pharmacokinetics of nifedipine, bosentan, simvastatin, sildenafil, and their respective main metabolites, dehydronifedipine, hydroxybosentan, simvastatin hydroxy acid, and N-desmethyl sildenafil, in rats exposed to high-altitude hypoxia. Additionally, the protein and mRNA expression of cytochrome P450 3A1 (CYP3A1), a drug-metabolizing enzyme, were examined. (3) Results: There were significant changes in the pharmacokinetic properties of the drugs in rats exposed to high-altitude hypoxia, as evidenced by an increase in the area under the curve (AUC) and the half-life (t1/2z) and a decrease in total plasma clearance (CLz/F). However, most of these changes were reversed when the rats returned to a normoxic environment. Additionally, there was a significant decrease in CYP3A1 expression in rats exposed to high-altitude hypoxia at both the protein and mRNA levels. (4) Conclusions: High-altitude hypoxia suppressed the metabolism of the drugs, indicating that the pharmacokinetics of the drugs should be re-examined, and the optimal dose should be reassessed in patients living in high-altitude areas.
Collapse
Affiliation(s)
- Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810000, China
| | - Yabin Duan
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining 810000, China
| | - Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
| | - Qian Wang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
| | - Xuejun Wang
- Department of Anesthesiology, Red Cross Hospital of Qinghai, Xining 810000, China
| | - Ning Qu
- Department of Anesthesiology, Qinghai Hospital of Traditional Chinese Medicine, Xining 810000, China
| | - Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- Correspondence: (Y.Z.); (X.L.)
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810000, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810000, China
- Correspondence: (Y.Z.); (X.L.)
| |
Collapse
|
15
|
Pulmonary Capacity, Blood Composition and Metabolism among Coal Mine Workers in High- and Low-Altitude Aboveground and Underground Workplaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148295. [PMID: 35886146 PMCID: PMC9318192 DOI: 10.3390/ijerph19148295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
(1) Background: While previous studies revealed how underground mining might adversely affect the cardiopulmonary functions of workers, this study further investigated the differences between under- and aboveground mining at both high and low altitudes, which has received little attention in the literature. (2) Methods: Seventy-one healthy male coal mine workers were recruited, who had worked at least 5 years at the mining sites located above the ground at high (>3900 m; n = 19) and low (<120 m; n = 16) altitudes as well as under the ground at high (n = 20) and low (n = 16) altitudes. Participants’ heart rates, pulmonary functions, total energy expenditure and metabolism were measured over a 5-consecutive-day session at health clinics. (3) Results: Combining the results for both above- and underground locations, workers at high-altitude mining sites had significantly higher peak heart rate (HR), minimum average HR and training impulse as well as energy expenditure due to all substances and due to fat than those at low-altitude sites. They also had significantly higher uric acid, total cholesterol, creatine kinase and N-osteocalcin in their blood samples than the workers at low-altitude mining sites. At underground worksites, the participants working at high-altitude had a significantly higher average respiratory rate than those at low-altitude regions. (4) Conclusion: In addition to underground mining, attention should be paid to high-altitude mining as working under a hypoxia condition at such altitude likely presents physiological challenges.
Collapse
|
16
|
Wu J, Han X, Ke H, Wang L, Wang K, Zhang J, Tang J, Yan W, Wang G, Jiang P. Pulmonary Embolism at Extreme High Altitude: A Study of Seven Cases. High Alt Med Biol 2022; 23:209-214. [PMID: 35605091 DOI: 10.1089/ham.2021.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wu, Jialin, Xiaobo Han, Haiwen Ke, Li Wang, Kun Wang, Jianli Zhang, Jun Tang, Wei Yan, Guangjun Wang, and Peng Jiang. Pulmonary embolism at extreme high altitude: A study of seven cases. High Alt Med Biol. XX:000-000, 2022. Background: The incidence of venous thromboembolism (VTE) is high in high-altitude (HA) areas. We analyzed cases of pulmonary embolism (PE) in extreme HA areas to explore the epidemiological characteristics and risk factors of PE in these regions. Methods: Seven cases of PE occurring in an extreme HA region were prospectively collected at an HA (3,800 m) hospital from May to November 2020. All patients resided 5,000 m above sea level and were diagnosed with PE using computed tomography pulmonary angiography. Results: Seven patients (24 ± 3.6 years old) had symptom onset at a mean altitude of 5,200 ± 200 m, and the duration spent at HA ranged from 8 to 210 days (99.29 ± 77.31 days). Cough, expectoration, chest tightness, fever, shortness of breath, and chest pain were the most common symptoms. Six of the seven patients were initially diagnosed with pulmonary inflammation, and four were diagnosed with high-altitude pulmonary edema using computed tomography or X-ray. Most patients presented with an increased concentration of inflammatory cells and high initial D-dimer levels. Conclusions: In this study, a retrospective analysis of PE case data in extreme HA areas suggested that PE was underdiagnosed owing to misdiagnosis or masking by HA-associated disease.
Collapse
Affiliation(s)
- Jialin Wu
- Department of Respiratory Disease, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Xiaobo Han
- Department of Emergency, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Haiwen Ke
- Department of Burn and Plastic Surgery, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Kun Wang
- Department of Ultrasound Medicine, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Jianli Zhang
- Department of Respiratory Disease, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Jun Tang
- Department of Medical Service, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Wei Yan
- Department of Medical Service, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Guangjun Wang
- Department of Medical Service, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Peng Jiang
- Department of Respiratory Disease, General Hospital of Xinjiang Military Command, Urumqi, China
| |
Collapse
|
17
|
Steele AR, Tymko MM, Meah VL, Simpson LL, Gasho C, Dawkins TG, Williams AM, Villafuerte FC, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Global REACH 2018: Volume regulation in high-altitude Andeans with and without chronic mountain sickness. Am J Physiol Regul Integr Comp Physiol 2021; 321:R504-R512. [PMID: 34346722 DOI: 10.1152/ajpregu.00102.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-altitude maladaptation syndrome known as chronic mountain sickness (CMS) is characterized by polycythemia and is associated with proteinuria despite unaltered glomerular filtration rate. However, it remains unclear if indigenous highlanders with CMS have altered volume regulatory hormones. We assessed N-terminal pro-B-type natriuretic peptide (NT pro-BNP), plasma aldosterone concentration, plasma renin activity, kidney function (urinary microalbumin, glomerular filtration rate), blood volume, and estimated pulmonary artery systolic pressure (ePASP), in Andean males without (n=14; age=39±11) and with (n=10; age=40±12) CMS at 4330 meters (Cerro de Pasco, Peru). Plasma renin activity (non-CMS: 15.8±7.9 vs. CMS: 8.7±5.4 ng/ml; p=0.025) and plasma aldosterone concentration (non-CMS: 77.5±35.5 vs. CMS: 54.2±28.9 pg/ml; p=0.018) were lower in highlanders with CMS compared to non-CMS, while NT pro-BNP was not different between groups (non-CMS: 1394.9±214.3 vs. CMS: 1451.1±327.8 pg/ml; p=0.15). Highlanders had similar total blood volume (non-CMS: 90±15 vs. CMS: 103±18 ml • kg-1; p=0.071), but Andeans with CMS had greater total red blood cell volume (non-CMS: 46±10 vs. CMS 66±14 ml • kg-1; p<0.01) and smaller plasma volume (non-CMS 43±7 vs. CMS 35±5 ml • kg-1; p=0.03) compared to non-CMS. There were no differences in ePASP between groups (non-CMS 32±9 vs. CMS 31±8 mmHg; p=0.6). A negative correlation was found between plasma renin activity and glomerular filtration rate in both groups (group: r=-0.66; p<0.01; non-CMS: r=-0.60; p=0.022; CMS: r=-0.63; p=0.049). A smaller plasma volume in Andeans with CMS may indicate an additional CMS maladaptation to high-altitude, causing potentially greater polycythemia and clinical symptoms.
Collapse
Affiliation(s)
- Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Michael M Tymko
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Canada
| | - Lydia L Simpson
- Department of Sport Science, Division of Physiology, University of Innsbruck, Austria
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Alexandra Mackenzie Williams
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Francisco C Villafuerte
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Rómulo J Figueroa-Mujíca
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Canada
| |
Collapse
|
18
|
Zhu JB, Yang JX, Nian YQ, Liu GQ, Duan YB, Bai X, Wang Q, Zhou Y, Wang XJ, Qu N, Li XY. Pharmacokinetics of Acetaminophen and Metformin Hydrochloride in Rats After Exposure to Simulated High Altitude Hypoxia. Front Pharmacol 2021; 12:692349. [PMID: 34220516 PMCID: PMC8249799 DOI: 10.3389/fphar.2021.692349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
The pharmacokinetic characteristics of drugs were altered under high altitude hypoxia, thereby affecting the absorption, distribution, metabolism, and excretion of drug. However, there are few literatures on the pharmacokinetic changes of antipyretic and pain-relieving drugs and cardiovascular system drugs at high altitude. This study aimed to evaluate the pharmacokinetics of acetaminophen and metformin hydrochloride in rats under simulated high altitude hypoxia condition. Mechanically, the protein and mRNA expression of uridine diphosphate glucuronyltransferase 1A1 (UGT1A1) and organic cation transporter 2 (OCT2) were investigated by enzyme linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Compared with the normoxia group, the t1/2 and AUC of acetaminophen were significantly increased, and the CL/F was significantly decreased in rats after exposure to simulated high altitude hypoxia. The t1/2 of metformin hydrochloride was significantly increased by simulated high altitude hypoxia. No significant differences in AUC and CL/F of metformin hydrochloride were observed when comparing the hypoxia group with the normoxia group. The protein and mRNA expression of UGT1A1 and OCT2 were decreased significantly under hypoxia in rats. This study found obvious changes in the pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia, and they might be due to significant decreases in the expressions of UGT1A1 and OCT2. To sum up, our data suggested that the pharmacokinetics of acetaminophen and metformin hydrochloride should be reexamined, and the optimal dose should be reassessed under hypoxia exposure.
Collapse
Affiliation(s)
- Jun-Bo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jian-Xin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yong-Qiong Nian
- School of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Gui-Qin Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Ya-Bin Duan
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Qian Wang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yang Zhou
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue-Jun Wang
- Department of Anesthesiology, Red Cross Hospital of Qinghai, Xining, China
| | - Ning Qu
- Department of Anesthesiology, Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Xiang-Yang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
19
|
Novel insights into plasma biomarker candidates in patients with chronic mountain sickness based on proteomics. Biosci Rep 2021; 41:227462. [PMID: 33393624 PMCID: PMC7816071 DOI: 10.1042/bsr20202219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic mountain sickness (CMS) is a progressive incapacitating syndrome induced by lifelong exposure to hypoxia. In the present study, proteomic analysis was used to identify the differentially expressed proteins (DEPs) and then evaluate the potential plasma biomarkers between CMS and non-CMS groups. A total of 145 DEPs were detected in CMS Han Chinese people who live in the plateau (CMS-HPu), among which 89 were significantly up-regulated and 56 were significantly down-regulated. GO enrichment analysis showed that various biological processes were enriched, including the hydrogen peroxide metabolic/catabolic process, reactive oxygen species (ROS) metabolic, and acute inflammatory response. Protein–protein interaction analysis showed that antioxidant activity, the hydrogen peroxide catabolic process and peroxidase activity were primarily mapped in interaction proteins. Nine modules showed significantly clustering based on WGCNA analysis, with two being the most significant, and GO analysis showed that proteins of both modules were primarily enriched in oxidative stress-related biological processes. Four DEPs increased in CMS patients were evaluated as the candidate biomarkers, and three showed significant AUC: hemoglobin β chain (HB-β), thioredoxin-1 (TRX1), and phosphoglycerate kinase 1 (PGK1). The present study provides insights into the pathogenesis of CMS and further evaluates the potentially biomarkers for its prevention and treatment of it.
Collapse
|
20
|
Niu M, Singh S, Mi M, Bian P, Deji Z, Mima D, Li X. Safety and Efficacy of Therapeutic Erythrocytapheresis Treatment in Chronic Mountain Sickness Patients in Shigatse, Tibet, China. Med Sci Monit 2020; 26:e927853. [PMID: 33353927 PMCID: PMC7768795 DOI: 10.12659/msm.927853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Therapeutic erythrocytapheresis (TEA) is a medical technology that separates erythrocytes from whole blood and has been used in various hematological conditions. However, reports on the use of TEA to treat chronic mountain sickness (CMS) are lacking. The aim of the present study was to evaluate the efficacy, safety, and use of TEA in treatment of CMS. Material/Methods A total of 32 patients living in the Shigatse area of Tibet (altitude 4000 m) who had CMS were treated with TEA. Clinical data, CMS score, Borg dyspnea score, 6-min walking test score, and NYHA classification values were collected prior to and after TEA therapy. Results TEA treatment significantly increased SpO2 (93.8±2.6 vs. 80.5±5.8%, P<0.001) and decreased red blood cell (5.77±0.70 vs. 7.48±0.67×1012/L, P<0.001), hematocrit (53.8±5.6 vs. 69.2±4.8%, P<0.001) and hemoglobin (178±16 vs. 236±14 g/L, P<0.001). Significantly lower systolic and diastolic blood pressure were also noted (P<0.001). Echocardiography showed higher left ventricle diameter (4.6±0.4 vs. 4.4±0.5 cm, P<0.01). TEA markedly decreased CMS scores (0.45±0.85 vs. 7.58±2.31, P<0.001), Borg dyspnea scale scores (0.48±0.73 vs. 0.88±0.81, P<0.001), and NYHA classification scores (P<0.05). Additionally, there was marked improvement in the 6-min walking test scores (578.5±83.1 vs. 550.4±79.0 m, P<0.001). The procedure was well tolerated, with no complications. Conclusions Our novel approach of treating CMS patients with TEA safely and effectively reduced erythrocytosis, which remains a fundamental challenge in CMS patients.
Collapse
Affiliation(s)
- Mingyuan Niu
- Department of Cardiology, Shigatse People's Hospital, Shigatse, Tibet, China (mainland)
| | - Shekhar Singh
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Ma Mi
- Department of Cardiology, Shigatse People's Hospital, Shigatse, Tibet, China (mainland)
| | - Pian Bian
- Department of Cardiology, Shigatse People's Hospital, Shigatse, Tibet, China (mainland)
| | - Zhuoga Deji
- Department of Cardiology, Shigatse People's Hospital, Shigatse, Tibet, China (mainland)
| | - Duoji Mima
- Department of Cardiology, Shigatse People's Hospital, Shigatse, Tibet, China (mainland)
| | - Xiankai Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| |
Collapse
|
21
|
Lyu Q, Bai Y, Cheng J, Liu H, Li S, Yang J, Wang Z, Ma Y, Jiang M, Dong D, Yan Y, Shi Q, Ren X, Ma J. Intermittent short-duration reoxygenation protects against simulated high altitude-induced pulmonary hypertension in rats. FASEB J 2020; 35:e21212. [PMID: 33230951 DOI: 10.1096/fj.202000533rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
High-altitude pulmonary hypertension (HAPH) is a severe and progressive disease caused by chronic hypoxia and subsequent pulmonary vascular remodeling. No cure is currently available owing to an incomplete understanding about vascular remodeling. It is believed that hypoxia-induced diseases can be prevented by treating hypoxia. Thus, this study aimed to determine whether daily short-duration reoxygenation at sea level attenuates pulmonary hypertension under high-altitude hypoxia. To this end, a simulated 5000-m hypoxia rat model and hypoxic cultured human pulmonary artery smooth muscle cells were used to evaluate the effect of short-duration reoxygenation. Results show that intermittent, not continuous, short-duration reoxygenation effectively attenuates hypoxia-induced pulmonary hypertension. The mechanisms underlining the protective effects involved that intermittent, short-duration reoxygenation prevented functional and structural remodeling of pulmonary arteries and proliferation, migration, and phenotypic conversion of pulmonary artery smooth muscle cells under hypoxia. The specific genes or potential molecular pathways responsible for mediating the protective effects were also characterised by RNA sequencing. Further, the frequency and the total time of intermittent reoxygenation affected its preventive effect of HAPH, which was likely attributable to augmented oxidative stress. Hence, daily intermittent, not continuous, short-duration reoxygenation partially prevented pulmonary hypertension induced by 5000-m hypoxia in rats. This study is novel in revealing a new potential method in preventing HAPH. It gives insights into the selection and optimisation of oxygen supply schemes in high-altitude areas.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yungang Bai
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jiuhua Cheng
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Shaohua Li
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jing Yang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Zhongchao Wang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yan Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Min Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Dong Dong
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yiquan Yan
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Qixin Shi
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Respiratory Diseases, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Mairbäurl H, Gassmann M, Muckenthaler MU. Geographical ancestry affects normal hemoglobin values in high-altitude residents. J Appl Physiol (1985) 2020; 129:1451-1459. [PMID: 33002380 DOI: 10.1152/japplphysiol.00025.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increasing the hemoglobin (Hb) concentration is a major mechanism adjusting arterial oxygen content to decreased oxygen partial pressure of inspired air at high altitude. Approximately 5% of the world's population living at altitudes higher than 1,500 m shows this adaptive mechanism. Notably, there is a wide variation in the extent of increase in Hb concentration among different populations. This short review summarizes available information on Hb concentrations of high-altitude residents living at comparable altitudes (3,500-4,500 m) in different regions of the world. An increased Hb concentration is found in all high-altitude populations. The highest mean Hb concentration was found in adult male Andean residents and in Han Chinese living at high altitude, whereas it was lowest in Ethiopians, Tibetans, and Sherpas. A lower plasma volume in Andean high-altitude natives may offer a partial explanation. Indeed, male Andean high-altitude natives have a lower plasma volume than Tibetans and Ethiopians. Moreover, Hb values were lower in adult, nonpregnant females than in males; differences between populations of different ancestry were less pronounced. Various genetic polymorphisms were detected in high-altitude residents thought to favor life in a hypoxic environment, some of which correlate with the relatively low Hb concentration in the Tibetans and Ethiopians, whereas differences in angiotensin-converting enzyme allele distribution may be related to elevated Hb in the Andeans. Taken together, these results indicate different sensitivity of oxygen dependent control of erythropoiesis or plasma volume among populations of different geographical ancestry, offering explanations for differences in the Hb concentration at high altitude.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Departmment of Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Max Gassmann
- Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Martina U Muckenthaler
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany.,Departmment of Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
23
|
Liu Y, Tong A, Qi X. A large subchorionic hematoma in pregnancy: A case report. Medicine (Baltimore) 2020; 99:e20280. [PMID: 32481396 DOI: 10.1097/md.0000000000020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Subchorionic hematoma (SCH) is a rare type of intrauterine hematoma, usually with limited impact on fetuses and pregnant women. But massive hematoma causes significant space occupying effect, affects blood supply of the fetus and finally may lead to fetus demise. PATIENT CONCERNS In this case report, we reported a 22-year-old pregnant woman presented to our hospital with complaint of irregular lower abdominal pain. DIAGNOSIS Ultrasonography and magnetic resonance imaging confirmed an intrauterine mass with a compressed growth-restricted fetus. INTERVENTIONS The patient underwent diseases induced labor after confirmation of fetus demise by ultrasonography. OUTCOMES Histopathological examination of the mass revealed a SCH. CONCLUSION Though small SCH can be found in quite a few pregnant women and is usually harmless, enormous hematoma can result in adverse pregnancy outcomes. It may be difficult, in some cases, to differentiate it from uterine tumors or placental tumors by means of ultrasonography and magnetic resonance imaging, especially when the mass is hyperechoic under ultrasonography. This case report stresses the importance of regular examinations of pregnant women.
Collapse
Affiliation(s)
- Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - An Tong
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital
| |
Collapse
|
24
|
Liu H, Tang F, Su J, Ma J, Qin Y, Ji L, Geng H, Wang S, Zhang P, Liu J, Cui S, Ge RL, Li Z. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells Mol Dis 2020; 84:102446. [PMID: 32470757 DOI: 10.1016/j.bcmd.2020.102446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
Excessive erythrocytosis (EE) is a characteristic of chronic mountain sickness (CMS). Currently, the pathogenesis of CMS remains unclear. This study was intended to investigate the role of EPAS1 in the proliferation of erythroblasts in CMS. Changes of HIF-1α and EPAS1/HIF-2α in the bone marrow erythroblasts of 21 patients with CMS and 14 control subjects residing at the same altitudes were determined by RT-qPCR and western blotting. We also developed a lentiviral vector, Lv-EPAS1/sh-EPAS1, to over-express/silence EPAS1 in K562 cells. Cells cycle and proliferation were detected by flow cytometry. Transcriptome analyses were carried out on Illumina. CMS patients showed a higher expression of EPAS1/HIF-2α in the bone marrow erythroblasts than those of controls. Variations in EPAS1 expression in CMS patients were positively correlated with RBC levels, and negatively correlated with SaO2. Over-expressing of EPAS1 in K562 cells accelerated the erythroid cells cycle progression and promoted the erythroid cells proliferation-and vice versa. Transcriptome data indicated that proliferation-related DEGs were significantly enriched in EPAS1 overexpression/silencing K562 cells. Our results suggest that EPAS1 might participate in the pathogenesis of EE by regulating the proliferation of erythroblasts.
Collapse
Affiliation(s)
- Huihui Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China; Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Juan Su
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Jie Ma
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yajing Qin
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Linhua Ji
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, China
| | - Hui Geng
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Shengyan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Peili Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Junli Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Sen Cui
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China; Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
| | - Zhanquan Li
- Department of Rheumatology, Affiliated Hospital of Qinghai University, Xining, China.
| |
Collapse
|
25
|
Individual chronic mountain sickness symptom is an early warning sign of cognitive impairment. Physiol Behav 2020; 214:112748. [DOI: 10.1016/j.physbeh.2019.112748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/18/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
|
26
|
Chronic Hypoxia-Induced Microvessel Proliferation and Basal Membrane Degradation in the Bone Marrow of Rats Regulated through the IL-6/JAK2/STAT3/MMP-9 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9204708. [PMID: 32047820 PMCID: PMC7003287 DOI: 10.1155/2020/9204708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic hypoxia (CH) is characterized by long-term hypoxia that is associated with microvessel proliferation and basal membrane (BM) degradation in tissues. The IL-6/JAK2/STAT3/MMP-9 pathway has been described in a variety of human cancers and plays an essential role in microvessel proliferation and BM degradation. Therefore, this study investigated the role of the IL-6/JAK2/STAT3/MMP-9 pathway in hypoxia-mediated microvessel proliferation and BM degradation in the rat bone marrow. Eighty pathogen-free Sprague Dawley male rats were randomly divided into four groups (20 per group)—control group, CH group (exposed to hypoxia in a hypobaric chamber at a simulated altitude of 5000 m for 28 d), CH + STAT3 inhibitor group (7.5 mg/kg/d), and CH + DMSO group. Microvessel density (MVD) and BM degradation in the bone marrow were determined by immunofluorescence staining and transmission electron microscopy. Serum IL-6 levels were assessed by enzyme-linked immunosorbent assay (ELISA), and the levels of P-JAK2, P-STAT3, and MMP-9 were assessed by western blot analysis and real-time reverse transcription PCR (RT-PCR). Hypoxia increased serum IL-6 levels, which in turn increased JAK2 and STAT3 phosphorylation, which subsequently upregulated MMP-9. Overexpression of MMP-9 significantly promoted the elevation of MVD and BM degradation. Inhibition of STAT3 using an inhibitor, SH-4-54, significantly downregulated MMP-9 expression and decreased MVD and BM degradation. Surprisingly, STAT3 inhibition also decreased serum IL-6 levels and JAK2 phosphorylation. Our results suggest that the IL-6/JAK2/STAT3/MMP-9 pathway might be related to CH-induced microvessel proliferation and BM degradation in the bone marrow.
Collapse
|
27
|
Abstract
Oxygen deficiency in the plateau environment weakens aerobic metabolism and reduces the energy supply, leading to high-altitude diseases including decreased circulatory function, decreased nutrient and energy supply to tissues and organs, and decreased waste discharge. The involvement of many metabolic pathways is reflected in dramatic changes in levels of endogenous small molecule metabolites. Metabolomics represents a promising technique for mechanistic studies and drug screening, and metabonomics, or quantitative metabolomics, has been increasingly applied to the study of hypoxic diseases and their pathogenesis, as well as to pharmacodynamics at high altitudes. In this article, we review the recent literature on the pathogenesis of altitude hypoxia and the clinical and preclinical metabonomics of drug interventions. Endogenous metabolites and metabolic pathways change significantly under high-altitude hypoxia. Some drug interventions have also been shown to regulate pathway metabolism, and the problems of applying metabonomics to hypoxic diseases at high altitude and the prospects for its future application are summarized.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Wen Zhang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China.,Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
| |
Collapse
|
28
|
Gazal S, Espinoza JR, Austerlitz F, Marchant D, Macarlupu JL, Rodriguez J, Ju-Preciado H, Rivera-Chira M, Hermine O, Leon-Velarde F, Villafuerte FC, Richalet JP, Gouya L. The Genetic Architecture of Chronic Mountain Sickness in Peru. Front Genet 2019; 10:690. [PMID: 31417607 PMCID: PMC6682665 DOI: 10.3389/fgene.2019.00690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022] Open
Abstract
Chronic mountain sickness (CMS) is a pathological condition resulting from chronic exposure to high-altitude hypoxia. While its prevalence is high in native Andeans (>10%), little is known about the genetic architecture of this disease. Here, we performed the largest genome-wide association study (GWAS) of CMS (166 CMS patients and 146 controls living at 4,380 m in Peru) to detect genetic variants associated with CMS. We highlighted four new candidate loci, including the first CMS-associated variant reaching GWAS statistical significance (rs7304081; P = 4.58 × 10−9). By looking at differentially expressed genes between CMS patients and controls around these four loci, we suggested AEBP2, CAST, and MCTP2 as candidate CMS causal genes. None of the candidate loci were under strong natural selection, consistent with the observation that CMS affects fitness mainly after the reproductive years. Overall, our results reveal new insights on the genetic architecture of CMS and do not provide evidence that CMS-associated variants are linked to a strong ongoing adaptation to high altitude.
Collapse
Affiliation(s)
- Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,INSERM, Infection, Antimicrobials, Modelling, Evolution (IAME), UMR 1137, Paris, France.,Plateforme de génomique constitutionnelle du GHU Nord, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Bichat, Paris, France
| | - Jose R Espinoza
- Laboratorio de Biotecnología Molecular-LID, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Frédéric Austerlitz
- UMR CNRS 7206 Eco-Anthropologie et Ethnobiologie, Musée de l'Homme, Paris, France
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, INSERM UMR 1272 Hypoxie et Poumon, Bobigny, France
| | - Jose Luis Macarlupu
- Laboratorio de Fisiología Comparada/Fisiología de Adaptación a la Altura-LID, Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jorge Rodriguez
- Laboratorio de Biotecnología Molecular-LID, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Hugo Ju-Preciado
- Laboratorio de Fisiología Comparada/Fisiología de Adaptación a la Altura-LID, Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Maria Rivera-Chira
- Laboratorio de Fisiología Comparada/Fisiología de Adaptación a la Altura-LID, Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Olivier Hermine
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale Unité 1163, Centre National de la Recherche Scientifique, Equipes de Recherche Labellisées 8254, Institut Imagine, Paris, France.,Laboratoire d'Excellence, Globule Rouge-Excellence, Paris, France
| | - Fabiola Leon-Velarde
- Laboratorio de Fisiología Comparada/Fisiología de Adaptación a la Altura-LID, Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología de Adaptación a la Altura-LID, Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jean-Paul Richalet
- Université Paris 13, Sorbonne Paris Cité, INSERM UMR 1272 Hypoxie et Poumon, Bobigny, France.,Laboratoire d'Excellence, Globule Rouge-Excellence, Paris, France
| | - Laurent Gouya
- Laboratoire d'Excellence, Globule Rouge-Excellence, Paris, France.,Université Paris Diderot, INSERM U1149, Hème, fer et pathologies inflammatoires, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Louis Mourier, Paris, France
| |
Collapse
|
29
|
Gassmann M, Mairbäurl H, Livshits L, Seide S, Hackbusch M, Malczyk M, Kraut S, Gassmann NN, Weissmann N, Muckenthaler MU. The increase in hemoglobin concentration with altitude varies among human populations. Ann N Y Acad Sci 2019; 1450:204-220. [PMID: 31257609 DOI: 10.1111/nyas.14136] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Decreased oxygen availability at high altitude requires physiological adjustments allowing for adequate tissue oxygenation. One such mechanism is a slow increase in the hemoglobin concentration ([Hb]) resulting in elevated [Hb] in high-altitude residents. Diagnosis of anemia at different altitudes requires reference values for [Hb]. Our aim was to establish such values based on published data of residents living at different altitudes by applying meta-analysis and multiple regressions. Results show that [Hb] is increased in all high-altitude residents. However, the magnitude of increase varies among the regions analyzed and among ethnic groups within a region. The highest increase was found in residents of the Andes (1 g/dL/1000 m), but this increment was smaller in all other regions of the world (0.6 g/dL/1000 m). While sufficient data exist for adult males and females showing that sex differences in [Hb] persist with altitude, data for infants, children, and pregnant women are incomplete preventing such analyses. Because WHO reference values were originally based on [Hb] of South American people, we conclude that individual reference values have to be defined for ethnic groups to reliably diagnose anemia and erythrocytosis in high-altitude residents. Future studies need to test their applicability for children of different ages and pregnant women.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Leonid Livshits
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Svenja Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthes Hackbusch
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Malczyk
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martina U Muckenthaler
- Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
30
|
Ma J, Ji L, Li Z, Liu H, Zhao C, Xiong H, Wang S, Ge RL, Cui S. Downregulation of intrinsic apoptosis pathway in erythroblasts contributes to excessive erythrocytosis of chronic mountain sickness. Blood Cells Mol Dis 2019; 76:25-31. [DOI: 10.1016/j.bcmd.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
|
31
|
Wang W, Zhang X, Zhou X, Zhang Y, La Y, Zhang Y, Li C, Zhao Y, Li F, Liu B, Jiang Z. Deep Genome Resequencing Reveals Artificial and Natural Selection for Visual Deterioration, Plateau Adaptability and High Prolificacy in Chinese Domestic Sheep. Front Genet 2019; 10:300. [PMID: 31001329 PMCID: PMC6454055 DOI: 10.3389/fgene.2019.00300] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sheep were one of the earliest domesticated animals. Both artificial and natural selection during domestication has resulted in remarkable changes in behavioral, physiological, and morphological phenotypes; however, the genetic mechanisms underpinning these changes remain unclear, particularly for indigenous Chinese sheep. In the present study, we performed pooled whole-genome resequencing of 338 sheep from five breeds representative of indigenous Chinese breeds and compared them to the wild ancestors of domestic sheep (Asian mouflon, Ovis orientalis) for detection of genome-wide selective sweeps. Comparative genomic analysis between domestic sheep and Asian mouflon showed that selected regions were enriched for genes involved in bone morphogenesis, growth regulation, and embryonic and neural development in domestic sheep. Moreover, we identified several vision-associated genes with funtional mutations, such as PDE6B (c.G2994C/p.A982P and c.C2284A/p.L762M mutations), PANK2, and FOXC1/GMSD in all five Chinese native breeds. Breed-specific selected regions were determined including genes such as CYP17 for hypoxia adaptability in Tibetan sheep and DNAJB5 for heat tolerance in Duolang sheep. Our findings provide insights into the genetic mechanisms underlying important phenotypic changes that have occurred during sheep domestication and subsequent selection.
Collapse
Affiliation(s)
- Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yangzi Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youzhang Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
32
|
Smith TR, Bhatnagar A. Enviromics: understanding aging. Aging (Albany NY) 2018; 11:9-10. [PMID: 30552309 PMCID: PMC6339787 DOI: 10.18632/aging.101709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Theodore R. Smith
- The Envirome Institute, University of Louisville, KY 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville, KY 40292, USA
| | - Aruni Bhatnagar
- The Envirome Institute, University of Louisville, KY 40292, USA
- Department of Medicine, University of Louisville, KY 40292, USA
| |
Collapse
|
33
|
Wei L, Zhang B, Zhang J, Tan Q, Zhang Y, Fan Y, Wang F, Tao Y, Chen Z, Lin C, Zhu G. Application of a Grading System in the Treatment of Frontal Lobe Contusion in High-Altitude Regions. World Neurosurg 2018; 116:e975-e982. [PMID: 29857217 DOI: 10.1016/j.wneu.2018.05.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/19/2018] [Accepted: 05/19/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE With the development of frontal contusion, patients may rapidly deteriorate or even die. Experience in the treatment of frontal contusion in high-altitude regions is limited; thus, we explore a grading system for the treatment of frontal lobe contusion. METHODS A total of 446 patients with frontal contusions in a high-altitude regions were reviewed retrospectively. We combined the patients' computed tomography scans of the head and clinical features for grading. The score determined the treatment and whether the bone flap was removed. If the patient's condition deteriorated, and the score was greater than 1, the patient was treated surgically. At the same time, the risk factors of deterioration were analyzed. Finally, the Glasgow Outcome Scale of conservative treatment and surgical treatment groups was analyzed. RESULTS Among the 446 patients, 254 were conservatively treated, and 28 worsened and underwent surgical treatment. In total, 122 patients received an operation. Logistic regression analysis indicated that scattered hematoma, anterior angle of the ventricle, and hemoglobin concentration were risk factors. The postoperative Glasgow Outcome Scale of conservative treatment and surgical treatment groups was analyzed; the good healing rate of the conservative treatment group was 91.12%, the good healing rate of the retain-bone flap surgical group was 75%, and the good healing rate of the remove-bone flap surgical group was 63.33%. The failure rates of the groups were 9.38% and 7.78%, respectively. CONCLUSIONS This grading system could guide frontal contusion treatment, which could help patients to achieve a good healing rate and reduce the failure rate.
Collapse
Affiliation(s)
- Linjie Wei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Bo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianbo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, PLA 115th Hospital, Lin zhi Tibet, People's Republic of China
| | - Yinlei Fan
- Department of Neurosurgery, PLA 115th Hospital, Lin zhi Tibet, People's Republic of China
| | - Fei Wang
- Department of Neurosurgery, PLA 115th Hospital, Lin zhi Tibet, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chi Lin
- Department of Neurosurgery, The First People's Hospital of Honghe State, Yunnan, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
34
|
Li K, Gesang L, He C. Mechanism of apoptosis involved in gastric mucosal lesions in Tibetans with high-altitude polycythemia. Exp Ther Med 2017; 14:3780-3787. [PMID: 29042979 DOI: 10.3892/etm.2017.4996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
The Tibetan high plateau is a low-oxygen environment, which may cause the pathogenesis of high-altitude polycythemia (HAPC). Gastric mucosal lesions (GML) are a common complication of HAPC. The molecular mechanisms involved in HAPC-induced GML have remained to be fully elucidated and were therefore investigated in the present study. Gastric tissues of patients with heavy, HAPC-induced GML and healthy controls were assessed by ultrastructural and histopathological analysis. In addition, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to detect cell apoptosis in the gastric mucosa tissues. Moreover, the expression of genes associated with the phosphoinositide-3 kinase (PI3K) pathway was assessed by RT-qPCR to investigate the mechanism of cell apoptosis in HAPC-induced GML. The results revealed a significant increase in the number of red blood cells, gastric vessels and the diameter of gastric mucosal vessels in HAPC-induced GML patients compared with those in healthy controls. In addition, more red blood cells were distributed in gastric tissue not only at the vascular level but also in the tissue space. The number of vacuoles was increased in the gastric mucosal cells. Furthermore, a significant increase in apoptosis of the gastric mucosal cells was identified. The expression of phosphatase and tensin homolog was significantly higher in gastric mucosa from patients with HAPC-induced GML compared with that in the healthy controls. All of the pathologic changes suggested that significant cell apoptosis occurred in the HAPC-induced GML tissues, which may be associated with the PI3K pathway. These findings may provide novel insight for the treatment of gastric lesions caused by HAPC in the future.
Collapse
Affiliation(s)
- Kang Li
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China.,Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet 850000, P.R. China
| | - Luobu Gesang
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet 850000, P.R. China
| | - Chaohui He
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| |
Collapse
|
35
|
Liu L, Zhang Y, Zhang Z, Zhao Y, Fan X, Ma L, Zhang Y, He H, Kang L. Associations of high altitude polycythemia with polymorphisms in EPHA2 and AGT in Chinese Han and Tibetan populations. Oncotarget 2017; 8:53234-53243. [PMID: 28881807 PMCID: PMC5581106 DOI: 10.18632/oncotarget.18384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023] Open
Abstract
High altitude polycythemia (HAPC) refers to the long-term living in the plateau of the hypoxia environment is not accustomed to cause red blood cell hyperplasia. The pathological changes are mainly the various organs and tissue congestion, blood stasis and hypoxia damage. Although chronic hypoxia is the main cause of HAPC, the related molecular mechanisms remain largely unclear. This study aims to explore the genetic basis of HAPC in the Chinese Han and Tibetan populations. We enrolled 100 patients (70 Han, 30 Tibetan) with HAPC and 100 healthy control subjects (30 Han, 70 Tibetan). To explore the hereditary basis of HAPC and investigate the association between EPHA2 with AGT and HAPC in Chinese Han and Tibetan populations. Using the Chi-squared test and analyses of genetic models, rs2291804, rs2291805, rs3768294, rs3754334, rs6603856, rs6669624, rs11260742, rs13375644 and rs10907223 in EPHA2, and rs699, rs4762 and rs5051 in AGT showed associations with reduced HAPC susceptibility in Han populations. Additionally, in Tibetan populations, rs2478523 in AGT showed an increased the risk of HAPC. Our study suggest that polymorphisms in the EPHA2 and AGT correlate with susceptibility to HAPC in Chinese Han and Tibetan populations.
Collapse
Affiliation(s)
- Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yao Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yiduo Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xiaowei Fan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Haijin He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| |
Collapse
|
36
|
Li K, Gesang L, Dan Z, Gusang L. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia. Int J Mol Med 2016; 39:287-296. [PMID: 28000848 PMCID: PMC5358693 DOI: 10.3892/ijmm.2016.2830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P<0.01 and FDR <0.01). In particular, the kallikrein gene cluster (KLK1/3/7/8/12) was upregulated >17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3-13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases.
Collapse
Affiliation(s)
- Kang Li
- High Altitude Medical Research Institute, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| | - Luobu Gesang
- High Altitude Medical Research Institute, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| | - Zeng Dan
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| | - Lamu Gusang
- Department of Cardiology, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| |
Collapse
|
37
|
Azad P, Zhao HW, Cabrales PJ, Ronen R, Zhou D, Poulsen O, Appenzeller O, Hsiao YH, Bafna V, Haddad GG. Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease. J Exp Med 2016; 213:2729-2744. [PMID: 27821551 PMCID: PMC5110013 DOI: 10.1084/jem.20151920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/02/2016] [Accepted: 10/06/2016] [Indexed: 01/17/2023] Open
Abstract
Azad and collaborators propose that Senp1 drives excessive erythropoiesis in high-altitude Andean dwellers suffering from chronic mountain sickness. In this study, because excessive polycythemia is a predominant trait in some high-altitude dwellers (chronic mountain sickness [CMS] or Monge’s disease) but not others living at the same altitude in the Andes, we took advantage of this human experiment of nature and used a combination of induced pluripotent stem cell technology, genomics, and molecular biology in this unique population to understand the molecular basis for hypoxia-induced excessive polycythemia. As compared with sea-level controls and non-CMS subjects who responded to hypoxia by increasing their RBCs modestly or not at all, respectively, CMS cells increased theirs remarkably (up to 60-fold). Although there was a switch from fetal to adult HgbA0 in all populations and a concomitant shift in oxygen binding, we found that CMS cells matured faster and had a higher efficiency and proliferative potential than non-CMS cells. We also established that SENP1 plays a critical role in the differential erythropoietic response of CMS and non-CMS subjects: we can convert the CMS phenotype into that of non-CMS and vice versa by altering SENP1 levels. We also demonstrated that GATA1 is an essential downstream target of SENP1 and that the differential expression and response of GATA1 and Bcl-xL are a key mechanism underlying CMS pathology.
Collapse
Affiliation(s)
- Priti Azad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Huiwen W Zhao
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Pedro J Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Roy Ronen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Otto Appenzeller
- Department of Neurology, New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, NM 87122
| | - Yu Hsin Hsiao
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093 .,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Rady Children's Hospital, San Diego, CA 92123
| |
Collapse
|
38
|
Interaction of CARD14, SENP1 and VEGFA polymorphisms on susceptibility to high altitude polycythemia in the Han Chinese population at the Qinghai–Tibetan Plateau. Blood Cells Mol Dis 2016; 57:13-22. [DOI: 10.1016/j.bcmd.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
|
39
|
Villafuerte FC. New genetic and physiological factors for excessive erythrocytosis and Chronic Mountain Sickness. J Appl Physiol (1985) 2015; 119:1481-6. [PMID: 26272318 PMCID: PMC4683346 DOI: 10.1152/japplphysiol.00271.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
In the last few years, genetic and functional studies have provided important insight on the pathophysiology of excessive erythrocytosis (EE), the main sign of Chronic Mountain Sickness (CMS). The recent finding of the association of the CMS phenotype with a single-nucleotide polymorphism (SNP) in the Sentrin-specific Protease 1 (SENP1) gene, and its differential expression pattern in Andean highlanders with and without CMS, has triggered large interest in high-altitude studies because of the potential role of its gene product in the control of erythropoiesis. The SENP1 gene encodes for a protease that regulates the function of hypoxia-relevant transcription factors such as Hypoxia-Inducible Factor (HIF) and GATA, and thus might have an erythropoietic regulatory role in CMS through the modulation of the expression of erythropoietin (Epo) or Epo receptors. The different physiological patterns in the Epo-EpoR system found among Andeans, even among highlanders with CMS, together with their different degrees of erythropoietic response, might indicate specific underlying genetic backgrounds, which in turn might reflect different levels of adaptation to lifelong high-altitude hypoxia. This minireview discusses recent genetic findings potentially underlying EE and CMS, and their possible physiological mechanisms in Andean highlanders.
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
40
|
Su J, Li Z, Cui S, Ji L, Geng H, Chai K, Ma X, Bai Z, Yang Y, Wuren T, Ge RL, Rondina MT. The Local HIF-2α/EPO Pathway in the Bone Marrow is Associated with Excessive Erythrocytosis and the Increase in Bone Marrow Microvessel Density in Chronic Mountain Sickness. High Alt Med Biol 2015; 16:318-30. [PMID: 26625252 DOI: 10.1089/ham.2015.0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM Chronic mountain sickness (CMS) is characterized by excessive erythrocytosis, and angiogenesis may be involved in the pathogenesis of this disease. The bone marrow niche is the primary site of erythropoiesis and angiogenesis. This study was aimed at investigating the associations of the levels of hypoxia-inducible factors (HIFs), erythropoietin (EPO), and erythropoietin receptor (EPOR), as well as microvessel density (MVD) in the bone marrow with CMS. RESULTS A total of 34 patients with CMS and 30 control subjects residing in areas at altitudes of 3000-4500 m were recruited for this study. The mRNA and protein expression of HIF-2α and EPO in the bone marrow cells was significantly higher in the CMS patients than in the controls. Moreover, changes in HIF-2α expression in CMS patients were significantly correlated with EPO and hemoglobin levels. In contrast, the expression of mRNA and protein expression of HIF-1α and EPOR did not differ significantly between the CMS and control patients. Increased MVD was observed in the bone marrow of the patients with CMS and it was significantly correlated with hemoglobin. CONCLUSIONS Bone marrow cells of CMS patients may show enhanced activity of the HIF-2α/EPO pathway, and EPO may regulate the erythropoiesis and vasculogenesis through autocrine or/and paracrine mechanisms in the bone marrow niche. The increased MVD in the bone marrow of CMS patients appears to be involved in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Juan Su
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Zhanquan Li
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Sen Cui
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Linhua Ji
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Hui Geng
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Kexia Chai
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Xiaojing Ma
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Zhenzhong Bai
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Yingzhong Yang
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Tana Wuren
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Ri-Li Ge
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Matthew T Rondina
- 3 Division of General Internal Medicine and University Healthcare Thrombosis Service, Department of Internal Medicine, University of Utah Health Sciences Center , Salt Lake City, Utah
| |
Collapse
|
41
|
Li K, Gesang L, Dan Z, Gusang L, Dawa C, Nie Y. Transcriptome Reveals 1400-Fold Upregulation of APOA4-APOC3 and 1100-Fold Downregulation of GIF in the Patients with Polycythemia-Induced Gastric Injury. PLoS One 2015; 10:e0140534. [PMID: 26485402 PMCID: PMC4617863 DOI: 10.1371/journal.pone.0140534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
High-altitude polycythemia (HAPC) inducing gastric mucosal lesion (GML) is still out of control and molecular mechanisms remain widely unknown. To address the issues, endoscopy and histopathological analyses were performed. Meanwhile, microarray-based transcriptome profiling was conducted in the gastric mucosa from 3 pairs of healthy subjects and HAPC-induced GML patients. HAPC caused morphological changes and pathological damages of the gastric mucosa of GML patients. A total of 10304 differentially expressed genes (DEGs) were identified, including 4941 up-regulated and 5363 down-regulated DEGs in gastric mucosa of GML patients compared with healthy controls (fold change ≥2, P<0.01 and FDR <0.01). Particularly, apolipoprotein genes APOA4 and APOC3 were 1473-fold and 1468-fold up-regulated in GML patients compared with the controls. In contrast, gastric intrinsic factor (GIF) was 1102-fold down-regulated in GML patients compared with the controls. APOA4 (chr11:116691770–116691711), APOC3 (chr11:116703530–116703589) and GIF (chr11:59603362–59603303) genes are all located on chromosome 11. APOA4 and APOC3 act as an inhibitor of gastric acid secretion while gastric acid promotes ulceration. GIF deficiency activates a program of acute anemia, which may antagonize polycythemia while polycythemia raises the risk of GML. Therefore, the present findings reveal that HAPC-induced GML inspires the protection responses by up-regulating APOA4 and APOC3, and down-regulating GIF. These results may offer the basic information for the treatment of HAPC-induced gastric lesion in the future.
Collapse
Affiliation(s)
- Kang Li
- High altitude Medical Research Institute, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
- Department of Gastroenterology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
- * E-mail: (KL); (YQN)
| | - Luobu Gesang
- High altitude Medical Research Institute, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
- Department of Cardiology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
| | - Zeng Dan
- Department of Gastroenterology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
| | - Lamu Gusang
- Department of Cardiology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
| | - Ciren Dawa
- Department of Cardiology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- * E-mail: (KL); (YQN)
| |
Collapse
|
42
|
Is restless legs syndrome associated with chronic mountain sickness? Sleep Med 2015; 16:976-80. [DOI: 10.1016/j.sleep.2015.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 11/20/2022]
|