1
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Rousseau JC, Chapurlat R, Garnero P. Soluble biological markers in osteoarthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211040300. [PMID: 34616494 PMCID: PMC8488516 DOI: 10.1177/1759720x211040300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, markers research has focused on the structural components of cartilage matrix. Specifically, a second generation of degradation markers has been developed against type II collagen neoepitopes generated by specific enzymes. A particular effort has been made to measure the degradation of minor collagens III and X of the cartilage matrix. However, because clinical data, including longitudinal controlled studies, are very scarce, it remains unclear whether they will be useful as an alternative to or in combination with current more established collagen biological markers to assess patients with osteoarthritis (OA). In addition, new approaches using high-throughput technologies allowed to detect new types of markers and improve the knowledge about the metabolic changes linked to OA. The relative advances coming from phenotype research are a first attempt to classify the heterogeneity of OA, and several markers could improve the phenotype characterization. These phenotypes could improve the selection of patients in clinical trials limiting the size of the studies by selecting patients with OA characteristics corresponding to the metabolic pathway targeted by the molecules evaluated. In addition, the inclusion of rapid progressors only in clinical trials would facilitate the demonstration of efficacy of the investigative drug to reduce joint degradation. The combination of selective biochemical markers appears as a promising and cost-effective approach to fulfill this unmet clinical need. Among the various potential roles of biomarkers in OA, their ability to monitor drug efficacy is probably one of the most important, in association with clinical and imaging parameters. Biochemical markers have the unique property to detect changes in joint tissue metabolism within a few weeks.
Collapse
Affiliation(s)
- Jean-Charles Rousseau
- INSERM Unit 1033, Pavillon F, Hôpital E. Herriot, 5 Place d’Arsonval, 69437 Lyon Cedex 03, France
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM 1033, Lyon, France
| | - Roland Chapurlat
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
- Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - Patrick Garnero
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
| |
Collapse
|
3
|
Ozols M, Eckersley A, Platt CI, Stewart-McGuinness C, Hibbert SA, Revote J, Li F, Griffiths CEM, Watson REB, Song J, Bell M, Sherratt MJ. Predicting Proteolysis in Complex Proteomes Using Deep Learning. Int J Mol Sci 2021; 22:3071. [PMID: 33803033 PMCID: PMC8002881 DOI: 10.3390/ijms22063071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be key effectors of tissue remodeling. We have previously shown that comparison of amino acid composition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting protein susceptibility to endogenous proteases remains challenging. Here, we aim to develop bioinformatics tools to (i) predict cleavage site locations (and hence putative protein susceptibilities) and (ii) compare the predicted vulnerabilities of skin proteins to protease- and ROS-mediated proteolysis. The first goal of this study was to experimentally evaluate the ability of existing protease cleavage site prediction models (PROSPER and DeepCleave) to identify experimentally determined MMP9 cleavage sites in two purified proteins and in a complex human dermal fibroblast-derived extracellular matrix (ECM) proteome. We subsequently developed deep bidirectional recurrent neural network (BRNN) models to predict cleavage sites for 14 tissue proteases. The predictions of the new models were tested against experimental datasets and combined with amino acid composition analysis (to predict ultraviolet radiation (UVR)/ROS susceptibility) in a new web app: the Manchester proteome susceptibility calculator (MPSC). The BRNN models performed better in predicting cleavage sites in native dermal ECM proteins than existing models (DeepCleave and PROSPER), and application of MPSC to the skin proteome suggests that: compared with the elastic fiber network, fibrillar collagens may be susceptible primarily to protease-mediated proteolysis. We also identify additional putative targets of oxidative damage (dermatopontin, fibulins and defensins) and protease action (laminins and nidogen). MPSC has the potential to identify potential targets of proteolysis in disparate tissues and disease states.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Christopher I. Platt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Callum Stewart-McGuinness
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Sarah A. Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Jerico Revote
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3800, Australia;
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Mike Bell
- Research and Development, Walgreens Boots Alliance, Thane Road, Nottingham NG90 1BS, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| |
Collapse
|
4
|
Abdel-Magiud EM, Taha EA, Bakr RM, Ismail SA, Sayed SK, Makboul M, Kamel-ElSayed S, Abdel Motaleb AA. Effects of different therapeutic modalities for postacne scars on circulating collagen III. J Cosmet Dermatol 2019; 19:1517-1521. [PMID: 31638311 DOI: 10.1111/jocd.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Therapies for postacne scarring act through modulation of elastin and collagen, and collagen III might therefore represent a biomarker of treatment effectiveness. PATIENTS AND METHODS Patients (n = 70) with postacne scars and individuals without scars (n = 56) were included in this case-control study. Patients were treated with Dermaroller microneedling, trichloroacetic acid chemical reconstruction, punch excision, or scar subcision. Scar severity was graded immediately before and after treatment with a photographic quartile scale and the ECCA scale. Serum levels of collagen III were measured in control individuals and in patients, before treatment, 1 month after the first treatment session, and 4 months after the final session. RESULTS Circulating levels of collagen III were significantly higher in patients with postacne scarring (24.1 ± 12.5) before treatment than in control individuals (2.6 ± 0.8). Circulating levels of collagen in patients were significantly lower 4 months posttreatment (14.3 ± 8.1) than at baseline. The mean percentage change in serum collagen III was positively correlated with both the mean percentage improvement by photographic evaluation (r = .530, P < .000) and the mean percentage change in the ECCA scale (r = .632, P < .000). CONCLUSION Circulating collagen III is a biomarker for improvement of postacne scarring following different therapies.
Collapse
Affiliation(s)
- Ensaf M Abdel-Magiud
- Department of Dermatology, Venereology and Andrology, Assiut University, Assiut, Egypt
| | - Emad A Taha
- Department of Dermatology, Venereology and Andrology, Assiut University, Assiut, Egypt
| | - Radwa M Bakr
- Department of Dermatology, Venereology and Andrology, Assiut University, Assiut, Egypt
| | - Sahar A Ismail
- Department of Dermatology, Venereology and Andrology, Assiut University, Assiut, Egypt
| | - Sohair K Sayed
- Department of Clinical Pathology, Assiut University, Assiut, Egypt
| | - Mohamed Makboul
- Department of Plastic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Suzan Kamel-ElSayed
- Foundational Medical Studies, Oakland University William Beaumont School of Medicine (OUWB School of Medicine), Auburn Hills, MI, USA
| | - Amira A Abdel Motaleb
- Department of Dermatology, Venereology and Andrology, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Effect of heartworm disease and heartworm-associated respiratory disease (HARD) on the right ventricle of cats. Parasit Vectors 2017; 10:492. [PMID: 29143659 PMCID: PMC5688429 DOI: 10.1186/s13071-017-2451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Dirofilaria immitis infection occurs in dogs and cats, both of which species are clinically affected by mature adult infections. Cats are uniquely affected by immature-adult infections with an inflammatory pulmonary disease called Heartworm-Associated Respiratory Disease (HARD). D. immitis infection causes pulmonary parenchymal and vascular pathology in the dog and cat. Dogs develop pulmonary hypertension and cor pulmonale, whereas the development of pulmonary hypertension is rare in the cat. D. immitis infection in the dog causes alteration of the right ventricular (RV) extracellular matrix, including a decrease in myocardial collagen. In this study, the RV myocardial changes of cats infected with adult and immature-adult D. immitis were assessed. Methods The cardiopulmonary systems of six groups of SPF cats (n = 9-10 per group) were examined 8 or 18 months after infection with L3 D. immitis. Two groups were untreated and allowed to develop adult HW; two groups were treated with ivermectin starting 3 months post infection, thus allowing HARD but no mature adult heartworms; and two groups were treated with selamectin beginning 1 month post infection, preventing development of L5 or adult heartworms. A group of specific pathogen free (SPF) normal cats was utilized as a negative control (n = 12). Lung pathologic lesions were objectively assessed, and both RV and left ventricular (LV) weights were obtained to calculate an RV/LV ratio. Intramural RV myocardial collagen content was quantitatively assessed. Results RV/LV weight ratios were not different between groups. Negative control cats had significantly greater RV collagen content than all other affected groups (P = 0.032). Analysis of the RV/LV ratios and collagen content revealed no significant relationship (r = 0.03, P = 0.723, respectively). Collagen content had a modest, but significant, negative correlation, however, with both pulmonary vascular pathology (r = −0.25, P = 0.032) as well as the total pulmonary parenchymal and vascular pathology (r = −0.26, P = 0.025). Conclusions Cats infected with mature and immature D. immitis did not develop RV hypertrophy but did demonstrate loss of RV myocardial collagen content. The collagen loss was present at 8 and 18 months after infection in all infected cats. This loss of RV myocardial collagen was correlated with the severity of pulmonary parenchymal and vascular pathology.
Collapse
|
6
|
Role of the microRNA-29 family in fibrotic skin diseases. Biomed Rep 2017; 6:599-604. [PMID: 28584629 DOI: 10.3892/br.2017.900] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Fibrotic skin diseases are characterized by the accumulation of collagen. The hallmarks of fibrotic skin diseases are unbalanced fibroblast proliferation and differentiation, extracellular matrix production and transforming growth factor-β signalling. Numerous studies have investigated the possibility that microRNAs (miRNAs or miRs) are involved in the pathogenesis of certain fibrotic diseases, including skin, heart, lung and liver diseases. miRNAs are a class of small non-coding RNAs, which modify gene expression by binding to target messenger RNA (mRNA) and blocking the translation or inducing the degradation of target mRNA. The biological relevance of miRNAs has been investigated in physiological and pathological conditions, and there is increasing evidence that the miR-29 family is associated with fibrotic diseases. The aim of the present review is to provide an up-to-date summary of current knowledge on the latest developments associated with the miR-29 family and fibrotic skin diseases.
Collapse
|
7
|
Liu CL, Santos MM, Fernandes C, Liao M, Iamarene K, Zhang JY, Sukhova GK, Shi GP. Toll-like receptor 7 deficiency protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Sci Rep 2017; 7:847. [PMID: 28405010 PMCID: PMC5429799 DOI: 10.1038/s41598-017-00977-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 7 (TLR7) mediates autoantigen and viral RNA-induced cytokine production. Increased TLR7 expression in human atherosclerotic lesions suggests its involvement in atherogenesis. Here we demonstrated TLR7 expression in macrophages, smooth muscle cells (SMCs), and endothelial cells from mouse atherosclerotic lesions. To test a direct participation of TLR7 in atherosclerosis, we crossbred TLR7-deficient (Tlr7 -/-) mice with apolipoprotein E-deficient (Apoe -/-) mice and produced Apoe -/- Tlr7 -/- and Apoe -/- Tlr7 +/+ littermates, followed by feeding them an atherogenic diet to produce atherosclerosis. Compared to Apoe -/- Tlr7 +/+ mice, Apoe -/- Tlr7 -/- mice showed reduced aortic arch and sinus lesion areas. Reduced atherosclerosis in Apoe -/- Tlr7 -/- mice did not affect lesion macrophage-positive area and CD4+ T-cell number per lesion area, but reduced lesion expression of inflammatory markers major histocompatibility complex-class II and IL6, lesion matrix-degrading proteases cathepsin S and matrix metalloproteinase-9, and systemic serum amyloid A levels. TLR7 deficiency also reduced aortic arch SMC loss and lesion intima and media cell apoptosis. However, TLR7 deficiency did not affect aortic wall elastin fragmentation and collagen contents, or plasma lipoproteins. Therefore, TLR7 contributes to atherogenesis in Apoe -/- mice by regulating lesion and systemic inflammation. A TLR7 antagonist may mitigate atherosclerosis.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marcela M Santos
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Cleverson Fernandes
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mengyang Liao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Karine Iamarene
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Hijmans RS, Rasmussen DGK, Yazdani S, Navis G, van Goor H, Karsdal MA, Genovese F, van den Born J. Urinary collagen degradation products as early markers of progressive renal fibrosis. J Transl Med 2017; 15:63. [PMID: 28320405 PMCID: PMC5358042 DOI: 10.1186/s12967-017-1163-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
Background Renal fibrogenesis is associated with increased ECM remodeling and release of collagen fragments in urine in progressive renal disease. We investigated the diagnostic value of urinary collagen degradation products in a proteinuria-driven fibrosis rat model with and without anti-fibrotic S1P-receptor modulator FTY720 treatment. Methods Proteinuria was induced in male Wistar rats by Adriamycin (ADR) injection (n = 16). Healthy rats served as controls (n = 12). Six weeks post-injection, all underwent renal biopsy, and FTY720-treatment started in ADR-rats (n = 8) and controls (n = 6). Others remained untreated. Rats were sacrificed after 12 weeks. Collagen type I (C1M) and III (C3M) degradation fragments were measured in blood and urine using ELISA. Kidneys were stained for various inflammatory and fibrotic markers. Results Six weeks post-injection proteinuria increased (versus controls, P < 0.001) and although no accumulation of interstitial renal collagen type III (iColl3) was observed at this time, urinary C3M (uC3M) and C1M (uC1M) were significantly increased (both P < 0.001). At 12 weeks, uC3M (P < 0.001) and uC1M (P < 0.01) further increased in ADR-rats versus controls, just as fibronectin, PDGF-β receptor, hyaluronan (all P < 0.01), iColl3, PAS, myofibroblasts, macrophages and T-cells (all P < 0.05). FTY720-treatment reduced accumulation of immune cells, α-SMA+ myofibroblasts and PAS-score, but not iColl3 and uC3M. Correlation analyses indicated that uC3M and uC1M reflected and predicted tubulointerstitial fibrogenesis. Conclusions These data displayed urinary collagen breakdown products as sensitive early markers of interstitial fibrosis, preceding histological fibrotic changes, which might replace the invasive renal biopsy procedure to assess fibrosis. Anti-fibrotic FTY720 intervention reduced some fibrotic markers without affecting collagen type III metabolism.
Collapse
Affiliation(s)
- Ryanne S Hijmans
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands.
| | - Daniel Guldager Kring Rasmussen
- Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,Institute of Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Saleh Yazdani
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Jacob van den Born
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Arvanitidis A, Henriksen K, Karsdal M, Nedergaard A. Neo-epitope Peptides as Biomarkers of Disease Progression for Muscular Dystrophies and Other Myopathies. J Neuromuscul Dis 2016; 3:333-346. [PMID: 27854226 PMCID: PMC5123625 DOI: 10.3233/jnd-160150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For several decades, serological biomarkers of neuromuscular diseases as dystrophies, myopathies and myositis have been limited to routine clinical biochemistry panels. Gauging the pathological progression is a prerequisite for proper treatment and therefore identifying accessible, easy to monitor biomarkers that can predict the disease progression would be an important advancement. Most muscle diseases involve accelerated muscle fiber degradation, inflammation, fatty tissue substitution and/or fibrosis. All these pathological traits have been shown to give rise to serological peptide biomarkers in other tissues, underlining the potential application of existing biomarkers of such traits in muscle disorders. A significant quantity of tissue is involved in these pathological mechanisms alongside with qualitative changes in protein turnover in myofibrillar, extra-cellular matrix and immunological cell protein fractions accompanied by alterations in body fluids. We propose that protein and peptides can leak out of the afflicted muscles and can be of use in diagnosis, prediction of pathology trajectory and treatment efficacy. Proteolytic cleavage systems are especially modulated during a range of muscle pathologies, thereby giving rise to peptides that are differentially released during disease manifestation. Therefore, we believe that pathology-specific post-translational modifications like cleavages can give rise to neoepitope peptides that may represent a promising class of peptides for discovery of biomarkers pertaining to neuromuscular diseases.
Collapse
Affiliation(s)
- A. Arvanitidis
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| | - K. Henriksen
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| | - M.A. Karsdal
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| | - A. Nedergaard
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| |
Collapse
|
10
|
Zhang H, Li D, Li Z, Song Y. Effect of Ligustrazine on rat peritoneal mesothelial cells treated with lipopolysaccharide. Ren Fail 2016; 38:961-9. [PMID: 27056404 DOI: 10.3109/0886022x.2016.1165053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The apoptosis of peritoneal mesothelial cells (PMCs) and peritoneal fibrosis may induce failure of peritoneal membrane function. The study explored the changes of apoptosis and fibrosis in PMCs under lipopolysaccharides (LPS) culture and investigated whether Ligustrazine can affect LPS-induced apoptosis and fibrosis. We found that exposure of rat PMCs to 5 mg·L(-1) LPS for 24 h resulted in a significant induction of apoptosis and increased levels in Reactive oxygen species, and caspase-3 activity. Fibronectin, Collagen I, p-p38, and matrix metalloprotein-9 (MMP-9) levels were also significantly increased by LPS. But superoxide dismutase levels were remarkably decreased. Ligustrazine can restore the changes induced by LPS. The protective effect of Ligustrazine on LPS-induced apoptosis and fibrosis may act through inhibition of oxidative stress and p38/MAPKS, ROS/MMP-9 activation in PMCs.
Collapse
Affiliation(s)
- Hui Zhang
- a College of Pharmacy , Xinxiang Medical University , Xingxiang , China
| | - Dongxia Li
- b College of Basic Medicine , Xinxiang Medical University , Xingxiang , China
| | - Zhiyong Li
- c Department of Cerebral Surgery of the Third People's Hospital of Anyang City , Anyang , China
| | - Yu Song
- a College of Pharmacy , Xinxiang Medical University , Xingxiang , China
| |
Collapse
|
11
|
Siebuhr AS, Bay-Jensen AC, Karsdal MA, Lories RJ, de Vlam K. CRP and a biomarker of type I collagen degradation, C1M, can differentiate anti-inflammatory treatment response in ankylosing spondylitis. Biomark Med 2016; 10:197-208. [DOI: 10.2217/bmm.15.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate if tissue turnover biomarkers were efficacy biomarkers in ankylosing spondylitis and if the biomarkers at baseline predicted a good outcome (BASDAI50). Patients & methods: Twenty-two etanercept treated ankylosing spondylitis patients were investigated for inflammation (CRP, ESR, CRPM) and tissue turnover (C1M, C2M, C3M) during the first year of treatment. Biomarkers profiles and treatment response were investigated. Results: ESR, CRP, BASDAI and C1M were decreased with treatment (p ≤ 0.04). C1M and CRP segregated patients into two populations predicting treatment efficacy. Conclusion: C1M and CRP were efficacy biomarkers and baseline biomarkers could select who benefited (by biomarkers) from treatment. C1M was not superior to CRP, but the biomarkers evaluate different pathologic events, indicating that C1M and CRP identify different events.
Collapse
Affiliation(s)
- Anne Sofie Siebuhr
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Anne C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Rik J Lories
- Skeletal Biology & Engineering Research Center, KU Leuven & Division of Rheumatology, UZ Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Kurt de Vlam
- Skeletal Biology & Engineering Research Center, KU Leuven & Division of Rheumatology, UZ Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
12
|
Zhang L, Chang M, Beck CA, Schwarz EM, Boyce BF. Analysis of new bone, cartilage, and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm. Bone Res 2016; 4:15037. [PMID: 26816658 PMCID: PMC4717440 DOI: 10.1038/boneres.2015.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 12/02/2022] Open
Abstract
Histomorphometric analysis of histologic sections of normal and diseased bone samples, such as healing allografts and fractures, is widely used in bone research. However, the utility of traditional semi-automated methods is limited because they are labor-intensive and can have high interobserver variability depending upon the parameters being assessed, and primary data cannot be re-analyzed automatically. Automated histomorphometry has long been recognized as a solution for these issues, and recently has become more feasible with the development of digital whole slide imaging and computerized image analysis systems that can interact with digital slides. Here, we describe the development and validation of an automated application (algorithm) using Visiopharm’s image analysis system to quantify newly formed bone, cartilage, and fibrous tissue in healing murine femoral allografts in high-quality digital images of H&E/alcian blue-stained decalcified histologic sections. To validate this algorithm, we compared the results obtained independently using OsteoMeasureTM and Visiopharm image analysis systems. The intraclass correlation coefficient between Visiopharm and OsteoMeasure was very close to one for all tissue elements tested, indicating nearly perfect reproducibility across methods. This new algorithm represents an accurate and labor-efficient method to quantify bone, cartilage, and fibrous tissue in healing mouse allografts.
Collapse
Affiliation(s)
- Longze Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY, USA
| | - Christopher A Beck
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY, USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY, USA
| |
Collapse
|
13
|
Detection of urine C2C and trace element level in patients with knee osteoarthritis. Cell Biochem Biophys 2015; 70:475-9. [PMID: 24728947 DOI: 10.1007/s12013-014-9943-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective is to determine the relation between severity of knee osteoarthritis (KOA) and levels of Collagen type II metabolite (C2C) and trace elements in the urine. The urine sample and knee joint films (anteroposterior and lateral) from the KOA patients and control subjects were collected. The KOA patients were divided into five groups (controls and grades I-IV) according to the Kellgren-Lawrence radiographic grading standards. Urine levels of C2C and trace elements were detected by enzyme-linked immunosorbent assay and inductively coupled plasma atomic emission spectrometry, respectively. Urine C2C levels in the KOA subjects (261.235 ± 39.944 pg/ml) were higher than those of the control group (218.341 ± 22.270 pg/ml). The Fe content in KOA groups was significantly lower than that of control group (group IV > group III > group II > group I or controls). The contents of Cu and Zn were also significantly higher in the KOA patients than in the control group (p < 0.05). However, Cr, Al, Cd, Ni, and Se levels of KOA patients were not significantly different from those of the controls (p > 0.05). Determination of the urine levels of C2C and trace elements may prove to be informative for an early diagnosis of KOA. It can also assist in the prognosis judgment of the disease and selecting an appropriate therapeutic regimen.
Collapse
|
14
|
Nielsen MJ, Veidal SS, Karsdal MA, Ørsnes-Leeming DJ, Vainer B, Gardner SD, Hamatake R, Goodman ZD, Schuppan D, Patel K. Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int 2015; 35:429-37. [PMID: 25308921 DOI: 10.1111/liv.12700] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Fibrogenesis results in release of certain extracellular matrix protein fragments into the circulation. We evaluated the diagnostic and prognostic performance of two novel serological markers, the precisely cleaved N-terminal propeptide of type III collagen (Pro-C3) and a peptide of helical collagen type III degradation (C3M), in chronic hepatitis C (CHC) patients. METHOD Pro-C3 and C3M were measured by ELISA in plasma from CHC patients (n = 194) from a prior phase II antifibrotic trial (NCT00244751). Plasma samples and paired liver biopsies were obtained at baseline and after 1-year. Patients were stratified according to Ishak stages 2-4. Internal cross-validation was performed by bootstrap analysis. RESULTS Pro-C3 levels were significantly higher in CHC patients in Ishak stage 4 compared to stage 2 (P < 0.001) or 3 (P < 0.01). Pro-C3 could significantly distinguish moderate (stage 4) from mild fibrosis (stage 2/3) (AUC = 0.72, P < 0.001). Importantly, an overall significance in Pro-C3 (P = 0.007) levels was observed between the groups of -1, 0, +1 and +2 change in Ishak stage at 12 months. Pro-C3 was significantly increased in group +1 (P = 0.030) and +2 (P = 0.021) compared to group 0. No significant differences were observed for C3M. In multivariate analysis, only baseline Pro-C3, but not FibroTest, had an independent association with fibrosis progression. CONCLUSIONS Pro-C3 is a useful test to predict fibrogenesis and monitor disease progression. Moreover, it could differentiate mild from moderate disease. Pro-C3 may become a promising blood parameter be included in future studies for monitoring disease progression and eventually for evaluation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Mette J Nielsen
- Nordic Bioscience A/S, Herlev, Denmark; Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Karsdal MA, Krarup H, Sand JMB, Christensen PB, Gerstoft J, Leeming DJ, Weis N, Schaffalitzky de Muckadell OB, Krag A. Review article: the efficacy of biomarkers in chronic fibroproliferative diseases - early diagnosis and prognosis, with liver fibrosis as an exemplar. Aliment Pharmacol Ther 2014; 40:233-49. [PMID: 24909260 DOI: 10.1111/apt.12820] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nearly 45% of all deaths are associated with chronic fibroproliferative diseases, of which the primary characteristic is altered remodelling of the extracellular matrix. A major difficulty in developing anti-fibrotic therapies is the lack of accurate and established techniques to estimate dynamics of fibrosis, regression or progression, in response to therapy. AIM One of the most pressing needs in modern clinical chemistry for fibroproliferative disorders is the development of biomarkers for early diagnosis, prognosis, and early efficacy for the benefit of patients and to facilitate improved drug development. The aim of this article was to review the serological biomarkers that may assist in early diagnosis of patients, separate fast from slow- or nonprogressors, and possibly assist in drug development for fibroproliferative diseases, exemplified by liver fibrosis. The lack of success of biochemical markers and the possible reasons for this is discussed in the context of other fields with biomarker success. METHOD This is a personal opinion review article. RESULTS Biochemical markers, originating from the fibrotic structure, may have increased specificity and sensitivity for disease. Assessment of the tissue turnover balance by measurement of tissue formation and tissue degradation separately by novel technologies may provide value. CONCLUSIONS Novel technologies focused on the protein fingerprint in addition to biomarker classification, may increase the quality of biomarker development and provide the much needed biomarkers to further the fibroproliferative field. This is in direct alignment with the Food and Drug Administration and European Medicinal Agencies initiatives of personal health care.
Collapse
|
16
|
The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? FIBROGENESIS & TISSUE REPAIR 2014; 7:4. [PMID: 24678881 PMCID: PMC3986639 DOI: 10.1186/1755-1536-7-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in deciding which treatment approach is best suited for a patient but also in the development of new treatments is the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.
Collapse
|
17
|
Siebuhr AS, Petersen KK, Arendt-Nielsen L, Egsgaard LL, Eskehave T, Christiansen C, Simonsen O, Hoeck HC, Karsdal MA, Bay-Jensen AC. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthritis Cartilage 2014; 22:44-50. [PMID: 24216059 DOI: 10.1016/j.joca.2013.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/14/2013] [Accepted: 10/31/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative disease with a subset of patients experiencing joint inflammation, but C-reactive protein (CRP) has shown limited use in OA as a diagnostic marker. The aim was to identify subpopulations of patients with high or low levels of acute (high sensitive CRP (hsCRP)) and/or matrix metalloproteinase (MMP) derived inflammation (CRPM) and investigate the subpopulations' association with biomarkers of collagen degradation and Kellgren-Lawrence (KL) score. METHODS hsCRP, CRPM and MMP-degraded type I, II and III collagen (type I collagen degraded by MMP (C1M), type II collagen degraded by MMP (C2M) and type III collagen degraded by MMP (C3M)) were quantified by enzyme linked immunosorbent assays (ELISA) in serum of 342 patients with symptomatic knee OA of which 60 underwent total knee replacement (TKR). KL was obtained. Patients were divided into quartiles by hsCRP and CRPM levels, where Q1 and Q4 were low or high in both. The biomarker levels of healthy adults provided in the ELISA kits were used as reference level. RESULTS hsCRP was elevated in TKR (5.9(3.6-8.2 95% confidence interval (CI)) μg/mL) compared to reference level (3 μg/mL), while CRPM was highly elevated with OA independent of KL (10-14 ng/mL) compared to reference level (5 ng/mL). Q4 had higher KL than Q1 (P < 0.001), Q2 (P = 0.017) and Q3 (P < 0.001). C1M, C2M and C3M were lowest in Q1. C1M was elevated in Q3 compared to Q2 (P < 0.001), whereas C3M was lower (P = 0.019). CONCLUSION A bigger proportion of patients were elevated in CRPM compared to hsCRP, indicating MMP-derived inflammation as a component of OA. Moreover, the levels of MMP-degraded collagens differed between the subgroups segregated by inflammation, indicating distinctively different subpopulation selected by inflammation.
Collapse
Affiliation(s)
- A S Siebuhr
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K K Petersen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark; Aalborg University Hospital, Department of Orthopaedic Surgery, Aalborg, Denmark
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - L L Egsgaard
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - T Eskehave
- Center for Clinical and Basic Research and C4Pain, Aalborg, Denmark
| | - C Christiansen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark; Center for Clinical and Basic Research and C4Pain, Aalborg, Denmark
| | - O Simonsen
- Aalborg University Hospital, Department of Orthopaedic Surgery, Aalborg, Denmark
| | - H C Hoeck
- Center for Clinical and Basic Research and C4Pain, Aalborg, Denmark
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - A C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
18
|
Johnson TL, Tulis DA, Keeler BE, Virag JA, Lust RM, Clemens S. The dopamine D3 receptor knockout mouse mimics aging-related changes in autonomic function and cardiac fibrosis. PLoS One 2013; 8:e74116. [PMID: 24023697 PMCID: PMC3758275 DOI: 10.1371/journal.pone.0074116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/29/2013] [Indexed: 01/11/2023] Open
Abstract
Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.
Collapse
Affiliation(s)
- Tracy L. Johnson
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - David A. Tulis
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Benjamin E. Keeler
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Jitka A. Virag
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Robert M. Lust
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Stefan Clemens
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Overexpression of Smad7 suppressed ROS/MMP9-dependent collagen synthesis through regulation of heme oxygenase-1. Mol Biol Rep 2013; 40:5307-14. [PMID: 23661026 DOI: 10.1007/s11033-013-2631-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/30/2013] [Indexed: 12/15/2022]
Abstract
We previously reported that AngiotensinII receptor blocker effectively inhibited TGF-β1-mediated epithelial-to-mesenchymal transition progress through regulating Smad7. However, the underlying mechanism by which Smad7 exerted in regulating MMP9 and fibrogenic response has not been fully elucidated. In the current study, we proved that NADPH p47(phox)-dependent reactive oxygen species (ROS) production contributed to MMP9 activation and collagen expression, which was suppressed by transfecting pcDNA3-Smad7 in cardiac fibroblasts. The effect of Smad7 overexpression on MMP9 activity and collagen expression was further reversed by adding H2O2 (10 μmol/L). In contrast, knockdown of Smad7 caused the enhanced collagen synthesis in cardiac fibroblasts, which was also reversed by treating cells with a ROS inhibitor, YCG063 (2 μmol/L). Further investigation showed that Smad7 regulated NADPH-mediated ROS production through activating Heme oxygenase-1 (HO-1). Meanwhile, the intercellular level of bilirubin (product of hemin) and nitric oxide (NO) in cell supernatant were not significantly increased in cells treated with AngII or transfected with Smad7. Knockdown of HO-1 in Smad7-overexpressed cardiac fibroblasts or cells pretreated with SnPP IX, a competitive inhibitor of HO-1 activity, resulted in increased productions of ROS and NADPH p47(phox), and abolished the inhibitory effects of Smad7 on MMP9 activity and collagen expression. Our results indicated that HO-1 might be critically involved in Smad7-mediated regulation of MMP9 activity and fibrogenic genes expression via antagonizing the enhanced myocardial oxidative stress.
Collapse
|
20
|
Genovese F, Barascuk N, Larsen L, Larsen MR, Nawrocki A, Li Y, Zheng Q, Wang J, Veidal SS, Leeming DJ, Karsdal MA. Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. FIBROGENESIS & TISSUE REPAIR 2013; 6:9. [PMID: 23635022 PMCID: PMC3651402 DOI: 10.1186/1755-1536-6-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 01/23/2023]
Abstract
Background The proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis. The scope of the present study was to develop a novel enzyme-linked immunosorbent assay (ELISA) for the measurement of a MMP-9 and MMP-12-generated biglycan neo-epitope and to test its biological validity in a rat model of RA and in two rat models of liver fibrosis, chosen as models of ECMR. Results Biglycan was cleaved in vitro by MMP-9 and -12 and the 344′YWEVQPATFR′353 peptide (BGM) was chosen as a potential neo-epitope. A technically sound competitive ELISA for the measurement of BGM was generated and the assay was validated in a bovine cartilage explant culture (BEX), in a collagen induced model of rheumatoid arthritis (CIA) and in two different rat models of liver fibrosis: the carbon tetrachloride (CCL4)-induced fibrosis model, and the bile duct ligation (BDL) model. Significant elevation in serum BGM was found in CIA rats compared to controls, in rats treated with CCL4 for 16 weeks and 20 weeks compared to the control groups as well as in all groups of rats subject to BDL compared with sham operated groups. Furthermore, there was a significant correlation of serum BGM levels with the extent of liver fibrosis determined by the Sirius red staining of liver sections in the CCL4 model. Conclusion We demonstrated that the specific tissue remodeling product of MMPs-degraded biglycan, namely the neo-epitope BGM, is correlated with pathological ECMR. This assay represents both a novel marker of ECM turnover and a potential new tool to elucidate biglycan role during the pathological processes associated with ECMR.
Collapse
Affiliation(s)
- Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vassiliadis E, Barascuk N, Karsdal MA. Atherofibrosis - a unique and common process of the disease pathogenesis of atherosclerosis and fibrosis - lessons for biomarker development. Am J Transl Res 2013; 5:1-14. [PMID: 23390561 PMCID: PMC3560483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
The hallmark of a variety of fibrotic diseases such as liver fibrosis, lung fibrosis, skin fibrosis and atherosclerosis is extensive extracellular matrix remodeling (ECMr) of the disease affected tissue. Inflammation often leads to tissue disruption and destruction, upon which locally released battery of proteases such as matrix metalloproteinases and cysteine proteases degrade the surrounding matrix. The degradation products of ECM proteins, the co-called neoepitopes, are released into the systemic circulation. By recent development of Enzyme-Linked Immunosorbent Assays (ELISAs) detecting the pathological tissue turnover in atherosclerosis and liver fibrosis, we have introduced a novel class of biomarkers into the field of fibrotic diseases, which have been proved efficient in the early diagnosis. This work has resulted in identification of common mechanisms involving specific cell types, proteins and proteases as well as pathways shared among the fibrotic diseases. In this analysis we seek to answer following questions: a) Are there common disease mechanisms and cell types involved in both atherosclerosis and fibrosis? b) Can the lessons learned in developing fibrosis biomarkers be used for the development of atherosclerosis biomarkers? Our hypothesis is that by answering the above questions, we may be able to improve general understanding of the early-stage disease initiation and progression of fibrotic diseases, which in turn may aid in early diagnosis, prognosis and ultimately patient management.
Collapse
Affiliation(s)
- Efstathios Vassiliadis
- Nordic Bioscience A/SHerlev Hovedgade 207, 2730 Herlev, Denmark
- University of Southern DenmarkOdense, Denmark
| | - Natasha Barascuk
- Nordic Bioscience A/SHerlev Hovedgade 207, 2730 Herlev, Denmark
- University of Southern DenmarkOdense, Denmark
| | | |
Collapse
|
22
|
Veidal SS, Nielsen MJ, Leeming DJ, Karsdal MA. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model. BMC Res Notes 2012; 5:686. [PMID: 23249435 PMCID: PMC3541216 DOI: 10.1186/1756-0500-5-686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 12/13/2012] [Indexed: 01/06/2023] Open
Abstract
Background Accumulation of extracellular matrix (ECM) and increased matrix metalloproteinase (MMP) activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M), known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control) or treated with IBMX (phosphodiesterase inhibitor). Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p < 0.01); Levels of C3M increased significantly by 100% in fibrotic liver slices compared to controls after 48 hrs (p < 0.01). By adding GM6001 or IBMX to the media, C3M was restored to control levels. Gelatin zymography demonstrated CCl4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.
Collapse
|
23
|
Siebuhr AS, Wang J, Karsdal M, Bay-Jensen AC, Y J, Q Z. Matrix metalloproteinase-dependent turnover of cartilage, synovial membrane, and connective tissue is elevated in rats with collagen induced arthritis. J Transl Med 2012; 10:195. [PMID: 22992383 PMCID: PMC3551788 DOI: 10.1186/1479-5876-10-195] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/17/2012] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is a disease affecting the extracellular matrix of especially synovial joints. The thickness of the synovial membrane increases and surrounding tissue degrades, leading to altered collagen balance in the tissues. In this study, we investigated the altered tissue balance of cartilage, synovial membrane, and connective tissue in collagen induced arthritis (CIA) in rats. METHODS Six newly developed ELISAs quantifying MMP-derived collagen degradation (C1M, C2M, and C3M) and formation (P1NP, P2NP, and P3NP) was used to detect cartilage turnover in rats with CIA. Moreover, CTX-II was used to detect alternative type II collagen degradation and as control of the model. 10 Lewis rats were injected with porcrine type II collagen twice with a 7 day interval and 10 rats was injected with 0.05 M acetic acid as control. The experiment ran for 26 days. RESULTS A significant increase in the degradation of type I, II, and III collagen (C1M, C2M, and C3M, respectively) was detected on day 22 (P = 0.0068, P = 0.0068, P < 0.0001, respectively), whereas no significant difference in formation (P1NP, P2NP, and P3NP) was detected at any time point (P=0.22, P=0.53, P=0.53, respectively). The CTX-II level increased strongly from disease onset and onwards. CONCLUSION A nearly total separation between diseased and control animals was detected with C3M, making it a good diagnostic marker. The balance of type I, II, and III collagen was significantly altered with CIA in rats, with favour of degradation of the investigated collagens. This indicates unbalanced turnover of the surrounding tissues of the synovial joints, leading to increased pain and degeneration of the synovial joints.
Collapse
|
24
|
Vassiliadis E, Rasmussen LM, Byrjalsen I, Larsen DV, Chaturvedi R, Hosbond S, Saabye L, Diederichsen ACP, Genovese F, Duffin KL, Zheng Q, Chen X, Leeming DJ, Christiansen C, Karsdal MA. Clinical evaluation of a matrix metalloproteinase-12 cleaved fragment of titin as a cardiovascular serological biomarker. J Transl Med 2012; 10:140. [PMID: 22768802 PMCID: PMC3487750 DOI: 10.1186/1479-5876-10-140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/15/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Titin is a muscle-specific protein found in cardiac and skeletal muscles which is responsible for restoring passive tension. Levels and functioning of titin have been shown to be affected by cardiac damage. Due to the inherent difficulty of measuring titin levels in vivo in a clinical setting, we aimed to develop an assay that could reliably measure fragments of degraded titin in serum and potentially be used in the assessment of cardiac muscle damage. METHODS A competitive ELISA was developed to specifically measure levels of the titin sequence 12670' NVTVEARLIK 12679', derived by the degradation of titin by matrix metalloproteinase (MMP)-12. Serum samples from 90 individuals were divided into 3 equally sized groups. One group had been diagnosed with acute myocardial infarction (AMI) while the remaining two were asymptomatic individuals either with CT-scan signs of coronary calcium (CT-plusCa) or without coronary calcium (CT-noCa). RESULTS Mean geometric levels of the titin fragment in the CT-noCa group were 506.5 ng/ml (± 43.88). The CT-plusCa group showed 50.6% higher levels of the marker [763 ng/ml (± 90.14)] (P < 0.05). AMI patients showed 56.3% higher levels [792 ng/ml (± 149)] (P < 0.05). CONCLUSIONS The titin-12670 fragment is present in both individuals with undiagnosed and diagnosed CVD. The statistically significant increase in level of the marker in the AMI group is indicative that this neoepitope biomarker may be a useful serological marker in AMI.
Collapse
Affiliation(s)
- Efstathios Vassiliadis
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Inger Byrjalsen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | - Rajiv Chaturvedi
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Susanne Hosbond
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lotte Saabye
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | - Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | | | | | - Diana J Leeming
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | | | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
25
|
Son E, Shim J, Choi H, Kim H, Lim K, Chung J, Byun S, Lee T. Cathepsin G Inhibitor Prevents Ultraviolet B- Induced Photoaging in Hairless Mice via Inhibition of Fibronectin Fragmentation. Dermatology 2012; 224:352-60. [DOI: 10.1159/000339337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
|
26
|
Vassiliadis E, Barascuk N, Didangelos A, Karsdal MA. Novel cardiac-specific biomarkers and the cardiovascular continuum. Biomark Insights 2012; 7:45-57. [PMID: 22577298 PMCID: PMC3347891 DOI: 10.4137/bmi.s9536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The concept of the cardiovascular continuum, introduced during the early 1990s, created a holistic view of the chain of events connecting cardiovascular-related risk factors with the progressive development of pathological-related tissue remodelling and ultimately, heart failure and death. Understanding of the tissue-specific changes, and new technologies developed over the last 25-30 years, enabled tissue remodelling events to be monitored in vivo and cardiovascular disease to be diagnosed more reliably than before. The tangible product of this evolution was the introduction of a number of biochemical markers such as troponin I and T, which are now commonly used in clinics to measure myocardial damage. However, biomarkers that can detect specific earlier stages of the cardiovascular continuum have yet to be generated and utilised. The majority of the existing markers are useful only in the end stages of the disease where few successful intervention options exist. Since a large number of patients experience a transient underlying developing pathology long before the signs or symptoms of cardiovascular disease become apparent, the requirement for new markers that can describe the early tissue-specific, matrix remodelling process which ultimately leads to disease is evident. This review highlights the importance of relating cardiac biochemical markers with specific time points along the cardiovascular continuum, especially during the early transient phase of pathology progression where none of the existing markers aid diagnosis.
Collapse
Affiliation(s)
- Efstathios Vassiliadis
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | - Natasha Barascuk
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
27
|
The biological behaviors of rat dermal fibroblasts can be inhibited by high levels of MMP9. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:494579. [PMID: 22577368 PMCID: PMC3346983 DOI: 10.1155/2012/494579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 11/21/2022]
Abstract
Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline) secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline) secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1), which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.
Collapse
|
28
|
Veidal SS, Larsen DV, Chen X, Sun S, Zheng Q, Bay-Jensen AC, Leeming DJ, Nawrocki A, Larsen MR, Schett G, Karsdal MA. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin Biochem 2012; 45:541-6. [PMID: 22382088 DOI: 10.1016/j.clinbiochem.2012.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Type V collagen has been demonstrated to control fibril formation. The aim of this study was to develop an ELISA capable of detecting a fragment of type V collagen generated by MMP-2/9 and to evaluate the assay as biomarker for ankylosing spondylitis (AS). DESIGN AND METHODS A fragment unique to type V collagen and generated by both MMP-2/9 cleaved at the amino acid position 1317 (C5M) was selected for ELISA development. 40 AS patients and 40 age-matched controls were evaluated. RESULTS An ELISA detecting C5M with inter- and intra-assay variations of 9.1% and 4.4% was developed. C5M levels were significantly higher in AS patients compared to controls, 229% (p<0.0001). The diagnostic AUC was 83%. CONCLUSIONS This ELISA is the first for detecting type V collagen degradation. AS patients had highly elevated levels of MMP mediated type V collagen degradation. The prognostic and diagnostic values need to be further investigated in additional clinical settings.
Collapse
|
29
|
Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, Hägglund P, Vainer B, Skjøt-Arkil H, Leeming DJ. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. FIBROGENESIS & TISSUE REPAIR 2011; 4:22. [PMID: 21970406 PMCID: PMC3204229 DOI: 10.1186/1755-1536-4-22] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens by proteases produces small fragments, so-called neoepitopes, which are released systemically. Technologies investigating MMP-generated fragments of collagens may provide more useful information than traditional serological assays that crudely measure total protein. In the present study, we developed an ELISA for the quantification of a neoepitope generated by MMP degradation of type IV collagen and evaluated the association of this neoepitope with liver fibrosis in two animal models. METHODS Type IV collagen was degraded in vitro by a variety of proteases. Mass spectrometric analysis revealed more than 200 different degradation fragments. A specific peptide sequence, 1438'GTPSVDHGFL'1447 (CO4-MMP), in the α1 chain of type IV collagen generated by MMP-9 was selected for ELISA development. ELISA was used to determine serum levels of the CO4-MMP neoepitope in two rat models of liver fibrosis: inhalation of carbon tetrachloride (CCl4) and bile duct ligation (BDL). The levels were correlated to histological findings using Sirius red staining. RESULTS A technically robust assay was produced that is specific to the type IV degradation fragment, GTPSVDHGFL. CO4-MMP serum levels increased significantly in all BDL groups compared to baseline, with a maximum increase of 248% seen two weeks after BDL. There were no changes in CO4-MMP levels in sham-operated rats. In the CCl4 model, levels of CO4-MMP were significantly elevated at weeks 12, 16 and 20 compared to baseline levels, with a maximum increase of 88% after 20 weeks. CO4-MMP levels correlated to Sirius red staining results. CONCLUSION This ELISA is the first assay developed for assessment of proteolytic degraded type IV collagen, which, by enabling quantification of basement membrane degradation, could be relevant in investigating various fibrogenic pathologies. The CO4-MMP degradation fragment was highly associated with liver fibrosis in the two animal models studied.
Collapse
Affiliation(s)
- Sanne S Veidal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nurmenniemi S, Koivula MK, Nyberg P, Tervahartiala T, Sorsa T, Mattila PS, Salo T, Risteli J. Type I and III collagen degradation products in serum predict patient survival in head and neck squamous cell carcinoma. Oral Oncol 2011; 48:136-40. [PMID: 21945070 DOI: 10.1016/j.oraloncology.2011.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/23/2011] [Accepted: 09/04/2011] [Indexed: 01/22/2023]
Abstract
Cancer invasion induces extracellular matrix remodeling and collagen degradation. The aim of this study was to assess whether serum levels of type I and III collagen degradation products were associated with patient survival in head and neck squamous cell carcinoma (HNSCC). A novel enzyme immunoassay was developed for measuring type III collagen N-terminal telopeptide (IIINTP) in human serum samples. In addition, type I collagen C-terminal telopeptide (ICTP), matrix metalloprotease-8 (MMP-8) and tissue inhibitor of metalloproteases-1 (TIMP-1) were assessed in 205 blood samples from HNSCC patients. High levels of serum ICTP and IIINTP and plasma TIMP-1 were associated with poor survival. The concentration of ICTP was associated with levels of IIINTP and TIMP-1. The plasma concentration of MMP-8 was associated with tumor stage, but not with survival or levels of ICTP, IIINTP or TIMP-1 suggesting that other collagenases/proteases are responsible for the cleavage of type I and type III collagens. The rate of type I and type III collagen degradation is associated with patient survival and can be used as a prognostic marker in HNSCC.
Collapse
Affiliation(s)
- Sini Nurmenniemi
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu University Central Hospital, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|