1
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Iyer S, Adams DJ. Bone and the Unfolded Protein Response: In Sickness and in Health. Calcif Tissue Int 2023; 113:96-109. [PMID: 37243756 PMCID: PMC10326125 DOI: 10.1007/s00223-023-01096-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Differentiation and optimal function of osteoblasts and osteoclasts are contingent on synthesis and maintenance of a healthy proteome. Impaired and/or altered secretory capacity of these skeletal cells is a primary driver of most skeletal diseases. The endoplasmic reticulum (ER) orchestrates the folding and maturation of membrane as well as secreted proteins at high rates within a calcium rich and oxidative organellar niche. Three ER membrane proteins monitor fidelity of protein processing in the ER and initiate an intricate signaling cascade known as the Unfolded Protein Response (UPR) to remediate accumulation of misfolded proteins in its lumen, a condition referred to as ER stress. The UPR aids in fine-tuning, expanding and/or modifying the cellular proteome, especially in specialized secretory cells, to match everchanging physiologic cues and metabolic demands. Sustained activation of the UPR due to chronic ER stress, however, is known to hasten cell death and drive pathophysiology of several diseases. A growing body of evidence suggests that ER stress and an aberrant UPR may contribute to poor skeletal health and the development of osteoporosis. Small molecule therapeutics that target distinct components of the UPR may therefore have implications for developing novel treatment modalities relevant to the skeleton. This review summarizes the complexity of UPR actions in bone cells in the context of skeletal physiology and osteoporotic bone loss, and highlights the need for future mechanistic studies to develop novel UPR therapeutics that mitigate adverse skeletal outcomes.
Collapse
Affiliation(s)
- Srividhya Iyer
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Mailstop:8343, Aurora, CO, 80045, USA.
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Mailstop:8343, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Huang W, Gong Y, Yan L. ER Stress, the Unfolded Protein Response and Osteoclastogenesis: A Review. Biomolecules 2023; 13:1050. [PMID: 37509086 PMCID: PMC10377020 DOI: 10.3390/biom13071050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and its adaptive mechanism, the unfolded protein response (UPR), are triggered by the accumulation of unfolded and misfolded proteins. During osteoclastogenesis, a large number of active proteins are synthesized. When an imbalance in the protein folding process occurs, it causes osteoclasts to trigger the UPR. This close association has led to the role of the UPR in osteoclastogenesis being increasingly explored. In recent years, several studies have reported the role of ER stress and UPR in osteoclastogenesis and bone resorption. Here, we reviewed the relevant literature and discussed the UPR signaling cascade response, osteoclastogenesis-related signaling pathways, and the role of UPR in osteoclastogenesis and bone resorption in detail. It was found that the UPR signal (PERK, CHOP, and IRE1-XBP1) promoted the expression of the receptor activator of the nuclear factor-kappa B ligand (RANKL) in osteoblasts and indirectly enhanced osteoclastogenesis. IRE1 promoted osteoclastogenesis via promoting NF-κB, MAPK signaling, or the release of pro-inflammatory factors (IL-6, IL-1β, and TNFα). CREBH promoted osteoclast differentiation by promoting NFATc1 expression. The PERK signaling pathway also promoted osteoclastogenesis through NF-κB and MAPK signaling pathways, autophagy, and RANKL secretion from osteoblasts. However, salubrinal (an inhibitor of eIF2α dephosphorylation that upregulated p-eIF2α expression) directly inhibited osteoclastogenesis by suppressing NFATc1 expression and indirectly promoted osteoclastogenesis by promoting RANKL secretion from osteoblasts. Therefore, the specific effects and mechanisms of p-PERK and its downstream signaling on osteoclastogenesis still need further experiments to confirm. In addition, the exact role of ATF6 and BiP in osteoclastogenesis also required further exploration. In conclusion, our detailed and systematic review provides some references for the next step to fully elucidate the relationship between UPR and osteoclastogenesis, intending to provide new insights for the treatment of diseases caused by osteoclast over-differentiation, such as osteoporosis.
Collapse
Affiliation(s)
- Wangli Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
4
|
Zhao Y, Feng Y, Ye Q, Hu J, Feng Y, Ouyang Z, Zhao J, Chen Y, Tan L, Chen N, Dusenge MA, Su X, Guo Y. The oral microbiome in young women at different stages of periodontitis: Prevotella dominant in stage III periodontitis. Front Cell Infect Microbiol 2022; 12:1047607. [PMID: 36530443 PMCID: PMC9753221 DOI: 10.3389/fcimb.2022.1047607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Objective Periodontitis progression is related to the dynamic dysbiosis of oral microbiome. We identified the dominant bacteria and the potential pathway in young women with stage-III periodontitis. Materials and methods Samples of subgingival plaque were collected from 26 young women with periodontitis (20 with stage-I and 6 with stage-III). Using 16S rRNA-sequencing, we determined the variation in oral bacterial communities of the two groups, and identified the dominant bacteria of each group. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to evaluate the signaling pathways related to the difference in oral bacterial composition. The role of the dominant bacteria of stage-III periodontitis was investigated in vivo and in vitro using an endoplasmic reticulum stress inhibitor. Results Young women with stage-I periodontitis had higher values for the Chao1 Index, Observed Species and Phylogenetic Diversity Whole Tree Index than those for women with stage-III periodontitis. β-diversity analyses revealed that samples could be divided into different groups according to the periodontitis stage. The most representative biomarkers of stage-III periodontitis in young women were bacteria of the phylum Bacteroidetes, its order, family and genera Bacteroidales, Prevotellaceae and Prevotella. The KEGG database revealed that the change in oral bacterial composition of young women with stage-III periodontitis may be related to protein processing in an endoplasmic reticulum pathway. Salubrinal (an endoplasmic reticulum stress regulator) controlled expression of Runx2, Col1a1, Ocn in mouse bone-marrow mesenchymal cells. Salubrinal administration showed that moderate endoplasmic reticulum stress inhibited alveolar bone loss in periodontitis induced by Prevotella intermedia lipopolysaccharide. Conclusion Differences between periodontitis stages were noted and bacteria of Prevotella species were abundant in young women with stage-III periodontitis. This phenomenon was related to protein processing in an endoplasmic reticulum pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Li L, Hu G, Xie R, Yang J, Shi X, Jia Z, Qu X, Wang M, Wu Y. Salubrinal-mediated activation of eIF2α signaling improves oxidative stress-induced BMSCs senescence and senile osteoporosis. Biochem Biophys Res Commun 2022; 610:70-76. [DOI: 10.1016/j.bbrc.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
|
6
|
Huang M, Liu H, Zhu L, Li X, Li J, Yang S, Liu D, Song X, Yokota H, Zhang P. Mechanical loading attenuates breast cancer-associated bone metastasis in obese mice by regulating the bone marrow microenvironment. J Cell Physiol 2021; 236:6391-6406. [PMID: 33554336 PMCID: PMC8222149 DOI: 10.1002/jcp.30314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer, a common malignancy for women, preferentially metastasizes to bone and obesity elevates the chance of its progression. While mechanical loading can suppress obesity and tumor-driven osteolysis, its effect on bone-metastasized obese mice has not been investigated. Here, we hypothesized that mechanical loading can lessen obesity-associated bone degradation in tumor-invaded bone by regulating the fate of bone marrow-derived cells. In this study, the effects of mechanical loading in obese mice were evaluated through X-ray imaging, histology, cytology, and molecular analyses. Tumor inoculation to the tibia elevated body fat composition, osteolytic lesions, and tibia destruction, and these pathologic changes were stimulated by the high-fat diet (HFD). However, mechanical loading markedly reduced these changes. It suppressed osteoclastogenesis by downregulating receptor activator of nuclear factor Kappa-B ligand and cathepsin K and promoted osteogenesis, which was associated with the upregulation of OPG and downregulation of C/enhancer-binding protein alpha and proliferator-activated receptor gamma for adipogenic differentiation. Furthermore, it decreased the levels of tumorigenic genes such as Rac1, MMP9, and interleukin 1β. In summary, this study demonstrates that although a HFD aggravates bone metastases associated with breast cancer, mechanical loading significantly protected tumor-invaded bone by regulating the fate of bone marrow-derived cells. The current study suggests that mechanical loading can provide a noninvasive, palliative option for alleviating breast cancer-associated bone metastasis, in particular for obese patients.
Collapse
Affiliation(s)
- Menglu Huang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hong Liu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Lei Zhu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomeng Song
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
7
|
Alsterda A, Asha K, Powrozek O, Repak M, Goswami S, Dunn AM, Memmel HC, Sharma-Walia N. Salubrinal Exposes Anticancer Properties in Inflammatory Breast Cancer Cells by Manipulating the Endoplasmic Reticulum Stress Pathway. Front Oncol 2021; 11:654940. [PMID: 34094947 PMCID: PMC8173155 DOI: 10.3389/fonc.2021.654940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) regulates protein folding, post-translational modifications, lipid synthesis, and calcium signaling to attenuate the accumulation of misfolded proteins causing ER stress and maintains cellular homeostasis. The tumor microenvironment is rich in soluble cytokines, chemokines, growth, and angiogenic factors and can drive the ER’s abnormal functioning in healthy cells. Cancer cells adapt well to the tumor microenvironment induced ER stress. We identified that the inflammatory breast cancer (IBC) cells abundantly express osteoprotegerin (OPG) and their tumor microenvironment is rich in OPG protein. OPG also called osteoclast differentiation factor/osteoclastogenesis inhibitory factor (OCIF) is a soluble decoy receptor for receptor activator of nuclear factor-kappa B ligand (RANKL). Employing mass spectrometry analysis, we identified a set of ER chaperones associated with OPG in IBC cell lysates (SUM149PT, SUM1315MO2) compared to healthy human mammary epithelial cells (HMEC). Proximity ligation assay (PLA) and immunoprecipitation assay validated the interaction between OPG and ER chaperone and master regulator of unfolded protein response (UPR) GRP78/BiP (glucose-regulated protein/Binding immunoglobulin protein). We detected remarkably high gene expression of CCAAT enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE1α), protein disulfide-isomerase (PDI), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4), X-box binding protein 1 (XBP-1) and growth arrest and DNA damage-inducible protein (GADD34) in SUM149PT and SUM190PT cells when compared to HMEC. Similarly, tissue sections of human IBC expressed high levels of ER stress proteins. We evaluated cell death and apoptosis upon Salubrinal and phenylbutyrate treatment in healthy and IBC cells by caspase-3 activity and cleaved poly (ADP-ribose) polymerase (PARP) protein assay. IBC (SUM149PT and SUM190PT) cells were chemosensitive to Salubrinal treatment, possibly via inhibition in OPG secretion, upregulating ATF4, and CHOP, thus ultimately driving caspase-3 mediated IBC cell death. Salubrinal treatment upregulated PDI, which connects ER stress to oxidative stress. We observed increased ROS production and reduced cell proliferation of Salubrinal treated IBC cells. Treatment with antioxidants could rescue IBC cells from ROS and aborted cell proliferation. Our findings implicate that manipulating ER stress with Salubrinal may provide a safer and tailored strategy to target the growth of inflammatory and aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Andrew Alsterda
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Kumari Asha
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Olivia Powrozek
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Miroslava Repak
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sudeshna Goswami
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
8
|
Li J, Li X, Liu D, Zhang S, Tan N, Yokota H, Zhang P. Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis 2020; 11:1069. [PMID: 33318479 PMCID: PMC7736876 DOI: 10.1038/s41419-020-03264-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder and frequently exacerbates in postmenopausal women. In NAFLD, the endoplasmic reticulum (ER) plays an important role in lipid metabolism, in which salubrinal is a selective inhibitor of eIF2α de-phosphorylation in response to ER stress. To determine the potential mechanism of obesity-induced NAFLD, we employed salubrinal and evaluated the effect of ER stress and autophagy on lipid metabolism. Ninety-five female C57BL/6 mice were randomly divided into five groups: standard chow diet, high-fat (HF) diet, HF with salubrinal, HF with ovariectomy, and HF with ovariectomy and salubrinal. All mice except for SC were given HF diet. After the 8-week obesity induction, salubrinal was subcutaneously injected for the next 8 weeks. The expression of ER stress and autophagy markers was evaluated in vivo and in vitro. Compared to the normal mice, the serum lipid level and adipose tissue were increased in obese mice, while salubrinal attenuated obesity by blocking lipid disorder. Also, the histological severity of hepatic steatosis and fibrosis in the liver and lipidosis was suppressed in response to salubrinal. Furthermore, salubrinal inhibited ER stress by increasing the expression of p-eIF2α and ATF4 with a decrease in the level of CHOP. It promoted autophagy by increasing LC3II/I and inhibiting p62. Correlation analysis indicated that lipogenesis in the development of NAFLD was associated with ER stress. Collectively, we demonstrated that eIF2α played a key role in obesity-induced NAFLD, and salubrinal alleviated hepatic steatosis and lipid metabolism by altering ER stress and autophagy through eIF2α signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Shiqi Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
9
|
Zheng W, Ding B, Li X, Liu D, Yokota H, Zhang P. Knee loading repairs osteoporotic osteoarthritis by relieving abnormal remodeling of subchondral bone via Wnt/β-catenin signaling. FASEB J 2020; 34:3399-3412. [PMID: 31925860 DOI: 10.1096/fj.201902117r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Osteoporotic osteoarthritis (OPOA) is a common bone disease mostly in the elderly, but the relationship between Osteoporotic (OP) and osteoarthritis (OA) is complex. It has been shown that knee loading can mitigate OA symptoms. However, its effects on OPOA remain unclear. In this study, we characterized pathological linkage of OP to OA, and evaluated the effect of knee loading on OPOA. We employed two mouse models (OA and OPOA), and conducted histology, cytology, and molecular analyses. In the OA and OPOA groups, articular cartilage was degenerated and Osteoarthritis Research Society International score was increased. Subchondral bone underwent abnormal remodeling, the differentiation of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts and chondrocytes was reduced, and migration and adhesion of pre-osteoclasts were enhanced. Compared to the OA group, the pathological changes of OA in the OPOA group were considerably aggravated. After knee loading, however, cartilage degradation was effectively prevented, and the abnormal remodeling of subchondral bone was significantly inhibited. The differentiation of BMSCs was also improved, and the expression of Wnt/β-catenin was elevated. Collectively, this study demonstrates that osteoporosis aggravates OA symptoms. Knee loading restores OPOA by regulating subchondral bone remodeling, and may provide an effective method for repairing OPOA.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Ding
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, USA.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Li J, Li X, Liu D, Hamamura K, Wan Q, Na S, Yokota H, Zhang P. eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice. Cell Death Dis 2019; 10:921. [PMID: 31801950 PMCID: PMC6892793 DOI: 10.1038/s41419-019-2159-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
Abstract
Bone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, 300070, Tianjin, China.
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, 300052, Tianjin, China.
| |
Collapse
|
11
|
Li X, Liu D, Li J, Yang S, Xu J, Yokota H, Zhang P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model. FASEB J 2019; 33:8913-8924. [PMID: 31017804 DOI: 10.1096/fj.201802711r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a major health problem, making bones fragile and susceptible to fracture. Previous works showed that mechanical loading stimulated bone formation and accelerated fracture healing. Focusing on the role of Wnt3a (wingless/integrated 3a), this study was aimed to assess effects of mechanical loading to the spine, using ovariectomized (OVX) mice as a model of osteoporosis. Two-week daily application of this novel loading (4 N, 10 Hz, 5 min/d) altered bone remodeling with an increase in Wnt3a. Spinal loading promoted osteoblast differentiation, endothelial progenitor cell migration, and tube formation and inhibited osteoclast formation, migration, and adhesion. A transient silencing of Wnt3a altered the observed loading effects. Spinal loading significantly increased bone mineral density, bone mineral content, and bone area per tissue area. The loaded OVX group showed a significant increase in the number of osteoblasts and reduction in osteoclast surface/bone surface. Though expression of osteoblastic genes was increased, the levels of osteoclastic genes were decreased by loading. Spinal loading elevated a microvascular volume as well as VEGF expression. Collectively, this study supports the notion that Wnt3a-mediated signaling involves in the effect of spinal loading on stimulating bone formation, inhibiting bone resorption, and promoting angiogenesis in OVX mice. It also suggests that Wnt3a might be a potential therapeutic target for osteoporosis treatment.-Li, X., Liu, D., Li, J., Yang, S., Xu, J., Yokota, H., Zhang, P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model.
Collapse
Affiliation(s)
- Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinfeng Xu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Wang L, Wang Y, Chen A, Jalali A, Liu S, Guo Y, Na S, Nakshatri H, Li BY, Yokota H. Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling. Int J Oncol 2018; 53:1001-1012. [PMID: 30015873 PMCID: PMC6065446 DOI: 10.3892/ijo.2018.4481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/14/2018] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy for suppressing tumor growth and metastasis tends to induce various effects on other organs. Using AZD7762, an inhibitor of checkpoint kinase (Chk) 1 and 2, the present study examined its effect on mammary tumor cells in addition to bone cells (osteoclasts, osteoblasts and osteocytes), using monolayer cell cultures and three-dimensional (3D) cell spheroids. The results revealed that AZD7762 blocked the proliferation of 4T1.2 mammary tumor cells and suppressed the development of RAW264.7 pre-osteoclast cells by downregulating nuclear factor of activated T cells cytoplasmic 1. AZD7762 also promoted the mineralization of MC3T3 osteoblast-like cells and 3D bio-printed bone constructs of MLO-A5 osteocyte spheroids. While a Chk1 inhibitor, PD407824, suppressed the proliferation of tumor cells and the differentiation of pre-osteoclasts, its effect on gene expression in osteoblasts was markedly different compared with AZD7762. Western blotting indicated that the stimulating effect of AZD7762 on osteoblast development was associated with the inhibition of Chk2 and the downregulation of cellular tumor antigen p53. The results of the present study indicated that in addition to acting as a tumor suppressor, AZD7762 may prevent bone loss by inhibiting osteoclastogenesis and stimulating osteoblast mineralization.
Collapse
Affiliation(s)
- Luqi Wang
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shengzhi Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yunxia Guo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hiroki Yokota
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
13
|
Kos O, Alexander C, Brandenburg K, Chen Z, Heini A, Heumann D, Khatri I, Mach JP, Rietschel ET, Terskikh A, Ulmer AJ, Waelli T, Yu K, Zähringer U, Gorczynski RM. Regulation of fetal hemoglobin expression during hematopoietic stem cell development and its importance in bone metabolism and osteoporosis. Int Immunopharmacol 2018; 57:112-120. [PMID: 29477972 DOI: 10.1016/j.intimp.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 11/19/2022]
Abstract
We have shown that an altered tissue redox environment in mice lacking either murine beta Hemoglobin major (HgbβmaKO) or minor (HgbβmiKO) regulates inflammation. The REDOX environment in marrow stem cell niches also control differentiation pathways. We investigated osteoclastogenesis (OC)/osteoblastogenesis (OB), in bone cultures derived from untreated or FSLE-treated WT, HgbβmaKO or HgbβmiKO mice. Marrow mesenchymal cells from 10d pre-cultures were incubated on an osteogenic matrix for 21d prior to analysis of inflammatory cytokine release into culture supernatants, and relative OC:OB using (TRAP:BSP, RANKL:OPG) mRNA expression ratios and TRAP or Von Kossa staining. Cells from WT and HgbβmaKO mice show decreased IL-1β,TNFα and IL-6 production and enhanced osteoblastogenesis with altered mRNA expression ratios and increased bone nodules (Von Kossa staining) in vitro after in vivo stimulation of mRNA expression of fetal Hgb genes (Hgbε and Hgbβmi) by a fetal liver extract (FSLE). Marrow from HgbβmiKO showed enhanced cytokine release and preferential enhanced osteoclastogenesis relative to similar cells from WT or HgbβmaKO mice, with no increased osteoblastogenesis after mouse treatment with FSLE. Pre-treatment of WT or HgbβmaKO, but not HgbβmiKO mice, with other molecules (rapamycin; hydroxyurea) which increase expression of fetal Hgb genes also augmented osteoblastogenesis and decreased cytokine production in cells differentiating in vitro. Infusion of rabbit anti- Hgbε or anti- Hgbβmi, but not anti-Hgbα or anti- Hgbβma into WT mice from day 13 gestation for 3 weeks led to attenuated osteoblastogenesis in cultured cells. We conclude that increased fetal hemoglobin expression, or use of agents which improve fetal hemoglobin expression, increases osteoblast bone differentiation in association with decreased inflammatory cytokine release.
Collapse
Affiliation(s)
- O Kos
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - C Alexander
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - K Brandenburg
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Z Chen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - A Heini
- Clinique La Prairie, Clarens-Montreux, Switzerland
| | - D Heumann
- Clinique La Prairie, Clarens-Montreux, Switzerland
| | - I Khatri
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - J P Mach
- Department of Biochemistry, University of Lausanne, Switzerland
| | | | - A Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - A J Ulmer
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - T Waelli
- Clinique La Prairie, Clarens-Montreux, Switzerland
| | - K Yu
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - U Zähringer
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - R M Gorczynski
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Abstract
Glucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Amy Y Sato
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Munro Peacock
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| |
Collapse
|
15
|
Liu D, Zhang Y, Li X, Li J, Yang S, Xing X, Fan G, Yokota H, Zhang P. eIF2α signaling regulates ischemic osteonecrosis through endoplasmic reticulum stress. Sci Rep 2017; 7:5062. [PMID: 28698612 PMCID: PMC5505953 DOI: 10.1038/s41598-017-05488-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) primarily results from ischemia/hypoxia to the femoral head, and one of the cellular manifestations is the endoplasmic reticulum (ER) stress. To understand possible linkage of ischemic osteonecrosis to the ER stress, a surgery-induced animal model was employed and salubrinal was administered to evaluate the role of ER stress. Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eIF2α, and it can suppress cell death from the ER stress at a proper dose. The results indicated that the ER stress was associated with ONFH and salubrinal significantly improved ONFH-induced symptoms such as osteonecrosis, bone loss, reduction in vessel perfusion, and excessive osteoclastogenesis in the femoral head. Salubrinal also protected osteoblast development by upregulating the levels of ATF4, ALP and RUNX2, and it stimulated angiogenesis of endothelial cells through elevating ATF4 and VEGF. Collectively, the results support the notion that the ER stress is an important pathological outcome in the surgery-induced ONFH model, and salubrinal improves ONFH symptoms by enhancing angiogenesis and bone healing via suppressing the ER stress.
Collapse
Affiliation(s)
- Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China
| | - Yunlong Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Xing
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300457, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Li J, Yang S, Li X, Liu D, Wang Z, Guo J, Tan N, Gao Z, Zhao X, Zhang J, Gou F, Yokota H, Zhang P. Role of endoplasmic reticulum stress in disuse osteoporosis. Bone 2017; 97:2-14. [PMID: 27989543 DOI: 10.1016/j.bone.2016.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a major skeletal disease with low bone mineral density, which leads to an increased risk of bone fracture. Salubrinal is a synthetic chemical that inhibits dephosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) in response to endoplasmic reticulum (ER) stress. To understand possible linkage of osteoporosis to ER stress, we employed an unloading mouse model and examined the effects of salubrinal in the pathogenesis of disuse osteoporosis. The results presented several lines of evidence that osteoclastogenesis in the development of osteoporosis was associated with ER stress, and salubrinal suppressed unloading-induced bone loss. Compared to the age-matched control, unloaded mice reduced the trabecular bone area/total area (B.Ar/T.Ar) as well as the number of osteoblasts, and they increased the osteoclasts number on the trabecular bone surface in a time-dependent way. Unloading-induced disuse osteoporosis significantly increased the expression of Bip, p-eIF2α and ATF4 in short-term within 6h of tail suspension, but time-dependent decreased in HU2d to HU14d. Furthermore, a significant correlation of ER stress with the differentiation of osteoblasts and osteoclasts was observed. Administration of salubrinal suppressed the unloading-induced decrease in bone mineral density, B.Ar/T.Ar and mature osteoclast formation. Salubrinal also increased the colony-forming unit-fibroblasts and colony-forming unit-osteoblasts. It reduced the formation of mature osteoclasts, suppressed their migration and adhesion, and increased the expression of Bip, p-eIF2α and ATF4. Electron microscopy showed that rough endoplasmic reticulum expansion and a decreased number of ribosomes on ER membrane were observed in osteoblast of unloading mice, and the abnormal ER expansion was significantly improved by salubrinal treatment. A TUNEL assay together with CCAAT/enhancer binding protein homologous protein (CHOP) expression indicated that ER stress-induced osteoblast apoptosis was rescued by salubrinal. Collectively, the results support the notion that ER stress plays a key role in the pathogenesis of disuse osteoporosis, and salubrinal attenuates unloading-induced bone loss by altering proliferation and differentiation of osteoblasts and osteoclasts via eIF2α signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zhaonan Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jialu Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Gao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Zhao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiuguo Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fanglin Gou
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Chen S, Sun C, Gu H, Wang H, Li S, Ma Y, Wang J. Salubrinal protects against Clostridium difficile toxin B-induced CT26 cell death. Acta Biochim Biophys Sin (Shanghai) 2017; 49:228-237. [PMID: 28119311 DOI: 10.1093/abbs/gmw139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (C. difficile) is considered to be the major cause of the antibiotic-associated diarrhea and pseudomembranous colitis in animals and humans. The prevalence of C. difficile infections (CDI) has been increasing since 2000. Two exotoxins of C. difficile, Toxin A (TcdA) and Toxin B (TcdB), are the main virulence factors of CDI, which can induce glucosylation of Rho GTPases in host cytosol, leading to cell morphological changes, cell apoptosis, and cell death. The mechanism of TcdB-induced cell death has been investigated for decades, but it is still not completely understood. It has been reported that TcdB induces endoplasmic reticulum stress via PERK-eIF2α signaling pathway in CT26 cell line (BALB/C mouse colon tumor cells). In this study, we found that salubrinal, a selective inhibitor of eIF2α dephosphorylation, efficiently protects CT26 cell line against TcdB-induced cell death and tried to explore the mechanism underlying in this protective effect. Our results demonstrated that salubrinal protects CT26 cells from TcdB-mediated cytotoxic and cytopathic effect, inhibits apoptosis and death of the toxin-exposed cells via caspase-9-dependent pathway, eIF2α signaling pathway, and autophagy. These findings will be helpful for the development of CDI therapies.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Huawei Gu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Takigawa S, Frondorf B, Liu S, Liu Y, Li B, Sudo A, Wallace JM, Yokota H, Hamamura K. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice. J Pharmacol Sci 2016; 132:154-161. [PMID: 27743814 DOI: 10.1016/j.jphs.2016.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/17/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
Salubrinal is an agent that reduces the stress to the endoplasmic reticulum by inhibiting de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). We and others have previously shown that the elevated phosphorylation of eIF2α stimulates bone formation and attenuates bone resorption. In this study, we applied salubrinal to a mouse model of osteogenesis imperfecta (Oim), and examined whether it would improve Oim's mechanical property. We conducted in vitro experiments using RAW264.7 pre-osteoclasts and bone marrow derived cells (BMDCs), and performed in vivo administration of salubrinal to Oim (+/-) mice. The animal study included two control groups (wildtype and Oim placebo). The result revealed that salubrinal decreased expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and suppressed osteoclast maturation, and it stimulated mineralization of mesenchymal stem cells from BMDCs. Furthermore, daily injection of salubrinal at 2 mg/kg for 2 months made stiffness (N/mm) and elastic module (GPa) of the femur undistinguishable to those of the wildtype control. Collectively, this study supported salubrinal's beneficial role to Oim's femora. Unlike bisphosphonates, salubrinal stimulates bone formation. For juvenile OI patients who may favor strengthening bone without inactivating bone remodeling, salubrinal may present a novel therapeutic option.
Collapse
Affiliation(s)
- Shinya Takigawa
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Brian Frondorf
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Baiyan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.
| |
Collapse
|
19
|
Horiuchi K, Tohmonda T, Morioka H. The unfolded protein response in skeletal development and homeostasis. Cell Mol Life Sci 2016; 73:2851-69. [PMID: 27002737 PMCID: PMC11108572 DOI: 10.1007/s00018-016-2178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts and chondrocytes produce a large number of extracellular matrix proteins to generate and maintain the skeletal system. To cope with their functions as secretory cells, these cells must acquire a considerable capacity for protein synthesis and also the machinery for the quality-control and transport of newly synthesized secreted proteins. The unfolded protein response (UPR) plays a crucial role during the differentiation of these cells to achieve this goal. Unexpectedly, however, studies in the past several years have revealed that the UPR has more extensive functions in skeletal development than was initially assumed, and the UPR critically orchestrates many facets of skeletal development and homeostasis. This review focuses on recent findings on the functions of the UPR in the differentiation of osteoblasts, chondrocytes, and osteoclasts. These findings may have a substantial impact on our understanding of bone metabolism and also on establishing treatments for congenital and acquired skeletal disorders.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takahide Tohmonda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
20
|
Nakajima S, Chi Y, Gao K, Kono K, Yao J. eIF2α-Independent Inhibition of TNF-α-Triggered NF-κB Activation by Salubrinal. Biol Pharm Bull 2016; 38:1368-74. [PMID: 26328492 DOI: 10.1248/bpb.b15-00312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salubrinal is a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2α (eIF2α). In previous reports, salubrinal was shown to have the potential to inhibit the activation of nuclear factor-κB (NF-κB) by several stimuli. However, the effects of salubrinal on NF-κB signaling are largely unknown. In this study, we investigated whether and how salubrinal affects NF-κB activation induced by tumor necrosis factor (TNF)-α and interleukin (IL)-1β. We found that salubrinal selectively blocked TNF-α- but not IL-1β-induced activation of NF-κB. This inhibitory effect occurred upstream of transforming growth factor (TGF)-β-activated kinase 1 (TAK1). Further experiments revealed that salubrinal blocked TNF-α-triggered NF-κB activation independent of its action on eIF2α because knockdown of eIF2α by small interfering RNA (siRNA) did not reverse the inhibitory effect of salubrinal on NF-κB. Moreover, guanabenz, a selective inhibitor of the regulatory subunit of protein phosphatase (PP) 1, also preferentially inhibited TNF-α-triggered activation of NF-κB. These findings raise the possibility that salubrinal may selectively block TNF-α-triggered activation of the NF-κB pathway through inhibition of the PP1 complex.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | |
Collapse
|
21
|
Wen J, Jiang Y, Zhang C, Chen S, Li H. The Protective Effects of Salubrinal on the Cartilage and Subchondral Bone of the Temporomandibular Joint under Various Compressive Mechanical Stimulations. PLoS One 2016; 11:e0155514. [PMID: 27196267 PMCID: PMC4873203 DOI: 10.1371/journal.pone.0155514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/30/2016] [Indexed: 11/19/2022] Open
Abstract
Excessive mechanical loads on the temporomandibular joint (TMJ) can cause mandibular cartilage degradation and subchondral bone erosion, but the treatment of these conditions remains challenging. Salubrinal, which target eukaryotic translation initiation factor 2 alpha, has been shown to have multiple beneficial effects on skeletal tissue. Here, we examined the effect of a Salubrinal injection on the mandibular cartilage and subchondral bone of the TMJ under various compressive stresses. We conducted in vivo analyses in rat models using various compressive stresses (40 g and 80 g), and we observed time-related degeneration and pathological changes in the cartilage and subchondral bone of the TMJ at days 1, 3 and 7 through histological measurements, subcellular observation, and changes in proliferation and apoptosis. After the Salubrinal injection, the thickness of the cartilage recovered, and the pathological change was alleviated. In the Salubrinal/light (Sal/light) compressive stress group, the drug altered the proliferation and apoptosis of chondrocytes most significantly at day 1. In the Salubrinal/heavy (Sal/heavy) compressive stress group, the drug increased the proliferation of chondrocytes most significantly at day 1 and reduced the apoptosis of chondrocytes most significantly at day 7. Salubrinal also increased the area of the bone trabeculae and suppressed inflammatory responses and pathological change in the subchondral bone of the TMJ. Together, these results indicate that the administration of Salubrinal reduces apoptosis and strengthens the proliferation of chondrocyte to varying degrees at days 1, 3 and 7 under various compressive mechanical stresses, both of which contribute to the recovery of cartilage thickness and the alleviation of pathological change. Salubrinal also suppresses inflammatory responses and pathological change in the subchondral bone of the TMJ.
Collapse
Affiliation(s)
- Juan Wen
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuanyuan Jiang
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Caixia Zhang
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Sheng Chen
- Pathological Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
- * E-mail:
| |
Collapse
|
22
|
Guanabenz Downregulates Inflammatory Responses via eIF2α Dependent and Independent Signaling. Int J Mol Sci 2016; 17:ijms17050674. [PMID: 27164082 PMCID: PMC4881500 DOI: 10.3390/ijms17050674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022] Open
Abstract
Integrated stress responses (ISR) may lead to cell death and tissue degeneration via eukaryotic translation initiation factor 2 α (eIF2α)-mediated signaling. Alleviating ISR by modulating eIF2α phosphorylation can reduce the symptoms associated with various diseases. Guanabenz is known to elevate the phosphorylation level of eIF2α and reduce pro-inflammatory responses. However, the mechanism of its action is not well understood. In this study, we investigated the signaling pathway through which guanabenz induces anti-inflammatory effects in immune cells, in particular macrophages. Genome-wide mRNA profiling followed by principal component analysis predicted that colony stimulating factor 2 (Csf2, or GM-CSF as granulocyte macrophage colony stimulating factor) is involved in the responses to guanabenz. A partial silencing of Csf2 or eIF2α by RNA interference revealed that Interleukin-6 (IL6), Csf2, and Cyclooxygenase-2 (Cox2) are downregulated by guanabenz-driven phosphorylation of eIF2α. Although expression of IL1β and Tumor Necrosis Factor-α (TNFα) was suppressed by guanabenz, their downregulation was not directly mediated by eIF2α signaling. Collectively, the result herein indicates that anti-inflammatory effects by guanabenz are mediated by not only eIF2α-dependent but also eIF2α-independent signaling.
Collapse
|
23
|
Li X, Yang J, Liu D, Li J, Niu K, Feng S, Yokota H, Zhang P. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis. Sci Rep 2016; 6:24668. [PMID: 27087498 PMCID: PMC4834538 DOI: 10.1038/srep24668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/04/2016] [Indexed: 11/08/2022] Open
Abstract
Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients.
Collapse
Affiliation(s)
- Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
- TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China
| |
Collapse
|
24
|
Liu D, Li X, Li J, Yang J, Yokota H, Zhang P. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing. Bone 2015; 81:620-631. [PMID: 26416150 PMCID: PMC4641018 DOI: 10.1016/j.bone.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023]
Abstract
Osteonecrosis of the femoral head is a serious orthopedic problem. Moderate loads with knee loading promote bone formation, but their effects on osteonecrosis have not been investigated. Using a rat model, we examined a hypothesis that knee loading enhances vessel remodeling and bone healing through the modulation of the fate of bone marrow-derived cells. In this study, osteonecrosis was induced by transecting the ligamentum teres followed by a tight ligature around the femoral neck. For knee loading, 5 N loads were laterally applied to the knee at 15 Hz for 5 min/day for 5 weeks. Changes in bone mineral density (BMD) and bone mineral content (BMC) of the femur were measured by pDEXA, and ink infusion was performed to evaluate vessel remodeling. Femoral heads were harvested for histomorphometry, and bone marrow-derived cells were isolated to examine osteoclast development and osteoblast differentiation. The results showed that osteonecrosis significantly induced bone loss, and knee loading stimulated both vessel remodeling and bone healing. The osteonecrosis group exhibited the lowest trabecular BV/TV (p b 0.001) in the femoral head, and lowest femoral BMD and BMC (both p b 0.01). However, knee loading increased trabecular BV/TV (p b 0.05) as well as BMD (pb 0.05) and BMC (p b 0.01). Osteonecrosis decreased the vessel volume (pb 0.001), vessel number (pb 0.001) and VEGF expression (p b 0.01), and knee loading increased them (pb 0.001, pb 0.001 and p b 0.01). Osteonecrosis activated osteoclast development, and knee loading reduced its formation, migration, adhesion and the level of “pit” formation (pb 0.001, pb 0.01, pb 0.001 and pb 0.001). Furthermore, knee loading significantly increased osteoblast differentiation and CFU-F (both p b 0.001). A significantly positive correlation was observed between vessel remodeling and bone healing (both p b 0.01). These results indicate that knee loading could be effective in repair osteonecrosis of the femoral head in a rat model. This effect might be attributed to promoting vessel remodeling, suppressing osteoclast development, and increasing osteoblast and fibroblast differentiation. In summary, the current study suggests that knee loading might potentially be employed as a non-invasive therapy for osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
25
|
Hamamura K, Nishimura A, Iino T, Takigawa S, Sudo A, Yokota H. Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis. Bone Joint Res 2015; 4:84-92. [PMID: 25977571 PMCID: PMC4443296 DOI: 10.1302/2046-3758.45.2000378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA). METHODS OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O. RESULTS Salubrinal suppressed the progression of OA by downregulating p-NFκB p65 and MMP13. Although Guanabenz elevates the phosphorylation level of eIF2α, it did not suppress the progression of OA. CONCLUSIONS Administration of Salubrinal has chondroprotective effects in arthritic joints. Salubrinal can be considered as a potential therapeutic agent for alleviating symptoms of OA. Cite this article: Bone Joint Res 2015;4:84-92.
Collapse
Affiliation(s)
- K Hamamura
- Indiana University, Purdue University, Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - A Nishimura
- Indiana University, Purdue University, Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202, USA. Mie University Graduate School of Medicine, Mie 514, Japan
| | - T Iino
- Mie University Graduate School of Medicine, Mie 514, Japan
| | - S Takigawa
- Indiana University, Purdue University, Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - A Sudo
- Mie University Graduate School of Medicine, Mie 514, Japan
| | - H Yokota
- Indiana University, Purdue University, Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202, USA
| |
Collapse
|
26
|
Sato AY, Tu X, McAndrews KA, Plotkin LI, Bellido T. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone 2015; 73:60-8. [PMID: 25532480 PMCID: PMC4336847 DOI: 10.1016/j.bone.2014.12.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 01/24/2023]
Abstract
Endoplasmic reticulum (ER) stress is associated with increased reactive oxygen species (ROS), results from accumulation of misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits protein translation allowing the ER to recover, thus promoting cell viability. We investigated whether osteoblastic cell apoptosis induced by glucocorticoids (GCs) is due to induction of ROS/ER stress and whether inhibition of eIF2α dephosphorylation promotes survival opposing the deleterious effects of GC in vitro and in vivo. Apoptosis of osteocytic MLO-Y4 and osteoblastic OB-6 cells induced by dexamethasone was abolished by ROS inhibitors. Like GC, the ER stress inducing agents brefeldin A and tunicamycin induced osteoblastic cell apoptosis. Salubrinal or guanabenz, specific inhibitors of eIF2α dephosphorylation, blocked apoptosis induced by either GC or ER stress inducers. Moreover, GC markedly decreased mineralization in OB-6 cells or primary osteoblasts; and salubrinal or guanabenz increased mineralization and prevented the inhibitory effect of GC. Furthermore, salubrinal (1 mg/kg/day) abolished osteoblast and osteocyte apoptosis in cancellous and cortical bone and partially prevented the loss of BMD at all sites and the decreased vertebral cancellous bone formation induced by treatment with prednisolone for 28 days (1.4 mg/kg/day). We conclude that part of the pro-apoptotic actions of GC on osteoblastic cells is mediated through ER stress, and that inhibition of eIF2α dephosphorylation protects from GC-induced apoptosis of osteoblasts and osteocytes in vitro and in vivo and from the deleterious effects of GC on the skeleton.
Collapse
Affiliation(s)
- Amy Y Sato
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaolin Tu
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin A McAndrews
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Hamamura K, Chen A, Yokota H. Enhancement of osteoblastogenesis and suppression of osteoclastogenesis by inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha. ACTA ACUST UNITED AC 2015; 2. [PMID: 26005701 DOI: 10.14800/rci.493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) is activated in response to various stresses such as viral infection, nutrient deprivation, and stress to the endoplasmic reticulum. Severe stress to the endoplasmic reticulum, for instance, induces an apoptotic pathway, while mild stress, on the contrary, leads to a pro-survival pathway. Little has been known about the elaborate role of eIF2α phosphorylation in the development of bone-forming osteoblasts and bone-resorbing osteoclasts. Using salubrinal and guanabenz as inhibitors of the de-phosphorylation of eIF2α, we have recently reported that the phosphorylation of eIF2α significantly alters fates of both osteoblasts and osteoclasts. Based on our recent findings, we review in this research highlight the potential mechanisms of the enhancement of osteoblastogenesis and the suppression of osteoclastogenesis through the elevated level of phosphorylated eIF2α.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA ; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
28
|
Hamamura K, Nishimura A, Chen A, Takigawa S, Sudo A, Yokota H. Salubrinal acts as a Dusp2 inhibitor and suppresses inflammation in anti-collagen antibody-induced arthritis. Cell Signal 2015; 27:828-35. [PMID: 25619567 PMCID: PMC4339503 DOI: 10.1016/j.cellsig.2015.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/17/2015] [Indexed: 01/23/2023]
Abstract
Dual-specificity phosphatase 2 (Dusp2; also called phosphatase of activated cells 1, PAC1) is highly expressed in activated immune cells. We examined whether a potential inhibitor of Dusp2, salubrinal, prevents inflammatory cytokine expression in immune cells and arthritic responses in a mouse model of anti-collagen antibody-induced arthritis (CAIA). Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, we examined the effects of salubrinal on expression of inflammation linked genes as well as a family of DUSP genes using genome-wide microarrays, qPCR, and RNA interference. We also evaluated the effects of salubrinal on arthritic responses in CAIA mice using clinical and histological scores. The results revealed that salubrinal decreased inflammatory gene expression in macrophages, T lymphocytes, and mast cells. Dusp2 was suppressed by salubrinal in LPS-activated macrophages as well as PMA/ionomycin-activated T lymphocytes and mast cells. Furthermore, a partial silencing of Dusp2 downregulated IL1β and Cox2, and the inflammatory signs of CAIA mice were significantly suppressed by salubrinal. Collectively, this study presents a novel therapeutic possibility of salubrinal for inflammatory arthritis such as RA through inhibition of Dusp2.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Akinobu Nishimura
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie 514, Japan
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shinya Takigawa
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie 514, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie 514, Japan
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Hamamura K, Chen A, Tanjung N, Takigawa S, Sudo A, Yokota H. In vitro and in silico analysis of an inhibitory mechanism of osteoclastogenesis by salubrinal and guanabenz. Cell Signal 2014; 27:353-62. [PMID: 25435425 DOI: 10.1016/j.cellsig.2014.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023]
Abstract
Inactivating bone-resorbing osteoclasts is a prime therapeutic strategy for the prevention of bone loss in patients with osteopenia and osteoporosis. Synthetic agents such as salubrinal and guanabenz, which attenuate stress to the endoplasmic reticulum, are reported to inhibit development of osteoclasts. However, the mechanism of their inhibitory action on osteoclasts is largely unknown. Using genome-wide expression profiles, we predicted key transcription factors that downregulated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a master transcription factor for osteoclastogenesis. Principal component analysis (PCA) predicted a list of transcription factors that were potentially responsible for reversing receptor activator of nuclear factor kappa-B ligand (RANKL)-driven stimulation of osteoclastogenesis. A partial silencing of NFATc1 allowed a selection of transcription factors that were likely to be located upstream of NFATc1. We validated the predicted transcription factors by focusing on two AP-1 transcription factors (c-Fos and JunB) using RAW264.7 pre-osteoclasts as well as primary bone marrow cells. As predicted, their mRNA and protein levels were elevated by RANKL, and the elevation was suppressed by salubrinal and guanabenz. A partial silencing of c-Fos or JunB by RNA interference decreased NFATc1 as well as tartrate-resistant acid phosphatase (TRAP) mRNA. Collectively, a systems-biology approach allows the prediction of a RANKL-salubrinal/guanabenz-NFATc1 regulatory axis, and in vitro assays validate an involvement of AP-1 transcription factors in suppression of osteoclastogenesis.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Nancy Tanjung
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shinya Takigawa
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie 514, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie 514, Japan
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|