1
|
Mohamed IE, Osman EE, Saeed A, Ming LC, Goh KW, Razi P, Abdullah ADI, Dahab M. Plant extracts as emerging modulators of neuroinflammation and immune receptors in Alzheimer's pathogenesis. Heliyon 2024; 10:e35943. [PMID: 39229544 PMCID: PMC11369442 DOI: 10.1016/j.heliyon.2024.e35943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Memory loss is becoming an increasingly significant health problem, largely due to Alzheimer's disease (AD), which disrupts the brain in several ways, including causing inflammation and weakening the body's defenses. This study explores the potential of medicinal plants as a source of novel therapeutic agents for AD. First, we tested various plant extracts against acetylcholinesterase (AChE) in vitro, following molecular docking simulations with key AD-related protein targets such as MAO-B, P-gp, GSK-3β, and CD14. Rosemary extract was found to be the most inhibitory towards AChE. The compounds found in rosemary (oleanolic acid), sage (pinocembrin), and cinnamon (italicene) showed promise in potentially binding to MAO-B. These chemicals may interact with a key protein in the brain and alter the production and removal of amyloid-β. Luteolin (from rosemary), myricetin (from sage), chamigrene, and italicene (from cinnamon) exhibited potential for inhibiting tau aggregation. Additionally, ursolic acid found in rosemary, sage, and chamigrene from cinnamon could modulate CD14 activity. For the first time, our findings shed light on the intricate interplay between neuroinflammation, neuroprotective mechanisms, and the immune system's role in AD. Further research is needed to validate the in vivo efficacy and safety of these plant-derived compounds, as well as their interactions with key protein targets, which could lead to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Intisar E. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Bahri, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Elbadri E. Osman
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Ahmed Saeed
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box 2404, Khartoum, 12223, Sudan
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Mahmoud Dahab
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| |
Collapse
|
2
|
Lossavaro PKDMB, Felipe JL, Lencina JDS, Bonfá IS, de Souza KFS, Machado LL, Fernandes MML, Ferreira JV, Souza MIL, Candeloro L, Kassuya CAL, Paredes-Gamero EJ, Parisotto EB, Toffoli-Kadri MC, Silva-Filho SE. Antiarthritic and Antinociceptive Properties of Ylang-Ylang ( Cananga odorata) Essential Oil in Experimental Models. Curr Issues Mol Biol 2024; 46:9033-9046. [PMID: 39194751 DOI: 10.3390/cimb46080534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The aim of this study was to evaluate the effect of ylang-ylang (Cananga odorata) essential oil (YEO) on models of experimental arthritis, persistent inflammation, and nociception in mice. YEO treatment at doses of 100 and 200 mg/kg reduced the infiltration of leukocytes into the joint cavities of mice submitted to zymosan-induced arthritis 6 h and 7 days after arthritis induction. At these doses, YEO treatment reduced the formation of joint edema 4 and 6 h after arthritis induction, and at a dose of 200 mg/kg, YEO treatment reduced mechanical hyperalgesia 3 and 4 h after arthritis induction. At the dose of 200 mg/kg, YEO treatment reduced interleukin-6 (IL-6) levels and cartilage destruction in the zymosan-induced arthritis model, and reduced edema formation and mechanical hyperalgesia in the model of persistent inflammation (21 days) induced by complete Freund's adjuvant (CFA) in mice. YEO treatment at a dose of 200 mg/kg reduced the nociceptive response in experimental models of nociception induced by acetic acid and formalin. The YEO treatment reduced inflammatory parameters in the experimental arthritis model, and presented antiarthritic, anti-hyperalgesic, antinociceptive, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Josyelen Lousada Felipe
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Joyce Dos Santos Lencina
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Iluska Senna Bonfá
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Kamylla Fernanda Souza de Souza
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Lucas Luiz Machado
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Mila Marluce Lima Fernandes
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - João Victor Ferreira
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Maria Inês Lenz Souza
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Luciane Candeloro
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Eduardo Benedetti Parisotto
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Mônica Cristina Toffoli-Kadri
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
3
|
Alotaibi JA, Sirwi A, El-Halawany AM, Esmat A, Mohamed GA, Ibrahim SR, Alzain AA, Halawa TF, Safo M, Abdallah HM. α-Glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of phenolic compounds from Carthamus tinctorius L. flowers: In silico and in vitro studies. Saudi Pharm J 2024; 32:102106. [PMID: 38831925 PMCID: PMC11145550 DOI: 10.1016/j.jsps.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Chemical investigation of Carthamus tinctorius L. flowers resulted in isolation of seven metabolites that were identified as; p-Hydroxybenzoic acid (1), trans hydroxy cinnamic acid (2), kaempferol-6-C-glucoside (3), astragalin (4), cartormin (5), kaempferol-3-O-rutinoside (6), and kaempferol-3-O-sophoroside (7). Virtual screening of the isolated compounds against human intestinal α-glucosidase, acetylcholinesterase, and butyrylcholinesterase was carried out. Additionally, the antioxidant activity of the bioactive compounds was assessed. Compounds 1 and 5 exhibited moderate binding affinities to acetylcholinesterase (binding energy -5.33 and -4.18 kcal/mol, respectively), compared to donepezil (-83.33kcal/mol). Compounds 1-7 demonstrated weak affinity to butyrylcholinesterase. Compounds 2 and 4 displayed moderate binding affinity to human intestinal α-glucosidase,compared to Acarbose (reference compound), meanwhile compound 2 exhibited lower affinity. Molecular dynamic studies revealed that compound 4 formed a stable complex with the binding site throughout a 100 ns simulation period. The in-vitro results were consistent with the virtual experimental results, as compounds 1 and 5 showed mild inhibitory effects on acetylcholinesterase (IC50s 150.6 and 168.7 µM, respectively). Compound 4 exhibited moderate α-glucosidase inhibition with an IC50 of 93.71 µM. The bioactive compounds also demonstrated notable antioxidant activity in ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)], ORAC (oxygen radical-absorbance capacity), and metal chelation assays, suggesting their potential in improving dementia in Alzheimer's disease (AD) and mitigating hyperglycemia.
Collapse
Affiliation(s)
- Jawaher A.M. Alotaibi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Ahmed Esmat
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Taher F. Halawa
- Department of Pediatrics, Aberdeen Hospital, Newglasgow, Nova Scotia Health Authorities, Nova Scotia, Canada
| | - Martin Safo
- Department of Medicinal Chemistry, Center for Drug Discovery, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Rauf A, Ibrahim M, Alomar TS, AlMasoud N, Khalil AA, Khan M, Khalid A, Jan MS, Formanowicz D, Quradha MM. Hypoglycemic, anti-inflammatory, and neuroprotective potentials of crude methanolic extract from Acacia nilotica L. - results of an in vitro study. Food Sci Nutr 2024; 12:3483-3491. [PMID: 38726429 PMCID: PMC11077208 DOI: 10.1002/fsn3.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 05/12/2024] Open
Abstract
Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 μg mL-1) and α-amylase (IC50: 17 μg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 μg mL-1) and butyrylcholinesterase (BChE) (491.98 μg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 μg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Muhammad Ibrahim
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Taghrid S. Alomar
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityLahorePakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muhammad Saeed Jan
- Department of PharmacyBacha Khan UniversityCharsaddaKhyber PakhtunkhwaPakistan
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory MedicinePoznan University of Medical SciencesPoznanPoland
| | - Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunHadhramawtYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| |
Collapse
|
5
|
Asiri SA, Shabnam M, Zafar R, Alshehri OM, Alshehri MA, Sadiq A, Mahnashi MH, Jan MS. Evaluation of Habenaria aitchisonii Reichb. for antioxidant, anti-inflammatory, and antinociceptive effects with in vivo and in silico approaches. Front Chem 2024; 12:1351827. [PMID: 38566899 PMCID: PMC10985259 DOI: 10.3389/fchem.2024.1351827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Habenaria aitchisonii Reichb was analyzed in this research, including its chemical composition and its in vitro antioxidant, anti-inflammatory, acute oral toxicity, and antinociceptive activity. The chloroform and ethyl acetate fractions were found to be the most powerful based on in vitro antioxidant, anti-inflammatory, and analgesic assays. The acute oral toxicity of the crude methanolic extract was determined before in vivo studies. The acetic acid and formalin tests were used to measure the antinociceptive effect, and the potential mechanisms involved in antinociception were explored. The carrageenan-induced paw edema test was used to examine the immediate anti-inflammatory effect, and many phlogistic agents were used to determine the specific mechanism. Furthermore, for ex vivo activities, the mice were sacrificed, the forebrain was isolated, and the antioxidant levels of glutathione (GSH), superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS) and catalase (CAT) were estimated using a UV spectrophotometer. No toxicity was seen at oral dosages up to 3,000 mg/kg. The antinociceptive impact was much higher than the standard drug. Both the inflammatory and neurogenic phases of the formalin experiment revealed an analgesic effect in the chloroform and ethyl acetate fractions. In carrageenan anti-inflammatory assays, the chloroform fraction (Ha.Chf) was the most potent fraction. We further studied the GC-MS of crude plant extract and found a total of 18 compounds. In the anti-inflammatory mechanism, it was observed that the Ha.Chf inhibits the COX-2 as well as 5-LOX pathways. The results exhibited that this species is a good source of phytocomponents like germacrone, which can be employed as a sustainable and natural therapeutic agent, supporting its traditional use in folk medicine for inflammatory conditions and pain.
Collapse
Affiliation(s)
- Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Madeeha Shabnam
- Department of Chemistry, Women University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rehman Zafar
- Akhtar Saeed College of Pharmacy, Rawalpindi, Pakistan
| | - Osama M. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Almasoudi HH, Saeed Jan M, Nahari MH, Alhazmi AYM, Binshaya AS, Abdulaziz O, Mahnashi MH, Ibrar M, Zafar R, Sadiq A. Phenolic phytochemistry, in vitro, in silico, in vivo, and mechanistic anti-inflammatory and antioxidant evaluations of Habenaria digitata. Front Pharmacol 2024; 15:1346526. [PMID: 38487169 PMCID: PMC10937556 DOI: 10.3389/fphar.2024.1346526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Excessive and imbalance of free radicals within the body lead to inflammation. The objective of the current research work was to explore the anti-inflammatory and antioxidant potential of the isolated compounds from Habenaria digitata. In this study, the isolated phenolic compounds were investigated for in vitro and in vivo anti-inflammatory potential along with the antioxidant enzyme. The anti-inflammatory and antioxidant potential of the phenolic compounds was assayed via various enzymes like COX-1/2, 5-LOX and ABTS, DPPH, and H2O2 free radical enzyme inhibitory assay. These compounds were also explored for their in vivo antioxidant activity like examining SOD, CAT, GSH-Px, and MDA levels in the brain, heart, and liver. The anti-inflammatory potential was evaluated using the carrageenan-induced pleurisy model in mice. On the basis of initial screening of isolated compounds, the most potent compound was further evaluated for the anti-inflammatory mechanism. Furthermore, the molecular docking study was also performed for the potent compound. The phenolic compounds were isolated and identified by GC-MS/NMR analysis by comparing its spectra to the library spectra. The isolated phenolic compounds from H. digitata were 5-methylpyrimidine-24,4-diol (1), 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (2), 2-isopropyl-5-methylphenol (3), 3-methoxy-4-vinylphenol (4), and 2,6-dimethoxy-4-vinylphenol (5). In in vitro antioxidant assay, the most potent compound was compound 1 having IC50 values of 0.98, 0.90, and 5 μg/mL against ABTS, DPPH, and H2O2, respectively. Similarly, against COX1/2 and 5-LOX ,compound 1 was again the potent compound with IC50 values of 42.76, 10.70, and 7.40 μg/mL. Based on the in vitro results, compound 1 was further evaluated for in vivo antioxidant and anti-inflammatory potential. Findings of the study suggest that H. digitata contains active compounds with potential anti-inflammatory and antioxidant effects. These compounds could be screened as drug candidates for pharmaceutical research, targeting conditions associated with oxidative stress and inflammatory conditions in medicinal chemistry and support their ethnomedicinal use for inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Abdulkarim S. Binshaya
- Department of Medical Laboratory Sciecnes, College of Applied Medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Pharmacy School, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrar
- Department of Pharmacy, Bacha Khan University, Charsadda, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Alshehri OM, Zeb A, Mukarram Shah SM, Mahnashi MH, Asiri SA, Alqahtani O, Sadiq A, Ibrar M, Alshamrani S, Jan MS. Investigation of anti-nociceptive, anti-inflammatory potential and ADMET studies of pure compounds isolated from Isodon rugosus Wall. ex Benth. Front Pharmacol 2024; 15:1328128. [PMID: 38414736 PMCID: PMC10897015 DOI: 10.3389/fphar.2024.1328128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
The strong ethnopharmacological utilization of Isodon rugosus Wall. Ex. Benth is evident in the treatment of several types of pain and inflammation, including toothache, earache, abdominal pain, gastric pain, and generalized body pain and inflammation. Based on this background, the antinociceptive effects of the crude extract, various fractions, and essential oil have been reported previously. In this research work, we isolate and characterize pure bioactive compounds from I. rugosus and evaluate possible mechanisms using various in vivo and in vitro models. The pure compounds were analyzed for analgesic and anti-inflammatory activities through various assays. The column chromatography of the chloroform fraction of I. rugosus led to the identification of two pure compounds, i.e., 1 and 2. Compound 1 demonstrated notable inhibition (62% writhing inhibition, 72.77% COX-2 inhibition, and 76.97% 5-LOX inhibition) and anti-inflammatory potential (>50% paw edema inhibition at various intervals). The possible mechanism involved in antinociception was considered primarily, a concept that has already been elucidated through the application of naloxone (an antagonist of opioid receptors). The involvement of adrenergic receptors was investigated using a hot plate model (an adrenergic receptor antagonist). The strong ethnomedicinal analgesic background of I. rugosus, supported by previous reports and current observations, leads to the conclusion that I. rugosus is a potential source of antinociceptive and anti-inflammatory bioactive compounds. It may be concluded from the results that the isolated analgesic compounds of I. rugosus may be a possible alternative remedy for pain and inflammation management with admirable efficacy and safety profiles.
Collapse
Affiliation(s)
- Osama M Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Anwar Zeb
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | | | - Mater H Mahnashi
- Department of pharmaceutical chemistry, College of pharmacy, Najran University, Najran, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Univeristy of Malakand, Chakdara, Pakistan
| | - Muhammad Ibrar
- Department of Pharmacy, Bacha Khan University, Charsadda, Pakistan
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
8
|
Ghasemi S, Evazalipour M, Peyghanbari N, Zamani E, Bellstedt P, Molaee M, Koohi DE, Yousefbeyk F. Isolation and structure elucidation of the compounds from Teucrium hyrcanicum L. and the investigation of cytotoxicity, antioxidant activity, and protective effect on hydrogen peroxide-induced oxidative stress. BMC Complement Med Ther 2023; 23:447. [PMID: 38087220 PMCID: PMC10714485 DOI: 10.1186/s12906-023-04262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Teucrium hyrcanicum L. (family Lamiaceae) is widely distributed in the North and Northwest of Iran. It has been used in the form of tea, tonic, and tincture for the treatment of various diseases such as cough, rheumatism, and fever. METHODS In this study, the total phenolic and flavonoid contents, antioxidant and cytotoxic activities of methanol extract and different fractions of T. hyrcanicum were measured. Furthermore, the potential ability of T. hyrcanicum to protect against H2O2-induced oxidative stress was tested on the NIH3T3 cell line. Then, the isolation and structure elucidation of the compounds were performed on the most potent fractions. Finally, the quantification of isolated compounds in methanol extract (ME) was done by the HPLC method. Isolated phytochemicals were assessed for the cytotoxic and antioxidant activities. RESULTS The results indicated that the methanol fraction (MF) had the highest amount of phenolic and flavonoid contents (69.36 mg GAE/g extract and 68.95 mg QE/g extract). The highest radical scavenging activities were observed from MF and ME (IC50 44.32 and 61.12 μg.ml-1, respectively). The best cytotoxicity was obtained by ethyl acetate fraction (EF) against A431 and MCF7 cell lines (IC50 values of 235.4and 326.6 μg.ml-1, respectively). The pretreatment with MF exerts the highest reduction in malondialdehyde (MDA) formation (IC50 2.51 μM, p < 0.001) compared to the H2O2 group (5.77 μM). Also, MF significantly inhibited H2O2-induced Glutathione (GSH) oxidation (p < 0.001). Furthermore, two phenolic compounds, acteoside and quercetin, were isolated and identified in MF and EF, respectively. The IC50 values of acteoside and quercetin in the DPPH assay were 7.19 and 5.56 µg.ml-1, respectively. Both quercetin and acteoside significantly reduced the MDA formation and inhibited GSH oxidation, which was comparable with BHA (as a standard antioxidant) (p < 0.05). Acteoside demonstrated significant cytotoxicity against all tested cell lines (IC50 = 32 to 145 μg.ml-1). The HPLC quantification of isolated compounds revealed that the quantity of acteoside and quercetin in ME were 93.31 and 16.87 μg.mg-1, respectively. CONCLUSION The isolated compounds (quercetin and acteoside) had significant antioxidant activities and revealed a protective effect on H2O2-induced oxidative stress which was comparable with BHA.
Collapse
Affiliation(s)
- Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Nastaran Peyghanbari
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Peter Bellstedt
- Institute of Clinical Chemistry, University of Zurich & University Hospital Zurich, Zurich, Switzerland
| | - Mahan Molaee
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Diba Eghbali Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Huneif MA, Fahad S, Abdulwahab A, Alqahtani SM, Mahnashi MH, Nawaz A, Hussain F, Sadiq A. Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. PLANTS (BASEL, SWITZERLAND) 2023; 12:3591. [PMID: 37896054 PMCID: PMC10609873 DOI: 10.3390/plants12203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Diabetes mellitus (DM) is a metabolic complication and can pose a serious challenge to human health. DM is the main cause of many life-threatening diseases. Researchers of natural products have been continuously engaged in treating vital diseases in an economical and efficient way. In this research, we extensively used phytosteroids from Notholirion thomsonianum (Royle) Stapf for the treatment of DM. The structures of phytosteroids NtSt01 and NtSt02 were confirmed with gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. Through in vitro studies including α-glucosidase, α-amylase, and DPPH assays, compound NtSt01 was found to be comparatively potent. An elevated dose of compound NtSt01 was also found to be safe in an experimental study on rats. With a dose of 1.0 mg/kg of NtSt01, the effect on blood glucose levels in rats was observed to be 519 ± 3.98, 413 ± 1.87, 325 ± 1.62, 219 ± 2.87, and 116 ± 1.33 mg/dL on the 1st, 7th, 14th, 21st, and 28th, days, respectively. The in vivo results were compared with those of glibenclamide, which reduced the blood glucose level to 107 ± 2.33 mg/dL on the 28th day. On the 28th day of NtSt01 administration, the average weights of the rats and vital organs (liver, kidney, pancreas, and heart) remained healthy, with a slight increase. The biochemical parameters of the blood, i.e., serum creatinine, blood urea, serum bilirubin, SGPT (or ALT), and serum alkaline phosphatase, of rats treated with NtSt01 remained in the normal ranges. Similarly, the serum cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels also remained within the standard ranges. It is obvious from our overall results that the phytosteroids (specifically NtSt01) had an efficient therapeutic effect on the blood glucose level, protection of vital organs, and blood biochemistry.
Collapse
Affiliation(s)
- Mohammad A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan;
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Seham M. Alqahtani
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi 23561, KP, Pakistan;
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| |
Collapse
|
10
|
Phytochemical Analysis, Antifungal, and Antioxidant Properties of Two Herbs ( Tristemma mauritianum and Crassocephalum bougheyanum) and One Tree ( Lavigeria macrocarpa) Species. Adv Pharmacol Pharm Sci 2023; 2023:2565857. [PMID: 36742131 PMCID: PMC9891821 DOI: 10.1155/2023/2565857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Phytochemicals present in medicinal plants (herbs, shrubs, and trees) are endowed with high antimicrobial and antioxidant properties. The aim of this work was to study the chemical composition, antioxidant, and antifungal activities of Tristemma mauritianum, Crassocephalum bougheyanum, and Lavigeria macrocarpa. Chemical composition of the plant extracts was determined using standard methods. The antioxidant activities were performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), nitric oxide (NO), and hydroxyl (OH) scavenging assays. The antifungal activity of plant extracts and their combinations with antifungals was evaluated against eleven Candida spp. using the broth microdilution method by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). The quantitative chemical analysis of the extracts of T. mauritianum, L. macrocarpa, and C. bougheyanum showed that they contain phenols, tannins, and flavonoids that vary according to the plant species and extracts. All the plant extracts presented promising antifungal (MIC = 64-2048 µg/mL) and antioxidant activities. The extract of T. mauritianum displayed the highest antifungal (MIC = 64-256 µg/mL) and antioxidant (IC50 = 19.052 ± 1.11 μg/mL) activities which can be explained by its high phenolic content. Interestingly, extracts of T. mauritianum, L. macrocarpa, and C. bougheyanum displayed synergistic effects (fractional inhibitory concentration index, FICI ≤ 0.5) with ketoconazole against clinical resistant isolates. The results of the present study demonstrate promising antifungal and antioxidant activities of the tested plants that are associated to their phenol, tannin, and flavonoid contents. Hence, extracts of T. mauritianum and L. macrocarpa could be deeply investigated as antifungal alone and in combination with conventional antifungal drugs to treat infections caused by Candida spp.
Collapse
|
11
|
Jahan I, Sakib SA, Alam N, Majumder M, Sharmin S, Reza ASMA. Pharmacological insights into Chukrasia velutina bark: Experimental and computer-aided approaches. Animal Model Exp Med 2022; 5:377-388. [PMID: 36047481 PMCID: PMC9434563 DOI: 10.1002/ame2.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Chukrasia velutina is an enthnomedicinally used plant reported to have significant medicinal values. The present study aimed to explore the pharmacological activities of bark methanol extract using in vitro, in vivo and in silico models. METHODS The study was designed to investigate the pharmacological effects of methanol extract of Chukrasia velutina bark (MECVB) through in vitro, in vivo and in silico assays. Analgesic activity was tested using formalin-induced nociception and acetic acid-induced writhing assays while the antipyretic effect was tested using yeast-induced hyperthermia in mice model. The antioxidant effect was tested using the DPPH and reducing power assay and the cytotoxic screening was tested using the brine shrimp lethality bioassay. In addition, in silico studies were conducted using computer aided methods. RESULTS In the acetic acid-induced writhing assay, the extract showed 28.36% and 56.16% inhibition of writhing for doses of 200 and 400 mg/kg, respectively. Moreover, a dose-dependent formalin-induced licking response was observed in both early and late phase. In yeast-induced pyrexia, the MECVB exhibited (p < 0.05) antipyretic effect. The extract demonstrated an IC50 value of 78.86 μg/ml compared with ascorbic acid (IC50 23.53 μg/ml) in the DPPH scavenging assay. The compounds sitosterol, 5,7-dimethoxycoumarin and scopoletin were seen be effective in molecular docking scores against COX-I (2OYE), COX-II (6COX) and human peroxiredoxin 5 (1HD2). In ADME/T analysis, 5,7-dimethoxycoumarin and scopoletin satisfied Lipinski's rule of five and thus are potential drug candidates. CONCLUSION The bark of Chukrasia velutina showed significant analgesic and antipyretic properties and is a potential source of natural anti-oxidative agents.
Collapse
Affiliation(s)
- Israt Jahan
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Shahenur Alam Sakib
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Najmul Alam
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | | | - Sanjida Sharmin
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - A. S. M. Ali Reza
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| |
Collapse
|
12
|
Mahnashi MH, Alshahrani MA, Nahari MH, Hassan SSU, Jan MS, Ayaz M, Ullah F, Alshehri OM, Alshehri MA, Rashid U, Sadiq A. In-Vitro, In-Vivo, Molecular Docking and ADMET Studies of 2-Substituted 3,7-Dihydroxy-4H-chromen-4-one for Oxidative Stress, Inflammation and Alzheimer's Disease. Metabolites 2022; 12:1055. [PMID: 36355138 PMCID: PMC9694897 DOI: 10.3390/metabo12111055] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 10/23/2023] Open
Abstract
Plants' bioactives are well-known safe drugs for vital diseases. Flavones and Flavonoid-rich dietary supplements are known to exhibit neuroprotective potential. In this study, we isolated a flavone 2-(3,4-dimethoxyphenyl)-3,7-dihydroxy-4H-chromen-4-one from Notholirion thomsonianum and it was evaluated against various targets of the oxidative stress-related neurological disorders. The compound showed excellent acetyl and butyrylcholinesterase inhibitions in its profile, giving IC50 values of 1.37 and 0.95 μM, respectively. Similarly, in in-vitro MAO-B assay, our flavone exhibited an IC50 value of 0.14 μM in comparison to the standard safinamide (IC50 0.025 μM). In in-vitro anti-inflammatory assay, our isolated compound exhibited IC50 values of 7.09, 0.38 and 0.84 μM against COX-1, COX-2 and 5-LOX, respectively. The COX-2 selectivity (SI) of the compound was 18.70. The compound was found safe in animals and was very effective in carrageenan-induced inflammation. Due to the polar groups in the structure, a very excellent antioxidant profile was observed in both in-vitro and in-vivo models. The compound was docked into the target proteins of the respective activities and the binding energies confirmed the potency of our compound. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) results showed that the isolated flavone has a good GIT absorption ability and comes with no hepatic and cardiotoxicity. In addition, the skin sensitization test, in-vitro human cell line activation test (h-CLAT) and KeratinoSens have revealed that isolated flavone is not skin sensitive with a confidence score of 59.6% and 91.6%. Herein, we have isolated a natural flavone with an effective profile against Alzheimer's, inflammation and oxidative stress. The exploration of this natural flavone will provide a baseline for future research in the field of drug development.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda 24420, KP, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Osama M. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammad Ali Alshehri
- Medical Genetics Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| |
Collapse
|
13
|
Succinimide Derivatives as Antioxidant Anticholinesterases, Anti-α-Amylase, and Anti-α-Glucosidase: In Vitro and In Silico Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6726438. [PMID: 35942378 PMCID: PMC9356783 DOI: 10.1155/2022/6726438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities. The compounds were synthesized through Michael addition of various ketones to N-aryl maleimides. Similarly, the MOE software was used for the molecular docking study to explore the binding mode of the potent compounds against different enzymes. In the anti-cholinesterase activity, the compounds MSJ2 and MSJ10 exhibited outstanding activity against acetylcholinesterase (AChE), i.e., 91.90, 93.20%, and against butyrylcholinesterase (BChE), i.e., 97.30, 91.36% inhibitory potentials, respectively. The compounds MSJ9 and MSJ10 exhibited prominent α-glucosidase inhibitory potentials, i.e., 87.63 and 89.37 with IC50 value of 32 and 28.04 μM, respectively. Moreover, the compounds MSJ2 and MSJ10 revealed significant scavenging activity against DPPH free radicals with IC50 values of 2.59 and 2.52, while against ABTS displayed excellent scavenging potential with IC50 values 7.32 and 3.29 μM, respectively. The tentative results are added with molecular docking studies in the active sites of enzymes to predict the theoretical protein-ligand binding modes. Further detailed mechanism-based studies in animal models are essential for the in vivo evaluation of the potent compound.
Collapse
|
14
|
Anti-Inflammatory, Analgesic and Antioxidant Potential of New (2S,3S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals and Their Corresponding Carboxylic Acids through In Vitro, In Silico and In Vivo Studies. Molecules 2022; 27:molecules27134068. [PMID: 35807316 PMCID: PMC9268591 DOI: 10.3390/molecules27134068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
In the current study, a series of new (2S,3S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals (FM1-6) with their corresponding carboxylic acid analogues (FM7-12) has been synthesized. Initially, the aldehydic derivatives were isolated in the diastereomeric form, and the structures were confirmed with NMR, MS and elemental analysis. Based on the encouraging results in in vitro COX 1/2, 5-LOX and antioxidant assays, we oxidized the compounds and obtained the pure single (major) diastereomer for activities. Among all the compounds, FM4, FM10 and FM12 were the leading compounds based on their potent IC50 values. The IC50 values of compounds FM4, FM10 and FM12 were 0.74, 0.69 and 0.18 µM, respectively, in COX-2 assay. Similarly, the IC50 values of these three compounds were also dominant in COX-1 assay. In 5-LOX assay, the majority of our compounds were potent inhibitors of the enzyme. Based on the potency and safety profiles, FM10 and FM12 were subjected to the in vivo experiments. The compounds FM10 and FM12 were observed with encouraging results in in vivo analgesic and anti-inflammatory models. The molecular docking studies of the selected compounds show binding interactions in the minimized pocked of the target proteins. It is obvious from the overall results that FM10 and FM12 are potent analgesic and anti-inflammatory agents.
Collapse
|
15
|
Huneif MA, Alshehri DB, Alshaibari KS, Dammaj MZ, Mahnashi MH, Majid SU, Javed MA, Ahmad S, Rashid U, Sadiq A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed Pharmacother 2022; 150:113038. [PMID: 35658208 DOI: 10.1016/j.biopha.2022.113038] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a real challenge to the recent era and is one of the major diseases for initiating life-threatening disorders. In current research, a compound was designed by combining vanillin, thiazolidinedione and morpholine. The goal of our designed work is to demonstrate the ability of our design compound (9) to modulate more than one target responsible for hyperglycemia at the same time. The synthesized compound was able to show good to moderate inhibition potential against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B. However, it exhibited excellent in-vitro inhibition of Dipeptidyl peptidase-4 (DPP-4) with IC50 value of 0.09 µM. Antioxidant activity by using DPPH assay also showed its good antioxidant potential. In in-vivo experiments, the compound 9 was proved to be safe in experimental mice. The activity profile of the compound was observed for 21 days which showed that the compound was also effective in experimental mice. Binding orientations and Interactions with key amino acid residues of the selected targets were also studied by using docking studies. Overall, we were successful in synthesizing multitarget preclinical therapeutic by combining three pharmacophoric moieties into a single chemical entity that can modulate more than one target at the same time.
Collapse
Affiliation(s)
- Mohammed A Huneif
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | | | - Khaled S Alshaibari
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | - Mayasa Z Dammaj
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Safi Ullah Majid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Muhammad Aamir Javed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Sajjad Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| |
Collapse
|
16
|
α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113444. [PMID: 35684382 PMCID: PMC9182347 DOI: 10.3390/molecules27113444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.
Collapse
|
17
|
3-(((1 S,3 S)-3-(( R)-Hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione: Design and Synthesis of New Stereopure Multi-Target Antidiabetic Agent. Molecules 2022; 27:molecules27103265. [PMID: 35630740 PMCID: PMC9146474 DOI: 10.3390/molecules27103265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synthesis of certain vital chiral drug candidates is now possible. In this research, we have synthesized 3-(((1S,3S)-3-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione (S,S,R-5) and have evaluated it potential as multi-target antidiabetic agent. The stereopure compound S,S,R-5 was synthesized with a 99:1 enantiomeric ratio. The synthesized compound gave encouraging results against all in vitro antidiabetic targets, exhibiting IC50 values of 6.28, 4.58, 0.91, and 2.36 in α-glucosidase, α-amylase, PTP1B, and DPPH targets, respectively. The molecular docking shows the binding of the compound in homology models of the respective enzymes. In conclusion, we have synthesized a new chiral molecule (S,S,R-5). The compound proved to be a potential inhibitor of the tested antidiabetic targets. With the observed results and molecular docking, it is evident that S,S,R-5 is a potential multitarget antidiabetic agent. Our study laid the baseline for the animal-based studies of this compound in antidiabetic confirmation.
Collapse
|
18
|
Pervaiz A, Jan MS, Hassan Shah SM, Khan A, Zafar R, Ansari B, Shahid M, Hussain F, Ijaz Khan M, Zeb A, Mukarram Shah SM. Comparative in-vitro anti-inflammatory, anticholinesterase and antidiabetic evaluation: computational and kinetic assessment of succinimides cyano-acetate derivatives. J Biomol Struct Dyn 2022:1-14. [PMID: 35507043 DOI: 10.1080/07391102.2022.2069862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
This research was planned to synthesize cyano-acetate derivatives of succinimide and evaluate its comparative biological efficacy as anti-inflammatory, anti-cholinesterase and anti-diabetic, which was further validated by molecular docking studies. The three cyano-acetate derivatives of succinimide including compound 23 Methyl 2-cyano-2-(2,5-dioxopyrrolidin-3-yl)acetate, compound 31 Methyl 2-cyano-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)acetate and compound 44 Methyl 2-cyano-2-(1-ethyl-2,5-dioxopyrrolidin-3-yl) acetate were synthesized. The mentioned compounds were checked for in vitro anti-inflammatory, anti-cholinesterase and anti-diabetic (α-amylase inhibition) activity. To validate the in vitro results, computational studies were carried out using molecular operating environment to analyse the BE, i.e. binding energies of all synthesized compounds against the respective enzymes. The Compounds 23, 31, 44 exhibited anti-inflammatory via inhibiting COX-2 (IC50 value of 204.08, 68.60 and 50.93 µM, respectively), COX-1 (IC50 value of 287, 185, and 143 µM, respectively) and 5-LOX (IC50 value of 138, 50.76 and 20, 87 µM respectively). They exhibited choline-mimetic potential, such as compound 23, 31 and 44 inhibited AChE enzyme (IC50 value of 240, 174, and 134 µM, respectively) and BChE enzyme (IC50 value of 203, 134 and 97 µM, respectively). The Compounds 23, 31, 44 exhibited anti-diabetic effect via inhibiting α-amylase enzyme (IC50 values of 250, 106 and 60 µM, respectively). Molecular docking studies revealed that the synthesized compounds have good binding affinity in the binding pockets of AChE, BChE, COX-2, 5-LOX and α-amylase enzyme and showed high binding energies. The synthesized succinimide derivatives, i.e. compound 23, 31, 44 showed marked inhibitory activities against cyclooxygenase, lipoxygenase, α-amylase and cholinesterase enzymes. Among these three, compound 44 and 31 showed strong anti-inflammatory and anti-diabetic activity while they displayed moderate anti-cholinesterase activity supported by molecular docking results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aini Pervaiz
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | | | | - Ali Khan
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University, Mardan, KP, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KP, Pakistan
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | | - Anwar Zeb
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | |
Collapse
|
19
|
GC-MS Analysis and Various In Vitro and In Vivo Pharmacological Potential of Habenaria plantaginea Lindl. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7921408. [PMID: 35399645 PMCID: PMC8989558 DOI: 10.1155/2022/7921408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
Background. The current study aims to give a scientific origin for employing Habenaria plantaginea Lindl. as a potential candidate against nociception, inflammation, and pyrexia. The pharmacological studies were performed on crude extract and subfractions. In the gas chromatography-mass spectroscopy analysis, a total of 21 compounds were identified. The plant samples were displayed for in vitro anti-inflammatory potentials. The observed IC50 for chloroform against cyclooxygenase-2 and 5-lipoxygenase enzymes was 33.81 and 26.74 μg/mL, respectively. The in vivo activities were prerequisites with the acute toxicity studies. In carrageenan-induced inflammation, the chloroform fraction exhibited 46.15% inhibition similar to that of standard drug diclofenac sodium 47.15%. Likewise, in the acetic acid-induced writhing test, the ethyl acetate fraction displayed 71.42% activity, which was dose-dependent as that of standard drug. In Brewer's yeast-induced antipyretic activity, a significant decrease in rectal volume was observed after 30, 60, and 90 minutes. Moreover, the results of this study indicated that the chloroform and ethyl acetate fractions inhibited nociception, inflammation, and pyrexia dose dependently. Likewise, mechanistic insights indicated that naloxone antagonized the antinociceptive effect of chloroform and ethyl acetate fractions, thereby signifying the involvement of opioidergic mechanisms respectively. These results suggest that these molecules present in this plant have synergistically beneficial potential for the cure and management of analgesia, inflammation, and pyrexia.
Collapse
|
20
|
O. M. F. da Silveira I, S. B. Moslaves I, A. I. Muller J, R. W. Hortelan C, Teibel Okuyama T, Fernandes J, Badenoch B, Janaína de Campos L, Almeida LD, Mohammad J, C. F. Martins A, Beatriz A, da Silva Júnior EN, Cristina Toffoli-Kadri M, da Silva Gomes R. Design, Synthesis and in vivo Evaluation of 1,4-dioxo-2-butenyl Aryl Amine Derivatives as a Promising Anti-inflammatory Drug Prototype. Bioorg Chem 2022; 124:105754. [DOI: 10.1016/j.bioorg.2022.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
|
21
|
Mahnashi MH, Alqahtani YS, Alqarni AO, Alyami BA, Jan MS, Ayaz M, Ullah F, Rashid U, Sadiq A. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: in-vitro and molecular docking approaches. BMC Complement Med Ther 2021; 21:270. [PMID: 34706708 PMCID: PMC8549260 DOI: 10.1186/s12906-021-03443-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Diabetes mellitus is a common disease effecting the lifestyles of majority world population. In this research work, we have embarked the potential role of crude extracts and isolated compounds of Notholirion thomsonianum for the management diabetes mellitus. Methods The crude extracts of N. thomsonianum were initially evaluated for α-glucosidase, α-amylase and antioxidant activities. The compounds were isolated from the activity based potent solvent fraction. The structures of isolated compounds were confirmed with NMR and MS analyses. The isolated compounds were tested for α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B) and DPPH activities. The molecular docking studies were carried out to find the binding interactions of isolated compounds for α-glucosidase, α-amylase and PTP1B. Results Initially, we screened out crude extracts and subfractions of N. thomsonianum against different in-vitro targets. Among all, Nt.EtAc was observed a potent fraction among all giving IC50 values of 67, 70, < 0.1, 89 and 16 μg/mL against α-glucosidase, α-amylase, DPPH, ABTS and H2O2 respectively. Three compounds (Nt01, Nt02 and Nt03) were isolated from Nt.EtAc of N. thomsonianum. The isolated compounds Nt01, Nt02 and Nt03 exhibited IC50 values of 58.93, 114.93 and 19.54 μM against α-glucosidase, while 56.25, 96.54 and 24.39 μM against α-amylase respectively. Comparatively, the standard acarbose observed IC50 values were 10.60 and 12.71 μM against α-glucosidase, α-amylase respectively. In PTP1B assay, the compounds Nt01, Nt02 and Nt03 demonstrated IC50 values of 12.96, 36.22 and 3.57 μM in comparison to the standard ursolic acid (IC50 of 3.63 μM). The isolated compounds also gave overwhelming results in DPPH assay. Molecular docking based binding interactions for α-glucosidase, α-amylase and PTP1B were also encouraging. Conclusions In the light of current results, it is obvious that N. thomsonianum is potential medicinal plant for the treatment of hyperglycemia. Overall, Nt.EtAc was dominant fraction in all in-vitro activities. Three compounds Nt01, Nt02 and Nt03 were isolated from ethyl acetate fraction. The Nt03 specifically was most potent in all in-vitro assays. The molecular docking studies supported our in-vitro results. It is concluded that N. thomsonianum is a rich source of bioactive antidiabetic compounds which can be further extended to in-vivo based experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03443-7.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18000 Dir (L), KP, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18000 Dir (L), KP, Chakdara, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18000 Dir (L), KP, Chakdara, Pakistan.
| |
Collapse
|
22
|
Mahnashi MH, Alyami BA, Alqahtani YS, Alqarni AO, Jan MS, Ayaz M, Ullah F, Shahid M, Rashid U, Sadiq A. Neuroprotective potentials of selected natural edible oils using enzyme inhibitory, kinetic and simulation approaches. BMC Complement Med Ther 2021; 21:248. [PMID: 34600509 PMCID: PMC8487577 DOI: 10.1186/s12906-021-03420-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Edible oils have proven health benefits in the prevention and treatment of various disorders since the establishment of human era. This study was aimed to appraise neuropharmacological studies on the commonly used edible oils including Cinnamomum verum (CV), Zingiber officinale (ZO) and Cuminum cyminum (CC). METHODS The oils were analyzed via GC-MS for identifications of bioactive compounds. Anti-radicals capacity of the oils were evaluated via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals scavenging assays. The samples were also tested against two important acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are among the important drug targets in Alzheimer's disease. Lineweaver-Burk plots were constructed for enzyme inhibition studies which correspond to velocity of enzymes (Vmax) against the reciprocal of substrate concentration (Km) in the presence of test samples and control drugs following Michaelis-Menten kinetics. Docking studies on AChE target were also carried out using Molecular Operating Environment (MOE 2016.0802) software. RESULTS (Gas chromatography-mass spectrometry GC-MS) analysis revealed the presence of thirty-four compounds in Cinnamon oil (Cv.Eo), fourteen in ginger oil (Zo.Eo) and fifty-six in cumin oil (Cc.Eo). In the antioxidant assays, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 85, 121, 280 μg/ml sequentially against DPPH radicals. Whereas, in ABTS assay, Cv.Eo, Zo.Eo and Cc.Eo showed considerable anti-radicals potentials with IC50 values of 93, 77 and 271 μg/ml respectively. Furthermore, Cv.Eo was highly active against AChE enzyme with IC50 of 21 μg/ml. Zo.Eo and Cc.Eo exhibited considerable inhibitory activities against AChE with IC50 values of 88 and 198 μg/ml respectively. In BChE assay, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 106, 101 and 37 μg/ml respectively. Our results revealed that these oils possess considerable antioxidant and cholinesterase inhibitory potentials. As functional foods these oils can be effective remedy for the prevention and management of neurological disorders including AD. Synergistic effect of all the identified compounds was determined via binding energy values computed through docking simulations. Binding orientations showed that all the compounds interact with amino acid residues present in the peripheral anionic site (PAS) and catalytic anionic site (CAS) amino acid residues, oxyanion hole and acyl pocket via π-π stacking interactions and hydrogen bond interactions.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25000 Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| |
Collapse
|
23
|
Alqahtani YS. Bioactive stigmastadienone from Isodon rugosus as potential anticholinesterase, α-glucosidase and COX/LOX inhibitor: In-vitro and molecular docking studies. Steroids 2021; 172:108857. [PMID: 33945799 DOI: 10.1016/j.steroids.2021.108857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 02/08/2023]
Abstract
Natural product is a well-known source of bioactive compounds. Herein, a steroidal compound stigmasta-7,22-diene-3-one (stigmastadienone) has been isolated from Isodon rugosus. The potency of isolated compound has been tested for several in-vitro targets. The acetyl and butyrylcholinesterase assays were performed using Ellman's procedure. For the in-vitro antidiabetic potential, α-glucosidase inhibitory assay was performed. Similarly, the cyclo and lipoxygenase pathways were studied to find its potential role in the management of inflammation and analgesia. The 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2) assays were performed for the antioxidant potentials. Docking studies were performed against acetylcholinesterase, cyclooxygenase and lipoxygenase targets. In anticholinesterase assays, stigmastadienone exhibited half-maximal inhibitory concentration (IC50) values of 13.52 and 11.53 μg/ml for acetyl and butyrylcholinesterase respectively. The observed IC50 values for that of galantamine were 6.07 and 4.42 μg/ml for acety and butyrylcholinesterase respectively. In inhibiting α-glucosidase enzyme, the compound showed mediocre IC50 of 109.40 μg/ml compared to the standard acarbose (7.60 μg/ml). The stigmastadienone proved to be an excellent inhibitor of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) attaining IC50 values of 4.72 and 3.36 μg/ml respectively. The standard drugs IC50 values for COX-2 (celecoxib) and 5-LOX (montelukast) were 3.81 and 2.74 μg/ml respectively. The enzymatic activities of stigmastadienone were also supplemented with antioxidant results, specifically it was more dominant against DPPH and ABTS free radicals. Docking studies showed that only the carbonyl oxygen is able to form hydrogen bond interaction with the residues. In conclusions, the stigmastadienone has been isolated from Isodon rugosus for the first time. Moreover, the compound has been evaluated for several biochemical pathways which suggest its pharmacological role on the explored targets.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
24
|
Zafar R, Naureen H, Zubair M, Shahid K, Saeed Jan M, Akhtar S, Ahmad H, Waseem W, Haider A, Ali S, Tariq M, Sadiq A. Prospective Application of Two New Pyridine-Based Zinc (II) Amide Carboxylate in Management of Alzheimer's Disease: Synthesis, Characterization, Computational and in vitro Approaches. Drug Des Devel Ther 2021; 15:2679-2694. [PMID: 34188447 PMCID: PMC8232895 DOI: 10.2147/dddt.s311619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative illness described predominantly by dementia. Even though Alzheimer’s disease has been known for over a century, its origin remains a mystery, and researchers are exploring many therapy options, including the cholinesterase technique. A decreased acetylcholine ACh neurotransmitter level is believed to be among the important factors in the progression of Alzheimer’s disease. Methods In continuation of synthesizing potential anti-Alzheimer agents and known appreciative pharmacological potential of amide-containing compounds, this study presents the synthesis of two novel amide-based transition metal zinc (II) complexes, AAZ7 and AAZ8, attached with a heterocyclic pyridine ring, which was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, 1H_NMR, and 13C_NMR. FT-IR spectroscopic records showed the development of bidentate ligand as Δν value was decreased in both complexes when compared with the free ligand. Both of the synthesized complexes were analyzed for acetylcholinesterase and butyrylcholinesterase inhibitory potential along with the antioxidizing activity. Results Importantly, the complex of AAZ8 exhibited more potent activity giving IC50 values of 14 µg/mL and 18µg/mL as AChE and BChE cholinesterase inhibitors, respectively, when compared with standard positive control galantamine. Interestingly, AAZ8 also displayed promising antioxidant potential by showing IC50 values of 35 µg/mL for DPPH and 29 µg/mL for ABTS in comparison with positive control ascorbic acid. Conclusion Herein, we report two new amide carboxylate zinc (II) complexes which were potentially analyzed for various biological applications like acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory potentials, and antioxidant assays. Computational docking studies also simulated results to understand the interactions. Additionally, thermodynamic parameters utilizing molecular dynamic simulation were performed to determine the ligand protein stability and flexibility that supported the results. Studies have shown that these compounds have the potential to be good anti-Alzheimer candidates for future studies due to inhibition of cholinesterase enzymes and display of free radical scavenging potential against DPPH as well as ABTS free radicals.
Collapse
Affiliation(s)
- Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan.,Yusra Institute of Pharmaceutical Sciences, Islamabad, 44000, Pakistan
| | - Humaira Naureen
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khadija Shahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | | | - Samar Akhtar
- Yusra Institute of Pharmaceutical Sciences, Islamabad, 44000, Pakistan
| | - Hammad Ahmad
- Yusra Institute of Pharmaceutical Sciences, Islamabad, 44000, Pakistan
| | - Wajeeha Waseem
- Department of Basic Medical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Tariq
- Department of PCB, Rokhan University, Jalalabad, Nangrahar, Afghanistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan
| |
Collapse
|
25
|
Mahnashi MH, Alyami BA, Alqahtani YS, Jan MS, Rashid U, Sadiq A, Alqarni AO. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: Molecular docking based synergistic effect of the identified compounds. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113976. [PMID: 33647424 DOI: 10.1016/j.jep.2021.113976] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Members of Orchidaceae family has a long history in herbal and Chinese medicines. Members of this family are most commonly famous in the management of inflammation and analgesia in folk medicine. Habenaria digitata, an unexplored specie of Orchidaceae is found in North areas of Pakistan and is used by the local population for the management of analgesia and inflammation. AIM OF THE STUDY Based on the effective outcomes of the natural products as alternative therapies, we have evaluated Habenaria digitata for the management of analgesia and inflammation. The aim of the designed project is to provide a scientific basis of using this plant for the management of analgesia and inflammation. MATERIALS AND METHODS The H. digitata crude extract (Hd.Cr) and subfractions, i.e. n-hexane (Hd.Hex), chloroform (Hd.Chf), ethyl acetate (Hd.EtAc), n-butanol (Hd.Bt) and aqueous (Hd.Aq) were used. The GC-MS analysis was used for the identification of phytochemicals. The plants samples were subjected to cyclooxygenase (COX 2) and lipoxygenase (5-LOX) enzymes assays. The hot plate model, acetic acid induced writhing and formalin induced paw licking models were used for in-vivo analgesic studies. The in-vivo anti-inflammatory potential was determined with carrageenan induced paw edema test. Molecular docking studies of the identified compounds were carried out by using Molecular Operating Environment (MOE, 2016.08). RESULTS The GC-MS analysis confirmed sixty-five compounds in Hd.Cr. Among the fractions, Hd.Chf and Hd.EtAc displayed highest activities. The observed IC50 values were 21.30 and 32.39 μg/ml against COX 2 while 14.42and 16.40 μg/ml for 5-LOX respectively. The in-vivo inflammatory and analgesic studies were pre-requisited with acute toxicity tests. In carrageenan induced inflammation, Hd.Chf excelled the standard drug aspirin by giving 62.92% inhibition of paw edema at 4th h. Similarly, at highest concentration (75 mg/kg) of acetic acid induced analgesia, Hd.Chf was more potent than the standard drug. In formalin method, Hd.Chf exhibited 85.81% inhibition at phase-I and 74.15% at Phase-II. In hot plate model, Hd.Chf exhibited average reaction time of 10.90 at 15, 30, 45 and 60 min intervals. Docking studies supported our results and confirm the synergistic effects of phytochemicals. CONCLUSIONS Our experimental results concluded that H. digitata contains several bioactive compounds. These bioactive compounds synergistically have therapeutic efficacy for the management of inflammation and analgesia. We have confirmed both of these potentials from the in-vitro and in-vivo experiments. Moreover, it is also obvious that the chloroform and ethyl acetate fractions are rich in these bioactive compounds. Specifically, the Hd.Chf is observed to be more practical in all the tested models of analgesia and inflammation. Computed binding energies of the compounds revealed that all the compounds have synergistic effect to prevent analgesia and inflammation.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | | | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Ali O Alqarni
- Department of Medicinal Chemistry, School of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
26
|
Ahmad S, Mahnashi MH, Alyami BA, Alqahtani YS, Ullah F, Ayaz M, Tariq M, Sadiq A, Rashid U. Synthesis of Michael Adducts as Key Building Blocks for Potential Analgesic Drugs: In vitro, in vivo and in silico Explorations. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1299-1313. [PMID: 33790541 PMCID: PMC8001115 DOI: 10.2147/dddt.s292826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Background Organocatalytic asymmetric Michael addition is a strong approach for C-C bond formation. The objective of the study is to design molecules by exploiting the efficiency of Michael Adducts. We proceeded with the synthesis of Michael adducts by tailoring the substitution pattern on maleimide and trans-β-nitro styrene as Michael acceptors. The synthesized compounds were evaluated for dual cyclooxygenases (COX) and lipoxygenase (LOX) inhibition. Methods The compounds (4, 9–11) were synthesized through Michael additions. The cyclooxygenases (COX-1 and 2) and lipoxygenase (5-LOX) assays were used for in vitro evaluations of compounds. After the acute toxicity studies, the in vivo analgesic potential was determined with acetic acid induced writhing, tail immersion, and formalin tests. Furthermore, the possible roles of adrenergic and dopaminergic receptors were also studied. Extensive computational studies were performed to get a better understanding regarding the binding of this compound with protein target. Results Four Michael adducts (4, 9–11) were synthesized. Compound 4 was obtained in enantio- and diastereopure form. The stereopure compound 4 showed encouraging COX-1 and-2 inhibitions with IC50 values of 128 and 65 μM with SI of 1.94. Benzyl derivative 11 showed excellent COX-2 inhibition with the IC50 value of 5.79 μM and SI value 7.96. Compounds 4 and 11 showed good results in in vivo models of analgesia like acetic acid test, tail immersion, and formalin tests. Our compounds were not active in dopaminergic and adrenergic pathways and so were acting centrally. Through extensive computational studies, we computed binding energies, and pharmacokinetic predictions. Conclusion Our findings conclude that our synthesized Michael products (pyrrolidinedione 4 and nitroalkane 11) can be potent centrally acting analgesics. Our in silico predictions suggested that the compounds have excellent pharmacokinetic properties. It is concluded here that dual inhibition of COX/LOX pathways provides a convincing step towards the discovery of safe lead analgesic molecules.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Tariq
- Department PCB, Rokhan University, Jalalabad, Nangrahar, Afghanistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
27
|
Sadiq A, Rashid U, Ahmad S, Zahoor M, AlAjmi MF, Ullah R, Noman OM, Ullah F, Ayaz M, Khan I, Islam ZU, Ali W. Treating Hyperglycemia From Eryngium caeruleum M. Bieb: In- vitro α-Glucosidase, Antioxidant, in-vivo Antidiabetic and Molecular Docking-Based Approaches. Front Chem 2020; 8:558641. [PMID: 33335883 PMCID: PMC7737655 DOI: 10.3389/fchem.2020.558641] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Natural-based drugs are believed to be safe, effective and economical. Based on the medicinal importance of the genus Eryngium and unexplored nature of Eryngium caeruleum, we have evaluated its antidiabetic and antioxidant potentials. Both in-vitro and in-vivo assays have been carried out for antidiabetic assays. The antioxidant activity was determined by using different free radicals [i.e., 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS), and hydrogen peroxide (H2O2)]. Moreover, different phytoconstituents were identified in the most active solvent fraction by GC-MS analysis. Furthermore, comparative fingerprints of methanolic extract and chloroform fraction were also analyzed via High Performance Liquid Chromatography coupled with Diode Array Detector (HPLC-DAD). The crude methanolic extract of E. caeruleum (Ec.Cr) and its sub-fractions [i.e., n-hexane (Ec.Hex), chloroform (Ec.Chf), ethyl acetate (Ec.EtAc), and aqueous (Ec.Aq) were employed in this study]. In the α-glucosidase inhibition assay, a concentration-dependent inhibitory response was observed against the enzyme. The most active sample was Ec.Chf which revealed an IC50 of 437 μg/ml in comparison to the standard acarbose (IC50 25 μg/ml). The rest of the samples showed moderate inhibition of α-glucosidase. In antioxidant assays, Ec.Chf and Ec.Cr exhibited a considerable scavenging effect against all the free radicals. The IC50 values recorded for Ec.Chf were 112, 109, and 150 μg/ml against DPPH, ABTS, and H2O2 respectively. Based on the in-vitro potential of Ec.Chf, this was subjected to the in-vivo model experiment. The Ec.Chf lowered the blood glucose level up to 10.3 mmol/L at 500 μg/Kg. The Ec.Chf was also subjected to GC-MS analysis. The GC-MS analysis confirmed the presence of 60 compounds. The identified phytoconstituents consist of some essential compounds previously reported with antidiabetic and antioxidant studies, which include thymol, tocopherol, phytol, nerolidol, (I)-neophytadiene, linolenic acid, and falcarinol. Similarly, the HPLC-DAD chromatograms of Ec.Cr and Ec.Chf exhibited a variety of peaks, which further demonstrates the possibility of important phytochemicals. In a nutshell, we can conclude that Eryngium caeruleum is a potential source of bioactive compounds which may be beneficial for the management of ailments like diabetes and free radicals mediated disorders. Molecular docking was performed to explore the possible role of all the identified bioactive compounds in the chloroform fraction of Eryngium caeruleum into active sites of the homology model of α-glucosidase.
Collapse
Affiliation(s)
- Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Sadiq Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Mohammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Iftikhar Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zia-Ul Islam
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waqar Ali
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
28
|
Gomes Júnior A, Islam MT, Nicolau LAD, de Souza LKM, Araújo TDS, Lopes de Oliveira GA, de Melo Nogueira K, da Silva Lopes L, Medeiros JVR, Mubarak MS, Melo-Cavalcante AAC. Anti-Inflammatory, Antinociceptive, and Antioxidant Properties of Anacardic Acid in Experimental Models. ACS OMEGA 2020; 5:19506-19515. [PMID: 32803044 PMCID: PMC7424580 DOI: 10.1021/acsomega.0c01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Anacardic acid (AA), a compound extracted from cashew nut liquid, exhibits numerous pharmacological activities. The aim of the current investigation was to assess the anti-inflammatory, antinociceptive, and antioxidant activities of AA in mouse models. For this, Swiss albino mice were pretreated with AA (10, 25, 50 mg/kg, intraperitoneally, ip) 30 min prior to the administration of carrageenan, as well as 25 mg/kg of prostaglandin E2, dextran, histamine, and compound 48/80. The antinociceptive activity was evaluated by formalin, abdominal, and hot plate tests, using antagonist of opioid receptors (naloxene, 3 mg/kg, ip) to identify antinociceptive mechanisms. Results from this study revealed that AA at 25 mg/kg inhibits carrageenan-induced edema. In addition, AA at 25 mg/kg reduced edema and leukocyte and neutrophilic migration to the intraperitoneal cavity, diminished myeloperoxidase activity and malondialdehyde concentration, and increased the levels of reduced glutathione. In nociceptive tests, it also decreased licking, abdominal writhing, and latency to thermal stimulation, possibly via interaction with opioid receptors. Taken together, these results indicate that AA exhibits anti-inflammatory and antinociceptive actions and also reduces oxidative stress in acute experimental models, suggesting AA as a promising compound in the pharmaceutical arena.
Collapse
Affiliation(s)
- Antonio
Luiz Gomes Júnior
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAPNEX
- Laboratory of Research in Experimental Neurochemistry of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina CEP 64049-550, Piauí, Brazil
- LAPGENIC
- Laboratory of Research in Genetic Toxicology of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Muhammad Torequl Islam
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Lucas Antonio Duarte Nicolau
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Luan Kevin Miranda de Souza
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Tiago de Souza
Lopes Araújo
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Guilherme Antônio Lopes de Oliveira
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAPNEX
- Laboratory of Research in Experimental Neurochemistry of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina CEP 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Kerolayne de Melo Nogueira
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Luciano da Silva Lopes
- LAPNEX
- Laboratory of Research in Experimental Neurochemistry of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina CEP 64049-550, Piauí, Brazil
| | - Jand-Venes Rolim Medeiros
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | | | - Ana Amélia
de Carvalho Melo-Cavalcante
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAPGENIC
- Laboratory of Research in Genetic Toxicology of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| |
Collapse
|
29
|
Ahmad A, Ullah F, Sadiq A, Ayaz M, Saeed Jan M, Shahid M, Wadood A, Mahmood F, Rashid U, Ullah R, Sahibzada MUK, Alqahtani AS, Mahmood HM. Comparative Cholinesterase, α-Glucosidase Inhibitory, Antioxidant, Molecular Docking, and Kinetic Studies on Potent Succinimide Derivatives. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2165-2178. [PMID: 32606589 PMCID: PMC7285812 DOI: 10.2147/dddt.s237420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/23/2020] [Indexed: 01/14/2023]
Abstract
Introduction The current study was designed to synthesize derivatives of succinimide and compare their biological potency in anticholinesterase, alpha-glucosidase inhibition, and antioxidant assays. Methods In this research, two succinimide derivatives including (S)-1-(2,5-dioxo-1-phenylpyrrolidin-3-yl) cyclohexanecarbaldehyde (Compound 1) and (R)-2-((S)-2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-phenylpropanal (Compound 2) were synthesized using Michael addition. Both the compounds, ie, 1 and 2 were evaluated for in-vitro acetylcholinesterase (AChE), butyrylctcholinesterase (BChE), antioxidant, and α-glucosidase inhibitory potentials. Furthermore, molecular docking was performed using Molecular Operating Environment (MOE) to explore the binding mode of both the compounds against different enzymes. Lineweaver-Burk plots of enzyme inhibitions representing the reciprocal of initial enzyme velocity versus the reciprocal of substrate concentration in the presence of synthesized compounds and standard drugs were constructed using Michaelis-Menten kinetics. Results In AChE inhibitory assay, compounds 1 and 2 exhibited IC50 of 343.45 and 422.98 µM, respectively, against AChE enzyme. Similarly, both the compounds showed IC50 of 276.86 and 357.91 µM, respectively, against BChE enzyme. Compounds 1 and 2 displayed IC50 of 157.71 and 471.79 µM against α-glucosidase enzyme, respectively. In a similar pattern, compound 1 exhibited to be more potent as compared to compound 2 in all the three antioxidant assays. Compound 1 exhibited IC50 values of 297.98, 332.94, and 825.92 µM against DPPH, ABTS, and H2O2 free radicals, respectively. Molecular docking showed a triple fold in the AChE and BChE activity for compound 1 compared with compound 2. The compound 1 revealed good interaction against both the AChE and BChE enzymes which revealed the high potency of this compound compared to compound 2. Conclusion Both succinimide derivatives exhibited considerable inhibitory activities against cholinesterases and α-glucosidase enzymes. Of these two, compound 1 revealed to be more potent against all the in-vitro targets which was supported by molecular docking with the lowest binding energies. Moreover, compound 1 also proved to have antiradical properties.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, KP, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Fawad Mahmood
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, KPK, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, Medicinal, Aromatic and Poisonous Plants Research Center (MAPRC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Ali S Alqahtani
- Department of Pharmacognosy, Medicinal, Aromatic and Poisonous Plants Research Center (MAPRC), College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Sulaimon L, Adisa R, Obuotor E, Lawal M, Moshood A, Muhammad N. Chemical composition, antioxidant, and anticholine esterase activities of essential oil of xylopia aethiopica seeds. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_47_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Hussain F, Khan Z, Jan MS, Ahmad S, Ahmad A, Rashid U, Ullah F, Ayaz M, Sadiq A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem 2019; 91:103128. [DOI: 10.1016/j.bioorg.2019.103128] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/19/2023]
|
32
|
Santos VSD, Nascimento TV, Felipe JL, Boaretto AG, Damasceno-Junior GA, Silva DB, Toffoli-Kadri MC, Carollo CA. Nutraceutical potential of Byrsonima cydoniifolia fruits based on chemical composition, anti-inflammatory, and antihyperalgesic activities. Food Chem 2017; 237:240-246. [DOI: 10.1016/j.foodchem.2017.05.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
|
33
|
Hasan MM, Hossain A, Shamim A, Rahman MM. Phytochemical and pharmacological evaluation of ethanolic extract of Lepisanthes rubiginosa L. leaves. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:496. [PMID: 29166935 PMCID: PMC5700657 DOI: 10.1186/s12906-017-2010-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The current study was conducted to evaluate the antioxidant, analgesic, antihyperglycemic, neuropharmacological and antidiarrheal activities of ethanolic extract of Lepisanthes rubiginosa L. leaves in different experimental models. METHODS Quantitative and qualitative analysis were done by TLC (thin layer chromatography) and DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay. Analgesic, antihyperglycemic and antidiarrheal activities were evaluated using acetic acid induced writhing in mice, oral glucose tolerance test and castor oil induced diarrhea, respectively. Neuropharmacological activity was investigated in mice using both Open Field and Hole Board methods. RESULTS TLC analysis indicated the presence of antioxidant compounds in the extract we used. The extract showed IC50 value was 31.62 μg/mL whereas the standard ascorbic acid showed 12.02 μg/mL. In acetic acid induced writhing assay, the extract showed 46.07% and 58.43% writhing inhibition at the doses of 250 mg/kg and 500 mg/kg body weight, respectively whereas standard diclofenac-Na (25 mg/kg) showed 86.52% writhing inhibition. The plant extract showed significant (p < 0.05) antihyperglycemic activity on mice as compared to control groups. In neuropharmacological activity assay the experimental animal showed a noticeable decrease in locomotion by showing a decrease in number of square crossed and head dipping at both doses (250 mg/kg & 500 mg/kg). In antidiarrheal activity test, the plant extract at the doses of 250 mg/kg and 500 mg/kg showed percent inhibition of defecation 57.89 and 77.19 respectively, whereas standard loperamide (3 mg/kg) showed percent inhibition of defecation 88.59. CONCLUSION The results demonstrated that the extract has potential antioxidant, analgesic, antihyperglycemic, neuropharmacological and antidiarrheal activity.
Collapse
Affiliation(s)
- Md. Mahedi Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208 Bangladesh
| | - Amir Hossain
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208 Bangladesh
- Department of Pharmacy, Dhaka International University, Satarkul, Badda, Dhaka, Bangladesh
| | - Abdullah Shamim
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208 Bangladesh
| | - Md. Mustafizur Rahman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208 Bangladesh
| |
Collapse
|
34
|
Herrera-Calderon O, Enciso-Roca E, Pari-Olarte B, Arroyo-Acevedo J. Phytochemical screening, antioxidant activity and analgesic effect of Waltheria ovata Cav. roots in mice. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Sadiq A, Ahmad S, Ali R, Ahmad F, Ahmad S, Zeb A, Ayaz M, Ullah F, Siddique AN. Antibacterial and antifungal potentials of the solvents extracts from Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:478. [PMID: 27881119 PMCID: PMC5122145 DOI: 10.1186/s12906-016-1465-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Herbal medicines have long been used for various ailments in various societies and natural bioactive compounds are gaining more and more importance due to various factors. In this context, three plant species i.e., Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum have been aimed for the scientific verification of their purported traditional uses against various infectious diseases. METHODS In this study, three plants were assayed for antibacterial and antifungal potentials. The antibacterial investigations were performed via well diffusion method and nutrient broth dilution method. The bacterial strains used in the study were Enterococcus faecalis, Proteus mirabilis, Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Pseudomonas aeruginosa. The antifungal potential was investigated by dilution method of Muller-Hinton agar media of the plants' samples. The fungal strains used were Aspergillis fumigatus, Aspergillis flavus and Aspergillis niger. Ceftriaxone and nystatin were used as standard drugs in antibacterial and antifungal assays respectively. RESULTS Different fractions from N. thomsonianum were tested against five bacterial strains while the samples from A. consanguineum and E. caeruleum were tested against six bacterial strains. All the samples exhibited prominent antibacterial activity against the tested strains. Overall, chloroform and ethyl acetate fractions were found most potent among the three plants' samples. N. thomsonianum excelled among the three plants in antibacterial activity. Similarly, in antifungal assay, N. thomsonianum exhibited strong antifungal activity against the fungal strains. The chloroform fraction displayed MFCs of 175.67 ± 5.20***, 29.33 ± 5.48*** and 63.00 ± 4.93*** μg/ml against Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger respectively. The whole study demonstrates that all the three plant species were active against tested bacterial and fungal strains. CONCLUSION It can be concluded from our findings that N. thomsonianum, A. consanguineum and E. caeruleum have broad antibacterial and antifungal potentials. In all of the plants' samples, chloroform and ethyl acetate fractions were more active. Furthermore, being the potent samples, the chloroform and ethyl acetate fractions of these plants can be subjected to column chromatography for the isolation of more effective antimicrobial drugs.
Collapse
Affiliation(s)
- Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Sadiq Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Rahmat Ali
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Fawad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Anwar Zeb
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK Pakistan
| | - Abu Nasar Siddique
- Department of Biotechnology, Bacha Khan University, Charsadda, 24420 KPK Pakistan
| |
Collapse
|
36
|
Raish M, Ahmad A, Alkharfy KM, Al-Jenoobi FI, Al-Mohizea AM, Mohsin K, Ahamad SR, Ali N, Shakeel F. Antioxidant Potential and In Situ Analysis of Major and Trace Element Determination of Ood-saleeb, a Known Unani Herbal Medicine by ICP-MS. Biol Trace Elem Res 2016; 172:521-527. [PMID: 26758866 DOI: 10.1007/s12011-015-0607-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
The intention of the present research work was to investigate the antioxidant activity and trace element analysis of Ood-saleeb, a known herbal medicine. Preliminary screening of phytochemicals showed that the extract of Ood-saleeb had flavonoids and phenolics. The significant activities in all antioxidant assays were observed in the extract of Ood-saleeb in comparison with the standard antioxidant with respect to dose of Ood-saleeb. Incredible activities to scavenge reactive oxygen species were also observed by the extract of Ood-saleeb. The IC50 values of all factors were determined using ascorbic acid as a standard. The inductive coupled plasma-mass spectroscopy (ICP-MS) was employed for the estimation of trace elements in Ood-saleeb extract. The concentrations of up to 18 elements were detected successfully. Silicon was found in high concentration (85.3 μg/g) while lithium was in low concentration (3 ng/g). The trace elements in the sample were found at different percentage levels which play a key role in the treatment of diseases.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Research Centre, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
37
|
Ahmad S, Ullah F, Sadiq A, Ayaz M, Imran M, Ali I, Zeb A, Ullah F, Shah MR. Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. Altern Ther Health Med 2016; 16:29. [PMID: 26810212 PMCID: PMC4727414 DOI: 10.1186/s12906-016-0998-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/12/2016] [Indexed: 11/13/2022]
Abstract
Background Ethnomedicinally Rumex hastatus D. Don has been used since long for various ailments especially in neurological disorders. The reported data and the importance of Rumex genus demonstrate the vital medicinal value of R. hastatus. Methods In the current investigational study, isolation of essential oil and its antioxidant and anticholinesterase assays were performed. The essential oil of R. hastatus was analyzed by GC-MS for the first time. The essential oil was evaluated for anticholinesterase and antioxidant assays. The anticholinesterase assay was conducted at various concentrations (62.5 to 1000 μg/ml) against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Similarly, the antioxidant potential was determined using DPPH and ABTS free radicals. Results The GC-MS analysis of essential oil showed 123 components. The result recorded for the anticholinesterase assays demonstrated a marked potential against AChE and BChE with IC50 values of 32.54 and 97.38 μg/ml respectively which were comparable with the positive control i.e., galanthamine (AChE, IC50 = 4.73 μg/ml and BChE, IC50 = 11.09 μg/ml). The antioxidant assays against DPPH and ABTS free radicals also exhibited significant scavenging potential with IC50 values of 3.71 and 6.29 μg/ml respectively, while for ascorbic acid the IC50 value was <0.1 μg/ml against both free radicals. Conclusions Based on the current investigational studies, it may be concluded that R. hastatus is an effective source of essential oil's components having anticholinesterase and antioxidant potentials, which after subjecting to drug development may lead to novel drug candidates against neurodegenerative disorders.
Collapse
|
38
|
Shah SMM, Shah SMH. Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum bioss. Altern Ther Health Med 2015; 15:351. [PMID: 26446445 PMCID: PMC4597605 DOI: 10.1186/s12906-015-0872-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/21/2015] [Indexed: 12/30/2022]
Abstract
Background Despite availability of a substantial number of potent synthetic drugs, medicinal plants are still playing a key role in the discovery of novel and effective drug molecules. Numerous researchers are focusing on the plant based medicines due to its strong safety profiles. Teucrium species exhibit profound antidiabetic, analgesic and spasmolytic activities. The methanolic extract and essential oil of Teucrium stocksianum possess strong antinociceptive activity. The aim of the current research study was to determine the phytochemicals, antioxidant, analgesic and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum Bioss (AETS). Method Phytochemical screening was carried out according to standard procedures. The antioxidant potential of the extract was ascertained with the stable organic free radical (2, 2-diphenyl-1-picryl-hydrazyl). Three different pain models, including acetic acid induced writhing, formalin induced paw licking and tail immersion tests were carried out for the determination of antinociceptive potential, while the anti-inflammatory activity was evaluated through carrageenan induced paw edema test in mice. The antinociceptive and anti-inflammatory potentials of AETS were assessed at 100, 200 and 300 mg/kg body weight, while acute toxicity were observed at 1500 mg/kg body weight in various groups of mice. Results Phytochemical screening has shown the occurrence of flavonoids saponins, reducing sugars, terpenoids and tannins. AETS exhibited profound antioxidant activity and has shown maximum activity (60.06 ± 0.846) at 250 μg/ml. In the three pain models AETS displayed marked dose dependent antinociceptive potential. AETS exhibited 63.5, 67.61 and 64 % activity in acetic acid induced, formalin induced paw licking and tail immersion tests respectively. The antinociceptive effect of AETS and reference standard drug TramadolR was significantly reversed by Naloxone, endorsed the central analgesic potential of AETS. Similarly the extract also reversed the paw edema in dose dependent manner. AETS displayed significant (53.81 %) anti-inflammatory effects at a dose of 300 mg/kg that persisted till 5th h. In acute toxicity test AETS was found safe at 1500 mg/kg body weight. Conclusions AETS exhibited profound antioxidant activity. The test sample displayed marked antinociceptive potential in all the test procedures, indicating the peripheral and central analgesic effects of AETS. The plant extract also displayed marked anti-inflammatory activity at all test doses.
Collapse
|
39
|
Majid M, Khan MR, Shah NA, Haq IU, Farooq MA, Ullah S, Sharif A, Zahra Z, Younis T, Sajid M. Studies on phytochemical, antioxidant, anti-inflammatory and analgesic activities of Euphorbia dracunculoides. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:349. [PMID: 26445953 PMCID: PMC4597446 DOI: 10.1186/s12906-015-0868-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/21/2015] [Indexed: 11/15/2022]
Abstract
Background Plants provide an alternative source to manage various human disorders due to diverse metabolites. Euphorbia dracunculoides of family Euphorbiaceae is used by local practitioners in rheumatism, epilepsy, edema, snake bite, warts and also possesses diuretic and purgative effects. The present study evaluated the antioxidant, anti-inflammatory and analgesic activities of various extracts of E. dracunculoides. Further, phytochemical constituents of the leading extracts were also investigated. Methods Dry powder of E. dracunculoides was extracted with n-hexane (EDH), acetone (EDA), ethanol (EDE), ethanol + water (1:1) (EDEW) and methanol (EDM) and screened for phytochemical classes, total phenolic (TPC) and flavonoid content (TFC). Antioxidant effects of the extracts were manifested by in vitro multidimensional assays. The anti-inflammatory and analgesic activities of the extracts were evaluated through carrageenan induced paw edema and hot plate test in rat. In addition, GC-MS analysis of EDH and HPLC-DAD analysis of EDEW was carried out to determine the presence of active constituents. Results Qualitative analysis of various extracts of E. dracunculoides assured the existence of tannins and coumarins while presence of anthraquinones and anthocyanins was not traced in these extracts. Maximum quantity of TPC and TFC was recorded in EDEW followed by EDE. EDEW and EDE showed significant antioxidant activities with therapeutic potential against hydroxyl and phosphomolybdate radicals, β-carotene bleaching assay and in reducing of iron while moderate to low scavenging abilities were recorded for DPPH, nitric oxide and for iron chelation. During anti-inflammatory activity after 4 h of drug administration the 300 mg/kg body weight dose of EDH (68.660 ± 10.502 %) and EDE (51.384 ± 8.623 %) exhibited strong anti-inflammatory activity and reduced the carrageenan-induced paw edema in rat as compared to standard drug diclofenac sodium (78.823 ± 6.395 %). Treatment of rats with EDH (70.206 ± 5.445 %) and EDE (56.508 ± 6.363 %) after 90 min showed significant increase in percent latency time in hot plate test as compared to morphine (63.632 ± 5.449 %) treatment in rat. GC-MS analysis of EDH indicated the presence of 30 compounds predominantly of steroids and terpenoids. HPLC-DAD analysis against known standards established the presence of rutin, catechin, caffeic acid and myricetin in EDEW. Conclusion Our results suggest that presence of various polyphenolics, terpenoids and steroids render E. dracunculoides with therapeutic potential for oxidative stress and inflammation related disorders.
Collapse
|
40
|
Mukarram Shah SM. A possible anti-inflammatory mechanism of ethyl acetate extracts of Teucrium stocksianum Bioss. Altern Ther Health Med 2015; 15:299. [PMID: 26318494 PMCID: PMC4553019 DOI: 10.1186/s12906-015-0834-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/26/2015] [Indexed: 11/26/2022]
Abstract
Background Teucrium stocksianum (T. stocksianum) is one of the important members of the genus Teucrium which contains numerous biologically active compounds. Traditionally, it is used for the treatment of fever, pain, as expectorant and blood purifier. Researchers are trying to discover plants origin, novel and safe remedies for the management of various ailments. The present study was aimed to determine the possible anti-inflammatory mechanism of ethyl acetate extract of T. stocksianum. Methods Preliminary, the ethanolic extract and sub-fractions were screened for anti-inflammatory potential at doses of 100, 200 and 300 mg/kg (i.p) body weight, using carrageenan induced paw edema test in mice. In-order to determine the possible mechanism of anti-inflammatory effect, the ethyl acetate fraction was ascertained with different phlogistic agents like histamine, bradykinin, prostaglandins E2 and arachedonic acid via paw edema test in mice. Results The ethanolic extract and sub-fractions of T. stocksianum displayed marked to moderate anti-inflammatory activity in a carrageenan induced paw edema test in mice. Among the sub-fractions, ethyl acetate fraction (EAF) demonstrated excellent (66 %) anti-inflammatory action at the highest tested dose (300 mg/kg) that reached to the maximum value at 3rd hour after carrageenan injection and remained significant (***P < 0.001) till 5th hour of test sample administration. EAF revealed moderate effect against the paw edema induced by histamine (31.048 %) while non-significant results (18.148 %) were observed against the edema induced by bradykinin. The extract demonstrated significant (66.23-73.076 %) anti-inflammatory potential against the edematogenic effect of prostaglandin E2. Moreover, the extract also significantly inhibited (51.33 %) the paw edema induced by arachedonic acid. Conclusion Our results suggest that the EAF has dual action and produced the anti-inflammatory effect by blocking both pathways of arachedonic acid metabolites (cyclooxygenase and lipoxygenase). Thus validating the traditional use of T. stocksianum and could provide a source of novel, effective and safe drug for the treatment of inflammation.
Collapse
|
41
|
Bhatti MZ, Ali A, Ahmad A, Saeed A, Malik SA. Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Res Notes 2015; 8:279. [PMID: 26123646 PMCID: PMC4485861 DOI: 10.1186/s13104-015-1228-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ranunculus arvensis L. (R. arvensis) has long been used to treat a variety of medical conditions such as arthritis, asthma, hay fever, rheumatism, psoriasis, gut diseases and rheumatic pain. Here, we screened R. arvensis for antioxidant activity, phytochemical and high performance liquid chromatography (HPLC) analyses. METHODS The chloroform, chloroform:methanol, methanol, methanol:acetone, acetone, methanol:water and water extracts of R. arvensis were examined for DPPH (1, 1-diphenyl-2-picrylhydrazyl) free radical scavenging assay, hydrogen peroxide scavenging assay, phosphomolybdenum assay, reducing power assay, flavonoid content, phenolic content and high performance liquid chromatography analysis. RESULTS Significant antioxidant activity was displayed by methanol extract (IC 50 34.71 ± 0.02) in DPPH free radical scavenging assay. Total flavonoids and phenolics ranged 0.96-6.0 mg/g of extract calculated as rutin equivalent and 0.48-1.43 mg/g of extract calculated as gallic acid equivalent respectively. Significant value of rutin and caffeic acid was observed via high performance liquid chromatography. CONCLUSIONS These results showed that extracts of R. arvensis exhibited significant antioxidant activities. Moreover, R. arvensis is a rich source of rutin, flavonoids and phenolics.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Amjad Ali
- Institute of Biomedical Sciences, School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Asma Saeed
- Department of Biological Sciences, Gomal University, Dera Ismail Khan, 29050, Pakistan.
| | - Salman Akbar Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
42
|
Sadiq A, Mahmood F, Ullah F, Ayaz M, Ahmad S, Haq FU, Khan G, Jan MS. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer's. Chem Cent J 2015; 9:31. [PMID: 26064188 PMCID: PMC4461796 DOI: 10.1186/s13065-015-0107-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/15/2015] [Indexed: 12/01/2022] Open
Abstract
Background Based on the pharmacological potency and structural features of succinimides, this study was designed to synthesize new ketoesters derivatives of succinimides. Furthermore, the synthesized compounds were evaluated for their possible anticholinesterase and antioxidant potentials. The compounds were synthesized by organocatalytic Michael additions of α-ketoesters to N-aryl maleimides. Acetyl and butyrylcholinesterase inhibitory activities were determined using Ellman’s spectrophotometric assay. The antioxidant activity was performed with DPPH and ABTS free radicals scavenging assay. Results The Michael additions of α-ketoesters to maleimides was promoted by 8-hydroxyquinoline. The organocatalyst (8-hydroxyquinoline, 20 mol %) produced the compounds in relatively shorter time (20–24 h) and with excellent isolated yields (84-98 %). The synthesized compounds (1–4) showed outstanding acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potentials, i.e., 98.75 and 90.00 % respectively for compound 2, with IC50 < 0.1 μg/mL. Additionally, compounds 1–4 revealed moderate antioxidant activity at different concentrations. In DPPH free radical scavenging assay, compound 1 showed dominant result with 72.41 ± 0.45, 52.49 ± 0.78 and 35.60 ± 0.75 % inhibition at concentrations of 1000, 500 and 250 μg/mL respectively, IC50 value of 440 μg/mL. However, the free radical scavenging was better when used ABTS free radicals. In ABTS free radicals scavenging assay compound 1 exhibited 88.51 ± 0.62 % inhibition at highest tested concentration i.e., 1000 μg/mL. Conclusions Herein, we have synthesized four ketoesters derivatives of succinimides in a single step reaction and high yields. As a highlight, we have showed a first report on the anticholinesterase and antioxidant potentials of succinimides. All the compounds showed overwhelming enzyme inhibitions and moderate antioxidant potentials. Graphical representation of synthesis, anticholinesterase and antioxidant potentials of ketoester derivatives of succinimides. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13065-015-0107-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Fawad Mahmood
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan ; Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, KPK Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Faizan Ul Haq
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | - Ghazan Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Pakistan
| | | |
Collapse
|
43
|
Anticholinesterase and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer's and other neurological disorders. Biol Res 2015; 48:21. [PMID: 25889712 PMCID: PMC4393635 DOI: 10.1186/s40659-015-0011-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Background Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer’s and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman’s assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively. Results In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL). Conclusions These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer’s and other neurological disorders.
Collapse
|
44
|
Silva RO, Damasceno SRB, Brito TV, Dias JM, Fontenele AM, Braúna IS, Júnior JSC, Maciel JS, de Paula RCM, Ribeiro RA, Souza MHLP, Freitas ALP, Medeiros JVR, Silva DC, Barbosa ALR. Polysaccharide fraction isolated from Passiflora edulis inhibits the inflammatory response and the oxidative stress in mice. J Pharm Pharmacol 2015; 67:1017-27. [PMID: 25808583 DOI: 10.1111/jphp.12399] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/10/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the anti-inflammatory, antioxidant and antinociceptive actions of PFPe, a polysaccharide fraction isolated from the dried fruit of the Passiflora edulis. METHODS Animals were pretreated with PFPe (0.3, 1 or 3 mg/kg, i.p.) 1 h before induction of paw oedema by carrageenan, histamine, serotonin, compound 48/80 or prostaglandin E2 (PGE2). Neutrophil migration and vascular permeability were measured after carrageenan injection into the peritoneum, and the action of the PFPe on the tumour necrosis factor-alpha, interleukin-1 beta (IL-1β), myeloperoxidase (MPO), glutathione (GSH) and malondialdehyde (MDA) levels was also evaluated. To assay nociception, we examined acetic acid-induced writhing, formalin-induced paw licking and response latency in the hot plate test. KEY FINDINGS Pretreatment with PFPe significantly inhibited carrageenan-induced paw oedema. PFPe also reduced paw oedema induced by compound 48/80, histamine, serotonin, and PGE2 and compound 48/80-induced vascular permeability. In addition, PFPe significantly reduced the MPO activity, MDA and GSH concentrations, and IL-1β level. In the nociception tests, PFPe reduced acetic acid-induced writhing and formalin-induced paw licking and did not increase the response latency time. CONCLUSIONS Our results suggest that PFPe administration reduces the inflammatory response by modulation of the liberation or synthesis of histamine and serotonin, by reduction of neutrophil migration, IL-1β levels, and oxidative stress and nociception.
Collapse
Affiliation(s)
- Renan O Silva
- Laboratory of Pharmacology of Inflammation and Cancer, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Samara R B Damasceno
- Laboratory of Pharmacology of Inflammation and Cancer, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tarcísio V Brito
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Jordana M Dias
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Amanda M Fontenele
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Isabela S Braúna
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - José S C Júnior
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Jeanny S Maciel
- Laboratory of Polymer, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Regina C M de Paula
- Laboratory of Polymer, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ronaldo A Ribeiro
- Laboratory of Pharmacology of Inflammation and Cancer, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcellus H L P Souza
- Laboratory of Pharmacology of Inflammation and Cancer, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana L P Freitas
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jand-Venes R Medeiros
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Draulio C Silva
- Laboratory of Biochemistry, Core of Molecular Ecology (NECMOL), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - André L R Barbosa
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Piauí, Brazil
| |
Collapse
|
45
|
Shah SMM, Sadiq A, Shah SMH, Khan S. Extraction of saponins and toxicological profile of Teucrium stocksianum boiss extracts collected from District Swat, Pakistan. Biol Res 2014; 47:65. [PMID: 25730474 PMCID: PMC4271446 DOI: 10.1186/0717-6287-47-65] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current era is facing challenges in the management of neoplasia and weeds control. The currently available anti-cancer and herbicidal drugs are associated with some serious side effects. Therefore numerous researchers are trying to discover and develop plant based alternative particularly for the rational management of cancer and weed control. Teucrium stocksianum possess antioxidant and analgesic activities. The current study was designed to evaluate crude saponins (CS), methanolic extract and sub-fractions of T. stocksianum for cytotoxic and phytotoxic potentials. CS, methanolic extract and sub-fractions were extracted from powdered plant material using different solvents. Cytotoxic potential of the extracts at a dose of 10, 100 and 1000 μg/ml were evaluated against Brine shrimp's nauplii. Phytotoxic assay also performed at the same concentration against Lemna minor. Etoposide and Paraquat were used as positive controls in cytotoxic and phytotoxic assays respectively. RESULTS The percent yield of crude saponins was (5%). CS demonstrated tremendous brine shrimp lethality showing < 10 μg/ml LC50. The n-hexane (HF) and chloroform fractions (CF) demonstrated excellent cytotoxicity with 80 and 55 μg/ml LC50 respectively. Whereas the methanolic extract (TSME), ethyl acetate (EAF) and aqueous fractions (AF) revealed moderate cytotoxicity showing 620, 860 and 1000 μg/ml LC50 values respectively. In phytotoxic assay profound inhibition was displayed by HF (96.67%) and TSME (95.56%, 30 μg/ml LC50) against the growth of Lemna minor at 1000 μg/ml respectively. Both CF and EAF demonstrated profound phytoxicity (93.33%) respectively at highest concentration (1000 μg/ml), while AF and CS demonstrated weak phytotoxicity with 1350 and 710 μg/ml LC50 values respectively. CONCLUSION Cytotoxicity and phytotoxicity assays indicated that the crude saponins, n-hexane and chloroform fractions of T. stocksianum could play a vital role in the treatment of neoplasia and as potential natural herbicides. Therefore these sub-fractions are recommended for further investigation with the aim to isolate novel anti-cancer and herbicidal compounds.
Collapse
Affiliation(s)
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Dir, Chakdara, Pakistan.
| | - Syed Muhammad Hassan Shah
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, KPK, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Dir, Chakdara, Pakistan.
| |
Collapse
|