1
|
Akhter A, Moliva JI, Azad AK, Olmo-Fontánez A, Garcia-Vilanova A, Scordo JM, Gavrilin MA, Diaz PT, Endsley JJ, Weintraub ST, Schlesinger LS, Wewers MD, Torrelles JB. HIV infection impairs the host response to Mycobacterium tuberculosis infection by altering surfactant protein D function in the human lung alveolar mucosa. Mucosal Immunol 2024; 17:461-475. [PMID: 38184074 PMCID: PMC11253242 DOI: 10.1016/j.mucimm.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Tuberculosis is the leading cause of death for people living with HIV (PLWH). We hypothesized that altered functions of innate immune components in the human alveolar lining fluid of PLWH (HIV-ALF) drive susceptibility to Mycobacterium tuberculosis (M.tb) infection. Our results indicate a significant increase in oxidation of innate proteins and chemokine levels and significantly lower levels and function of complement components and Th1/Th2/Th17 cytokines in HIV-ALF versus control-ALF (non-HIV-infected people). We further found a deficiency of surfactant protein D (SP-D) and reduced binding of SP-D to M.tb that had been exposed to HIV-ALF. Primary human macrophages infected with M.tb exposed to HIV-ALF were significantly less capable of controlling the infection, which was reversed by SP-D replenishment in HIV-ALF. Thus, based on the limited number of participants in this study, our data suggest that PLWH without antiretroviral therapy (ART) have declining host innate defense function in their lung mucosa, thereby favoring M.tb and potentially other pulmonary infections.
Collapse
Affiliation(s)
- Anwari Akhter
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Juan I Moliva
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Abul K Azad
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Angélica Olmo-Fontánez
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA; Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, TX, USA
| | | | - Julia M Scordo
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mikhail A Gavrilin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Phillip T Diaz
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Janice J Endsley
- Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch Health, Galveston, TX, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mark D Wewers
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA; International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Flayer CH, Linderholm AL, Ge MQ, Juarez M, Franzi L, Tham T, Teuber M, Liao SY, Schivo M, Kuhn B, Zeki A, Haczku A. COPD with elevated sputum group 2 innate lymphoid cells is characterized by severe disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.21.23298837. [PMID: 38045302 PMCID: PMC10690341 DOI: 10.1101/2023.11.21.23298837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rationale Pulmonary innate immune cells play a central role in the initiation and perpetuation of chronic obstructive pulmonary disease (COPD), however the precise mechanisms that orchestrate the development and severity of COPD are poorly understood. Objectives We hypothesized that the recently described family of innate lymphoid cells (ILCs) play an important role in COPD. Methods Subjects with COPD and healthy controls were clinically evaluated, and their sputum samples were assessed by flow cytometry. A mouse model of spontaneous COPD [genetically deficient in surfactant protein-D (SP-D -/- )] and ozone (O 3 ) exposure were used to examine the mechanism by which lack of functional SP-D may skew ILC2s to produce IL-17A in combination with IL-5 and IL-13, leading to a mixed inflammatory profile and more severe disease. Measurements and Main Results COPD was characterized by poor spirometry, sputum inflammation, and the emergence of sputum GATA3 + ILCs (ILC2s), but not T-bet + ILCs (ILC1s) nor RORγt + ILCs (ILC3s). COPD subjects with elevated sputum ILC2s (the ILC2 high group) had worse spirometry and sputum neutrophilia and eosinophilia than healthy and ILC2 low subjects. This was associated with the presence of dual-positive IL-5 + IL-17A + and IL-13 + IL-17A + ILCs and nonfunctional SP-D in the sputum in ILC2 high subjects. SP-D -/- mice showed spontaneous airway neutrophilia. Lack of SP-D in the mouse lung licensed ILC2s to produce IL-17A, which was dose-dependently inhibited by recombinant SP-D. SP-D -/- mice showed enhanced susceptibility to O 3 -induced airway neutrophilia, which was associated with the emergence of inflammatory IL-13 + IL-17A + ILCs. Conclusions We report that the presence of sputum ILC2s predicts the severity of COPD, and unravel a novel pathway of IL-17A plasticity in lung ILC2s, prevented by the immunomodulatory protein SP-D.
Collapse
|
3
|
Mathur T, Kumar B, Dubey M, Keerthi Annepu K, Annepu YR, C SG. Evaluating the Role of Glycemic Control in Modulating Pulmonary Function Among Smokers With Diabetes Mellitus: A Systematic Review. Cureus 2024; 16:e56895. [PMID: 38659550 PMCID: PMC11042673 DOI: 10.7759/cureus.56895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) impacts multiple body systems, including lung function, and this impact can be further complicated by smoking. The connection between blood sugar control and lung health in individuals with diabetes who smoke has been extensively studied, but findings have been varied. This systematic review sought to compile and assess the research on how blood sugar control influences lung function in smokers with diabetes. METHODS We searched several databases, including PubMed, EMBASE, Cochrane Library, Web of Science, Scopus, CINAHL, PsycINFO, and Google Scholar, in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We included studies that looked at lung function tests in smokers with diabetes and examined the relationship with blood sugar control, as indicated by hemoglobin A1c (HbA1c) levels. We conducted thorough quality assessments, data extraction, and analysis. RESULTS We identified five relevant studies. The data from these studies indicated a clear trend: smokers with diabetes who had higher HbA1c levels typically showed worse lung function than those with better blood sugar control. Decreases in forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were the most frequently observed issues. Some studies also pointed to a complex relationship between HbA1c levels and lung function, particularly when HbA1c was below 7.0%. CONCLUSION Our review indicates that smokers with DM who have poor blood sugar control tend to have worse lung function. These findings highlight the importance of managing blood sugar to help maintain lung health in these individuals. Further long-term research is needed to clarify the exact relationship and whether improving blood sugar control can reverse lung problems.
Collapse
Affiliation(s)
- Tanuj Mathur
- Department of Physiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, IND
| | - Bipin Kumar
- Department of Physiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, IND
| | - Mamta Dubey
- Department of Physiology, Motilal Nehru Medical College, Prayagraj, Prayagraj, IND
| | - Krishna Keerthi Annepu
- Department of Physiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, IND
| | | | - Shivakumar G C
- Department of Oral Medicine and Radiology, People's College of Dental Science and Research Centre, Bhopal, IND
| |
Collapse
|
4
|
Odimba U, Senthilselvan A, Farrell J, Gao Z. Sex-Specific Genetic Determinants of Asthma-COPD Phenotype and COPD in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. COPD 2023; 20:233-247. [PMID: 37466093 DOI: 10.1080/15412555.2023.2229906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
The etiology of sex differences in the risk of asthma-COPD phenotype and COPD is still not completely understood. Genetic and environmental risk factors are commonly believed to play an important role. This study aims to identify sex-specific genetic markers associated with asthma-COPD phenotype and COPD using the Canadian Longitudinal Study on Aging (CLSA) Baseline Comprehensive and Genomic data. There were a total of 1,415 COPD cases. Out of them, 504 asthma-COPD phenotype cases were identified. 20,524 participants without a diagnosis of asthma and COPD served as controls. We performed genome-wide SNP-by-sex interaction analysis. SNPs with an interaction p-value < 10-5 were included in a sex-stratified multivariable logistic regression for asthma-COPD phenotype and COPD outcomes. 18 and 28 SNPs had a significant interaction term p-value < 10-5 with sex in the regression analyses of asthma-COPD phenotype and COPD outcomes, respectively. Sex-stratified multivariable analysis of asthma-COPD phenotype showed that 7 SNPs in/near SMYD3, FHIT, ZNF608, RIMBP2, ZNF133, BPIFB1, and S100B loci were significant in males. Sex-stratified multivariable analysis of COPD showed that 8 SNPs in/near MAGI1, COX18, OSTC, ELOVL5, C7orf72 FGF14, and NKAIN4 were significant in males, and 4 SNPs in/near genes CAMTA1, SATB2, PDE10A, and LINC00908 were significant in females. An SNP in the ZPBP gene was associated with COPD in both males and females. Identification of sex-specific loci associated with asthma-COPD phenotype and COPD may offer valuable evidence toward a better understanding of the sex-specific differences in the pathophysiology of the diseases.
Collapse
Affiliation(s)
- Ugochukwu Odimba
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
| | | | - Jamie Farrell
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
- Faculty of Medicine, Health Sciences Centre (Respirology Department), Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
5
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Zavala MJ, Becker GL, Blount RJ. Interrelationships between tuberculosis and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2023; 29:104-111. [PMID: 36647566 PMCID: PMC9877200 DOI: 10.1097/mcp.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Our objective was to review the current literature regarding socioeconomic, environmental, clinical, and immunologic factors common to chronic obstructive pulmonary disease (COPD) and tuberculosis (TB). RECENT FINDINGS Recent studies suggest that TB patients might be at increased risk for developing COPD. Conversely, additional prospective cohort studies have determined that COPD patients are at increased risk for active TB: a risk that appears to be partially mediated through inhaled corticosteroid use. Tobacco smoking, poverty, air pollution, and malnutrition are associated with COPD and TB. Vitamin D has been shown to prevent COPD exacerbations, but its use for preventing TB infection remains unclear. Surfactant deficiency, elevated matrix metalloproteinases, and toll-like receptor 4 polymorphisms play key roles in the pathogenesis of both diseases. SUMMARY Recent studies have elucidated interrelationships between COPD and TB. Future research is needed to optimize clinical and public health approaches that could mitigate risk factors contributing to both diseases.
Collapse
Affiliation(s)
- Michael J Zavala
- Division of Pulmonary and Critical Care Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
7
|
Surfactant Protein B Plasma Levels: Reliability as a Biomarker in COPD Patients. Biomedicines 2023; 11:biomedicines11010124. [PMID: 36672632 PMCID: PMC9855771 DOI: 10.3390/biomedicines11010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The diagnosis of COPD is based on both clinical signs and functional tests. Although there are different functional tests used to assess COPD, no reliable biomarkers able to provide information on pathogenesis and severity are available. The aim of the present study is to explore the relationship between surfactant protein B (Sp-B) serum levels and clinical, radiological, and functional pulmonary parameters in COPD patients. Methods: Forty COPD patients and twenty smokers without airflow limitations or respiratory symptoms were enrolled. Each patient was given questionnaires (CAT and mMRC) and 6MWT, spirometry, DLCO, and computer tomography (CT) were performed. All participants underwent a venous blood sample drawing, and quantitative detection of their Sp-B plasma levels was performed by an enzyme-linked immunosorbent assay. The spirometry and Sp-B plasma levels were assessed after 12 months. Results: A statistically significant difference was found in the plasma Sp-B levels between COPD patients compared to the other group (4.72 + 3.2 ng/mL vs. 1.78 + 1.5 ng/mL; p < 0.001). The change in FEV1 after 12 months (Delta FEV1) showed a significantly negative correlation with respect to the change in Sp-B levels (Delta SpB) (r = −0.4; p < 0.05). This correlation indicates that increasing the plasma dosage of SpB is a foretoken of functional decline. Conclusions: SpB may be considered as a useful marker in COPD assessment and provides prognostic information on lung functional decline. Despite its usefulness, further studies are needed to define its reliability as a biomarker.
Collapse
|
8
|
Misiukiewicz-Stępien P, Mierzejewski M, Zajusz-Zubek E, Goryca K, Adamska D, Szeląg M, Krenke R, Paplińska-Goryca M. RNA-Seq Analysis of UPM-Exposed Epithelium Co-Cultivated with Macrophages and Dendritic Cells in Obstructive Lung Diseases. Int J Mol Sci 2022; 23:ijms23169125. [PMID: 36012391 PMCID: PMC9408857 DOI: 10.3390/ijms23169125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Elevated concentrations of airborne pollutants are correlated with an enlarged rate of obstructive lung disease morbidity as well as acute disease exacerbations. This study aimed to analyze the epithelium mRNA profile in response to airborne particulate matter in the control, asthma, and COPD groups. Results. A triple co-culture of nasal epithelium, monocyte-derived macrophages, and monocyte-derived dendritic cells obtained from the controls, asthma, and COPD were exposed to urban particulate matter (UPM) for 24 h. RNA-Seq analysis found differences in seven (CYP1B1, CYP1B1-AS1, NCF1, ME1, LINC02029, BPIFA2, EEF1A2), five (CYP1B1, ARC, ENPEP, RASD1, CYP1B1-AS1), and six (CYP1B1, CYP1B1-AS1, IRF4, ATP1B2, TIPARP, CCL22) differentially expressed genes between UPM exposed and unexposed triple co-cultured epithelium in the control, asthma, and COPD groups, respectively. PCR analysis showed that mRNA expression of BPIFA2 and ENPEP was upregulated in both asthma and COPD, while the expression of CYP1B1-AS1 and TIPARP was increased in the epithelium from COPD patients only. Biological processes changed in UPM exposed triple co-cultured epithelium were associated with epidermis development and epidermal cell differentiation in asthma and with response to toxic substances in COPD. Conclusions. The biochemical processes associated with pathophysiology of asthma and COPD impairs the airway epithelial response to UPM.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stępien
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Michał Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Elwira Zajusz-Zubek
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Krzysztof Goryca
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Adamska
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Szeląg
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-599-12-41; Fax: +48-22-599-15-61
| |
Collapse
|
9
|
Quan DH, Kwong AJ, Hansbro PM, Britton WJ. No smoke without fire: the impact of cigarette smoking on the immune control of tuberculosis. Eur Respir Rev 2022; 31:210252. [PMID: 35675921 PMCID: PMC9488690 DOI: 10.1183/16000617.0252-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke (CS) exposure is a key risk factor for both active and latent tuberculosis (TB). It is associated with delayed diagnosis, more severe disease progression, unfavourable treatment outcomes and relapse after treatment. Critically, CS exposure is common in heavily populated areas with a high burden of TB, such as China, India and the Russian Federation. It is therefore prudent to evaluate interventions for TB while taking into account the immunological impacts of CS exposure. This review is a mechanistic examination of how CS exposure impairs innate barrier defences, as well as alveolar macrophage, neutrophil, dendritic cell and T-cell functions, in the context of TB infection and disease.
Collapse
Affiliation(s)
- Diana H Quan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, Australia
- D.H. Quan and W.J. Britton contributed equally to this article as lead authors and supervised the work
| | | | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, Australia
- Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, Australia
- D.H. Quan and W.J. Britton contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
10
|
O'Gara BP, Shaefi S, Gasangwa DV, Patxot M, Beydoun N, Mueller AL, Sagy I, Novack V, Banner-Goodspeed VM, Kumaresan A, Shapeton A, Spear K, Bose S, Baedorf-Kassis EN, Gosling AF, Mahmood FUD, Khabbaz K, Subramaniam B, Talmor DS. Anesthetics to Prevent Lung Injury in Cardiac Surgery: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth 2022; 36:3747-3757. [DOI: 10.1053/j.jvca.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
|
11
|
Lysophosphatidylcholine Acyltransferase 1 Deficiency Promotes Pulmonary Emphysema via Apoptosis of Alveolar Epithelial Cells. Inflammation 2022; 45:1765-1779. [PMID: 35338433 DOI: 10.1007/s10753-022-01659-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is primarily caused by inhalation of cigarette smoke and is the third leading cause of death worldwide. Pulmonary surfactant, a complex of phospholipids and proteins, plays an essential role in respiration by reducing the surface tension in the alveoli. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is an enzyme that catalyzes the biosynthesis of surfactant lipids and is expressed in type 2 alveolar epithelial cells. Its dysfunction is suggested to be involved in various lung diseases; however, the relationship between LPCAT1 and COPD remains unclear. To investigate the role of LPCAT1 in the pathology of COPD, we analyzed an elastase-induced emphysema model using Lpcat1 knockout (KO) mice. In Lpcat1 KO mice, elastase-induced emphysema was significantly exacerbated with increased apoptotic cells, which was not ameliorated by supplementation with dipalmitoylphosphatidylcholine, which is a major component of the surfactant synthesized by LPCAT1. We subsequently evaluated the effects of cigarette smoking on primary human type 2 alveolar epithelial cells (hAEC2s) and found that cigarette smoke extract (CSE) downregulated the expression of Lpcat1. Furthermore, RNA sequencing analysis revealed that the apoptosis pathway was significantly enriched in CSE-treated primary hAEC2s. Finally, we downregulated the expression of Lpcat1 using small interfering RNA, which resulted in enhanced CSE-induced apoptosis in A549 cells. Taken together, cigarette smoke-induced downregulation of LPCAT1 can promote the exacerbation of pulmonary emphysema by increasing the susceptibility of alveolar epithelial cells to apoptosis, thereby suggesting that Lpcat1 is a novel therapeutic target for irreversible emphysema.
Collapse
|
12
|
Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev 2021; 30:30/162/210077. [PMID: 34911693 DOI: 10.1183/16000617.0077-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.
Collapse
Affiliation(s)
- Nadia Milad
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada .,Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
13
|
Dalgård C, Wang F, Titlestad IL, Kyvik KO, Vestbo J, Sorensen GL. Increased serum SP-D in identification of high-risk smokers at high risk of COPD. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1005-L1010. [PMID: 33759571 DOI: 10.1152/ajplung.00604.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant protein D (SP-D) is an important component of the pulmonary innate immune system with the ability to dampen cigarette smoke-induced lung inflammation. However, cigarette smoking mediates translocation of SP-D from the lung to the blood, and serum SP-D (sSP-D) has therefore previously been suggested as marker for smoke-induced lung injury. In support of this notion, associations between high sSP-D and low lung function measurements have previously been demonstrated in smokers and in chronic obstructive lung disease (COPD). The present investigations employ a 12-yr longitudinal Danish twin study to test the hypothesis that baseline sSP-D variation has the capacity to identify smokers with normal baseline lung function who are at high risk of significant future smoke-induced lung function decline. We find that sSP-D is significantly increased in those with normal lung function at baseline who develop lung function decline during follow-up compared with those who stay lung healthy. Moreover, we demonstrate that it is the smoke-induced baseline sSP-D level, and not the constitutional level, which has capacity as biomarker, and which is linearly increased with the decline in lung function during follow-up. In conclusion, we here present first observation of increased sSP-D for identification of high-risk smokers.
Collapse
Affiliation(s)
- Christine Dalgård
- Divison of Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark
| | - Fang Wang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China.,Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
| | - Ingrid Louise Titlestad
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Ohm Kyvik
- Department of Clinical Research and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark.,Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Grith Lykke Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Lebovitz C, Wretham N, Osooly M, Milne K, Dash T, Thornton S, Tessier-Cloutier B, Sathiyaseelan P, Bortnik S, Go NE, Halvorsen E, Cederberg RA, Chow N, Dos Santos N, Bennewith KL, Nelson BH, Bally MB, Lam WL, Gorski SM. Loss of Parkinson's susceptibility gene LRRK2 promotes carcinogen-induced lung tumorigenesis. Sci Rep 2021; 11:2097. [PMID: 33483550 PMCID: PMC7822882 DOI: 10.1038/s41598-021-81639-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Pathological links between neurodegenerative disease and cancer are emerging. LRRK2 overactivity contributes to Parkinson’s disease, whereas our previous analyses of public cancer patient data revealed that decreased LRRK2 expression is associated with lung adenocarcinoma (LUAD). The clinical and functional relevance of LRRK2 repression in LUAD is unknown. Here, we investigated associations between LRRK2 expression and clinicopathological variables in LUAD patient data and asked whether LRRK2 knockout promotes murine lung tumorigenesis. In patients, reduced LRRK2 was significantly associated with ongoing smoking and worse survival, as well as signatures of less differentiated LUAD, altered surfactant metabolism and immunosuppression. We identified shared transcriptional signals between LRRK2-low LUAD and postnatal alveolarization in mice, suggesting aberrant activation of a developmental program of alveolar growth and differentiation in these tumors. In a carcinogen-induced murine lung cancer model, multiplex IHC confirmed that LRRK2 was expressed in alveolar type II (AT2) cells, a main LUAD cell-of-origin, while its loss perturbed AT2 cell morphology. LRRK2 knockout in this model significantly increased tumor initiation and size, demonstrating that loss of LRRK2, a key Parkinson’s gene, promotes lung tumorigenesis.
Collapse
Affiliation(s)
- Chandra Lebovitz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Nicole Wretham
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maryam Osooly
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, BC, V8R 6V5, Canada
| | - Tia Dash
- Deeley Research Centre, BC Cancer, Victoria, BC, V8R 6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Shelby Thornton
- Deeley Research Centre, BC Cancer, Victoria, BC, V8R 6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Paalini Sathiyaseelan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Svetlana Bortnik
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Nancy Erro Go
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Elizabeth Halvorsen
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Rachel A Cederberg
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Integrative Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Norman Chow
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Nancy Dos Santos
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Kevin L Bennewith
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Integrative Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC, V8R 6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wan L Lam
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Integrative Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
15
|
Esfehani RJ, Aelami MH, Kalat AR, Soleimanpour S, Pasdar Z, Khazaei M, Pasdar A, Avan A. SARS-CoV-2 Liability: The Hidden Mystery Behind Its Presentation in Children. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1353:225-241. [DOI: 10.1007/978-3-030-85113-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Bollag WB, Gonzales JN. Phosphatidylglycerol and surfactant: A potential treatment for COVID-19? Med Hypotheses 2020; 144:110277. [PMID: 33254581 PMCID: PMC7493731 DOI: 10.1016/j.mehy.2020.110277] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
Abstract
A hypothesis concerning the potential utility of surfactant supplementation for the treatment of critically ill patients with COVID-19 is proposed, along with a brief summary of the data in the literature supporting this idea. It is thought that surfactant, which is already approved by the Food and Drug Administration for intratracheal administration to treat neonatal respiratory distress syndrome in pre-term infants, could benefit COVID-19-infected individuals by: (1) restoring surfactant damaged by lung infection and/or decreased due to the virus-induced death of the type II pneumocytes that produce it and (2) reducing surface tension to decrease the work of breathing and limit pulmonary edema. In addition, a constituent of surfactant, phosphatidylglycerol, could mitigate COVID-19-induced lung pathology by: (3) decreasing excessive innate immune system stimulation via its inhibition of toll-like receptor-2 and -4 activation by microbial components and cellular proteins released by damaged cells, thereby limiting inflammation and the resultant pulmonary edema, and (4) possibly blocking spread of the viral infection to non-infected cells in the lung. Therefore, it is suggested that surfactant preparations containing phosphatidylglycerol be tested for their ability to improve lung function in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| | - Joyce N Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
17
|
Kerget B, Kerget F, Koçak AO, Kızıltunç A, Araz Ö, Uçar EY, Akgün M. Are Serum Interleukin 6 and Surfactant Protein D Levels Associated with the Clinical Course of COVID-19? Lung 2020; 198:777-784. [PMID: 32918573 PMCID: PMC7486805 DOI: 10.1007/s00408-020-00393-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE SARS-CoV-2 (COVID-19) has infected more than 7 million people worldwide in the short time since it emerged in Wuhan, China in December 2019. The aim of this study was to investigate the relationship between serum interleukin 6 (IL-6) and surfactant protein D (SP-D) levels and the clinical course and prognosis of COVID-19. MATERIALS AND METHODS The study included a total of 108 individuals: 88 patients who were diagnosed with COVID-19 by real-time PCR of nasopharyngeal swab samples and admitted to the Atatürk University Pulmonary Diseases and the Erzurum City Hospital Infectious Diseases department between March 24 and April 15, and 20 asymptomatic healthcare workers who had negative real-time PCR results during routine COVID-19 screening in our hospital. RESULTS Patients who developed macrophage activation syndrome had significantly higher IL-6 and SP-D levels at the time of admission and on day 5 of treatment compared to the other patients (IL-6: p = 0.001 for both; SP-D: p = 0.02, p = 0.04). Patients who developed acute respiratory distress syndrome had significantly higher IL-6 and SP-D levels at both time points compared to those who did not (p = 0.001 for all). Both parameters at the time of admission were also significantly higher among nonsurvivors compared to survivors (IL-6: p = 0.001, SP-D: p = 0.03). CONCLUSION In addition to IL-6, which has an important role in predicting course and planning treatment in COVID-19, SP-D may be a novel pneumoprotein that can be used in the clinical course, follow-up, and possibly in future treatments.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Ataturk University School of Medicine, 25240, Erzurum, Yakutiye, Turkey.
| | - Ferhan Kerget
- Depertmant of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Abdullah Osman Koçak
- Department of Emergency Medicine, Ataturk University School of Medicine, 25240, Erzurum, Yakutiye, Turkey
| | - Ahmet Kızıltunç
- Department of Biochemistry, Ataturk University School of Medicine, 25240, Erzurum, Turkey
| | - Ömer Araz
- Department of Pulmonary Diseases, Ataturk University School of Medicine, 25240, Erzurum, Yakutiye, Turkey
| | - Elif Yılmazel Uçar
- Department of Pulmonary Diseases, Ataturk University School of Medicine, 25240, Erzurum, Yakutiye, Turkey
| | - Metin Akgün
- Department of Pulmonary Diseases, Ataturk University School of Medicine, 25240, Erzurum, Yakutiye, Turkey
| |
Collapse
|
18
|
Meyer PWA, Ally MMTM, Tikly M, Tintinger G, Winchow LL, Steel H, Anderson R. Tobacco-Derived Lipopolysaccharide, Not Microbial Translocation, as a Potential Contributor to the Pathogenesis of Rheumatoid Arthritis. Mediators Inflamm 2019; 2019:4693870. [PMID: 31780859 PMCID: PMC6874965 DOI: 10.1155/2019/4693870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial lipopolysaccharides (LPS) have been implicated in the pathogenesis of rheumatoid arthritis (RA), possibly driving a systemic inflammatory response that may trigger the development and/or exacerbation of the disease. To explore the existence of this mechanism in African RA patients, we have measured systemic levels of LPS and its surrogate, LPS-binding protein (LBP), as well as those of intestinal fatty acid-binding protein (I-FABP), pulmonary surfactant protein D (SP-D), and cotinine in serum to identify possible origins of LPS, as well as associations of these biomarkers with rheumatoid factor (RF) and anticitrullinated peptide (aCCP) autoantibodies and the DAS 28-3 clinical disease severity score. A cohort of 40 disease-modifying antirheumatic drug-naïve, black South African RA patients rated by compound disease scores and 20 healthy subjects and 10 patients with chronic obstructive pulmonary disease (COPD) as controls were included in this study. Levels of the various biomarkers and autoantibodies were measured using a combination of ELISA and immunofluorimetric and immunoturbidometric procedures. LPS levels were lowest in the RA group compared to the healthy controls (p = 0.026) and COPD patients (p = 0.017), while LBP levels were also significantly lower in RA compared to the healthy individuals (p = 0.036). Levels of I-FABP and SP-D were comparable between all three groups. Categorisation of RA patients according to tobacco usage revealed the following significant positive correlations: LBP with C-reactive protein (p = 0.0137); a trend (p = 0.073) towards an association of LBP with the DAS 28-3 disease severity score; RF-IgG antibodies with both LPS and LBP (p = 0.033 and p = 0.041, respectively); aCCP-IgG antibodies with LPS (p = 0.044); and aCCP-IgG with RF-IgM autoantibodies (p = 0.0016). The findings of this study, several of them novel, imply that tobacco products, as opposed to microbial translocation, represent a potential source of LPS in this study cohort of RA patients, again underscoring the risks posed by tobacco usage for the development and severity of RA.
Collapse
Affiliation(s)
- Pieter W. A. Meyer
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Services, Pretoria 0001, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Mahmood M. T. M. Ally
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Mohammed Tikly
- Division of Rheumatology, Chris Hani Baragwaneth Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Chris Hani Road, Johannesburg 2013, South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Lai Ling Winchow
- Division of Rheumatology, Chris Hani Baragwaneth Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Chris Hani Road, Johannesburg 2013, South Africa
| | - Helen Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
19
|
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, Enciso-Moreno JA, Rivas-Santiago B. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 2019; 199:230-243. [PMID: 31631328 DOI: 10.1111/cei.13388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/12/2023] Open
Abstract
Smoking increases susceptibility to becoming infected with and developing tuberculosis. Among the components of cigarette smoke, nicotine has been identified as the main immunomodulatory molecule; however, its effect on the innate immune system is unknown. In the present study, the effect of nicotine on molecules of the innate immune system was evaluated. Lung epithelial cells and macrophages were infected with Mycobacterium tuberculosis (Mtb) and/or treated with nicotine. The results show that nicotine alone decreases the expression of the Toll-like receptors (TLR)-2, TLR-4 and NOD-2 in all three cell types, as well as the production of the SP-D surfactant protein in type II pneumocytes. Moreover, it was observed that nicotine decreases the production of interleukin (IL)-6 and C-C chemokine ligand (CCL)5 during Mtb infection in epithelial cells (EpCs), whereas in macrophages derived from human monocytes (MDMs) there is a decrease in IL-8, IL-6, tumor necrosis factor (TNF)-α, IL-10, CCL2, C-X-C chemokine ligand (CXCL)9 and CXCL10 only during infection with Mtb. Although modulation of the expression of cytokines and chemokines appears to be partially mediated by the nicotinic acetylcholine receptor α7, blocking this receptor found no effect on the expression of receptors and SP-D. In summary, it was found that nicotine modulates the expression of innate immunity molecules necessary for the defense against tuberculosis.
Collapse
Affiliation(s)
- C E Valdez-Miramontes
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - L A Trejo Martínez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - F Torres-Juárez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - A Rodríguez Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - S P Marin-Luévano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - J P de Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - J A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - B Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
20
|
Barreiro E, Wang X, Tang J. COPD: preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:829-838. [DOI: 10.1080/14728222.2019.1667976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Xuejie Wang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jun Tang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Okada T, Lee BW, Ogami A, Oyabu T, Myojo T. Inhalation of titanium dioxide (P25) nanoparticles to rats and changes in surfactant protein (SP-D) levels in bronchoalveolar lavage fluid and serum. Nanotoxicology 2019; 13:1396-1408. [PMID: 31512956 DOI: 10.1080/17435390.2019.1661042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles are typical and widely used nanomaterials, and there are many studies on the inflammatory responses induced by their inhalation. In this study, we conducted a 4-week inhalation exposure study of aerosolized TiO2> nanoparticles (P25) to male Wistar rats. The mean aerosol concentration measured at each day was 4.1 mg/m3 by dry powder dispersion of TiO2 nanoparticles. Control and exposure groups of rats were killed at 3 and 30 days after the termination of exposure, and bronchoalveolar lavage fluid (BALF) and serum were collected for analysis of total cell count, neutrophil count, and surfactant protein (SP-D) in BALF and SP-D in serum, as well as other serum biomarkers. SP-D is a component of lung surfactants produced in type II alveolar epithelial cells and Clara cells and secreted into the alveolar space and blood. The neutrophil count in the BALF was significantly elevated at 3 and 30 days. The levels of SP-D in the BALF were also elevated at 3 and 30 days, while the serum SP-D levels were elevated at 3 days only. We determined the amounts of TiO2 in the rat lungs in the exposure group at 3, 30, and 73 days to analyze the lung deposition fraction (10.2%) and the biological half-life time (72.4 days) of inhaled TiO2 nanoparticles. Histopathological analysis revealed mild pulmonary inflammation in lung tissue at 3 days. Serum SP-D was found to be a potential biomarker for exposure to TiO2 nanoparticles in this study.
Collapse
Affiliation(s)
- Takami Okada
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Byeong Woo Lee
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Akira Ogami
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Takako Oyabu
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Toshihiko Myojo
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| |
Collapse
|
22
|
Chen H, Li Z, Dong L, Wu Y, Shen H, Chen Z. Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1009-1018. [PMID: 31190786 PMCID: PMC6524761 DOI: 10.2147/copd.s196210] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulated lipid metabolism plays crucial roles in various diseases, including diabetes mellitus, cancer, and neurodegeneration. Recent studies suggest that alterations in major lipid metabolic pathways contribute to pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). These changes allow lung tissue to meet the energy needs and trigger anabolic pathways that initiate the synthesis of active molecules directly involved in the inflammation. In this review, we summarize the changes of catabolism and anabolism of lipids, lipid molecules including lipid mediators, lipid synthesis transcription factors, cholesterol, and phospholipids, and how those lipid molecules participate in the initiation and resolution of inflammation in COPD.
Collapse
Affiliation(s)
- Haipin Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China.,State Key Lab of Respiratory Disease, Guangzhou, Guangdong, People's Republic of China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Ham S, Oh YM, Roh TY. Evaluation and Interpretation of Transcriptome Data Underlying Heterogeneous Chronic Obstructive Pulmonary Disease. Genomics Inform 2019; 17:e2. [PMID: 30929403 PMCID: PMC6459164 DOI: 10.5808/gi.2019.17.1.e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/23/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Life Sciences, POSTECH, Pohang 37674, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang 37674, Korea.,Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang 37674, Korea
| |
Collapse
|
24
|
García-Fojeda B, González-Carnicero Z, de Lorenzo A, Minutti CM, de Tapia L, Euba B, Iglesias-Ceacero A, Castillo-Lluva S, Garmendia J, Casals C. Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Front Immunol 2019; 10:458. [PMID: 30936871 PMCID: PMC6431623 DOI: 10.3389/fimmu.2019.00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 μm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 μm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Zoe González-Carnicero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Alba Iglesias-Ceacero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
|
26
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Patyk I, Rybacki C, Kalicka A, Rzeszotarska A, Korsak J, Chciałowski A. Simvastatin Therapy and Bronchoalveolar Lavage Fluid Biomarkers in Chronic Obstructive Pulmonary Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1150:43-52. [PMID: 30255302 DOI: 10.1007/5584_2018_272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disease underlain by airway inflammation. Despite trials with new generations of anti-inflammatory drugs to alleviate the disease burden, the effective curative treatment remains elusive. In this context, the aim of this study was to assess the influence of simvastatin, a leading member of the family of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, known to display anti-inflammatory and immunomodulatory activity, on symptoms and lung function, as well as the proportion of inflammatory cells, cytokines, proteolytic enzymes, and surfactant protein D (SP-D) content in bronchoalveolar lavage fluid (BALF) in COPD patients. There were 50 patients with moderate-to-severe airway obstructions included into the study, subdivided into simvastatin-treated (Zocor - MSD; 40 mg daily) and control simvastatin-untreated groups, other treatment being equal. Pulmonary functions tests and bronchofiberoscopy with BALF procedure were performed before and after 3-month-long treatment in both groups. The major finding was that simvastatin treatment caused a distinct increase in the airway content of SP-D. Further effects, albeit smaller in magnitude, consisted of reductions in the proportion of airway neutrophils and in MMP-9 content, all with a benefit of improved score in the disease activity assessment test. There were no appreciable changes noted in lung function or dyspnea perception, which could be ascribed to simvastatin treatment. We conclude that statin's anti-inflammatory and surfactant homeostasis preserving properties may offer promise as an adjunctive treatment in COPD patients. The SP-D content in BALF has a potential to become a marker of COPD inflammatory activity and treatment monitoring.
Collapse
Affiliation(s)
- Iwona Patyk
- Department of Pneumology and Allergology, Tenth Military Clinical Hospital, Bydgoszcz, Poland
| | - Cezary Rybacki
- Department of Pneumology and Allergology, Tenth Military Clinical Hospital, Bydgoszcz, Poland
| | - Agata Kalicka
- Department of Pneumology and Allergology, Tenth Military Clinical Hospital, Bydgoszcz, Poland
| | | | - Jolanta Korsak
- Department of Clinical Transfusiology, Military Institute of Medicine, Warsaw, Poland
| | - Andrzej Chciałowski
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, Warsaw, Poland.
| |
Collapse
|
28
|
Electronic cigarette vapor alters the lateral structure but not tensiometric properties of calf lung surfactant. Respir Res 2017; 18:193. [PMID: 29149889 PMCID: PMC5693547 DOI: 10.1186/s12931-017-0676-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
Abstract
Background Despite their growing popularity, the potential respiratory toxicity of electronic cigarettes (e-cigarettes) remains largely unknown. One potential aspect of e-cigarette toxicity is the effect of e-cigarette vapor on lung surfactant function. Lung surfactant is a mixture of lipids and proteins that lines the alveolar region. The surfactant layer reduces the surface tension of the alveolar fluid, thereby playing a crucial role in lung stability. Due to their small size, particulates in e-cigarette vapor can penetrate the deep lungs and come into contact with the lung surfactant. The current study sought to examine the potential adverse effects of e-cigarette vapor and conventional cigarette smoke on lung surfactant interfacial properties. Methods Infasurf®, a clinically used and commercially available calf lung surfactant extract, was used as lung surfactant model. Infasurf® films were spread on top of an aqueous subphase in a Langmuir trough with smoke particulates from conventional cigarettes or vapor from different flavors of e-cigarettes dispersed in the subphase. Surfactant interfacial properties were measured in real-time upon surface compression while surfactant lateral structure after exposure to smoke or vapor was examined using atomic force microscopy (AFM). Results E-cigarette vapor regardless of the dose and flavoring of the e-liquid did not affect surfactant interfacial properties. In contrast, smoke from conventional cigarettes had a drastic, dose-dependent effect on Infasurf® interfacial properties reducing the maximum surface pressure from 65.1 ± 0.2 mN/m to 46.1 ± 1.3 mN/m at the highest dose. Cigarette smoke and e-cigarette vapor both altered surfactant microstructure resulting in an increase in the area of lipid multilayers. Studies with individual smoke components revealed that tar was the smoke component most disruptive to surfactant function. Conclusions While both e-cigarette vapor and conventional cigarette smoke affect surfactant lateral structure, only cigarette smoke disrupts surfactant interfacial properties. The surfactant inhibitory compound in conventional cigarettes is tar, which is a product of burning and is thus absent in e-cigarette vapor.
Collapse
|
29
|
López-Cano C, Lecube A, García-Ramírez M, Muñoz X, Sánchez E, Seminario A, Hernández M, Ciudin A, Gutiérrez L, Hernández C, Simó R. Serum Surfactant Protein D as a Biomarker for Measuring Lung Involvement in Obese Patients With Type 2 Diabetes. J Clin Endocrinol Metab 2017; 102:4109-4116. [PMID: 28945872 DOI: 10.1210/jc.2017-00913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Lung impairment is a new target for late diabetic complications. Biomarkers that could help identify patients requiring functional respiratory tests have not been reported. OBJECTIVE Our aim was to examine whether serum surfactant protein D (SP-D) and A (SP-A) could be useful biomarkers of lung damage in obese patients with type 2 diabetes (T2D) without known lung disease. DESIGN AND SETTING A case-control study conducted in an ambulatory obesity unit. PATIENTS Forty-nine obese patients with T2D and 98 subjects without diabetes matched by age, sex, body mass index, and waist circumference were included. INTERVENTIONS Serum SP-D and SP-A levels were measured using enzyme-linked immunosorbent assay. Forced spirometry and static pulmonary volume were assessed. RESULTS Patients with T2D exhibited higher serum SP-D concentrations than control subjects (P = 0.006). No differences in serum SP-A concentrations were observed. There was an inverse association between forced expiratory volume in 1 second (FEV1) and serum SP-D (r = -0.265; P = 0.029), as well as a significant positive relationship between SP-D concentration and residual volume (r = 0.293; P = 0.043). From receiver operating characteristic analysis, the best SP-D cutoff to identify a FEV1 <80% of predicted was 132.3 ng/mL (area under the curve, 0.725; sensitivity, 77.7%; specificity, 69.4%). Stepwise multivariate regression analysis showed that serum SP-D concentration ≥132.3 ng/mL was independently associated with a FEV1 <80% of predicted (R2 = 0.406). Only the existence of T2D contributed independently to serum SD-P variance among all subjects (R2 = 0.138). CONCLUSIONS Serum SP-D concentration can be a useful biomarker for detecting lung impairment in obese patients with T2D.
Collapse
Affiliation(s)
- Carolina López-Cano
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Albert Lecube
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta García-Ramírez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain
| | - Xavier Muñoz
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, 08035 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Enric Sánchez
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Asunción Seminario
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Respiratory Department, Hospital Universitari Arnau de Vilanova-Santa María, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Marta Hernández
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain
| | - Liliana Gutiérrez
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Cristina Hernández
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain
| | - Rafael Simó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Metabolomic similarities between bronchoalveolar lavage fluid and plasma in humans and mice. Sci Rep 2017; 7:5108. [PMID: 28698669 PMCID: PMC5505974 DOI: 10.1038/s41598-017-05374-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
This observational study catalogues the overlap in metabolites between matched bronchoalveolar lavage fluid (BALF) and plasma, identifies the degree of congruence between these metabolomes in human and mouse, and determines how molecules may change in response to cigarette smoke (CS) exposure. Matched BALF and plasma was collected from mice (ambient air or CS-exposed) and humans (current or former smokers), and analyzed using mass spectrometry. There were 1155 compounds in common in all 4 sample types; fatty acyls and glycerophospholipids strongly overlapped between groups. In humans and mice, more than half of the metabolites present in BALF were also present in plasma. Mouse BALF and human BALF had a strong positive correlation with 2040 metabolites in common, suggesting that mouse models can be used to interrogate human lung metabolome changes. While power was affected by small sample size in the mouse study, the BALF metabolome appeared to be more affected by CS than plasma. CS-exposed mice showed increased plasma and BALF glycerolipids and glycerophospholipids. This is the first report cataloguing the metabolites present across mouse and human, BALF and plasma. Findings are relevant to translational studies where mouse models are used to examine human disease, and where plasma may be interrogated in lieu of BALF or lung tissue.
Collapse
|
31
|
Mishra R, Foster D, Vasu VT, Thaikoottathil JV, Kosmider B, Chu HW, Bowler RP, Finigan JH. Cigarette Smoke Induces Human Epidermal Receptor 2-Dependent Changes in Epithelial Permeability. Am J Respir Cell Mol Biol 2017; 54:853-64. [PMID: 26600084 DOI: 10.1165/rcmb.2014-0437oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The airway epithelium constitutes a protective barrier against inhaled insults, such as viruses, bacteria, and toxic fumes, including cigarette smoke (CS). Maintenance of bronchial epithelial integrity is central for airway health, and defective epithelial barrier function contributes to the pathogenesis of CS-mediated diseases, such as chronic obstructive pulmonary disease. Although CS has been shown to increase epithelial permeability, current understanding of the mechanisms involved in CS-induced epithelial barrier disruption remains incomplete. We have previously identified that the receptor tyrosine kinase human epidermal receptor (HER) 2 growth factor is activated by the ligand neuregulin-1 and increases epithelial permeability in models of inflammatory acute lung injury. We hypothesized that CS activates HER2 and that CS-mediated changes in barrier function would be HER2 dependent in airway epithelial cells. We determined that HER2 was activated in whole lung, as well as isolated epithelial cells, from smokers, and that acute CS exposure resulted in HER2 activation in cultured bronchial epithelial cells. Mechanistic studies determined that CS-mediated HER2 activation is independent of neuregulin-1 but required upstream activation of the epidermal growth factor receptor. HER2 was required for CS-induced epithelial permeability as knockdown of HER2 blocked increases in permeability after CS. CS caused an increase in IL-6 production by epithelial cells that was dependent on HER2-mediated extracellular signal-regulated kinases (Erk) activation. Finally, blockade of IL-6 attenuated CS-induced epithelial permeability. Our data indicate that CS activates pulmonary epithelial HER2 and that HER2 is a central mediator of CS-induced epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Rangnath Mishra
- 1 Division Oncology, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- 1 Division Oncology, National Jewish Health, Denver, Colorado
| | - Vihas T Vasu
- 1 Division Oncology, National Jewish Health, Denver, Colorado
| | | | - Beata Kosmider
- 2 Division Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; and.,3 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Hong Wei Chu
- 2 Division Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; and.,3 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Russell P Bowler
- 2 Division Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; and.,3 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - James H Finigan
- 1 Division Oncology, National Jewish Health, Denver, Colorado.,2 Division Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; and.,3 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
32
|
Deeb RS, Walters MS, Strulovici-Barel Y, Chen Q, Gross SS, Crystal RG. Smoking-Associated Disordering of the Airway Basal Stem/Progenitor Cell Metabotype. Am J Respir Cell Mol Biol 2016; 54:231-40. [PMID: 26161876 DOI: 10.1165/rcmb.2015-0055oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The airway epithelium is a complex pseudostratified multicellular layer lining the tracheobronchial tree, functioning as the primary defense against inhaled environmental contaminants. The major cell types of the airway epithelium include basal, intermediate columnar, ciliated, and secretory. Basal cells (BCs) are the proliferating stem/progenitor population that differentiate into the other specialized cell types of the airway epithelium during normal turnover and repair. Given that cigarette smoke delivers thousands of xenobiotics and high levels of reactive molecules to the lung epithelial surface, we hypothesized that cigarette smoke broadly perturbs BC metabolism. To test this hypothesis, primary airway BCs were isolated from healthy nonsmokers (n = 11) and healthy smokers (n = 7) and assessed by global metabolic profiling by liquid chromatography-mass spectrometry. The analysis identified 52 significant metabolites in BCs differentially expressed between smokers and nonsmokers (P < 0.05). These changes included metabolites associated with redox pathways, energy production, and inflammatory processes. Notably, BCs from smokers exhibited altered levels of the key enzyme cofactors/substrates nicotinamide adenine dinucleotide, flavin adenine dinucleotide, acetyl coenzyme A, and membrane phospholipid levels. Consistent with the high burden of oxidants in cigarette smoke, glutathione levels were diminished, whereas 3-nitrotyrosine levels were increased, suggesting that protection of airway epithelial cells against oxidative and nitrosative stress is significantly compromised in smoker BCs. It is likely that this altered metabotype is a reflection of, and likely contributes to, the disordered biology of airway BCs consequent to the stress cigarette smoking puts on the airway epithelium.
Collapse
Affiliation(s)
| | | | | | - Qiuying Chen
- 2 Pharmacology, Weill Cornell Medical College, New York, New York
| | - Steven S Gross
- 2 Pharmacology, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
33
|
Biagioni BJ, Tam S, Chen YWR, Sin DD, Carlsten C. Effect of controlled human exposure to diesel exhaust and allergen on airway surfactant protein D, myeloperoxidase and club (Clara) cell secretory protein 16. Clin Exp Allergy 2016; 46:1206-13. [DOI: 10.1111/cea.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Affiliation(s)
- B. J. Biagioni
- Division of Respiratory Medicine; Department of Medicine; University of British Columbia; Vancouver BC Canada
| | - S. Tam
- Division of Respiratory Medicine; Department of Medicine; University of British Columbia; Vancouver BC Canada
- Center for Heart Lung Innovation; University of British Columbia; Vancouver BC Canada
| | - Y.-W. R. Chen
- Division of Respiratory Medicine; Department of Medicine; University of British Columbia; Vancouver BC Canada
- Center for Heart Lung Innovation; University of British Columbia; Vancouver BC Canada
| | - D. D. Sin
- Division of Respiratory Medicine; Department of Medicine; University of British Columbia; Vancouver BC Canada
- Center for Heart Lung Innovation; University of British Columbia; Vancouver BC Canada
| | - C. Carlsten
- Division of Respiratory Medicine; Department of Medicine; University of British Columbia; Vancouver BC Canada
- Department of Medicine; Centre for Occupational and Environmental Lung Disease; Vancouver BC Canada
| |
Collapse
|
34
|
Grunig G, Baghdassarian A, Park SH, Pylawka S, Bleck B, Reibman J, Berman-Rosenzweig E, Durmus N. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs. Biomark Insights 2016; 10:59-72. [PMID: 26917944 PMCID: PMC4756863 DOI: 10.4137/bmi.s29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Aram Baghdassarian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Serhiy Pylawka
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Joan Reibman
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Nedim Durmus
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Kinney GL, Baker EH, Klein OL, Black-Shinn JL, Wan ES, Make B, Regan E, Bowler RP, Lutz SM, Young KA, Duca LM, Washko GR, Silverman EK, Crapo JD, Hokanson JE. Pulmonary Predictors of Incident Diabetes in Smokers. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2016; 3:739-747. [PMID: 27795984 DOI: 10.15326/jcopdf.3.4.2016.0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Diabetes mellitus and its complications are a large and increasing burden for health care worldwide. Reduced pulmonary function has been observed in diabetes (both type 1 and type 2), and this reduction is thought to occur prior to diagnosis. Other measures of pulmonary health are associated with diabetes, including lower exercise tolerance, greater dyspnea, lower quality of life (as measured by the St. George's Respiratory Questionaire [SGRQ]) and susceptibility to lung infection and these measures may also predate diabetes diagnosis. METHODS We examined 7080 participants in the COPD Genetic Epidemiology (COPDGene) study who did not report diabetes at their baseline visit and who provided health status updates during 4.2 years of longitudinal follow-up (LFU). We used Cox proportional hazards modeling, censoring participants at final LFU contact, reported mortality or report of incident diabetes to model predictors of diabetes. These models were constructed using known risk factors as well as proposed markers related to pulmonary health, forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC, respiratory exacerbations (RE), 6-minute walk distance (6MWD), pulmonary associated quality of life (as measured by the SGRQ), corticosteroid use, chronic bronchitis and dyspnea. RESULTS Over 21,519 person years of follow-up, 392 of 7080 participants reported incident diabetes which was associated with expected predictors; increased body mass index (BMI), high blood pressure, high cholesterol and current smoking status. Age, gender and accumulated smoking exposure were not associated with incident diabetes. Additionally, preserved ratio with impaired spirometry (PRISm) pattern pulmonary function, reduced 6MWD and any report of serious pulmonary events were associated with incident diabetes. CONCLUSIONS This cluster of pulmonary indicators may aid clinicians in identifying and treating patients with pre- or undiagnosed diabetes.
Collapse
Affiliation(s)
- Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| | - Emma H Baker
- St. George's, University of London, United Kingdom
| | - Oana L Klein
- Department of Medicine, University of California-San Francisco
| | - Jennifer L Black-Shinn
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| | - Emily S Wan
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Barry Make
- National Jewish Health and University of Colorado-Denver
| | | | | | - Sharon M Lutz
- Department of Biostatistics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| | - Lindsey M Duca
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| | - George R Washko
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - James D Crapo
- National Jewish Health and University of Colorado-Denver
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus
| |
Collapse
|
36
|
Ding Y, Niu H, Zhou L, Zhou W, Chen J, Xie S, Geng T, Ouyang Y, He P, Sun P, Feng T, Jin T. Association of multiple genetic variants with chronic obstructive pulmonary disease susceptibility in Hainan region. CLINICAL RESPIRATORY JOURNAL 2015; 11:727-732. [PMID: 26502206 DOI: 10.1111/crj.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/07/2015] [Accepted: 10/17/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Yipeng Ding
- Department of Emergency; People's Hospital of Hainan Province; Haikou Hainan 570311 China
| | - Huan Niu
- Department of Emergency; People's Hospital of Hainan Province; Haikou Hainan 570311 China
| | - Long Zhou
- School of Life Sciences; Northwest University; Xi'an 710069 China
| | - Wenjing Zhou
- School of Life Sciences; Northwest University; Xi'an 710069 China
| | - Jiannan Chen
- Department of Emergency; People's Hospital of Hainan Province; Haikou Hainan 570311 China
| | - Shiliang Xie
- Department of Respiration; People's Hospital of Lingao; Lingao Hainan 571400 China
| | - Tingting Geng
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an 710069 China
| | - Yanhong Ouyang
- Department of Emergency; People's Hospital of Hainan Province; Haikou Hainan 570311 China
| | - Ping He
- Department of Emergency; People's Hospital of Hainan Province; Haikou Hainan 570311 China
| | - Pei Sun
- Department of Emergency; People's Hospital of Hainan Province; Haikou Hainan 570311 China
| | - Tian Feng
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an 710069 China
| | - Tianbo Jin
- School of Life Sciences; Northwest University; Xi'an 710069 China
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an 710069 China
| |
Collapse
|
37
|
Ito E, Oka R, Ishii T, Korekane H, Kurimoto A, Kizuka Y, Kitazume S, Ariki S, Takahashi M, Kuroki Y, Kida K, Taniguchi N. Fucosylated surfactant protein-D is a biomarker candidate for the development of chronic obstructive pulmonary disease. J Proteomics 2015. [PMID: 26206179 DOI: 10.1016/j.jprot.2015.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED We previously reported that knockout mice for α1,6-fucosyltransferase (Fut8), which catalyzes the biosynthesis of core-fucose in N-glycans, develop emphysema and that Fut8 heterozygous knockout mice are more sensitive to cigarette smoke-induced emphysema than wild-type mice. Moreover, a lower FUT8 activity was found to be associated with a faster decline in lung function among chronic obstructive pulmonary disease (COPD) patients. These results led us to hypothesize that core-fucosylation levels in a glycoprotein could be used as a biomarker for COPD. We focused on a lung-specific glycoprotein, surfactant protein D (SP-D), which plays a role in immune responses and is present in the distal airways, alveoli, and blood circulation. The results of a glycomic analysis reported herein demonstrate the presence of a core-fucose in an N-glycan on enriched SP-D from pooled human sera. We developed an antibody-lectin enzyme immunoassay (EIA) for assessing fucosylation (core-fucose and α1,3/4 fucose) in COPD patients. The results indicate that fucosylation levels in serum SP-D are significantly higher in COPD patients than in non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings suggest that increased fucosylation levels in serum SP-D are associated with the development of COPD. BIOLOGICAL SIGNIFICANCE It has been proposed that serum SP-D concentrations are predictive of COPD pathogenesis, but distinguishing between COPD patients and healthy individuals to establish a clear cut-off value is difficult because smoking status highly affects circulating SP-D levels. Herein, we focused on N-glycosylation in SP-D and examined whether or not N-glycosylation patterns in SP-D are associated with the pathogenesis of COPD. We performed an N-glycomic analysis of human serum SP-D and the results show that a core-fucose is present in its N-glycan. We also found that the N-glycosylation in serum SP-D was indeed altered in COPD, that is, fucosylation levels including core-fucosylation are significantly increased in COPD patients compared with non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings shed new light on the discovery and/or development of a useful biomarker based on glycosylation changes for diagnosing COPD. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Emi Ito
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takeo Ishii
- Respiratory Care Clinic, Nippon Medical School, 4-7-15-8F Kudan-Minami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Ayako Kurimoto
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yoshio Kuroki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kozui Kida
- Respiratory Care Clinic, Nippon Medical School, 4-7-15-8F Kudan-Minami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
38
|
Identification of Metabolites and Metabolic Pathways Related to Treatment with Bufei Yishen Formula in a Rat COPD Model Using HPLC Q-TOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:956750. [PMID: 26170891 PMCID: PMC4485497 DOI: 10.1155/2015/956750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/15/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
Abstract
As a traditional Chinese medicine, Bufei Yishen Formula (BYF) is widely used in China as an effective treatment for chronic obstructive pulmonary disease (COPD). Because of the component complexity and multiple activities of Chinese herbs, the mechanism whereby BYF affects COPD is not yet fully understood. Herein, pulmonary function experiments and histomorphological assessments were used to evaluate the curative effect of BYF, which showed that BYF had an effect on COPD. Additionally, a high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC QTOF/MS) metabonomics method was used to analyze the mechanism of the actions of BYF on rats with COPD induced by a combination of bacteria and smoking. Partial least squares discriminate analysis (PLS-DA) was used to screen biomarkers related to BYF treatment. Candidate biomarkers were selected and pathways analysis of these metabolites showed that three types of metabolic pathways (unsaturated fatty acid metabolism-related pathways, phenylalanine metabolism-related pathways, and phospholipid metabolism-related pathways) were associated with BYF treatment. Importantly, arachidonic acid and related metabolic pathways might be useful targets for novel COPD therapies.
Collapse
|
39
|
Lock-Johansson S, Vestbo J, Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease. Respir Res 2014; 15:147. [PMID: 25425298 PMCID: PMC4256818 DOI: 10.1186/s12931-014-0147-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.
Collapse
Affiliation(s)
- Sofie Lock-Johansson
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsloews Vej 25.3, Odense, 5000, Denmark.
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark.
- Respiratory Research Group, Manchester Academic Science Centre University Hospital South Manchester NHS Foundation Trust Manchester, Manchester, UK.
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsloews Vej 25.3, Odense, 5000, Denmark.
| |
Collapse
|
40
|
Ware LB, Lee JW, Wickersham N, Nguyen J, Matthay MA, Calfee CS. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs. Am J Transplant 2014; 14:2295-302. [PMID: 25146497 PMCID: PMC4169304 DOI: 10.1111/ajt.12853] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/22/2014] [Accepted: 05/31/2014] [Indexed: 01/25/2023]
Abstract
Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (AFC; measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage [BAL] surfactant protein-D (SP-D) and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n = 127) compared to nonsmokers (median 408 g, interquartile range [IQR] 364-500 vs. 385 g, IQR 340-460, p = 0.009). Oxygenation at study enrollment was worse in current smokers versus nonsmokers (median PaO2 /FiO2 214 mm Hg, IQR 126-323 vs. 266 mm Hg, IQR 154-370, p = 0.02). Current smokers with the highest exposure (≥20 pack years) had significantly lower rates of AFC, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while SP-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient.
Collapse
Affiliation(s)
- Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Jae W. Lee
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Nancy Wickersham
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
| | - John Nguyen
- California Transplant Donor Network, Oakland, CA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Carolyn S. Calfee
- Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | | |
Collapse
|
41
|
Agarwal AR, Yin F, Cadenas E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am J Respir Cell Mol Biol 2014; 51:284-93. [PMID: 24625219 DOI: 10.1165/rcmb.2013-0523oc] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS)-induced alveolar destruction and energy metabolism changes are known contributors to the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examines the effect of CS exposure on metabolism in alveolar type II cells. Male A/J mice (8 wk old) were exposed to CS generated from a smoking machine for 4 or 8 weeks, and a recovery group was exposed to CS for 8 weeks and allowed to recover for 2 weeks. Alveolar type II cells were isolated from air- or CS- exposed mice. Acute CS exposure led to a reversible airspace enlargement in A/J mice as measured by the increase in mean linear intercept, indicative of alveolar destruction. The effect of CS exposure on cellular respiration was studied using the XF Extracellular Flux Analyzer. A decrease in respiration while metabolizing glucose was observed in the CS-exposed group, indicating altered glycolysis that was compensated by an increase in palmitate utilization; palmitate utilization was accompanied by an increase in the expression of CD36 and carnitine-palmitoyl transferase 1 in type II alveolar cells for the transport of palmitate into the cells and into mitochondria, respectively. The increase in palmitate use for energy production likely affects the surfactant biosynthesis pathway, as evidenced by the decrease in phosphatidylcholine levels and the increase in phospholipase A2 activity after CS exposure. These findings help our understanding of the mechanism underlying the surfactant deficiency observed in smokers and provide a target to delay the onset of COPD.
Collapse
Affiliation(s)
- Amit R Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | | |
Collapse
|
42
|
Johansson SL, Tan Q, Holst R, Christiansen L, Hansen NCG, Hojland AT, Wulf-Johansson H, Schlosser A, Titlestad IL, Vestbo J, Holmskov U, Kyvik KO, Sorensen GL. Surfactant protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage. Am J Physiol Lung Cell Mol Physiol 2014; 306:L887-95. [DOI: 10.1152/ajplung.00340.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Variation in surfactant protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The association between serum SP-D (sSP-D) and expiratory lung function was assessed in a cross-sectional design in a Danish twin population ( n = 1,512, 18–72 yr old). The adjusted heritability estimates for expiratory lung function, associations between SP-D gene ( SFTPD) single-nucleotide polymorphisms or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 s and forced vital capacity in the presence of current tobacco smoking but not in nonsmokers. The two SFTPD single-nucleotide polymorphisms, rs1923536 and rs721917, and haplotypes, including these single-nucleotide polymorphisms or rs2243539, were inversely associated with expiratory lung function in interaction with smoking. In conclusion, SP-D is phenotypically and genetically associated with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive pulmonary disease initiation and development.
Collapse
Affiliation(s)
| | - Qihua Tan
- The Danish Twin Registry, Epidemiology, Institute of Public Health, and
- Departments of 4Clinical Genetics and
| | - René Holst
- Institute of Regional Health Research, Department of Biostatistics, University of Southern Denmark, Odense
| | - Lene Christiansen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, and
- Departments of 4Clinical Genetics and
| | | | - Allan T. Hojland
- The Danish Twin Registry, Epidemiology, Institute of Public Health, and
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Anders Schlosser
- Cardiovascular and Renal Research, Institute of Molecular Medicine,
| | | | | | - Uffe Holmskov
- Cardiovascular and Renal Research, Institute of Molecular Medicine,
| | - Kirsten O. Kyvik
- Institute of Regional Health Research, Department of Biostatistics, University of Southern Denmark, Odense
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense
| | | |
Collapse
|
43
|
Agarwal AR, Yin F, Cadenas E. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure. Am J Physiol Lung Cell Mol Physiol 2013; 305:L764-73. [DOI: 10.1152/ajplung.00165.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acrolein, an α,β unsaturated electrophile, is an environmental pollutant released in ambient air from diesel exhausts and cooking oils. This study examines the role of acrolein in altering mitochondrial function and metabolism in lung-specific cells. RLE-6TN, H441, and primary alveolar type II (pAT2) cells were exposed to acrolein for 4 h, and its effect on mitochondrial oxygen consumption rates was studied by XF Extracellular Flux analysis. Low-dose acrolein exposure decreased mitochondrial respiration in a dose-dependent manner because of alteration in the metabolism of glucose in all the three cell types. Acrolein inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, leading to decreased substrate availability for mitochondrial respiration in RLE-6TN, H441, and pAT2 cells; the reduced GAPDH activity was compensated in pAT2 cells by an increase in the activity of glucose-6-phosphate dehydrogenase, the regulatory control of the pentose phosphate pathway. The decrease in pyruvate from glucose metabolism resulted in utilization of alternative sources to support mitochondrial energy production: palmitate-BSA complex increased mitochondrial respiration in RLE-6TN and pAT2 cells. The presence of palmitate in alveolar cells for surfactant biosynthesis may prove to be the alternative fuel source for mitochondrial respiration. Accordingly, a decrease in phosphatidylcholine levels and an increase in phospholipase A2 activity were found in the alveolar cells after acrolein exposure. These findings have implications for understanding the decrease in surfactant levels frequently observed in pathophysiological situations with altered lung function following exposure to environmental toxicants.
Collapse
Affiliation(s)
- Amit R. Agarwal
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Fei Yin
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Enrique Cadenas
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| |
Collapse
|
44
|
Groves AM, Gow AJ, Massa CB, Hall L, Laskin JD, Laskin DL. Age-related increases in ozone-induced injury and altered pulmonary mechanics in mice with progressive lung inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L555-68. [PMID: 23997172 DOI: 10.1152/ajplung.00027.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In these studies we determined whether progressive pulmonary inflammation associated with aging in surfactant protein D (Sftpd)-/- mice leads to an exacerbated response to ozone. In Sftpd-/- mice, but not wild-type (WT) mice, age-related increases in numbers of enlarged vacuolated macrophages were observed in the lung, along with alveolar wall rupture, type 2 cell hyperplasia, and increased bronchoalveolar lavage protein and cell content. Numbers of heme oxygenase+ macrophages also increased with age in Sftpd-/- mice, together with classically (iNOS+) and alternatively (mannose receptor+, YM-1+, or galectin-3+) activated macrophages. In both WT and Sftpd-/- mice, increasing age from 8 to 27 wk was associated with reduced lung stiffness, as reflected by decreases in resistance and elastance spectra; however, this response was reversed in 80-wk-old Sftpd-/- mice. Ozone exposure (0.8 ppm, 3 h) caused increases in lung pathology, alveolar epithelial barrier dysfunction, and numbers of iNOS+ macrophages in 8- and 27-wk-old Sftpd-/-, but not WT mice at 72 h postexposure. Conversely, increases in alternatively activated macrophages were observed in 8-wk-old WT mice following ozone exposure, but not in Sftpd-/- mice. Ozone also caused alterations in both airway and tissue mechanics in Sftpd-/- mice at 8 and 27 wk, but not at 80 wk. These data demonstrate that mild to moderate pulmonary inflammation results in increased sensitivity to ozone; however, in senescent mice, these responses are overwhelmed by the larger effects of age-related increases in baseline inflammation and lung injury.
Collapse
Affiliation(s)
- Angela M Groves
- Dept. of Pharmacology and Toxicology, Rutgers Univ., Ernest Mario School of Pharmacy, 160 Frelinghuysen Rd., Piscataway, NJ 08854 (
| | | | | | | | | | | |
Collapse
|
45
|
Bredberg A, Josefson M, Almstrand AC, Lausmaa J, Sjövall P, Levinsson A, Larsson P, Olin AC. Comparison of exhaled endogenous particles from smokers and non-smokers using multivariate analysis. Respiration 2013; 86:135-42. [PMID: 23816544 DOI: 10.1159/000350941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Smoking, along with many respiratory diseases, has been shown to induce airway inflammation and alter the composition of the respiratory tract lining fluid (RTLF). We have previously shown that the phospholipid and protein composition of particles in exhaled air (PEx) reflects that of RTLF. In this study, we hypothesized that the composition of PEx differs between smokers and non-smokers, reflecting inflammation in the airways. OBJECTIVE It was the aim of this study to identify differences in the phospholipid composition of PEx from smokers and non-smokers. METHODS PEx from 12 smokers and 13 non-smokers was collected using a system developed in-house. PEx was analysed using time-of-flight secondary ion mass spectrometry, and the mass spectral data were evaluated using multivariate analysis. Orthogonal partial least squares (OPLS) was used to relate smoking status, lung function and pack years to the chemical composition of RTLF. The discriminating ions identified by OPLS were then used as explanatory variables in traditional regression analysis. RESULTS There was a clear discrimination between smokers and non-smokers according to the chemical composition, where phospholipids from smokers were protonated and sodiated to a larger extent. Poor lung function showed a strong association with higher response from all molecular phosphatidylcholine species in the samples. Furthermore, the accumulated amount of tobacco consumed was associated with variations in mass spectra, indicating a dose-response relationship. CONCLUSION The chemical composition of PEx differs between smokers and non-smokers, reflecting differences in the RTLF. The results from this study may suggest that the composition of RTLF is affected by smoking and may be of importance for lung function.
Collapse
Affiliation(s)
- Anna Bredberg
- Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect 2013; 67:169-84. [PMID: 23707875 DOI: 10.1016/j.jinf.2013.05.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 01/04/2023]
Abstract
The predisposition of cigarette smokers for development of oral and respiratory infections caused by microbial pathogens is well recognised, with those infected with the human immunodeficiency virus (HIV) at particularly high risk. Smoking cigarettes has a suppressive effect on the protective functions of airway epithelium, alveolar macrophages, dendritic cells, natural killer (NK) cells and adaptive immune mechanisms, in the setting of chronic systemic activation of neutrophils. Cigarette smoke also has a direct effect on microbial pathogens to promote the likelihood of infective disease, specifically promotion of microbial virulence and antibiotic resistance. In addition to interactions between smoking and HIV infection, a number of specific infections/clinical syndromes have been associated epidemiologically with cigarette smoking, including those of the upper and lower respiratory tract, gastrointestinal tract, central nervous and other organ systems. Smoking cessation benefits patients in many ways, including reduction of the risk of infectious disease.
Collapse
Affiliation(s)
- Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, South Africa.
| | | |
Collapse
|
47
|
Wang H, Mattes WB, Richter P, Mendrick DL. An omics strategy for discovering pulmonary biomarkers potentially relevant to the evaluation of tobacco products. Biomark Med 2013; 6:849-60. [PMID: 23227851 DOI: 10.2217/bmm.12.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smoking is known to cause serious lung diseases including chronic bronchitis, chronic obstructive lung disease, obstruction of small airways, emphysema and cancer. Tobacco smoke is a complex chemical aerosol containing at least 8000 chemical constituents, either tobacco derived or added by tobacco product manufacturers. Identification of all of the toxic agents in tobacco smoke is challenging, and efforts to understand the mechanisms by which tobacco use causes disease will be informed by new biomarkers of exposure and harm. In 2009, President Obama signed into law the Family Smoking Prevention and Tobacco Control Act granting the US FDA the authority to regulate tobacco products to protect public health. This perspective article presents the background, rationale and strategy for using omics technologies to develop new biomarkers, which may be of interest to the FDA when implementing the Family Smoking Prevention and Tobacco Control Act.
Collapse
Affiliation(s)
- Honggang Wang
- Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
48
|
Circulating surfactant protein D is associated to mortality in elderly women: A twin study. Immunobiology 2013; 218:712-7. [DOI: 10.1016/j.imbio.2012.08.272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022]
|
49
|
Abstract
Clinical research in chronic obstructive pulmonary disease (COPD) has been hampered by the lack of validated blood biomarkers. The ideal COPD biomarker would have the following characteristics: (1) it would be a lung specific protein that could be assayed in blood; (2) it would change with disease severity or during exacerbations; (3) it would be specific for COPD; and would be responsive to change with effective treatments. One such candidate is the lung specific protein surfactant protein D (SP-D). In this review, we discuss the evidence supporting SP-D as a COPD biomarker.
Collapse
Affiliation(s)
- Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
50
|
Kim DK, Cho MH, Hersh CP, Lomas DA, Miller BE, Kong X, Bakke P, Gulsvik A, Agustí A, Wouters E, Celli B, Coxson H, Vestbo J, MacNee W, Yates JC, Rennard S, Litonjua A, Qiu W, Beaty TH, Crapo JD, Riley JH, Tal-Singer R, Silverman EK. Genome-wide association analysis of blood biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186:1238-47. [PMID: 23144326 DOI: 10.1164/rccm.201206-1013oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RATIONALE A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility. OBJECTIVES To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD. METHODS GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10(-8)), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated. MEASUREMENTS AND MAIN RESULTS Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009-0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001-0.049), although these COPD associations were not replicated in two additional cohorts. CONCLUSIONS Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
Collapse
Affiliation(s)
- Deog Kyeom Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|