1
|
Palomino GJQ, Celiz HY, Gomes FDR, Tetaping GM, Novaes MAS, Rocha KAD, Raposo RDS, Rocha RMP, Duarte ABG, Pessoa ODL, Figueiredo JR, de Sá NAR, Rodrigues APR. Withanolide derivatives: natural compounds with anticancer potential offer low toxicity to fertility and ovarian follicles in mice. Anim Reprod 2024; 21:e20240027. [PMID: 39494127 PMCID: PMC11529970 DOI: 10.1590/1984-3143-ar2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Anticancer therapy often leads to premature ovarian insufficiency (POI) and infertility due to the extreme sensitivity of the ovarian follicle reserve to the effects of chemotherapy. Withanolides are known for their cytotoxic effect on cancer cells and low cytotoxicity on non-malignant or healthy cells. Therefore, this study aimed to investigate the in vivo effects of three withanolides derivatives: 27-dehydroxy-24,25-epoxywithaferin A (WT1), 27-dehydroxywithaferin A (WT2), and withaferin A (WTA) on fertility, and the ovarian preantral follicles of young female mice. To achieve this, mice received 7 intraperitoneal doses of WT1, WT2, or WTA at a concentration of 2 mg/kg (Experiment I) and 5 or 10 mg/kg (Experiment II) over 15 alternate days. In experiment I, two days after administration of the last dose, half of the mice were mated to evaluate the effects of withanolides on fertility. The other half of the mice, as well as all mice from experiment II, were sacrificed for histological, inflammation, senescence, and immunohistochemical analyses of the follicles present in the ovary. Regardless of the administered withanolide, the concentration of 2 mg/kg did not show toxicity on the follicular morphology, ovarian function, or fertility of the mice. However, at concentrations of 5 and 10 mg/kg, the three derivatives (WT1, WT2, and WTA) increased follicular activation, cell proliferation, and ovarian senescence without affecting inflammatory cells. Furthermore, at a concentration of 10 mg/kg, the three withanolides showed intensified toxic effects, leading to DNA damage as evidenced by the labeling of γH2AX, activated Caspase 3, and TUNEL. We conclude that the cytotoxic effect of the tested withanolide derivatives (WT1, WT2, and WTA) in the concentration of 2 mg/kg did not show toxicity on the ovary. However, in higher concentrations, such as 10 mg/kg, toxic effects are potentiated, causing DNA damage.
Collapse
Affiliation(s)
- Gaby Judith Quispe Palomino
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Homero Ygnacio Celiz
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Francisco Denilson Rodrigues Gomes
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Gildas Mbemya Tetaping
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | | | - Késya Amanda Dantas Rocha
- Laboratório de Análise Fitoquímica de Plantas Medicinais, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | | - Ana Beatriz Graça Duarte
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | - José Ricardo Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Ana Paula Ribeiro Rodrigues
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Kołodziejska R, Tafelska-Kaczmarek A, Pawluk M, Sergot K, Pisarska L, Woźniak A, Pawluk H. Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer. Curr Issues Mol Biol 2024; 46:7668-7685. [PMID: 39057095 PMCID: PMC11275341 DOI: 10.3390/cimb46070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Krzysztof Sergot
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Lucyna Pisarska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| |
Collapse
|
3
|
Almilaibary A. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation. Saudi J Biol Sci 2024; 31:103935. [PMID: 38327657 PMCID: PMC10847379 DOI: 10.1016/j.sjbs.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer of the breast is the mainly prevalent class of cancer in females diagnosed over the globe. It also happens to be the 2nd most prevalent reason of cancer-related deaths among females worldwide. Some of the most common type's therapies for carcinoma of the breast involve radiation therapy, chemotherapy, and resection. Many studies are being conducted to develop new therapeutic strategies for better diagnosis of breast cancer. An enormous number of anticancer medications have been developed as a result of growing understanding of the molecular pathways behind the advancement of cancer. Over the past few decades, the general survival rate has not greatly increased due to the usage of chemically manufactured medications. Therefore, in order to increase the effectiveness of current cancer treatments, new tactics and cutting-edge chemoprevention drugs are required. Phytochemicals, which are naturally occurring molecules derived from plants, are important sources for both cancer therapy and innovative medication development. These phytochemicals frequently work by controlling molecular pathways linked to the development and spread of cancer. Increasing antioxidant status, inactivating carcinogens, preventing proliferation, causing cell cycle arrest and apoptosis, and immune system control are some of the specific ways. This primary objective of this review is to provide an overview of the active ingredients found in natural goods, including information on their pharmacologic action, molecular targets, and current state of knowledge. We have given a thorough description of a number of natural substances that specifically target the pathways linked to breast carcinoma in this study. We've conducted a great deal of study on a few natural compounds that may help us identify novel targets for the detection of breast carcinoma.
Collapse
Affiliation(s)
- Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
4
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Abeesh P, Guruvayoorappan C. The Therapeutic Effects of Withaferin A against Cancer: Overview and Updates. Curr Mol Med 2024; 24:404-418. [PMID: 37076466 DOI: 10.2174/1566524023666230418094708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Cancer is a rapidly rising health problem among the global population, and this burden causes a significant challenge for public health. Current chemotherapeutic agents have different limitations, including drug resistance and severe side effects, and it demands a robust approach to accessing promising anti-cancer therapeutics. The natural compounds have been extensively studied to identify improved therapeutic agents for cancer therapy. Withaferin A (WA) is a steroidal lactone found in Withania somnifera and possesses anti-inflammatory, antioxidant, anti-angiogenesis, and anticancer properties. Multiple studies have shown that WA treatment attenuated various cancer hallmarks by inducing apoptosis and reducing angiogenesis and metastasis with reduced side effects. WA is a promising agent for the treatment of various cancer, and it targets various signaling pathways. With recent updates, the current review highlights the therapeutic implications of WA and its molecular targets in different cancer.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
9
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
10
|
Govindaram LK, Bratty MA, Alhazmi HA, Kandasamy R, Thangavel N, Ibrahim AM, Mariya GA, Ponnuchamy K. Formulation, biopharmaceutical evaluation and in-vitro screening of polyherbal phytosomes for breast cancer therapy. Drug Dev Ind Pharm 2022; 48:552-565. [PMID: 36269296 DOI: 10.1080/03639045.2022.2138911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saudi Arabia has a rich culture of folk medicines and three such common herbs used by Saudi people for therapy of breast cancer are Turmeric (Kurkum) Curcuma longa, Chamomile (Babunaj) Matricaria chamomilla, and Aswaghantha (Aswaghadh) Withania somnifera. Hence, the present study aims to develop a polyherbal phytosome formulation by thin film hydration technique with a synergistic anti-cancer effect for the treatment of breast cancer. The phytosomes were standardized for their phytoconstituents by HPTLC and showed the best optimal properties with a mean vesicle diameter of less than 200 nm, zeta potential in the range of -24.43 to -35.70 mV, and relatively integrated structure with fairly uniform size on TEM. The in vitro MTT assay on MCF-7 breast cancer cell lines and MDA MB 231 breast adenocarcinoma cell lines was carried out. MTT assay on MCF-7 breast cancer cell lines indicated that plant extract-loaded phytosomes exhibited enhanced cytotoxic effects at IC50 values. of 55, 50, 45, 52, 42, 44, and 20µg/mL compared to the extracts of C. longa, M. chamomilla, W. somnifera, and their combined extracts (80, 82, 74, 60, 70, 60, and 35 µg/mL respectively). Moreover, intracellular reactive oxygen species production was found to be higher for phytosomes treated cells at respective IC50 concentrations when compared to extracts. Overall, the developed polyherbal phytosomes were found to be effective and afford synergistic effects for breast cancer therapy.
Collapse
Affiliation(s)
- Lalitha K Govindaram
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ruckmani Kandasamy
- Deaprtment of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirapalli, India
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Angum M Ibrahim
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Gover Antoniraj Mariya
- Deaprtment of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirapalli, India
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
11
|
Atteeq M. Evaluating anticancer properties of Withaferin A—a potent phytochemical. Front Pharmacol 2022; 13:975320. [PMID: 36339589 PMCID: PMC9629854 DOI: 10.3389/fphar.2022.975320] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Withaferin A is a C28 steroidal lactone derived from the plant Withania somnifera, commonly known as Ashwagandha. Withaferin A has received great attention for its anticancer properties noted in cancer cells of various origins. Extracts of Withania somnifera have been used in traditional Ayurvedic and Unani Indian medicine for their various pharmacological benefits. In recent years, Withania somnifera or Ashwagandha extract has become popularized as a health supplement marketed for its stress and anxiety reducing effects. Withaferin A is one of the most studied withanolides extracted from Withania somnifera that has gained great attention for its anticancer, anti-inflammatory, metabolic, and pro-apoptotic effects. Extensive in vivo and in vitro studies have depicted Withaferin A’s interactions with key role players in cancerous activity of the cell to exert its pro-apoptotic effects. Withaferin A interactions with NF-κB, STAT, Hsp90, ER-α, p53, and TGF-β have noted inhibition in cancer cell proliferation and cell cycle arrest in G2/M stage, ultimately leading to apoptosis or cell death. This review highlights pro-apoptotic properties of Withaferin A including generation of reactive oxidative species, Par-4 activation, endoplasmic reticulum stress (ER) induction, and p53 activation. Analysis of Withaferin A’s involvement in various oncogenic pathways leading to malignant neoplasm and its pharmacologic activity in conjunction with various cancer drugs provides promising evidence in therapeutic potential of Withaferin A as a cancer treatment.
Collapse
|
12
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
13
|
Sultana T, Okla MK, Ahmed M, Akhtar N, Al-Hashimi A, Abdelgawad H, Haq IU. Withaferin A: From Ancient Remedy to Potential Drug Candidate. Molecules 2021; 26:molecules26247696. [PMID: 34946778 PMCID: PMC8705790 DOI: 10.3390/molecules26247696] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Withaferin A (WA) is a pivotal withanolide that has conquered a conspicuous place in research, owning to its multidimensional biological properties. It is an abundant constituent in Withania somnifera Dunal. (Ashwagandha, WS) that is one of the prehistoric pivotal remedies in Ayurveda. This article reviews the literature about the pharmacological profile of WA with special emphasis on its anticancer aspect. We reviewed research publications concerning WA through four databases and provided a descriptive analysis of literature without statistical or qualitative analysis. WA has been found as an effective remedy with multifaceted mechanisms and a broad spectrum of pharmacological profiles. It has anticancer, anti-inflammatory, antiherpetic, antifibrotic, antiplatelet, profibrinolytic, immunosuppressive, antipigmentation, antileishmanial, and healing potentials. Evidence for wide pharmacological actions of WA has been established by both in vivo and in vitro studies. Further, the scientific literature accentuates the role of WA harboring a variable therapeutic spectrum for integrative cancer chemoprevention and cure. WA is a modern drug from traditional medicine that is necessary to be advanced to clinical trials for advocating its utility as a commercial drug.
Collapse
Affiliation(s)
- Tahira Sultana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Madiha Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (M.A.); (I.-u.-H.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan;
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Ihsan-ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (M.A.); (I.-u.-H.)
| |
Collapse
|
14
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
15
|
Chien TM, Wu KH, Chuang YT, Yeh YC, Wang HR, Yeh BW, Yen CH, Yu TJ, Wu WJ, Chang HW. Withaferin A Triggers Apoptosis and DNA Damage in Bladder Cancer J82 Cells through Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10071063. [PMID: 34209212 PMCID: PMC8300680 DOI: 10.3390/antiox10071063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WFA), the Indian ginseng bioactive compound, exhibits an antiproliferation effect on several kinds of cancer, but it was rarely reported in bladder cancer cells. This study aims to assess the anticancer effect and mechanism of WFA in bladder cancer cells. WFA shows antiproliferation to bladder cancer J82 cells based on the finding of the MTS assay. WFA disturbs cell cycle progression associated with subG1 accumulation in J82 cells. Furthermore, WFA triggers apoptosis as determined by flow cytometry assays using annexin V/7-aminoactinomycin D and pancaspase detection. Western blotting also supports WFA-induced apoptosis by increasing cleavage of caspases 3, 8, and 9 and poly ADP-ribose polymerase. Mechanistically, WFA triggers oxidative stress-association changes, such as the generation of reactive oxygen species and mitochondrial superoxide and diminishment of the mitochondrial membrane potential, in J82 cells. In response to oxidative stresses, mRNA for antioxidant signaling, such as nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT), superoxide dismutase 1 (SOD1), thioredoxin (TXN), glutathione-disulfide reductase (GSR), quinone dehydrogenase 1 (NQO1), and heme oxygenase 1 (HMOX1), are overexpressed in J82 cells. In addition, WFA causes DNA strand breaks and oxidative DNA damages. Moreover, the ROS scavenger N-acetylcysteine reverts all tested WFA-modulating effects. In conclusion, WFA possesses anti-bladder cancer effects by inducing antiproliferation, apoptosis, and DNA damage in an oxidative stress-dependent manner.
Collapse
Affiliation(s)
- Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kuang-Han Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-T.C.); (Y.-C.Y.); (H.-R.W.)
| | - Yun-Chiao Yeh
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-T.C.); (Y.-C.Y.); (H.-R.W.)
| | - Hui-Ru Wang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-T.C.); (Y.-C.Y.); (H.-R.W.)
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.Y.); (T.-J.Y.)
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.Y.); (T.-J.Y.)
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (W.-J.W.); (H.-W.C.); Tel.: +886-7-320-8212 (W.-J.W.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-T.C.); (Y.-C.Y.); (H.-R.W.)
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.Y.); (T.-J.Y.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (W.-J.W.); (H.-W.C.); Tel.: +886-7-320-8212 (W.-J.W.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
16
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
17
|
Vashi R, Patel BM, Goyal RK. Keeping abreast about ashwagandha in breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113759. [PMID: 33359916 DOI: 10.1016/j.jep.2020.113759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha has been used as an ayurvedic medicine in the form of 'Rasayana' (as a tonic) even before 3000 BCE in India. As per Ayurveda, it has long been used traditionally for the treatment of inflammation, weakness, impotence, pulmonary tuberculosis. This plant is also beneficial in lumbago and leucorrhea in the female. In the recent past, Withania has shown its anti-cancerous activity in various experimental models. In addition, Withania also possesses many other properties such as anti-oxidant, anti-stress, adaptogenic, and regenerative which will eventually be beneficial and safe in treating cancer patients. AIM OF THE STUDY This review aims to provide experimental evidence along with a deeper insight into molecular mechanisms of Ashwagandha (Withania somnifera (L.) Dunal) through which it acts as a chemotherapeutic agent against different types of breast cancer. MATERIALS AND METHODS Literature searches with the help of electronic online databases (Elsevier, Google Scholar, Scopus, Springer Link, ScienceDirect, ResearchGate, PubMed) were carried out. The timeline for collection of data for the review article was from 2000 to 2019. The plant name was validated from The Plant List (2013). Version 1.1. Published on http://www.theplantlist.org/(accessed 21st March 2020). RESULTS Various forms of Withania somnifera were used and several in vitro, in vivo, and clinical studies were reported by researchers. They found ashwagandha to exhibit anti-apoptotic, anti-metastatic, anti-invasive and anti-inflammatory properties and gave the evidence that ashwagandha has a capability for averting and treating breast cancer. CONCLUSION Various in vitro and in vivo studies suggested Ashwagandha may possess a potential for treating breast cancer, especially ER/PR positive breast cancer and triple-negative breast cancer. A clinical trial has also been conducted in the past that suggested its potential in refining quality of life in breast cancer patients. Studies directed towards molecular pathways have helped in unravelling the key mechanisms of ashwagandha. Future research should be directed towards translational studies involving breast cancer patients. These will reinforce the ancient power of our Ayurvedic medicine.
Collapse
Affiliation(s)
- Ruju Vashi
- Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India.
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences Research University, Delhi, India.
| |
Collapse
|
18
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
19
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|
20
|
Hahm ER, Kim SH, Singh KB, Singh K, Singh SV. A Comprehensive Review and Perspective on Anticancer Mechanisms of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2020; 13:721-734. [PMID: 32727824 DOI: 10.1158/1940-6207.capr-20-0259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Withaferin A (hereafter abbreviated as WA) is a promising anticancer steroidal lactone abundant in a medicinal plant (Withania somnifera) native to Asia. The root/leaf extract of Withania somnifera, which belongs to the Solanaceae family, continues to be included in the Ayurvedic medicine formulations of alternative medicine practice. Numerous chemicals are detectable in the root/leaf extract of Withania somnifera [e.g., withanolides (WA, withanone, withanolide A, etc.), alkaloids, sitoindosides, etc.], but the anticancer effect of this medicinal plant is largely attributed to WA. Anticancer effect of WA was initially reported in the early 70s in the Ehrlich ascites tumor cell model in vitro Since then, numerous preclinical studies have been performed using cellular and animal models of different cancers including breast cancer to determine cancer therapeutic and chemopreventive effects of WA. Chemoprevention, a word first introduced by Dr. Michael B. Sporn, was intended to impede, arrest, or reverse carcinogenesis at its earliest stages with pharmacologic agents. This review succinctly summarizes the published findings on anticancer pharmacology of WA in breast cancer focusing on pharmacokinetic behavior, in vivo efficacy data in preclinical models in a therapeutic and chemoprevention settings, and its known effects on cancer-relevant cellular processes (e.g., growth arrest, apoptosis induction, autophagy, metabolic adaptation, immune function, etc.) and molecular targets (e.g., suppression of oncogenes such as estrogen receptor-α, STAT3, etc.). Potential gaps in knowledge as well as future research directions essential for clinical development of WA for chemoprevention and/or treatment of breast cancer are also discussed.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kamayani Singh
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Mehta V, Chander H, Munshi A. Mechanisms of Anti-Tumor Activity of Withania somnifera (Ashwagandha). Nutr Cancer 2020; 73:914-926. [PMID: 33949906 DOI: 10.1080/01635581.2020.1778746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing herbal formulations have been used to treat several diseases including cancer. W. somnifera (Ashwagandha) is one such plant the extracts of which have been tested against a number of ailments including cancer, which remains as one of the most dreadful diseases on the globe. The ever-increasing number of cancer related mortality demands the development of novel chemopreventive agents with minimum side effects. Different compounds isolated from various parts of the plant like root, stem, and leaves have been reported to display significant anti-cancerous and immunomodulating properties and thus can be used alone or in combination with other chemotherapeutic drugs for cancer treatment. Through this review, we highlight the importance of W. somnifera in countering the potential oncogenic signaling mediators that are modulated by active constituents of W. somnifera in a variety of cancer types. Further, we hope that active constituents of W. somnifera will be tested in clinical trials so that they can be used as an important adjuvant in the near future for the effective treatment of cancer.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harish Chander
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
22
|
Mandlik Ingawale DS, Namdeo AG. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J Diet Suppl 2020; 18:183-226. [PMID: 32242751 DOI: 10.1080/19390211.2020.1741484] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Withania somnifera, commonly known as "Ashwagandha" or "Indian ginseng" is an essential therapeutic plant of Indian subcontinent regions. It is regularly used, alone or in combination with other plants for the treatment of various illnesses in Indian Systems of Medicine over the period of 3,000 years. Ashwagandha (W. somnifera) belongs to the genus Withania and family Solanaceae. It comprises a broad spectrum of phytochemicals having wide range of biological effects. W. somnifera has demonstrated various biological actions such as anti-cancer, anti-inflammatory, anti-diabetic, anti-microbial, anti-arthritic, anti-stress/adaptogenic, neuro-protective, cardio-protective, hepato-protective, immunomodulatory properties. Furthermore, W. somnifera has revealed the capability to decrease reactive oxygen species and inflammation, modulation of mitochondrial function, apoptosis regulation and improve endothelial function. Withaferin-A is an important phytoconstituents of W. somnifera belonging to the category of withanolides been used in the traditional system of medicine for the treatment of various disorders. In this review, we have summarized the active phytoconstituents, pharmacologic activities (preclinical and clinical), mechanisms of action, potential beneficial applications, marketed formulations and safety and toxicity profile of W. somnifera.
Collapse
Affiliation(s)
- Deepa S Mandlik Ingawale
- Department of Pharmacology, Bharati Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune, India
| | - Ajay G Namdeo
- Department of Pharmacology, Bharati Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune, India
| |
Collapse
|
23
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
24
|
Dubey S, Yoon H, Cohen MS, Nagarkatti P, Nagarkatti M, Karan D. Withaferin A Associated Differential Regulation of Inflammatory Cytokines. Front Immunol 2018; 9:195. [PMID: 29479354 PMCID: PMC5811468 DOI: 10.3389/fimmu.2018.00195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.
Collapse
Affiliation(s)
- Seema Dubey
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hyunho Yoon
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mark Steven Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Dev Karan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
25
|
Subramanian C, Grogan PT, Opipari VP, Timmermann BN, Cohen MS. Novel natural withanolides induce apoptosis and inhibit migration of neuroblastoma cells through down regulation of N-myc and suppression of Akt/mTOR/NF-κB activation. Oncotarget 2018; 9:14509-14523. [PMID: 29581860 PMCID: PMC5865686 DOI: 10.18632/oncotarget.24429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in intensive chemotherapy treatments, long-term success is achieved in less than 30% of children with high-risk neuroblastoma (NB). Key regulatory pathways including the PI3K/Akt, mTOR and NF-κB are implicated in the pathogenesis of NB. Although drugs targeting these individual pathways are in clinical trials, they are not effective due to the activation of compensatory mechanisms. We have previously reported that natural novel withanolides from Physalis longifolia can potently inhibit these key regulatory pathways simultaneously. In the present study, we examined the efficacy and mechanisms through which novel withanolides and their acetate derivatives (WGA-TA and WGB-DA) from P.longifolia kill NB cells. The results from the study demonstrated that our novel acetate derivatives are highly effective in inhibiting the proliferation, shifting the cell cycle and inducing apoptosis in a dose dependent manner. Analysis of oncogenic pathway proteins targeted by withanolides indicated induction of heat shock response due to oxidative stress. Dose dependent decrease in clients of HSP90 chaperone function due to suppression of Akt, mTOR, and NF-κB pathways led to decrease in the expressions of target genes such as cyclin D1, N-myc and Survivin. Additionally, there was a dose dependent attenuation of the migration and invasion of NB cells. Furthermore, the lead compound WGA-TA showed significant reduction in tumor growth of NB xenografts. Taken together, these results suggest that withanolides are an effective therapeutic option against NBs.
Collapse
Affiliation(s)
| | - Patrick T Grogan
- Department of Internal Medicine, University of Wisconsin, Madison, WI, USA
| | - Valerie P Opipari
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Kiyama R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur J Pharmacol 2017; 815:405-415. [PMID: 28970013 DOI: 10.1016/j.ejphar.2017.09.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
Terpenes are made of the isoprene unit (C5), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan.
| |
Collapse
|
27
|
Chang HW, Li RN, Wang HR, Liu JR, Tang JY, Huang HW, Chan YH, Yen CY. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells. Front Physiol 2017; 8:634. [PMID: 28936177 PMCID: PMC5594071 DOI: 10.3389/fphys.2017.00634] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical UniversityKaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Jing-Ru Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung HospitalKaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Yu-Hsuan Chan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical CenterTainan, Taiwan.,School of Dentistry, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
28
|
Natural Withanolides in the Treatment of Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:329-373. [PMID: 27671823 PMCID: PMC7121644 DOI: 10.1007/978-3-319-41334-1_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Withanolides, and in particular extracts from Withania somnifera, have been used for over 3,000 years in traditional Ayurvedic and Unani Indian medical systems as well as within several other Asian countries. Traditionally, the extracts were ascribed a wide range of pharmacologic properties with corresponding medical uses, including adaptogenic, diuretic, anti-inflammatory, sedative/anxiolytic, cytotoxic, antitussive, and immunomodulatory. Since the discovery of the archetype withaferin A in 1965, approximately 900 of these naturally occurring, polyoxygenated steroidal lactones with 28-carbon ergostane skeletons have been discovered across 24 diverse structural types. Subsequently, extensive pharmacologic research has identified multiple mechanisms of action across key inflammatory pathways. In this chapter we identify and describe the major withanolides with anti-inflammatory properties, illustrate their role within essential and supportive inflammatory pathways (including NF-κB, JAK/STAT, AP-1, PPARγ, Hsp90 Nrf2, and HIF-1), and then discuss the clinical application of these withanolides in inflammation-mediated chronic diseases (including arthritis, autoimmune, cancer, neurodegenerative, and neurobehavioral). These naturally derived compounds exhibit remarkable biologic activity across these complex disease processes, while showing minimal adverse effects. As novel compounds and analogs continue to be discovered, characterized, and clinically evaluated, the interest in withanolides as a novel therapeutic only continues to grow.
Collapse
|
29
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Purushotham PM, Kim JM, Jo EK, Senthil K. Withanolides against TLR4-Activated Innate Inflammatory Signalling Pathways: A Comparative Computational and Experimental Study. Phytother Res 2016; 31:152-163. [PMID: 27859734 DOI: 10.1002/ptr.5746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/23/2016] [Accepted: 10/22/2016] [Indexed: 11/12/2022]
Abstract
Innate inflammations are dominant causes of poor health and high mortality. The pathogen-associated molecular pattern and lipopolysaccharide (LPS) are sensed by immune cells through activation of toll-like receptor 4 leading to mitogen-activated protein kinases (MAPKs) and NF-κB activations. Controlled MAPK and Nf-κB inhibitors have been proposed as potential antiinflammatory drugs. Withania somnifera is an important medicinal herb with known antiinflammatory activity. In this study, the selected Withania somnifera extracts and withanolides were analysed on LPS-induced macrophages comparatively. Molecular docking analysis revealed withaferin A, withanone and withanolide A as effective withanolides against inflammatory target molecules. In experiments, withaferin A and withanone treatment had prominent suppressions on LPS-induced expression of pro-inflammatory cytokines in bone marrow-derived macrophages. Withaferin A regulated all the major four pathways (MAPKs and NF-κB) involved in innate inflammations. Similarly among the Withania extracts analysed, the in vitro propagated leaf and field grown root extracts containing high withaferin A content suppressed the inflammatory molecules through NF-κB and MAPK pathways. Withaferin A was found to be best in suppressing the activated inflammatory pathways among all the analysed withanolides. Therefore, withaferin A and extracts with high withaferin A content can be used as promising drug candidates against innate inflammations. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Preethi M Purushotham
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, 641043, Tamil Nadu, India
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Kyeong Jo
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, 641043, Tamil Nadu, India
| |
Collapse
|
31
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
32
|
Gill BS, Navgeet, Kumar S. Ganoderic acid targeting multiple receptors in cancer: in silico and in vitro study. Tumour Biol 2016; 37:14271-14290. [PMID: 27592256 DOI: 10.1007/s13277-016-5291-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane high-affinity surface receptors responsible for cell migration, adhesion, apoptosis, metabolism, and cell proliferation activities in various cancers. Minute aberration in the RTK signaling modulates the downstream signaling pathways that results in cancer. Ganoderic acid is a triterpene isolated from Ganoderma lucidum, which is renowned for its therapeutics effect, especially in cancer. The present study discusses receptor-based molecular docking of insulin receptor (IR), insulin-like growth factor receptor 1 (IGFR-1), vascular endothelial growth factor receptor-1 (VEGFR-1), vascular endothelial growth factor receptor-2 (VEGFR-2), and estrogen receptor (ER) with 50 isoforms of ganoderic acid along with natural inhibitors. These receptors were assessed for toxicity (ADMET) by using Maestro 9.6 (Schrödinger Inc). The calculated docking free energy yielded an excellent dock score for the ganoderic acid when docked with proteins IR, IGFR-1, VEGFR-1, VEGFR-2, and ER, suggesting its potential in combating cancer. Protein-ligand profile highlighted the binding interactions comprising lipophilic, hydrogen bonding, pi-pi stacking interactions, and noncovalent bonding which play a pivotal role in targeting cancer. In silico studies revealed structure of ganoderic acid A as best isoforms among 50 isoforms which exhibits biological activity in liver cancer cells. Ganoderic acids A significantly decrease the viability, proliferation, and oxidative stress in a dose-dependent manner in liver cancer cells.
Collapse
Affiliation(s)
- Balraj Singh Gill
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Navgeet
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India. .,Centre for Plant Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
33
|
Heyninck K, Sabbe L, Chirumamilla CS, Szarc vel Szic K, Vander Veken P, Lemmens KJ, Lahtela-Kakkonen M, Naulaerts S, Op de Beeck K, Laukens K, Van Camp G, Weseler AR, Bast A, Haenen GR, Haegeman G, Vanden Berghe W. Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway. Biochem Pharmacol 2016; 109:48-61. [DOI: 10.1016/j.bcp.2016.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
|
34
|
Noh EJ, Kang MJ, Jeong YJ, Lee JY, Park JH, Choi HJ, Oh SM, Lee KB, Kim DJ, Shin JA, Cho SD, Park JH. Withaferin A inhibits inflammatory responses induced by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Mol Med Rep 2016; 14:983-8. [PMID: 27220676 DOI: 10.3892/mmr.2016.5326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/26/2016] [Indexed: 11/06/2022] Open
Abstract
Periodontitis is a progressive chronic inflammatory disease and a major cause of tooth loss in humans. As a withanolides, withaferin A (WA) is known to exhibit strong anti‑inflammatory activity. The present study examined whether WA inhibited inflammatory responses in macrophages in response to two representative periodontal pathogens, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. Murine bone marrow‑derived macrophages (BMDMs) were used in this study and cytokine production in culture supernatants was measured by enzyme‑linked immunosorbent assays. Western blot analysis was performed to determine the activation of nuclear factor‑κB and mitogen‑activated protein kinases (MAPKs) and the expression of inducible nitric oxide synthase (iNOS), toll‑like receptor (TLR) 2 and TLR4. The production of nitric oxide (NO) was determined by the Griess reaction. WA treatment was shown to decrease interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α production in BMDMs in response to F. nucleatum and A. actinomycetemcomitans in a dose‑dependent manner. The phosphorylation of IκB‑α and MAPKs (p38, extracellular signal‑regulated kinases and c‑Jun N‑terminal kinases) induced by F. nucleatum and A. actinomycetemcomitans was also inhibited by WA. F. nucleatum and A. actinomycetemcomitans induced iNOS expression and NO production in BMDMs, which was inhibited by WA in a dose‑dependent manner. WA also reduced endogenous and induced expression of TLR2 and TLR4 in these cells. These results suggest that WA may be a potential therapeutic agent or preventive additive for periodontitis control.
Collapse
Affiliation(s)
- Eui-Jeong Noh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Ming-Jung Kang
- Laboratory of Animal Medicine, College of Veterinary Medicine and BK21 Project Team, Chonnam National University, Gwangju 500‑757, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Jun-Young Lee
- Laboratory of Animal Medicine, College of Veterinary Medicine and BK21 Project Team, Chonnam National University, Gwangju 500‑757, Republic of Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Hye-Jin Choi
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Kyung-Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Dong-Jae Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, North Jeolla 561‑756, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, North Jeolla 561‑756, Republic of Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and BK21 Project Team, Chonnam National University, Gwangju 500‑757, Republic of Korea
| |
Collapse
|
35
|
Lee IC, Choi BY. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action. Int J Mol Sci 2016; 17:290. [PMID: 26959007 PMCID: PMC4813154 DOI: 10.3390/ijms17030290] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic science, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| |
Collapse
|
36
|
Kim G, Kim TH, Kang MJ, Choi JA, Pack DY, Lee IR, Kim MG, Han SS, Kim BY, Oh SM, Lee KB, Kim DJ, Park JH. Inhibitory effect of withaferin A on Helicobacter pylori‑induced IL‑8 production and NF‑κB activation in gastric epithelial cells. Mol Med Rep 2015; 13:967-72. [PMID: 26647855 DOI: 10.3892/mmr.2015.4602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Withaferin A (WA), a withanolide purified from Withania somnifera, has been known to exert anti-inflammatory effects. The present study sought to determine the effects of WA on Helicobacter (H.) pylori-mediated inflammation in the AGS gastric epithelial cell line. Cellular production of interleukin (IL)-8 and vascular endothelial growth factor (VEGF) was measured by ELISA. Western blot analysis was performed to determine the activation of nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPKs) as well as hypoxia-inducible factor 1α stabilization. Bacterial growth was also examined by measuring the optical density. Pre-treatment or co-treatment with WA efficiently reduced IL-8 production by AGS cells in response to H. pylori infection. H. pylori-induced activation of NF-κB, but not MAPKs, was also inhibited by pre-treatment of WA in the cells. However, WA did not affect VEGF production and HIF-1α stabilization induced by H. pylori in AGS cells. In addition, WA did not influence the growth of H. pylori, suggesting that the anti-inflammatory effect of WA was not due to any bactericidal effect. These findings indicate that WA is a potential preventive or therapeutic agent for H. pylori-mediated gastric inflammation.
Collapse
Affiliation(s)
- Green Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Tae-Hyoun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul University, Seoul 151‑742, Republic of Korea
| | - Min-Jung Kang
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Jin-A Choi
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Da-Young Pack
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Ik-Rae Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Min-Gyu Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Sang-Seop Han
- Graduate School of Pre‑Clinical Laboratory Science, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Cheongwon‑Gun, Choongbuk 363‑883, Republic of Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Kyung-Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Dong-Jae Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302‑718, Republic of Korea
| | - Jong-Hwan Park
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Cheongwon‑Gun, Choongbuk 363‑883, Republic of Korea
| |
Collapse
|
37
|
Zhang Y, Wang Y, Lu Q, Xin W, Cui W, Zhu J. Organoarsenic Roxarsone Promotes Angiogenesis In Vivo. Basic Clin Pharmacol Toxicol 2015; 118:259-70. [PMID: 26450128 DOI: 10.1111/bcpt.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Roxarsone, an organoarsenic feed additive, is widely used worldwide to promote animal growth. It has been found to exhibit a higher angiogenic index than As(III) at lower concentrations and to promote angiogenic phenotype in human endothelial cell in vitro. Little research has focused on the potential angiogenic effect of roxarsone in vitro or in vivo. Here, we investigated the pro-angiogenic effect of roxarsone in vivo. The effects of 0.1-10.0 μM roxarsone were tested in the rat endothelial cell Matrigel plug assay, chicken chorioallantoic membrane (CAM) model and MCF-7 cell xenograft tumour model; 10 ng/mL vascular endothelial growth factor (VEGF) was used as a positive control and PBS as a negative control. Roxarsone significantly increased the volume, weight and haemoglobin content of the Matrigel plugs compared to PBS group (p < 0.05); 1.0 μM roxarsone exerted the most significant effects. H&E staining and CD31 immunochemistry revealed obviously more new vessels or capillary-like structures in the plugs of the roxarsone and VEGF groups. Roxarsone significantly increased the numbers of primary/secondary vessels and area of vessels in the CAM assay and obviously increased tumour weight and volume in the xenograft model compared to PBS (p < 0.05). Histochemistry indicated local necrosis was observed at the centre of the xenograft tumours in the PBS and roxarsone groups, with less necrosis apparent in the VEGF-treated tumours. The growth of endothelial cells and VEGF level was obviously affected at blockade of VEGF and its receptor Flt-1/Flk-1 by SU5416 or its antibody in vitro. This study demonstrates roxarsone promotes angiogenesis in vivo, and a VEGF/VEGFR mechanism may be involved.
Collapse
Affiliation(s)
- Yumei Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yujing Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Qianqian Lu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Wenfang Xin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Weibo Cui
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China
| | - Jiaqiao Zhu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
38
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
39
|
Nishikawa Y, Okuzaki D, Fukushima K, Mukai S, Ohno S, Ozaki Y, Yabuta N, Nojima H. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells. PLoS One 2015; 10:e0134137. [PMID: 26230090 PMCID: PMC4521694 DOI: 10.1371/journal.pone.0134137] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022] Open
Abstract
Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.
Collapse
Affiliation(s)
- Yukihiro Nishikawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Shouichi Ohno
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Yuki Ozaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
40
|
Abstract
Plant-based Ayurvedic medicine has been practiced in India for thousands of years for the treatment of a variety of disorders. They are rich sources of bioactive compounds potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is a widely used medicinal plant whose anticancer value was recognized after isolation of steroidal compounds withanolides from the leaves of this shrub. Withaferin A is the first member of withanolides to be isolated, and it is the most abundant withanolide present in W. somnifera. Its cancer-protective role has now been established using chemically induced and oncogene-driven rodent cancer models. The present review summarizes the key preclinical studies demonstrating anticancer effects of withaferin along with its molecular targets and mechanisms related to its anticancer effects. Anticancer potential of other withanolides is also discussed.
Collapse
|
41
|
Sonego JM, Rivero EM, Gargiulo L, Lüthy I, Alvarez LD, Veleiro AS, Burton G. Synthesis and biological evaluation of salpichrolide analogs as antiestrogenic agents. Eur J Med Chem 2014; 82:233-41. [DOI: 10.1016/j.ejmech.2014.05.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022]
|
42
|
Das T, Roy KS, Chakrabarti T, Mukhopadhyay S, Roychoudhury S. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines. Biochem Pharmacol 2014; 91:31-9. [PMID: 24995417 DOI: 10.1016/j.bcp.2014.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023]
Abstract
Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability.
Collapse
Affiliation(s)
- Tania Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Kumar Singha Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tulika Chakrabarti
- Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sibabrata Mukhopadhyay
- Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
43
|
Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol Life Sci 2014; 71:2065-82. [PMID: 24399289 PMCID: PMC11113397 DOI: 10.1007/s00018-013-1544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan,
| | | |
Collapse
|
44
|
Subramanian C, Zhang H, Gallagher R, Hammer G, Timmermann B, Cohen M. Withanolides are Potent Novel Targeted Therapeutic Agents Against Adrenocortical Carcinomas. World J Surg 2014; 38:1343-52. [DOI: 10.1007/s00268-014-2532-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Pan G, Wang W, Wang L, Zhang F, Yin X, Wang J, Liang R. Anti-breast cancer effects and mechanisms of Xihuang pill on human breast cancer cell lines. J TRADIT CHIN MED 2014; 33:770-8. [PMID: 24660610 DOI: 10.1016/s0254-6272(14)60011-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the anti-breast cancer (BC) effects and mechanisms of action of Xihuang pill (XHP) by conducting in vitro experiments on human BC cell lines. METHODS Two human BC cell lines (MCF-7 and MDA- MB231) were cultured and treated with XHP. Cell viability was detected using the 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was used to measure the cell cycle and apoptosis. The cell cycle was analyzed with propidium iodide staining. Apoptosis was evaluated using the Annexin V-fluorescein isothiocyanate/propidium iodide method. Western blotting was used to analyze the expression of estrogen receptor (ER)-alpha and ER-beta. RESULTS XHP had growth-inhibitory effects on MCF-7 and MDA-MB231 cells with a half-maximal inhibitory concentration (IC50) of 10.14 mg/mL (MCF-7) and 8.98 mg/mL (MDA-MB231). Apoptosis was induced to some extent. Certain changes in the ER were caused. Upregulation of ER-a protein was found in MCF-7 cells. ER-beta expression in MDA-MB231 cells was increased. Cell-cycle arrest was not observed in the two BC cell lines. ER-1 expression in MCF-7 cells was unchanged. No ER-a expression was shown in MDA-MB231 cells. CONCLUSION These data suggest that XHP can affect cell viability and cause apoptosis, but that the cell cycle is not blocked. XHP has a certain impact on ER expression, but its mechanisms of action of anti-BC effects may not be due to regulation of ER expression.
Collapse
|
46
|
Leverentz MK, Acar A, Brennan K. Notch: evidence for combining therapies to treat breast cancer. BREAST CANCER MANAGEMENT 2013. [DOI: 10.2217/bmt.13.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SUMMARY The Notch signaling pathway has been shown to play a pivotal role in the etiology of breast cancer, as it is aberrantly activated in many forms of the disease, and sustained signaling through the pathway is required to maintain the transformed phenotype. These discoveries have resulted in significant interest in targeting the pathway in breast cancer treatment. Over the past decade, several Notch pathway inhibitors have entered the initial stages of clinical trials as monotherapies. However, recent data have suggested that Notch pathway inhibitors are most effective when used in combination with conventional breast cancer therapies. This review will explore the role of Notch signaling in breast cancer and how inhibition of this pathway in concert with conventional therapies is developing as a viable treatment option.
Collapse
Affiliation(s)
- Michael K Leverentz
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Ahmet Acar
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Keith Brennan
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
47
|
Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action. PLoS One 2013; 8:e77189. [PMID: 24130852 PMCID: PMC3795014 DOI: 10.1371/journal.pone.0077189] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX). Methodology/Principal Findings Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX) was detected by invitro and invivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s). Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression invivo. Its active anticancer component was identified as triethylene glycol (TEG). Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest), normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression). We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. Conclusion We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.
Collapse
|
48
|
Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS JOURNAL 2013; 16:1-10. [PMID: 24046237 DOI: 10.1208/s12248-013-9531-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
The plants used in Ayurvedic medicine, which has been practiced in India for thousands of years for the treatment of a variety of disorders, are rich in chemicals potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is one such medicinal plant whose anticancer value was realized over four decades ago after isolation of a crystalline steroidal compound (withaferin A) from the leaves of this shrub. The root and leaf extracts of W. somnifera are shown to confer protection against chemically-induced cancers in experimental rodents, and retard tumor xenograft growth in athymic mice. Anticancer effect of W. somnifera is generally attributable to steroidal lactones collectively referred to as withanolides. Withaferin A (WA) appears most active against cancer among structurally divergent withanolides isolated from the root or leaf of W. somnifera. Cancer-protective role for WA has now been established using chemically-induced and oncogene-driven rodent cancer models. This review summarizes the key in vivo preclinical studies demonstrating anticancer effects of WA. Molecular targets and mechanisms likely contributing to the anticancer effects of WA are also discussed. Finally, challenges in clinical development of WA for the prevention and treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Avani R Vyas
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
49
|
Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60154-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Kapoor S. Withaferin and its attenuating effect on tumor growth in systemic malignancies. Gynecol Oncol 2013. [DOI: 10.1016/j.ygyno.2012.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|