1
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Zhang Y, Pedersen JN, Eser BE, Guo Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol Adv 2022; 60:107991. [PMID: 35654281 DOI: 10.1016/j.biotechadv.2022.107991] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
The global production of plastics has continuously been soaring over the last decades due to their extensive use in our daily life and in industries. Although synthetic plastics offer great advantages from packaging to construction and electronics, their low biodegradability induce serious plastic pollution that damage the environment, human health and make irreversible changes in the ecological cycle. In particular, plastics containing only carbon-carbon (C-C) backbone are less susceptible to degradation due to the lack of hydrolysable groups. The representative polyethylene (PE) and polystyrene (PS) account for about 40% of the total plastic production. Various chemical and biological processes with great potential have been developed for plastic recycle and reuse, but biodegradation seems to be the most attractive and eco-friendly method to combat this growing environmental problem. In this review, we first summarize the current advances in PE and PS biodegradation, including isolation of microbes and potential degrading enzymes from different sources. Next, the state-of-the-art techniques used for evaluating and monitoring PE and PS degradation, the scientific toolboxes for enzyme discovery as well as the challenges and strategies for plastic biodegradation are intensively discussed. In return, it inspires a further technological exploration in expanding the diversity of species and enzymes, disclosing the essential pathways and developing new approaches to utilize plastic waste as feedstock for recycling and upcycling.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | | | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
3
|
Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts 2022. [DOI: 10.3390/catal12040385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural resources are considered a promising source of microorganisms responsible for producing biocatalysts with great relevance in several industrial areas. However, a significant fraction of the environmental microorganisms remains unknown or unexploited due to the limitations associated with their cultivation in the laboratory through classical techniques. Metagenomics has emerged as an innovative and strategic approach to explore these unculturable microorganisms through the analysis of DNA extracted from environmental samples. In this review, a detailed discussion is presented on the application of metagenomics to unravel the biotechnological potential of natural resources for the discovery of promising biocatalysts. An extensive bibliographic survey was carried out between 2010 and 2021, covering diverse metagenomic studies using soil and/or water samples from different types and locations. The review comprises, for the first time, an overview of the worldwide metagenomic studies performed in soil and water and provides a complete and global vision of the enzyme diversity associated with each specific environment.
Collapse
|
4
|
Ndata K, Nevondo W, Cekuse B, van Zyl LJ, Trindade M. Characterization of a highly xylose tolerant β-xylosidase isolated from high temperature horse manure compost. BMC Biotechnol 2021; 21:61. [PMID: 34689773 PMCID: PMC8543862 DOI: 10.1186/s12896-021-00722-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a continued need for improved enzymes for industry. β-xylosidases are enzymes employed in a variety of industries and although many wild-type and engineered variants have been described, enzymes that are highly tolerant of the products produced by catalysis are not readily available and the fundamental mechanisms of tolerance are not well understood. RESULTS Screening of a metagenomic library constructed of mDNA isolated from horse manure compost for β-xylosidase activity identified 26 positive hits. The fosmid clones were sequenced and bioinformatic analysis performed to identity putative β-xylosidases. Based on the novelty of its amino acid sequence and potential thermostability one enzyme (XylP81) was selected for expression and further characterization. XylP81 belongs to the family 39 β-xylosidases, a comparatively rarely found and characterized GH family. The enzyme displayed biochemical characteristics (KM-5.3 mM; Vmax-122 U/mg; kcat-107; Topt-50 °C; pHopt-6) comparable to previously characterized glycoside hydrolase family 39 (GH39) β-xylosidases and despite nucleotide identity to thermophilic species, the enzyme displayed only moderate thermostability with a half-life of 32 min at 60 °C. Apart from acting on substrates predicted for β-xylosidase (xylobiose and 4-nitrophenyl-β-D-xylopyranoside) the enzyme also displayed measurable α-L-arabainofuranosidase, β-galactosidase and β-glucosidase activity. A remarkable feature of this enzyme is its ability to tolerate high concentrations of xylose with a Ki of 1.33 M, a feature that is highly desirable for commercial applications. CONCLUSIONS Here we describe a novel β-xylosidase from a poorly studied glycosyl hydrolase family (GH39) which despite having overall kinetic properties similar to other bacterial GH39 β-xylosidases, displays unusually high product tolerance. This trait is shared with only one other member of the GH39 family, the recently described β-xylosidases from Dictyoglomus thermophilum. This feature should allow its use as starting material for engineering of an enzyme that may prove useful to industry and should assist in the fundamental understanding of the mechanism by which glycosyl hydrolases evolve product tolerance.
Collapse
Affiliation(s)
- Kanyisa Ndata
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Walter Nevondo
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.,Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bongi Cekuse
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
5
|
Du R, Li C, Pan P, Sze Ki Lin C, Yan J. Characterization and evaluation of a natural derived bacterial consortium for efficient lignocellulosic biomass valorization. BIORESOURCE TECHNOLOGY 2021; 329:124909. [PMID: 33684842 DOI: 10.1016/j.biortech.2021.124909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
A consortium (HPP) with improved ability in biomass conversion was achieved by adjusting the proportion of Pseudoxanthomonas taiwanensis in a natural consortium (HP), but the mechanism behind was unknown. Herein, the diversities of microbial community structure and gene functions of the consortia were analyzed first, and found that HPP had a more balanced microbial structure with enriched gene pathways related to cellular processes, environmental information processing and metabolism. Then, key genes responsible for biomass conversion were further analyzed, finding that their abundance and distribution contributed to HPP's efficient biomass conversion. Finally, consolidated bioprocessing of agricultural wastes by HPP was carried out to verify its enhanced ability, and ethanol with the highest yield that was ever reported was achieved at 0.28 g/g. This is the first study which reported the underlying mechanisms for synergistic effects of microbial consortia, and will guide the artificial construction of complex microbial consortium for specific purpose.
Collapse
Affiliation(s)
- Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peipei Pan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Gavande PV, Basak A, Sen S, Lepcha K, Murmu N, Rai V, Mazumdar D, Saha SP, Das V, Ghosh S. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci Rep 2021; 11:3032. [PMID: 33542396 PMCID: PMC7862241 DOI: 10.1038/s41598-021-82163-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
Rice (Oryza sativa L.) straw, an agricultural waste of high yield, is a sustainable source of fermentable sugars for biofuel and other chemicals. However, it shows recalcitrance to microbial catalysed depolymerization. We herein describe development of thermotolerant microbial consortium (RSV) from vermicompost with ability to degrade rice straw and analysis of its metagenome for bacterial diversity, and lignocellulolytic carbohydrate active enzymes (CAZymes) and their phylogenetic affiliations. RSV secretome exhibited cellulases and hemicellulases with higher activity at 60 °C. It catalysed depolymerization of chemical pretreated rice straw as revealed by scanning electron microscopy and saccharification yield of 460 mg g-1 rice straw. Microbial diversity of RSV was distinct from other compost habitats, with predominance of members of phyla Firmicutes, Proteobacteria and Bacteroidetes; and Pseudoclostridium, Thermoanaerobacterium, Chelatococcus and Algoriphagus being most abundant genera. RSV harboured 1389 CAZyme encoding ORFs of glycoside hydrolase, carbohydrate esterase, glycosyl transferase, carbohydrate binding module and auxiliary activity functions. Microorganisms of Firmicutes showed central role in lignocellulose deconstruction with importance in hemicellulose degradation; whereas representatives of Proteobacteria and Bacteroidetes contributed to cellulose and lignin degradation, respectively. RSV consortium could be a resource for mining thermotolerant cellulolytic bacteria or enzymes and studying their synergism in deconstruction of chemically pretreated rice straw.
Collapse
Affiliation(s)
- Parmeshwar V. Gavande
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Arijita Basak
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Subhajit Sen
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Khusboo Lepcha
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Nensina Murmu
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Vijeta Rai
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Deepika Mazumdar
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Shyama Prasad Saha
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Vaskar Das
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| | - Shilpi Ghosh
- grid.412222.50000 0001 1188 5260Department of Biotechnology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal 734013 India
| |
Collapse
|
7
|
A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity. Genes (Basel) 2021; 12:genes12010122. [PMID: 33478024 PMCID: PMC7835964 DOI: 10.3390/genes12010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.
Collapse
|
8
|
Lutz S, Thuerig B, Oberhaensli T, Mayerhofer J, Fuchs JG, Widmer F, Freimoser FM, Ahrens CH. Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Front Microbiol 2020; 11:1810. [PMID: 32849417 PMCID: PMC7406687 DOI: 10.3389/fmicb.2020.01810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023] Open
Abstract
Soil-borne diseases cause significant yield losses worldwide, are difficult to treat and often only limited options for disease management are available. It has long been known that compost amendments, which are routinely applied in organic and integrated farming as a part of good agricultural practice to close nutrient cycles, can convey a protective effect. Yet, the targeted use of composts against soil-borne diseases is hampered by the unpredictability of the efficacy. Several studies have identified and/or isolated beneficial microorganisms (i.e., bacteria, oomycetes, and fungi) from disease suppressive composts capable of suppressing pathogens (e.g., Pythium and Fusarium) in various crops (e.g., tomato, lettuce, and cucumber), and some of them have been developed into commercial products. Yet, there is growing evidence that synthetic or complex microbial consortia can be more effective in controlling diseases than single strains, but the underlying molecular mechanisms are poorly understood. Currently, a major bottleneck concerns the lack of functional assays to identify the most potent beneficial microorganisms and/or key microbial consortia from complex soil and compost microbiomes, which can harbor tens of thousands of species. This focused review describes microorganisms, which have been isolated from, amended to or found to be abundant in disease-suppressive composts and for which a beneficial effect has been documented. We point out opportunities to increasingly harness compost microbiomes for plant protection through an integrated systems approach that combines the power of functional assays to isolate biocontrol and plant growth promoting strains and further prioritize them, with functional genomics approaches that have been successfully applied in other fields of microbiome research. These include detailed metagenomics studies (i.e., amplicon and shotgun sequencing) to achieve a better understanding of the complex system compost and to identify members of taxa enriched in suppressive composts. Whole-genome sequencing and complete assembly of key isolates and their subsequent functional profiling can elucidate the mechanisms of action of biocontrol strains. Integrating the benefits of these approaches will bring the long-term goals of employing microorganisms for a sustainable control of plant pathogens and developing reliable diagnostic assays to assess the suppressiveness of composts within reach.
Collapse
Affiliation(s)
- Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland.,SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Barbara Thuerig
- Research Institute of Organic Agriculture (FiBL), Department of Crop Sciences, Frick, Switzerland
| | - Thomas Oberhaensli
- Research Institute of Organic Agriculture (FiBL), Department of Crop Sciences, Frick, Switzerland
| | | | - Jacques G Fuchs
- Research Institute of Organic Agriculture (FiBL), Department of Crop Sciences, Frick, Switzerland
| | - Franco Widmer
- Agroscope, Research Group Molecular Ecology, Zurich, Switzerland
| | - Florian M Freimoser
- Agroscope, Research Group Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland.,SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| |
Collapse
|
9
|
Fortune B, Mhlongo S, van Zyl LJ, Huddy R, Smart M, Trindade M. Characterisation of three novel α-L-arabinofuranosidases from a compost metagenome. BMC Biotechnol 2019; 19:22. [PMID: 30999885 PMCID: PMC6472066 DOI: 10.1186/s12896-019-0510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The importance of the accessory enzymes such as α-L-arabinofuranosidases (AFases) in synergistic interactions within cellulolytic mixtures has introduced a paradigm shift in the search for hydrolytic enzymes. The aim of this study was to characterize novel AFase genes encoding enzymes with differing temperature optima and thermostabilities for use in hydrolytic cocktails. RESULTS Three fosmids, pFos-H4, E3 and D3 were selected from the cloned metagenome of high temperature compost, expressed in Escherichia coli and subsequently purified to homogeneity from cell lysate. All the AFases were clustered within the GH51 AFase family and shared a homo-hexameric structure. Both AFase-E3 and H4 showed optimal activity at 60 °C while AFase-D3 had unique properties as it showed optimal activity at 25 °C as well as the ability to maintain substantial activity at temperatures as high as 90 °C. However, AFase-E3 was the most thermostable amongst the three AFases showing full activity even at 70 °C. The maximum activity was observed at a pH profile between pH 4.0-6.0 for all three AFases with optimal activity for AFase H4, D3 and E3 at pH 5.0, 4.5 and 4.0, respectively. All the AFases showed KM range between 0.31 mM and 0.43 mM, Kcat range between 131 s- 1 and 219 s- 1 and the specific activity for AFase-H4, AFases-E3 and was 143, 228 and 175 U/mg, respectively. AFases-E3 and D3 displayed activities against pNP-β-L-arabinopyranoside and pNP-β-L-mannopyranoside respectively, and both hydrolysed pNP-β-D-glucopyranoside. CONCLUSION All three AFases displayed different biochemical characteristics despite all showing conserved overall structural similarity with typical domains of AFases belonging to GH51 family. The hydrolysis of cellobiose by a GH51 family AFase is demonstrated for the first time in this study.
Collapse
Affiliation(s)
- Brent Fortune
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Sizwe Mhlongo
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa
| | - Robert Huddy
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa.,Centre for Bioprocess Engineering Research, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Mariette Smart
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa.,Centre for Bioprocess Engineering Research, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
10
|
Lu M, Dukunde A, Daniel R. Biochemical profiles of two thermostable and organic solvent-tolerant esterases derived from a compost metagenome. Appl Microbiol Biotechnol 2019; 103:3421-3437. [PMID: 30809711 DOI: 10.1007/s00253-019-09695-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Owing to the functional versatility and potential applications in industry, interest in lipolytic enzymes tolerant to organic solvents is increasing. In this study, functional screening of a compost soil metagenome resulted in identification of two lipolytic genes, est1 and est2, encoding 270 and 389 amino acids, respectively. The two genes were heterologously expressed and characterized. Est1 and Est2 are thermostable enzymes with optimal enzyme activities at 80 and 70 °C, respectively. A second-order rotatable design, which allows establishing the relationship between multiple variables with the obtained responses, was used to explore the combined effects of temperature and pH on esterase stability. The response curve indicated that Est1, and particularly Est2, retained high stability within a broad range of temperature and pH values. Furthermore, the effects of organic solvents on Est1 and Est2 activities and stabilities were assessed. Notably, Est2 activity was significantly enhanced (two- to tenfold) in the presence of ethanol, methanol, isopropanol, and 1-propanol over a concentration range between 6 and 30% (v/v). For the short-term stability (2 h of incubation), Est2 exhibited high tolerance against 60% (v/v) of ethanol, methanol, isopropanol, DMSO, and acetone, while Est1 activity resisted these solvents only at lower concentrations (below 30%, v/v). Est2 also displayed high stability towards some water-immiscible organic solvents, such as ethyl acetate, diethyl ether, and toluene. With respect to long-term stability, Est2 retained most of its activity after 26 days of incubation in the presence of 30% (v/v) ethanol, methanol, isopropanol, DMSO, or acetone. All of these features indicate that Est1 and Est2 possess application potential.
Collapse
Affiliation(s)
- Mingji Lu
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Amélie Dukunde
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany.
| |
Collapse
|
11
|
Liu P, Wang W, Zhao J, Wei D. Screening novel β-galactosidases from a sequence-based metagenome and characterization of an alkaline β-galactosidase for the enzymatic synthesis of galactooligosaccharides. Protein Expr Purif 2018; 155:104-111. [PMID: 30529535 DOI: 10.1016/j.pep.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023]
Abstract
βgalactosidases have wide industrial applications in lactose hydrolysis and transglycosylation reactions. Therefore, there is a need to mine novel and high-quality β-galactosidases with good tolerance and novel features from harsh environments and genomic databases. In this study, an Escherichia coli β-galactosidase-deficient host, ΔlacZ(DE3)pRARE, was constructed by the CRISPR-Cas9 system for screening active β-galactosidases. Of thirty selected β-galactosidases, twelve novel enzymes showed β-galactosidase activity, four of which were purified for further study. BGal_375 exhibited maximal activity at pH 8 and 50 °C. The concentrations of two types of galactooligosaccharides, tri- and tetra-saccharides, produced by BGal_375, reached 64.53 g/l and 8.32 g/l, respectively. BGal_375 displayed a Km value of 1.65 mM and kcat value of 53 s-1 for p-nitrophenyl-β-d-galactopyranoside (pNPG). BGal_137, BGal_144-3, and BGal_145-2 showed promising hydrolytic activity for pNPG. BGal_137 is a homodimer while BGal_144-3, BGal_145-2, and BGal_375 were all monomeric. This study provided an efficient solution for the identification of new β-galactosidases from metagenomic data, and an alkaline β-galactosidase efficient for the synthesis of galactooligosaccharides was obtained, which is important for potential industrial applications.
Collapse
Affiliation(s)
- Pei Liu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Escuder-Rodríguez JJ, DeCastro ME, Cerdán ME, Rodríguez-Belmonte E, Becerra M, González-Siso MI. Cellulases from Thermophiles Found by Metagenomics. Microorganisms 2018; 6:microorganisms6030066. [PMID: 29996513 PMCID: PMC6165527 DOI: 10.3390/microorganisms6030066] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023] Open
Abstract
Cellulases are a heterogeneous group of enzymes that synergistically catalyze the hydrolysis of cellulose, the major component of plant biomass. Such reaction has biotechnological applications in a broad spectrum of industries, where they can provide a more sustainable model of production. As a prerequisite for their implementation, these enzymes need to be able to operate in the conditions the industrial process requires. Thus, cellulases retrieved from extremophiles, and more specifically those of thermophiles, are likely to be more appropriate for industrial needs in which high temperatures are involved. Metagenomics, the study of genes and gene products from the whole community genomic DNA present in an environmental sample, is a powerful tool for bioprospecting in search of novel enzymes. In this review, we describe the cellulolytic systems, we summarize their biotechnological applications, and we discuss the strategies adopted in the field of metagenomics for the discovery of new cellulases, focusing on those of thermophilic microorganisms.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Corunna, Spain.
| |
Collapse
|
13
|
Lepcha K, Ghosh S. Glycoside hydrolases from a thermophilic microbial consortium and their implication in the saccharification of agroresidues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Liu C, Zou G, Yan X, Zhou X. Screening of multimeric β-xylosidases from the gut microbiome of a higher termite, Globitermes brachycerastes. Int J Biol Sci 2018; 14:608-615. [PMID: 29904275 PMCID: PMC6001650 DOI: 10.7150/ijbs.22763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Termite gut microbiome is a rich reservoir for glycoside hydrolases, a suite of enzymes critical for the degradation of lignocellulosic biomass. To search for hemicellulases, we screened 12,000 clones from a fosmid gut library of a higher termite, Globitermes brachycerastes. As a common Southeastern Asian genus, Globitermes distributes predominantly in tropical rain forests and relies on the lignocellulases from themselves and bacterial symbionts to digest wood. In total, 22 positive clones with β-xylosidase activity were isolated, in which 11 representing different restriction fragment length polymorphism (RFLP) patterns were pooled and subjected to 454 pyrosequencing. As a result, eight putative β-xylosidases were cloned and heterologously expressed in Escherichia coli BL21 competent cells. After purification using Ni-NTA affinity chromatography, recombinant G. brachycerastes symbiotic β-xylosidases were characterized enzymatically, including their pH and temperature optimum. In addition to β-xylosidase activity, four of them also exhibited either β-glucosidase or α-arabinosidases activities, suggesting the existence of bifunctional hemicellulases in the gut microbiome of G. brachycerastes. In comparison to multimeric protein engineering, the involvement of naturally occurring multifunctional biocatalysts streamlines the genetic modification procedures and simplifies the overall production processes. Alternatively, these multimeric enzymes could serve as the substitutes for β-glucosidase, β-xylosidase and α-arabinosidase to facilitate a wide range of industrial applications, including food processing, animal feed, environment and waste management, and biomass conversion.
Collapse
Affiliation(s)
- Chunyan Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Gen Zou
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xing Yan
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuguo Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| |
Collapse
|
15
|
Adesioye FA, Makhalanyane TP, Vikram S, Sewell BT, Schubert WD, Cowan DA. Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family. Appl Environ Microbiol 2018; 84:e02695-17. [PMID: 29453256 PMCID: PMC5881061 DOI: 10.1128/aem.02695-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/04/2023] Open
Abstract
A hot desert hypolith metagenomic DNA sequence data set was screened in silico for genes annotated as acetyl xylan esterases (AcXEs). One of the genes identified encoded an ∼36-kDa protein (Axe1NaM1). The synthesized gene was cloned and expressed, and the resulting protein was purified. NaM1 was optimally active at pH 8.5 and 30°C and functionally stable at salt concentrations of up to 5 M. The specific activity and catalytic efficiency were 488.9 U mg-1 and 3.26 × 106 M-1 s-1, respectively. The crystal structure of wild-type NaM1 was solved at a resolution of 2.03 Å, and a comparison with the structures and models of more thermostable carbohydrate esterase 7 (CE7) family enzymes and variants of NaM1 from a directed evolution experiment suggests that reduced side-chain volume of protein core residues is relevant to the thermal stability of NaM1. Surprisingly, a single point mutation (N96S) not only resulted in a simultaneous improvement in thermal stability and catalytic efficiency but also increased the acyl moiety substrate range of NaM1.IMPORTANCE AcXEs belong to nine carbohydrate esterase families (CE1 to CE7, CE12, and CE16), of which CE7 enzymes possess a unique and narrow specificity for acetylated substrates. All structurally characterized members of this family are moderately to highly thermostable. The crystal structure of a novel, mesophilic CE7 AcXE (Axe1NaM1), from a soil metagenome, provides a basis for comparisons with thermostable CE7 enzymes. Using error-prone PCR and site-directed mutagenesis, we enhanced both the stability and activity of the mesophilic AcXE. With comparative structural analyses, we have also identified possible thermal stability determinants. These are valuable for understanding the thermal stability of enzymes within this family and as a guide for future protein engineering of CE7 and other α/β hydrolase enzymes.
Collapse
Affiliation(s)
- Fiyinfoluwa A Adesioye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Bryan T Sewell
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Jiménez DJ, Dini-Andreote F, DeAngelis KM, Singer SW, Salles JF, van Elsas JD. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia. Trends Microbiol 2017. [PMID: 28648267 DOI: 10.1016/j.tim.2017.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Francisco Dini-Andreote
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298, USA
| | - Steven W Singer
- Joint BioEnergy Institute,5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| |
Collapse
|
17
|
Maruthamuthu M, Jiménez DJ, van Elsas JD. Characterization of a furan aldehyde-tolerant β-xylosidase/α-arabinosidase obtained through a synthetic metagenomics approach. J Appl Microbiol 2017; 123:145-158. [PMID: 28489302 DOI: 10.1111/jam.13484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
AIMS The aim of the study was to characterize 10 hemicellulolytic enzymes obtained from a wheat straw-degrading microbial consortium. METHODS AND RESULTS Based on previous metagenomics analyses, 10 glycosyl hydrolases were selected, codon-optimized, synthetized, cloned and expressed in Escherichia coli. Nine of the overexpressed recombinant proteins accumulated in cellular inclusion bodies, whereas one, a 37·5-kDa protein encoded by gene xylM1989, was found in the soluble fractions. The resulting protein, denoted XylM1989, showed β-xylosidase and α-arabinosidase activities. It fell in the GH43 family and resembled a Sphingobacterium sp. protein. The XylM1989 showed optimum activity at 20°C and pH 8·0. Interestingly, it kept approximately 80% of its β-xylosidase activity in the presence of 0·5% (w/v) furfural and 0·1% (w/v) 5-hydroxymethylfurfural. Additionally, the presence of Ca2+ , Mg2+ and Mn2+ ions increased the enzymatic activity and conferred complete tolerance to 500 mmol l-1 of xylose. Protein XylM1989 is also able to release sugars from complex polysaccharides. CONCLUSION We report the characterization of a novel bifunctional hemicellulolytic enzyme obtained through a targeted synthetic metagenomics approach. SIGNIFICANCE AND IMPACT OF THE STUDY The properties of XylM1989 turn this protein into a promising enzyme that could be useful for the efficient saccharification of plant biomass.
Collapse
Affiliation(s)
- M Maruthamuthu
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - D J Jiménez
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J D van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Maruthamuthu M, van Elsas JD. Molecular cloning, expression, and characterization of four novel thermo-alkaliphilic enzymes retrieved from a metagenomic library. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:142. [PMID: 28588643 PMCID: PMC5457731 DOI: 10.1186/s13068-017-0808-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Enzyme discovery is a promising approach to aid in the deconstruction of recalcitrant plant biomass in an industrial process. Novel enzymes can be readily discovered by applying metagenomics on whole microbiomes. Our goal was to select, examine, and characterize eight novel glycoside hydrolases that were previously detected in metagenomic libraries, to serve biotechnological applications with high performance. RESULTS Here, eight glycosyl hydrolase family candidate genes were selected from metagenomes of wheat straw-degrading microbial consortia using molecular cloning and subsequent gene expression studies in Escherichia coli. Four of the eight enzymes had significant activities on either pNP-β-d-galactopyranoside, pNP-β-d-xylopyranoside, pNP-α-l-arabinopyranoside or pNP-α-d-glucopyranoside. These proteins, denoted as proteins 1, 2, 5 and 6, were his-tag purified and their nature and activities further characterized using molecular and activity screens with the pNP-labeled substrates. Proteins 1 and 2 showed high homologies with (1) a β-galactosidase (74%) and (2) a β-xylosidase (84%), whereas the remaining two (5 and 6) were homologous with proteins reported as a diguanylate cyclase and an aquaporin, respectively. The β-galactosidase- and β-xylosidase-like proteins 1 and 2 were confirmed as being responsible for previously found thermo-alkaliphilic glycosidase activities of extracts of E. coli carrying the respective source fosmids. Remarkably, the β-xylosidase-like protein 2 showed activities with both pNP-Xyl and pNP-Ara in the temperature range 40-50 °C and pH range 8.0-10.0. Moreover, proteins 5 and 6 showed thermotolerant α-glucosidase activity at pH 10.0. In silico structure prediction of protein 5 revealed the presence of a potential "GGDEF" catalytic site, encoding α-glucosidase activity, whereas that of protein 6 showed a "GDSL" site, encoding a 'new family' α-glucosidase activity. CONCLUSION Using a rational screening approach, we identified and characterized four thermo-alkaliphilic glycosyl hydrolases that have the potential to serve as constituents of enzyme cocktails that produce sugars from lignocellulosic plant remains.
Collapse
Affiliation(s)
- Mukil Maruthamuthu
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
19
|
Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Sci Rep 2017; 7:2356. [PMID: 28539641 PMCID: PMC5443780 DOI: 10.1038/s41598-017-02506-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/13/2017] [Indexed: 01/07/2023] Open
Abstract
Microbial communities metabolize plant biomass using secreted enzymes; however, identifying extracellular proteins tightly bound to insoluble lignocellulose in these microbiomes presents a challenge, as the rigorous extraction required to elute these proteins also lyses the microbes associated with the plant biomass releasing intracellular proteins that contaminate the metasecretome. Here we describe a technique for targeting the extracellular proteome, which was used to compare the metasecretome and meta-surface-proteome of two lignocellulose-degrading communities grown on wheat straw and rice straw. A combination of mass spectrometry-based proteomics coupled with metatranscriptomics enabled the identification of a unique secretome pool from these lignocellulose-degrading communities. This method enabled us to efficiently discriminate the extracellular proteins from the intracellular proteins by improving detection of actively secreted and transmembrane proteins. In addition to the expected carbohydrate active enzymes, our new method reveals a large number of unknown proteins, supporting the notion that there are major gaps in our understanding of how microbial communities degrade lignocellulosic substrates.
Collapse
|
20
|
Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V. Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 2017; 7:42623. [PMID: 28198423 PMCID: PMC5309792 DOI: 10.1038/srep42623] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/13/2017] [Indexed: 12/03/2022] Open
Abstract
In this study, a high-throughput sequencing approach was applied to discover novel biocatalysts for lignocellulose hydrolysis from three dedicated energy crops, Arundo donax, Eucalyptus camaldulensis and Populus nigra, after natural biodegradation. The microbiomes of the three lignocellulosic biomasses were dominated by bacterial species (approximately 90%) with the highest representation by the Streptomyces genus both in the total microbial community composition and in the microbial diversity related to GH families of predicted ORFs. Moreover, the functional clustering of the predicted ORFs showed a prevalence of poorly characterized genes, suggesting these lignocellulosic biomasses are potential sources of as yet unknown genes. 1.2%, 0.6% and 3.4% of the total ORFs detected in A. donax, E. camaldulensis and P. nigra, respectively, were putative Carbohydrate-Active Enzymes (CAZymes). Interestingly, the glycoside hydrolases abundance in P. nigra (1.8%) was higher than that detected in the other biomasses investigated in this study. Moreover, a high percentage of (hemi)cellulases with different activities and accessory enzymes (mannanases, polygalacturonases and feruloyl esterases) was detected, confirming that the three analyzed samples were a reservoir of diversified biocatalysts required for an effective lignocellulose saccharification.
Collapse
Affiliation(s)
- Salvatore Montella
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (Napoli), Italy
| | - Vincent Lombard
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (Napoli), Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| |
Collapse
|
21
|
Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva GMM, Moura LMS, Epamino GWC, Digiampietri LA, Lombardi KC, Ramos PL, Quaggio RB, de Oliveira JCF, Pascon RC, Cruz JBD, da Silva AM, Setubal JC. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 2016; 6:38915. [PMID: 27941956 PMCID: PMC5150989 DOI: 10.1038/srep38915] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.
Collapse
Affiliation(s)
| | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Andrew Maltez Thomas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Deibs Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro Nascimento Lemos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Gianluca Major Machado Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Livia Maria Silva Moura
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - George Willian Condomitti Epamino
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | | | - Karen Cristina Lombardi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ronaldo Bento Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
22
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
23
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
24
|
Matsuzawa T, Yaoi K. Screening, identification, and characterization of a novel saccharide-stimulated β-glycosidase from a soil metagenomic library. Appl Microbiol Biotechnol 2016; 101:633-646. [DOI: 10.1007/s00253-016-7803-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 01/27/2023]
|
25
|
Matsuzawa T, Kimura N, Suenaga H, Yaoi K. Screening, identification, and characterization of α-xylosidase from a soil metagenome. J Biosci Bioeng 2016; 122:393-9. [PMID: 27074950 DOI: 10.1016/j.jbiosc.2016.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
A novel α-xylosidase, MeXyl31, was isolated and characterized from a soil metagenomic library. The amino acid sequence of MeXyl31 showed a slight homology with other characterized α-xylosidases. The optimal pH and temperature of recombinant MeXyl31 were pH 5.5 and 45°C, respectively. Recombinant MeXyl31 had a higher α-xylosidase activity toward pNP α-d-xylopyranoside than pNP α-d-glucopyranoside, isoprimeverose, and other xyloglucan oligosaccharides. The kcat/Km value toward pNP α-d-xylopyranoside was about 750-fold higher than that of isoprimeverose. MeXyl31 activity was strongly inactivated in the presence of zinc and copper ions. MeXyl31 is the first α-xylosidase isolated from the metagenome and, relative to other xyloglucan oligosaccharides, shows higher activity toward pNP α-d-xylopyranoside.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hikaru Suenaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
26
|
Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. BMC Genomics 2016; 17:86. [PMID: 26822785 PMCID: PMC4730625 DOI: 10.1186/s12864-016-2404-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. RESULTS Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. CONCLUSIONS This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two clones, 10BT and T4-1, required the presence of multiple substrates for detectable activity, indicating a new avenue in library activity screening. Finally, clones NT2-2, T5-5 and NT18-17 were found to encode putative novel thermo-alkaline enzymes, which could represent a starting point for further biotechnological applications.
Collapse
Affiliation(s)
- Mukil Maruthamuthu
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Diego Javier Jiménez
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Patricia Stevens
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
27
|
Zhu N, Yang J, Ji L, Liu J, Yang Y, Yuan H. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:243. [PMID: 27833656 PMCID: PMC5103373 DOI: 10.1186/s13068-016-0658-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbial consortia represent promising candidates for aiding in the development of plant biomass conversion strategies for biofuel production. However, the interaction between different community members and the dynamics of enzyme complements during the lignocellulose deconstruction process remain poorly understood. We present here a comprehensive study on the community structure and enzyme systems of a lignocellulolytic microbial consortium EMSD5 during growth on corn stover, using metagenome sequencing in combination with quantitative metaproteomics. RESULTS The taxonomic affiliation of the metagenomic data showed that EMSD5 was primarily composed of members from the phyla Proteobacteria, Firmicutes and Bacteroidetes. The carbohydrate-active enzyme (CAZyme) annotation revealed that representatives of Firmicutes encoded a broad array of enzymes responsible for hemicellulose and cellulose deconstruction. Extracellular metaproteome analysis further pinpointed the specific role and synergistic interaction of Firmicutes populations in plant polysaccharide breakdown. In particular, a wide range of xylan degradation-related enzymes, including xylanases, β-xylosidases, α-l-arabinofuranosidases, α-glucuronidases and acetyl xylan esterases, were secreted by diverse members from Firmicutes during growth on corn stover. Using label-free quantitative proteomics, we identified the differential secretion pattern of a core subset of enzymes, including xylanases and cellulases with multiple carbohydrate-binding modules (CBMs). In addition, analysis of the coordinate expression patterns indicated that transport proteins and hypothetical proteins may play a role in bacteria processing lignocellulose. Moreover, enzyme preparation from EMSD5 demonstrated synergistic activities in the hydrolysis of pretreated corn stover by commercial cellulases from Trichoderma reesei. CONCLUSIONS These results demonstrate that the corn stover-adapted microbial consortium EMSD5 harbors a variety of lignocellulolytic anaerobic bacteria and degradative enzymes, especially those implicated in hemicellulose decomposition. The data in this study highlight the pivotal role and cooperative relationship of Firmicutes members in the biodegradation of plant lignocellulose by EMSD5. The differential expression patterns of enzymes reveal the strategy of sequential lignocellulose deconstruction by EMSD5. Our findings provide insights into the mechanism by which consortium members orchestrate their array of enzymes to degrade complex lignocellulosic biomass.
Collapse
Affiliation(s)
- Ning Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
| | - Lei Ji
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
| | - Yi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China
- National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
28
|
Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:22. [PMID: 26834834 PMCID: PMC4731972 DOI: 10.1186/s13068-016-0440-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenomic analysis of the rice straw-adapted (RSA) microbial consortia enriched from compost ecosystems to decipher the systematic and functional contexts within such a distinctive microbiome. RESULTS Analyses of the 16S pyrotag library and 5 Gbp of metagenomic sequence showed that the phylum Actinobacteria was the predominant group among the Bacteria in the RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. The CAZymes profile revealed that CAZyme genes in the RSA consortia were also widely distributed within these bacterial phyla. Strikingly, about 46.1 % of CAZyme genes were from actinomycetal communities, which harbored a substantially expanded catalog of the cellobiohydrolase, β-glucosidase, acetyl xylan esterase, arabinofuranosidase, pectin lyase, and ligninase genes. Among these communities, a variety of previously unrecognized species was found, which reveals a greater ecological functional diversity of thermophilic Actinobacteria than previously assumed. CONCLUSION These data underline the pivotal role of thermophilic Actinobacteria in lignocellulose biodegradation processes in the compost habitat. Besides revealing a new benchmark for microbial enzymatic deconstruction of lignocelluloses, the results suggest that actinomycetes found in compost ecosystems are potential candidates for mining efficient lignocellulosic enzymes in the biofuel industry.
Collapse
Affiliation(s)
- Cheng Wang
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Da Dong
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- />Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an, Hangzhou, 311300 China
| | - Haoshu Wang
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Karin Müller
- />Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Private Bag 3123, Hamilton, New Zealand
| | - Yong Qin
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Hailong Wang
- />Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Lin’an, Hangzhou, 311300 China
| | - Weixiang Wu
- />Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
29
|
Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 2016; 9:22-34. [PMID: 26275154 PMCID: PMC4720405 DOI: 10.1111/1751-7915.12309] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53,000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market.
Collapse
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Wolfgang R Streit
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße 18, D-22609, Hamburg, Germany
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| |
Collapse
|
30
|
Matsuzawa T, Kaneko S, Yaoi K. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome. Appl Microbiol Biotechnol 2015; 99:8943-54. [DOI: 10.1007/s00253-015-6647-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/09/2015] [Accepted: 04/19/2015] [Indexed: 01/09/2023]
|
31
|
Stöveken J, Singh R, Kolkenbrock S, Zakrzewski M, Wibberg D, Eikmeyer F, Pühler A, Schlüter A, Moerschbacher B. Successful heterologous expression of a novel chitinase identified by sequence analyses of the metagenome from a chitin-enriched soil sample. J Biotechnol 2015; 201:60-8. [DOI: 10.1016/j.jbiotec.2014.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
|
32
|
Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:16. [PMID: 25709713 PMCID: PMC4337096 DOI: 10.1186/s13068-015-0200-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/08/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND As one of the most abundant agricultural wastes, sugarcane bagasse is largely under-exploited, but it possesses a great potential for the biofuel, fermentation, and cellulosic biorefinery industries. It also provides a unique ecological niche, as the microbes in this lignocellulose-rich environment thrive in relatively high temperatures (50°C) with varying microenvironments of aerobic surface to anoxic interior. The microbial community in bagasse thus presents a good resource for the discovery and characterization of new biomass-degrading enzymes; however, it remains largely unexplored. RESULTS We have constructed a fosmid library of sugarcane bagasse and obtained the largest bagasse metagenome to date. A taxonomic classification of the bagasse metagenome reviews the predominance of Proteobacteria, which are also found in high abundance in other aerobic environments. Based on the functional characterization of biomass-degrading enzymes, we have demonstrated that the bagasse microbial community benefits from a large repertoire of lignocellulolytic enzymes, which allows them to digest different components of lignocelluoses into single molecule sugars. Comparative genomic analyses with other lignocellulolytic and non-lignocellulolytic metagenomes show that microbial communities are taxonomically separable by their aerobic "open" or anoxic "closed" environments. Importantly, a functional analysis of lignocellulose-active genes (based on the CAZy classifications) reveals core enzymes highly conserved within the lignocellulolytic group, regardless of their taxonomic compositions. Cellulases, in particular, are markedly more pronounced compared to the non-lignocellulolytic group. In addition to the core enzymes, the bagasse fosmid library also contains some uniquely enriched glycoside hydrolases, as well as a large repertoire of the newly defined auxiliary activity proteins. CONCLUSIONS Our study demonstrates a conservation and diversification of carbohydrate-active genes among diverse microbial species in different biomass-degrading niches, and signifies the importance of taking a global approach to functionally investigate a microbial community as a whole, as compared to focusing on individual organisms.
Collapse
Affiliation(s)
- Wuttichai Mhuantong
- />Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| | - Varodom Charoensawan
- />Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
- />Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Pattanop Kanokratana
- />Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| | - Sithichoke Tangphatsornruang
- />Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| | - Verawat Champreda
- />Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| |
Collapse
|
33
|
Tong X, Lange L, Grell MN, Busk PK. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum. Appl Biochem Biotechnol 2014; 175:1139-52. [PMID: 25369895 DOI: 10.1007/s12010-014-1348-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has been sequenced, its carbohydrate esterases are not annotated yet. We applied peptide pattern recognition (PPR) tool for sequence analysis of the C. thermophilum genome, and 11 carbohydrate esterase genes were discovered. Furthermore, we cloned and heterologously expressed two putative acetyl xylan esterase genes, CtAxeA and CtAxeB, in Pichia pastoris. The recombinant proteins, rCtAxeA and rCtAxeB, released acetic acids from p-nitrophenyl acetate and water-insoluble wheat arabinoxylan. These results indicate that CtAxeA and CtAxeB are true acetyl xylan esterases. For both recombinant esterases, over 93 % of the initial activity was retained after 24 h of incubation at temperatures up to 60 °C, and over 90 % of the initial activity was retained after 24 h of incubation in different buffers from pH 4.0 to 9.0 at 4 and 50 °C. The overall xylose yield from wheat arabinoxylan hydrolysis was 8 % with xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass bioconversion to high value chemicals or biofuels.
Collapse
Affiliation(s)
- Xiaoxue Tong
- Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Wang SD, Guo GS, Li L, Cao LC, Tong L, Ren GH, Liu YH. Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library. Enzyme Microb Technol 2014; 57:26-35. [DOI: 10.1016/j.enzmictec.2014.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/25/2022]
|
35
|
Mehta CM, Palni U, Franke-Whittle IH, Sharma AK. Compost: its role, mechanism and impact on reducing soil-borne plant diseases. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:607-22. [PMID: 24373678 DOI: 10.1016/j.wasman.2013.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 05/14/2023]
Abstract
Soil-borne plant pathogens are responsible for causing many crop plant diseases, resulting in significant economic losses. Compost application to agricultural fields is an excellent natural approach, which can be taken to fight against plant pathogens. The application of organic waste products is also an environmentally friendly alternative to chemical use, which unfortunately is the most common approach in agriculture today. This review analyses pioneering and recent compost research, and also the mechanisms and mode of action of compost microbial communities for reducing the activity of plant pathogens in agricultural crops. In addition, an approach for improving the quality of composts through the microbial communities already present in the compost is presented. Future agricultural practices will almost definitely require integrated research strategies to help combat plant diseases.
Collapse
Affiliation(s)
- C M Mehta
- Department of Biological Sciences, College of Basic Science and Humanities, G. B. P. U. A. & T. Pantnagar, U.S. Nagar, Uttarakhand, India; Department of Botany, D.S.B. Campus, Kumaun University Nainital, Uttarakhand, India
| | - Uma Palni
- Department of Botany, D.S.B. Campus, Kumaun University Nainital, Uttarakhand, India
| | - I H Franke-Whittle
- Leopold-Franzens University, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| | - A K Sharma
- Department of Biological Sciences, College of Basic Science and Humanities, G. B. P. U. A. & T. Pantnagar, U.S. Nagar, Uttarakhand, India.
| |
Collapse
|
36
|
Satyanarayana DVT. Improvement in thermostability of metagenomic GH11 endoxylanase (Mxyl) by site-directed mutagenesis and its applicability in paper pulp bleaching process. J Ind Microbiol Biotechnol 2013; 40:1373-81. [PMID: 24100791 DOI: 10.1007/s10295-013-1347-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
An attempt has been made for enhancing the thermostability of xylanase (Mxyl) retrieved from a compost-soil-based metagenomic library. The analysis of the structure of xylanase by molecular dynamics simulation revealed more structural fluctuations in β-sheets. When the surface of β-sheets was enriched with arginine residues by substituting serine/threonine by site-directed mutagenesis, the enzyme with four arginine substitutions (MxylM4) exhibited enhanced thermostability at 80 °C. The T 1/2 of MxylM4 at 80 °C, in the presence of birchwood xylan, increased from 130 to 150 min at 80 °C without any alteration in optimum pH and temperature and molecular mass. Improvement in thermostability of MxylM4 was corroborated by increase in T m by 6 °C over that of Mxyl. The K m of MxylM4, however, increased from 8.01 ± 0.56 of Mxyl to 12.5 ± 0.32 mg ml(-1), suggesting a decrease in the affinity as well as specific enzyme activity. The Mxyl as well as MxylM4 liberated chromophores and lignin-derived compounds from kraft pulp, indicating their applicability in pulp bleaching.
Collapse
|
37
|
D'haeseleer P, Gladden JM, Allgaier M, Chain PSG, Tringe SG, Malfatti SA, Aldrich JT, Nicora CD, Robinson EW, Paša-Tolić L, Hugenholtz P, Simmons BA, Singer SW. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS One 2013; 8:e68465. [PMID: 23894306 PMCID: PMC3716776 DOI: 10.1371/journal.pone.0068465] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/29/2013] [Indexed: 12/02/2022] Open
Abstract
Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilic Paenibacilli and an uncultivated subdivision of the little-studied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify >3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.
Collapse
Affiliation(s)
- Patrik D'haeseleer
- Joint BioEnergy Institute, Emeryville, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Metagenomic analysis of a tropical composting operation at the são paulo zoo park reveals diversity of biomass degradation functions and organisms. PLoS One 2013; 8:e61928. [PMID: 23637931 PMCID: PMC3637033 DOI: 10.1371/journal.pone.0061928] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/15/2013] [Indexed: 12/19/2022] Open
Abstract
Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.
Collapse
|