1
|
Das PK, Sahoo A, Veeranki VD. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. Int J Biol Macromol 2024; 266:131379. [PMID: 38580014 DOI: 10.1016/j.ijbiomac.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Ballegeer M, van Scherpenzeel RC, Delgado T, Iglesias-Caballero M, García Barreno B, Pandey S, Rush SA, Kolkman JA, Mas V, McLellan JS, Saelens X. A neutralizing single-domain antibody that targets the trimer interface of the human metapneumovirus fusion protein. mBio 2024; 15:e0212223. [PMID: 38117059 PMCID: PMC10790764 DOI: 10.1128/mbio.02122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Human metapneumovirus (hMPV) is an important respiratory pathogen for which no licensed antivirals or vaccines exist. Single-domain antibodies represent promising antiviral biologics that can be easily produced and formatted. We describe the isolation and detailed characterization of two hMPV-neutralizing single-domain antibodies that are directed against the fusion protein F. One of these single-domain antibodies broadly neutralizes hMPV A and B strains, can prevent proteolytic maturation of F, and binds to an epitope in the F trimer interface. This suggests that hMPV pre-F undergoes trimer opening or "breathing" on infectious virions, exposing a vulnerable site for neutralizing antibodies. Finally, we show that this single-domain antibody, fused to a human IgG1 Fc, can protect cotton rats against hMPV replication, an important finding for potential future clinical applications.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Shubham Pandey
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Vicente Mas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Bispecific antibodies revolutionizing breast cancer treatment: a comprehensive overview. Front Immunol 2023; 14:1266450. [PMID: 38111570 PMCID: PMC10725925 DOI: 10.3389/fimmu.2023.1266450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer (BCa) is known as a complex and prevalent disease requiring the development of novel anticancer therapeutic approaches. Bispecific antibodies (BsAbs) have emerged as a favorable strategy for BCa treatment due to their unique ability to target two different antigens simultaneously. By targeting tumor-associated antigens (TAAs) on cancer cells, engaging immune effector cells, or blocking critical signaling pathways, BsAbs offer enhanced tumor specificity and immune system involvement, improving anti-cancer activity. Preclinical and clinical studies have demonstrated the potential of BsAbs in BCa. For example, BsAbs targeting human epidermal growth factor receptor 2 (HER2) have shown the ability to redirect immune cells to HER2-positive BCa cells, resulting in effective tumor cell killing. Moreover, targeting the PD-1/PD-L1 pathway by BsAbs has demonstrated promising outcomes in overcoming immunosuppression and enhancing immune-mediated tumor clearance. Combining BsAbs with existing therapeutic approaches, such as chemotherapy, targeted therapies, or immune checkpoint inhibitors (ICIs), has also revealed synergistic effects in preclinical models and early clinical trials, emphasizing the usefulness and potential of BsAbs in BCa treatment. This review summarizes the latest evidence about BsAbs in treating BCa and the challenges and opportunities of their use in BCa.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-Ya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
4
|
Yeast-produced fructosamine-3-kinase retains mobility after ex vivo intravitreal injection in human and bovine eyes as determined by Fluorescence Correlation Spectroscopy. Int J Pharm 2022; 621:121772. [PMID: 35487399 DOI: 10.1016/j.ijpharm.2022.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
Globally, over 2 billion people suffer from vision impairment. Despite complex multifactorial etiology, advanced glycation end products are involved in the pathogenesis of many causative age- and diabetes-related eye diseases. Deglycating enzyme fructosamine-3-kinase (FN3K) was recently proposed as a potential therapeutic, but for further biopharmaceutical development, knowledge on its manufacturability and stability and mobility in the vitreous fluid of the eye is indispensable. We evaluated recombinant production of FN3K in two host systems, and its diffusion behavior in both bovine and human vitreous. Compared to Escherichia coli, intracellular production in Pichia pastoris yielded more and higher purity FN3K. The yeast-produced enzyme was used in a first attempt to use fluorescence correlation spectroscopy to study protein mobility in non-sonicated bovine vitreous, human vitreous, and intact bovine eyes. It was demonstrated that FN3K retained mobility upon intravitreal injection, although a certain delay in diffusion was observed. Alkylation of free cysteines was tolerated both in terms of enzymatic activity and vitreous diffusion. Ex vivo diffusion data gathered and the availability of yeast-produced high purity enzyme now clear the path for in vivo pharmacokinetics studies of FN3K.
Collapse
|
5
|
A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. Int J Mol Sci 2021; 22:ijms22083841. [PMID: 33917258 PMCID: PMC8068021 DOI: 10.3390/ijms22083841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cataracts are the major cause of blindness worldwide, largely resulting from aging and diabetes mellitus. Advanced glycation end products (AGEs) have been identified as major contributors in cataract formation because they alter lens protein structure and stability and induce covalent cross-linking, aggregation, and insolubilization of lens crystallins. We investigated the potential of the deglycating enzyme fructosamine-3-kinase (FN3K) in the disruption of AGEs in cataractous lenses. Macroscopic changes of equine lenses were evaluated after ex vivo intravitreal FN3K injection. The mechanical properties of an equine lens pair were evaluated after treatment with saline and FN3K. AGE-type autofluorescence (AF) was measured to assess the time-dependent effects of FN3K on glycolaldehyde-induced AGE-modified porcine lens fragments and to evaluate its actions on intact lenses after in vivo intravitreal FN3K injection of murine eyes. A potential immune response after injection was evaluated by analysis of IL-2, TNFα, and IFNγ using an ELISA kit. Dose- and time-dependent AF kinetics were analyzed on pooled human lens fragments. Furthermore, AF measurements and a time-lapse of macroscopic changes were performed on intact cataractous human eye lenses after incubation with an FN3K solution. At last, AF measurements were performed on cataractous human eyes after crossover topical treatment with either saline- or FN3K-containing drops. While the lenses of the equine FN3K-treated eyes appeared to be clear, the saline-treated lenses had a yellowish-brown color. Following FN3K treatment, color restoration could be observed within 30 min. The extension rate of the equine FN3K-treated lens was more than twice the extension rate of the saline-treated lens. FN3K treatment induced significant time-dependent decreases in AGE-related AF values in the AGE-modified porcine lens fragments. Furthermore, in vivo intravitreal FN3K injection of murine eyes significantly reduced AF values of the lenses. Treatment did not provoke a systemic immune response in mice. AF kinetics of FN3K-treated cataractous human lens suspensions revealed dose- and time-dependent decreases. Incubation of cataractous human eye lenses with FN3K resulted in a macroscopic lighter color of the cortex and a decrease in AF values. At last, crossover topical treatment of intact human eyes revealed a decrease in AF values during FN3K treatment, while showing no notable changes with saline. Our study suggests, for the first time, a potential additional role of FN3K as an alternative treatment for AGE-related cataracts.
Collapse
|
6
|
Panina AA, Toporova VA, Rybchenko VS, Balabashin DS, Argentova VV, Yakimov SA, Solopova ON, Aliev TK, Dolgikh DA, Sveshnikov PG, Kirpichnikov MP. Development of the Bispecific Antibody in Fab-scFv Format Based on an Antibody to Human Interferon Beta-1 and Antibody to HER2 Receptor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
De Bruyne S, Van den Broecke C, Vrielinck H, Khelifi S, De Wever O, Bracke K, Huizing M, Boston N, Himpe J, Speeckaert M, Vral A, Van Dorpe J, Van Aken E, Delanghe JR. Fructosamine-3-Kinase as a Potential Treatment Option for Age-Related Macular Degeneration. J Clin Med 2020; 9:jcm9092869. [PMID: 32899850 PMCID: PMC7565857 DOI: 10.3390/jcm9092869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration is the leading cause of blindness in the developed world. Since advanced glycation end products (AGEs) are implicated in the pathogenesis of AMD through various lines of evidence, we investigated the potential of fructosamine-3-kinase (FN3K) in the disruption of retinal AGEs, drusenoid material and drusenoid lesions in patients with AMD. AGE-type autofluorescence was measured to evaluate the effects of FN3K on glycolaldehyde-induced AGE-modified neural porcine retinas and unmodified human neural retinas. Eye pairs from cigarette-smoke- and air-exposed mice were treated and evaluated histologically. Automated optical image analysis of human tissue sections was performed to compare control- and FN3K-treated drusen and near-infrared (NIR) microspectroscopy was performed to examine biochemical differences. Optical coherence tomography (OCT) was used to evaluate the effect of FN3K on drusenoid deposits after treatment of post-mortem human eyes. FN3K treatment provoked a significant decrease (41%) of AGE-related autofluorescence in the AGE-modified porcine retinas. Furthermore, treatment of human neural retinas resulted in significant decreases of autofluorescence (−24%). FN3K-treated murine eyes showed less drusenoid material. Pairwise comparison of drusen on tissue sections revealed significant changes in color intensity after FN3K treatment. NIR microspectroscopy uncovered clear spectral differences in drusenoid material (Bruch’s membrane) and drusen after FN3K treatment. Ex vivo treatment strongly reduced size of subretinal drusenoid lesions on OCT imaging (up to 83%). In conclusion, our study demonstrated for the first time a potential role of FN3K in the disruption of AGE-related retinal autofluorescence, drusenoid material and drusenoid lesions in patients with AMD.
Collapse
Affiliation(s)
- Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
| | | | - Henk Vrielinck
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.); (S.K.)
| | - Samira Khelifi
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.); (S.K.)
| | - Olivier De Wever
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (O.D.W.); (A.V.)
| | - Ken Bracke
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (K.B.); (M.S.)
| | - Manon Huizing
- Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (M.H.); (N.B.)
| | - Nezahat Boston
- Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (M.H.); (N.B.)
| | - Jonas Himpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
| | - Marijn Speeckaert
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (K.B.); (M.S.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (O.D.W.); (A.V.)
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
- Correspondence: (E.V.A.); (J.R.D.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
- Correspondence: (E.V.A.); (J.R.D.)
| |
Collapse
|
8
|
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L, Hoffmann M, Pöhlmann S, Graham BS, Callewaert N, Schepens B, Saelens X, McLellan JS. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 2020; 181:1004-1015.e15. [PMID: 32375025 PMCID: PMC7199733 DOI: 10.1016/j.cell.2020.04.031] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dorien De Vlieger
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gretel M Torres
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wander Van Breedam
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Loes van Schie
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, 37077 Göttingen, Germany
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
De Vlieger D, Hoffmann K, Van Molle I, Nerinckx W, Van Hoecke L, Ballegeer M, Creytens S, Remaut H, Hengel H, Schepens B, Saelens X. Selective Engagement of FcγRIV by a M2e-Specific Single Domain Antibody Construct Protects Against Influenza A Virus Infection. Front Immunol 2019; 10:2920. [PMID: 31921179 PMCID: PMC6921966 DOI: 10.3389/fimmu.2019.02920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Lower respiratory tract infections, such as infections caused by influenza A viruses, are a constant threat for public health. Antivirals are indispensable to control disease caused by epidemic as well as pandemic influenza A. We developed a novel anti-influenza A virus approach based on an engineered single-domain antibody (VHH) construct that can selectively recruit innate immune cells to the sites of virus replication. This protective construct comprises two VHHs. One VHH binds with nanomolar affinity to the conserved influenza A matrix protein 2 (M2) ectodomain (M2e). Co-crystal structure analysis revealed that the complementarity determining regions 2 and 3 of this VHH embrace M2e. The second selected VHH specifically binds to the mouse Fcγ Receptor IV (FcγRIV) and was genetically fused to the M2e-specific VHH, which resulted in a bi-specific VHH-based construct that could be efficiently expressed in Pichia pastoris. In the presence of M2 expressing or influenza A virus-infected target cells, this single domain antibody construct selectively activated the mouse FcγRIV. Moreover, intranasal delivery of this bispecific FcγRIV-engaging VHH construct protected wild type but not FcγRIV−/− mice against challenge with an H3N2 influenza virus. These results provide proof of concept that VHHs directed against a surface exposed viral antigen can be readily armed with effector functions that trigger protective antiviral activity beyond direct virus neutralization.
Collapse
Affiliation(s)
- Dorien De Vlieger
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Katja Hoffmann
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Wim Nerinckx
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sarah Creytens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Rossey I, Gilman MSA, Kabeche SC, Sedeyn K, Wrapp D, Kanekiyo M, Chen M, Mas V, Spitaels J, Melero JA, Graham BS, Schepens B, McLellan JS, Saelens X. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun 2017; 8:14158. [PMID: 28194013 PMCID: PMC5316805 DOI: 10.1038/ncomms14158] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV.
Collapse
Affiliation(s)
- Iebe Rossey
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Morgan S A Gilman
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Stephanie C Kabeche
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Koen Sedeyn
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Daniel Wrapp
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jan Spitaels
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| |
Collapse
|
11
|
Baghban R, Gargari SLM, Rajabibazl M, Nazarian S, Bakherad H. Camelid-derived heavy-chain nanobody againstClostridium botulinumneurotoxin E inPichia pastoris. Biotechnol Appl Biochem 2016; 63:200-5. [PMID: 24673401 DOI: 10.1002/bab.1226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/20/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Roghayyeh Baghban
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, Iran
| | | | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Sciences, Imam Hosein University, Tehran, Iran
| | - Hamid Bakherad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, Iran
| |
Collapse
|
12
|
Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, Zhuang Y, Shi J, Shen H, Zhang Z, Dai J. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep 2016; 6:18205. [PMID: 26883295 PMCID: PMC4756367 DOI: 10.1038/srep18205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins.
Collapse
Affiliation(s)
- Hui Liang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiajia Shi
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
13
|
Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, Shen H, Zhang Z, Dai J. A collagen-binding EGFR single-chain Fv antibody fragment for the targeted cancer therapy. J Control Release 2015; 209:101-9. [DOI: 10.1016/j.jconrel.2015.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/25/2022]
|
14
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Molino JVD, Viana Marques DDA, Júnior AP, Mazzola PG, Gatti MSV. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol Prog 2013; 29:1343-53. [DOI: 10.1002/btpr.1792] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 06/28/2013] [Indexed: 12/19/2022]
Affiliation(s)
- João Vitor Dutra Molino
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Daniela de Araújo Viana Marques
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Adalberto Pessoa Júnior
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Priscila Gava Mazzola
- Dept. of Clinical Patology; Faculty of Medical Sciences; University of Campinas, Rua: Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz, Campinas; São Paulo 13083-887 Brazil
| | - Maria Silvia Viccari Gatti
- Genetics; Evolution and Bioagents Dept.; Biology Institute; University of Campinas, Rua: Monteiro Lobato, 255, Cidade Universitária “Zeferino Vaz,” Campinas; São Paulo 13083-862 Brazil
| |
Collapse
|
16
|
Key regulatory elements of a strong constitutive promoter, P GCW14 , from Pichia pastoris. Biotechnol Lett 2013; 35:2113-9. [DOI: 10.1007/s10529-013-1312-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/25/2013] [Indexed: 02/06/2023]
|
17
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
18
|
Dumolyn C, Schoonooghe S, Moerman L, Neyt S, Haustraete J, De Vos F. Generation and in vivo characterization of a chimeric αvβ5-targeting antibody 14C5 and its derivatives. EJNMMI Res 2013; 3:25. [PMID: 23557246 PMCID: PMC3626673 DOI: 10.1186/2191-219x-3-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Previous studies showed that radiolabeled murine monoclonal antibody (mAb) 14C5 and its Fab and F(ab')2 fragments, targeting αvβ5 integrin, have promising properties for diagnostic and therapeutic applications in cancer. To diminish the risk of generating a human anti-mouse antibody response in patients, chimeric variants were created. The purpose of this study was to recombinantly produce chimeric antibody (chAb) derivatives of the murine mAb 14C5 and to evaluate the in vitro and in vivo characteristics. Methods In vitro stability, specificity, and affinity of radioiodinated chAb and fragments (Iodo-Gen method) were examined on high-expressing αvβ5 A549 lung tumor cells. In vivo biodistribution and pharmacokinetic characteristics were studied in A549 lung tumor-bearing Swiss Nu/Nu mice. Results Saturation binding experiments revealed high in vitro affinity of radioiodinated chAb, F(ab')2, and Fab, with dissociation constants (KD) of 1.19 ± 0.19, 0.68 ± 0.10, and 2.11 ± 0.58 nM, respectively. ChAb 14C5 showed highest tumor uptake (approximately 10%ID/g) at 24 h post injection, corresponding with other high-affinity Abs. ChF(ab')2 and chFab fragments showed faster clearance from the blood compared to the intact Ab. Conclusions The chimerization of mAb 14C5 and its fragments has no or negligible effect on the properties of the antibody. In vitro and in vivo properties show that the chAb 14C5 is promising for radioimmunotherapy, due to its high maximum tumor uptake and its long retention in the tumor. The chF(ab')2 fragment shows a similar receptor affinity and a faster blood clearance, causing less non-specific retention than the chAb. Due to their fast blood clearance, the fragments show high potential for radioimmunodiagnosis.
Collapse
Affiliation(s)
- Caroline Dumolyn
- Laboratory of Radiopharmacy, University of Ghent, Harelbekestraat 72, Ghent, 9000, Belgium.
| | | | | | | | | | | |
Collapse
|
19
|
High yield of human monoclonal antibody produced by stably transfected Drosophila schneider 2 cells in perfusion culture using wave bioreactor. Mol Biotechnol 2013; 52:170-9. [PMID: 22198740 DOI: 10.1007/s12033-011-9484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Since it was first introduced in late 1990s Wave bioreactor has been used for protein production by mammalian and insect cell lines. However, using Wave bioreactor to produce human monoclonal antibody by stable Drosophila Schneider 2 (S2) cell transfectants has not been reported before. In this study, S2 cells were co-transfected with an inducible vector expressing human monoclonal antibody heavy and light chains, respectively, specific for hemagglutinin (HA) of H5N1 influenza virus. Stable S2 transfectant clone was selected by limiting dilution assay. Stable S2 transfectant clone that produce the highest amount of human monoclonal antibody was inoculated into two 2-l disposable cellbags, where cell growth and antibody production were compared between batch and perfusion cultures using Wave bioreactor. Here, we report that maximum viable cell density reached 1.06 × 10(7) cells/ml in batch culture; whereas 1.04 × 10(8) cells/ml was achieved in perfusion culture. The maximum volumetric antibody productivity in batch culture was 52 mg/l/day; while perfusion culture yielded 1,437 mg/l/day. As a result, the total antibody production was 201 mg in batch culture and 8,212 mg in perfusion culture. The antibody produced by both cultures displays full neutralizing activity. Thus, our results provide strong support for using Wave bioreactor in perfusion culture for a large-scale production of human monoclonal antibody by stable S2 cell transfectants.
Collapse
|
20
|
Engineering and expression of bibody and tribody constructs in mammalian cells and in the yeast Pichia pastoris. Methods Mol Biol 2012; 899:157-75. [PMID: 22735952 DOI: 10.1007/978-1-61779-921-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Bibodies and tribodies are therapeutic antibody derivatives with sizes of approximately 75 and 100 kDa, respectively. This makes them smaller than full-size monoclonal antibodies, leading to better tissue penetration. Compared to the smaller scFv and Fab fragments, the bi- and tribody formats have the additional advantage of a slower renal clearance. However, the cost-effective and efficient production of these and other antibody derivatives is crucial for their further success as therapeutics. Here, we describe the construction and initial transient production in mammalian cells of bibodies and tribodies, followed by their stable production in Pichia pastoris. The purification of the antibody derivatives from the yeast supernatant is also explained.
Collapse
|
21
|
Abstract
New antibody derivatives are continuously being generated to interact with a range of therapeutic targets. The cost-effective and efficient production of these and other antibody derivatives is crucial for their further success. Here, we describe the construction of the expression vectors needed for heterologous expression of a Fab fragment in the yeast Pichia pastoris. The experimental conditions for lab-scale expressions are discussed, and an overview of an efficient purification strategy is presented.
Collapse
|
22
|
Pleckaityte M, Zvirbliene A, Sezaite I, Gedvilaite A. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin. Microb Cell Fact 2011; 10:109. [PMID: 22171920 PMCID: PMC3266213 DOI: 10.1186/1475-2859-10-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/15/2011] [Indexed: 02/05/2023] Open
Abstract
Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs) represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY), the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs) that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the scFv-Fc molecules on the surface of pseudotype VLPs was successful and allowed generation of multivalent scFv-Fc proteins with high VLY-neutralizing potency. Our study demonstrated for the first time that large recombinant antibody molecule fused with hamster polyomavirus VP2 protein and co-expressed with VP1 protein in the form of pseudotype VLPs was properly folded and exhibited strong antigen-binding activity. The current study broadens the potential of recombinant VLPs as a highly efficient carrier for functionally active complex proteins.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Vilnius University, Institute of Biotechnology, Department of Eukaryote Genetic Engineering, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
23
|
Ha S, Wang Y, Rustandi RR. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 2011; 3:453-60. [PMID: 22048694 DOI: 10.4161/mabs.3.5.16891] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The first full length IgG produced in Pichia pastoris was reported in late 1980. However, use of a wild-type Pichia expression system to produce IgGs with human-like N-linked glycans was not possible until recently. Advances in glycoengineering have enabled organisms such as Pichia to mimic human N-glycan biosynthesis and produce IgGs with human glycans on an industrial scale. Since there are only a few reports of the analytical characterization of Pichia-produced IgG, we summarize the results known in this field, and provide additional characterization data generated in our laboratories. The data suggest that Pichia-produced IgG has the same stability as that produced in Chinese hamster ovary (CHO) cells. It has similar aggregation profiles, charge variant distribution and oxidation levels as those for a CHO IgG. It contains human N-linked glycans and O-linked single mannose. Because of the comparable biophysical and biochemical characteristics, glycoengineered Pichia pastoris is an attractive expression system for therapeutic IgG productions.
Collapse
Affiliation(s)
- Sha Ha
- Department of Bioprocess Analytical and Formulation Sciences, Merck Research Laboratories, West Point, PA, USA
| | | | | |
Collapse
|
24
|
Li Q, Bai Z, O’Donnell A, Harvey LM, Hoskisson PA, McNeil B. Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnol Lett 2010; 33:457-67. [DOI: 10.1007/s10529-010-0471-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
|
25
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
26
|
Generation of Fab fragment-like molecular recognition proteins against staphylococcal enterotoxin B by phage display technology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1708-17. [PMID: 20844088 DOI: 10.1128/cvi.00229-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antigen-binding fragments (Fab fragments) and single-chain variable fragments (scFv) against staphylococcal enterotoxin B (SEB) were produced by phage display technology. SEB epitopes were first identified by phage display approach using the commercial anti-SEB monoclonal antibody ab53981 as the target. Heptamer and dodecamer mimotope peptides recognized by ab53981 were screened from Ph.D-7 or Ph.D-12 random peptide phage libraries expressed in Escherichia coli. The isolated 7-mer and 12-mer mimotopes were shown to share a sequence homologous to ⁸PDELHK¹⁴S in the amino acid sequence of SEB. The N-terminal 15-mer peptide of SEB was determined to be an epitope of ab53981. After immunization of mice with maltose-binding protein-tagged N-terminal 15-mer peptide, a phage display Fab library was constructed using cDNA prepared from the mRNAs of spleen cells. Three phage clones displaying the Fab molecule which recognized SEB were isolated through three rounds of panning. Only one of them produced a soluble Fab fragment from the transformed cells, and the fragment fused with a histidine tag sequence was produced in E. coli cells and converted into scFv. Surface plasmon resonance analysis showed that the dissociation constants of these proteins with SEB were (4.1 ± 1.1) × 10⁻⁹ M and (8.4 ± 2.3) × 10⁻¹⁰ M, respectively. The produced molecule was applied to the determination of SEB by enzyme-linked immunosorbent assay and Western blot analysis.
Collapse
|
27
|
Kumar A, Grover S, Sharma J, Batish VK. Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 2010; 30:243-58. [DOI: 10.3109/07388551.2010.483459] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|