1
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
2
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev 2023; 89:101980. [PMID: 37302757 DOI: 10.1016/j.arr.2023.101980] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with regenerative, anti-inflammatory, and immunomodulatory properties. MSCs and their exosomes significantly improved structural and functional alterations after myocardial infarction (MI) in preclinical studies and clinical trials. By reprograming intracellular signaling pathways, MSCs attenuate inflammatory response, oxidative stress, apoptosis, pyroptosis, and endoplasmic reticulum (ER) stress and improve angiogenesis, mitochondrial biogenesis, and myocardial remodeling after MI. MSC-derived exosomes contain a mixture of non-coding RNAs, growth factors, anti-inflammatory mediators, and anti-fibrotic factors. Although primary results from clinical trials were promising, greater efficacies can be achieved by controlling several modifiable factors. The optimum timing of transplantation, route of administration, origin of MSCs, number of doses, and number of cells per dose need to be further investigated by future studies. Newly, highly effective MSC delivery systems have been developed to improve the efficacy of MSCs and their exosomes. Moreover, MSCs can be more efficacious after being pretreated with non-coding RNAs, growth factors, anti-inflammatory or inflammatory mediators, and hypoxia. Similarly, viral vector-mediated overexpression of particular genes can augment the protective effects of MSCs on MI. Therefore, future clinical trials must consider these advances in preclinical studies to properly reflect the efficacy of MSCs or their exosomes for MI.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Roham PH, Kamath JJ, Sharma S. Dissecting the Interrelationship between COVID-19 and Diabetes Mellitus. Adv Biol (Weinh) 2023; 7:e2300107. [PMID: 37246237 DOI: 10.1002/adbi.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to enormous morbidity and mortality worldwide. After gaining entry into the human host, the virus initially infects the upper and lower respiratory tract, subsequently invading multiple organs, including the pancreas. While on one hand, diabetes mellitus (DM) is a significant risk factor for severe COVID-19 infection and associated death, recent reports have shown the onset of DM in COVID-19-recovered patients. SARS-CoV-2 infiltrates the pancreatic islets and activates stress response and inflammatory signaling pathways, impairs glucose metabolism, and consequently leads to their death. Indeed, the pancreatic autopsy samples of COVID-19 patients reveal the presence of SARS-CoV-2 particles in β-cells. The current review describes how the virus enters the host cells and activates an immunological response. Further, it takes a closer look into the interrelationship between COVID-19 and DM with the aim to provide mechanistic insights into the process by which SARS-CoV-2 infects the pancreas and mediates dysfunction and death of endocrine islets. The effects of known anti-diabetic interventions for COVID-19 management are also discussed. The application of mesenchymal stem cells (MSCs) as a future therapy for pancreatic β-cells damage to reverse COVID-19-induced DM is also emphasized.
Collapse
Affiliation(s)
- Pratiksha H Roham
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Jayesh J Kamath
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| |
Collapse
|
5
|
Kirkham AM, Bailey AJM, Monaghan M, Shorr R, Lalu MM, Fergusson DA, Allan DS. Updated Living Systematic Review and Meta-analysis of Controlled Trials of Mesenchymal Stromal Cells to Treat COVID-19: A Framework for Accelerated Synthesis of Trial Evidence for Rapid Approval-FASTER Approval. Stem Cells Transl Med 2022; 11:675-687. [PMID: 35758400 PMCID: PMC9299509 DOI: 10.1093/stcltm/szac038] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) may reduce mortality in patients with COVID-19; however, early evidence is based on few studies with marked interstudy heterogeneity. The second iteration of our living systematic review and meta-analysis evaluates a framework needed for synthesizing evidence from high-quality studies to accelerate consideration for approval. Methods A systematic search of the literature was conducted on November 15, 2021, to identify all English-language, full-text, and controlled clinical studies examining MSCs to treat COVID-19 (PROSPERO: CRD42021225431). Findings Eleven studies were identified (403 patients with severe and/or critical COVID-19, including 207 given MSCs and 196 controls). All 11 studies reported mortality and were pooled through random-effects meta-analysis. MSCs decreased relative risk of death at study endpoint (RR: 0.50 [95% CI, 0.34-0.75]) and RR of death at 28 days after treatment (0.19 [95% CI], 0.05-0.78) compared to controls. MSCs also decreased length of hospital stay (mean difference (MD: −3.97 days [95% CI, −6.09 to −1.85], n = 5 studies) and increased oxygenation levels at study endpoint compared to controls (MD: 105.62 mmHg O2 [95% CI, 73.9-137.3,], n = 3 studies). Only 2 of 11 studies reported on all International Society for Cellular Therapy (ISCT) criteria for MSC characterization. Included randomized controlled trials were found to have some concerns (n = 2) to low (n = 4) risk of bias (RoB), while all non-randomized studies were found to have moderate (n = 5) RoB. Interpretation Our updated living systematic review concludes that MSCs can likely reduce mortality in patients with severe or critical COVID-19. A master protocol based on our Faster Approval framework appears necessary to facilitate the more accelerated accumulation of high-quality evidence that would reduce RoB, improve consistency in product characterization, and standardize outcome reporting.
Collapse
Affiliation(s)
- Aidan M Kirkham
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Adrian J M Bailey
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Madeline Monaghan
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Risa Shorr
- Medical Information and Learning Services, The Ottawa Hospital, Ottawa, ON, Canada
| | - Manoj M Lalu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, ON, Canada.,Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Anesthesia, The Ottawa Hospital, Ottawa, ON, Canada
| | - Dean A Fergusson
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - David S Allan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.,Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
6
|
Pagano F, Picchio V, Bordin A, Cavarretta E, Nocella C, Cozzolino C, Floris E, Angelini F, Sordano A, Peruzzi M, Miraldi F, Biondi-Zoccai G, De Falco E, Carnevale R, Sciarretta S, Frati G, Chimenti I. Progressive stages of dysmetabolism are associated with impaired biological features of human cardiac stromal cells mediated by the oxidative state and autophagy. J Pathol 2022; 258:136-148. [PMID: 35751644 PMCID: PMC9542980 DOI: 10.1002/path.5985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022]
Abstract
Cardiac stromal cells (CSCs) are the main players in fibrosis. Dysmetabolic conditions (metabolic syndrome—MetS, and type 2 diabetes mellitus—DM2) are strong pathogenetic contributors to cardiac fibrosis. Moreover, modulation of the oxidative state (OxSt) and autophagy is a fundamental function affecting the fibrotic commitment of CSCs, that are adversely modulated in MetS/DM2. We aimed to characterize CSCs from dysmetabolic patients, and to obtain a beneficial phenotypic setback from such fibrotic commitment by modulation of OxSt and autophagy. CSCs were isolated from 38 patients, stratified as MetS, DM2, or controls. Pharmacological modulation of OxSt and autophagy was obtained by treatment with trehalose and NOX4/NOX5 inhibitors (TREiNOX). Flow‐cytometry and real‐time quantitative polymerase chain reaction (RT‐qPCR) analyses showed significantly increased expression of myofibroblasts markers in MetS‐CSCs at baseline (GATA4, ACTA2, THY1/CD90) and after starvation (COL1A1, COL3A1). MetS‐ and DM2‐CSCs displayed a paracrine profile distinct from control cells, as evidenced by screening of 30 secreted cytokines, with a significant reduction in vascular endothelial growth factor (VEGF) and endoglin confirmed by enzyme‐linked immunoassay (ELISA). DM2‐CSCs showed significantly reduced support for endothelial cells in angiogenic assays, and significantly increased H2O2 release and NOX4/5 expression levels. Autophagy impairment after starvation (reduced ATG7 and LC3‐II proteins) was also detectable in DM2‐CSCs. TREiNOX treatment significantly reduced ACTA2, COL1A1, COL3A1, and NOX4 expression in both DM2‐ and MetS‐CSCs, as well as GATA4 and THY1/CD90 in DM2, all versus control cells. Moreover, TREiNOX significantly increased VEGF release by DM2‐CSCs, and VEGF and endoglin release by both MetS‐ and DM2‐CSCs, also recovering the angiogenic support to endothelial cells by DM2‐CSCs. In conclusion, DM2 and MetS worsen microenvironmental conditioning by CSCs. Appropriate modulation of autophagy and OxSt in human CSCs appears to restore these features, mostly in DM2‐CSCs, suggesting a novel strategy against cardiac fibrosis in dysmetabolic patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo (RM), Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Alessia Sordano
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Roberto Carnevale
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| |
Collapse
|
7
|
Adibkia K, Ehsani A, Jodaei A, Fathi E, Farahzadi R, Barzegar-Jalali M. Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:786-797. [PMID: 34395152 PMCID: PMC8353587 DOI: 10.3762/bjnano.12.62] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/21/2021] [Indexed: 05/22/2023]
Abstract
Finding new strategies for the treatment of heart failures using stem cells has attracted a lot of attention. Meanwhile, nanotechnology-based approaches to regenerative medicine hypothesize a possible combination of stem cells and nanotechnology in the treatment of diseases. This study aims to investigate the in vitro effect of silver nanoparticles (Ag-NPs) on the cardiomyogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) through detection of cardiac markers. For this purpose, MSCs were isolated from bone marrow resident and differentiated to the cardiac cells using a dedicated medium with Ag-NPs. Also, the cardiomyogenic differentiation of BM-MSCs was confirmed using immunocytochemistry. Then, real-time PCR and western blotting assay were used for measuring absolute telomere length (TL) measurement, and gene and protein assessment of the cells, respectively. It was found that 2.5 µg/mL Ag-NPs caused elongation of the telomeres and altered VEGF, C-TnI, VWF, SMA, GATA-4, TERT, and cyclin D protein and gene expression in the cardiomyogenically differentiated BM-MSCs. Also, there was a significant increase in the protein and gene expression of Wnt3 and β-catenin as main components of pathways. We concluded that Ag-NPs could change the in vitro expression of cardiac markers of BM-MSCs via the Wnt3/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Jodaei
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Zhang F, Gao F, Wang K, Liu X, Zhang Z. MiR-34a inhibitor protects mesenchymal stem cells from hyperglycaemic injury through the activation of the SIRT1/FoxO3a autophagy pathway. Stem Cell Res Ther 2021; 12:115. [PMID: 33546760 PMCID: PMC7866658 DOI: 10.1186/s13287-021-02183-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are favourable treatments for ischaemic diseases; however, MSCs from diabetic patients are not useful for this purpose. Recent studies have shown that the expression of miR-34a is significantly increased in patients with hyperglycaemia; the precise role of miR-34a in MSCs in diabetes needs to be clarified. OBJECTIVE The aim of this study is to determine the precise role of miR-34a in MSCs exposed to hyperglycaemia and in recovery heart function after myocardial infarction (MI) in diabetes mellitus (DM) rats. METHODS DM rat models were established by high-fat diet combined with streptozotocin (STZ) injection. MSCs were isolated from the bone marrow of donor rats. Chronic culture of MSCs under high glucose was used to mimic the DM micro-environment. The role of miR-34a in regulating cell viability, senescence and paracrine effects were investigated using a cell counting kit-8 (CCK-8) assay, senescence-associated β-galactosidase (SA-β-gal) staining and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) ELISA, respectively. The expression of autophagy- and senescence-associated proteins in MSCs and silent information regulator 1 (SIRT1) and forkhead box class O 3a (FoxO3a) were analysed by western blotting. Autophagic bodies were analysed by transmission electron microscopy (TEM). The MI model was established by left anterior descending coronary artery (LAD) ligation, and then, the rats were transplanted with differentially treated MSCs intramuscularly at sites around the border zone of the infarcted heart. Thereafter, cardiac function in rats in each group was detected via cardiac ultrasonography at 1 week and 3 weeks after surgery. The infarct size was determined through a 2,3,5-triphenyltetrazolium chloride (TTC) staining assay, while myocardial fibrosis was assessed by Masson staining. RESULTS The results of the current study showed that miR-34a was significantly increased under chronic hyperglycaemia exposure. Overexpression of miR-34a was significantly associated with impaired cell viability, exacerbated senescence and disrupted cell paracrine capacity. Moreover, we found that the mechanism underlying miR-34a-mediated deterioration of MSCs exposed to high glucose involved the activation of the SIRT1/FoxO3a autophagy pathway. Further analysis showed that miR-34a inhibitor-treated MSC transplantation could improve cardiac function and decrease the scar area in DM rats. CONCLUSIONS Our study demonstrates for the first time that miR-34a mediates the deterioration of MSCs' functions under hyperglycaemia. The underlying mechanism may involve the SIRT1/FoxO3a autophagy signalling pathway. Thus, inhibition of miR-34a might have important therapeutic implications in MSC-based therapies for myocardial infarction in DM patients.
Collapse
Affiliation(s)
- Fengyun Zhang
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, People's Republic of China
| | - Fei Gao
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kun Wang
- Department of Cardiology, First People's Hospital of Suqian, Suqian, People's Republic of China
| | - Xiaohong Liu
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhuoqi Zhang
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
9
|
Yang B, Lu CL, Zhao H, Dong R. Effects of Nano-Protein Complexes on Apoptosis of Myocardial Infarction Cells Based on Complex Curve Analysis. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:1272-1277. [PMID: 33183472 DOI: 10.1166/jnn.2021.18657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Myocardial infarction is one of the common types of coronary heart disease in the clinic. Its morbidity, lethality and disability are high, and it has become a serious threat to human health. At present, it is shown that in the early stage of acute myocardial infarction, myocardial cells are mainly apoptotic, suggesting that effectively blocking myocardial apoptosis in the early stage of myocardial infarction is of great significance for reducing tissue necrosis in the infarcted area. Recent studies have shown that NG nano-protein complexes have a better therapeutic effect on acute myocardial infarction and can inhibit left ventricular remodeling in patients with acute myocardial infarction. However, there are few studies on the effect of NG nano-protein complexes on myocardial cell apoptosis after ischemia. This study used a rat model of acute myocardial infarction to analyze its effect on apoptotic proteins of myocardial cells in rats with acute myocardial infarction in order to provide a certain theoretical basis for its clinical application. In this study, 45 SD rats were randomly divided into a sham operation group, a myocardial infarction group, and a NG nano-protein complex group, with 15 in each group. The sham operation group only underwent thoracotomy, and received normal saline gavage postoperatively; the myocardial infarction group and the NG nano-protein complex group were ligated to the left anterior descending coronary artery of the rat to establish an acute myocardial infarction model, and were performed separately treatment with saline and NG nanoprotein complexes. Finally, we conclude that this nano-protein complex can significantly reduce the expression level of myocardial apoptosis-related proteins in rats with acute myocardial infarction, and is of great significance in inhibiting the apoptosis of acute myocardial infarction cells.
Collapse
Affiliation(s)
- Bo Yang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chang-Lin Lu
- Department of Cardiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| | - Hua Zhao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ran Dong
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
12
|
Xiao S, Zhang D, Liu Z, Jin W, Huang G, Wei Z, Wang D, Deng C. Diabetes-induced glucolipotoxicity impairs wound healing ability of adipose-derived stem cells-through the miR-1248/CITED2/HIF-1α pathway. Aging (Albany NY) 2020; 12:6947-6965. [PMID: 32294623 PMCID: PMC7202540 DOI: 10.18632/aging.103053] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/29/2020] [Indexed: 04/13/2023]
Abstract
Despite being an attractive cell type for mesenchymal stem cell (MSC) transplantation therapy for wound healing, human adipose-derived stem cells (hADSCs) from diabetes mellitus (DM) patients result in remarkable retention of stem cell activity due to diabetes-induced glucolipotoxicity. We explored the effect of diabetes and medium containing AGEs on the cell activity, phenotype, multipotency, angiogenic potential, and the therapeutic effect of hADSCs. Then, miRNA-1248 was selected by miRNA microarray analysis to further study the core molecular pathways that regulate the wound healing ability of hADSCs. hADSCs isolated from DM patients or cultured in medium containing AGEs in vitro exhibited decreased effectiveness in stem cell therapy. The expression of miRNA-1248 was decreased in the hADSCs of DM patients and hence failed to positively regulate stem cell activity, differentiation functions, and angiogenesis promotion effect. This concomitantly increased the expression of CITED2, an inhibitor of HIF-1α, thus influencing growth factors that promote angiogenesis, cellular proliferation, and wound healing. Overall, our data demonstrated that the glucolipotoxicity-impaired wound healing ability of hADSCs might occur through the miR-1248/CITED2/HIF-1α pathway. MiRNA-1248 may have potential to be used as a novel therapeutic target for wound healing in DM patients or restoring the wound healing ability of diabetic hADSCs.
Collapse
Affiliation(s)
- Shune Xiao
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Zhang
- Department of Orthodontics, Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhiyuan Liu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenhu Jin
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangtao Huang
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zairong Wei
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dali Wang
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Cassidy FC, Shortiss C, Murphy CG, Kearns SR, Curtin W, De Buitléir C, O’Brien T, Coleman CM. Impact of Type 2 Diabetes Mellitus on Human Bone Marrow Stromal Cell Number and Phenotypic Characteristics. Int J Mol Sci 2020; 21:ijms21072476. [PMID: 32252490 PMCID: PMC7177361 DOI: 10.3390/ijms21072476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) have been investigated in numerous disease settings involving impaired regeneration because of the crucial role they play in tissue maintenance and repair. Considering the number of comorbidities associated with type 2 diabetes mellitus (T2DM), the hypothesis that MSCs mediate these comorbidities via a reduction in their native maintenance and repair activities is an intriguing line of inquiry. Here, it is demonstrated that the number of bone marrow-derived MSCs in people with T2DM was reduced compared to that of age-matched control (AMC) donors and that this was due to a specific decrease in the number of MSCs with osteogenic capacity. There were no differences in MSC cell surface phenotype or in MSC expansion, differentiation, or angiogenic or migratory capacity from donors living with T2DM as compared to AMCs. These findings elucidate the basic biology of MSCs and their potential as mediators of diabetic comorbidities, especially osteopathies, and provide insight into donor choice for MSC-based clinical trials. This study suggests that any role of bone marrow MSCs as a mediator of T2DM comorbidity is likely due to a reduction in the osteoprogenitor population size and not due to a permanent alteration to the MSCs' capacity to maintain tissue homeostasis through expansion and differentiation.
Collapse
Affiliation(s)
- Féaron C. Cassidy
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Correspondence:
| | - Ciara Shortiss
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| | - Colin G. Murphy
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Stephen R. Kearns
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - William Curtin
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Ciara De Buitléir
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
| | - Timothy O’Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, College of Medicine, Nursing and Health Sciences, School of Medicine, NUI Galway, H91 FD82 Galway, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| |
Collapse
|
14
|
Fathi E, Valipour B, Vietor I, Farahzadi R. An overview of the myocardial regeneration potential of cardiac c-Kit + progenitor cells via PI3K and MAPK signaling pathways. Future Cardiol 2020; 16:199-209. [PMID: 32125173 DOI: 10.2217/fca-2018-0049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, several studies have investigated cell transplantation as an innovative strategy to restore cardiac function following heart failure. Previous studies have also shown cardiac progenitor cells as suitable candidates for cardiac cell therapy compared with other stem cells. Cellular kit (c-kit) plays an important role in the survival and migration of cardiac progenitor cells. Like other types of cells, in the heart, cellular responses to various stimuli are mediated via coordinated pathways. Activation of c-kit+ cells leads to subsequent activation of several downstream mediators such as PI3K and the MAPK pathways. This review aims to outline current research findings on the role of PI3K/AKT and the MAPK pathways in myocardial regeneration potential of c-kit+.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Raheleh Farahzadi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran.,Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Cui J, Liu X, Zhang Z, Xuan Y, Liu X, Zhang F. EPO protects mesenchymal stem cells from hyperglycaemic injury via activation of the Akt/FoxO3a pathway. Life Sci 2019; 222:158-167. [PMID: 30597174 DOI: 10.1016/j.lfs.2018.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Mesenchymal stem cell (MSC)-based therapies have demonstrated positive outcomes for treating cardiovascular disease. However, the proliferative ability of MSCs decreases during chronic exposure to hyperglycaemia; their ability to contribute to endogenous injury repair is thus reduced. Erythropoietin (EPO) was recently reported to protect against hyperglycaemia-related injury in various cells and may be a good candidate for enhancing MSC functions under hyperglycaemic conditions. METHODS Bone marrow-derived MSCs were isolated from male donor rats weighing 60-80 g. The roles of EPO in regulating cell viability, senescence, angiogenesis and inflammation were investigated using the Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assays; senescence-associated β-galactosidase (SA-β-gal) staining; VEGF, HGF, IGF, bFGF ELISAs and TNF-α ELISA, respectively. ROS production was measured by flow cytometry. The expression levels of Akt, forkhead box class O3a (FoxO3a) and VEGF proteins in MSCs were analysed by western blotting. Matrigel was used for tube formation assays. RESULTS The results of the current study showed that EPO has beneficial effects on MSCs exposed to hyperglycaemia by promoting proliferation, inhibiting senescence and the release of pro-inflammatory factors, increasing the secretion of proangiogenic cytokines, and enhancing the ability of MSCs to stimulate tube formation among human umbilical vein endothelial cells (HUVECs). In addition, the beneficial effects of EPO may result from the activation of the Akt/FoxO3a signalling pathway. CONCLUSIONS Our study demonstrates for the first time that EPO protects MSCs from hyperglycaemia-induced damage by targeting the Akt/FoxO3a signalling pathway.
Collapse
Affiliation(s)
- Jinjin Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, PR China
| | - Xiaohong Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China
| | - Zhuoqi Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China
| | - Yongli Xuan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China
| | - Xinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, PR China
| | - Fengyun Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, PR China.
| |
Collapse
|
16
|
Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Rev Rep 2019; 15:194-217. [DOI: 10.1007/s12015-018-9869-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Romo-Yáñez J, Domínguez-Castro M, Flores-Reyes JS, Estrada-Juárez H, Mancilla-Herrera I, Hernández-Pineda J, Bazan-Tejeda ML, Aguinaga-Ríos M, Reyes-Muñoz E. Hyperglycemia differentially affects proliferation, apoptosis, and BNIP3 and p53 mRNA expression of human umbilical cord Wharton's jelly cells from non-diabetic and diabetic pregnancies. Biochem Biophys Res Commun 2018; 508:1149-1154. [PMID: 30554659 DOI: 10.1016/j.bbrc.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023]
Abstract
Diabetes in pregnancy constitutes an unfavorable environment for embryonic and fetal development, where the child has a higher risk of perinatal morbidity and mortality, with high incidence of congenital malformations and predisposition to long-term metabolic diseases that increase with a hypercaloric diet. To analyze whether hyperglycemia differentially affects proliferation, apoptosis, and mRNA expression in cells from children of normoglycemic pregnancies (NGPs) and diabetes mellitus pregnancies (DMPs), we used umbilical cord Wharton jelly cells as a research model. Proliferation assays were performed to analyze growth and determine the doubling time, and the rate of apoptosis was determined by flow cytometry-annexin-V assays. AMPK, BNIP3, HIF1α, and p53 mRNA gene expression was assessed by semi-quantitative RT-PCR. We found that hyperglycemia decreased proliferation in a statistically significant manner in NGP cells treated with 40 mM D-glucose and in DMP cells treated with 30 and 40 mM D-glucose. Apoptosis increased in hyperglycemic conditions in NGP and DMP cells. mRNA expression of BNIP3 and p53 was significantly increased in cells from DMPs but not in cells from NGPs. We found evidence that maternal irregular metabolic conditions, like diabetes with hyperglycemia in culture, affect biological properties of fetal cells. These observations could be a constituent of fetal programming.
Collapse
Affiliation(s)
- José Romo-Yáñez
- Departamento de Genética y Genómica Humana, INPer, Mexico City, Mexico; Coordinación de Endocrinología Ginecológica y Perinatal, INPer, Mexico.
| | - Mauricio Domínguez-Castro
- Departamento de Genética y Genómica Humana, INPer, Mexico City, Mexico; Departamento de Fisiologia y Desarrollo Celular, INPer, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG. Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 2018; 113:46. [PMID: 30353243 PMCID: PMC6314032 DOI: 10.1007/s00395-018-0703-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Although cell therapy improves cardiac function after myocardial infarction, highly variable results and limited understanding of the underlying mechanisms preclude its clinical translation. Because many heart failure patients are diabetic, we examined how diabetic conditions affect the characteristics of cardiac mesenchymal cells (CMC) and their ability to promote myocardial repair in mice. To examine how diabetes affects CMC function, we isolated CMCs from non-diabetic C57BL/6J (CMCWT) or diabetic B6.BKS(D)-Leprdb/J (CMCdb/db) mice. When CMCs were grown in 17.5 mM glucose, CMCdb/db cells showed > twofold higher glycolytic activity and a threefold higher expression of Pfkfb3 compared with CMCWT cells; however, culture of CMCdb/db cells in 5.5 mM glucose led to metabolic remodeling characterized by normalization of metabolism, a higher NAD+/NADH ratio, and a sixfold upregulation of Sirt1. These changes were associated with altered extracellular vesicle miRNA content as well as proliferation and cytotoxicity parameters comparable to CMCWT cells. To test whether this metabolic improvement of CMCdb/db cells renders them suitable for cell therapy, we cultured CMCWT or CMCdb/db cells in 5.5 mM glucose and then injected them into infarcted hearts of non-diabetic mice (CMCWT, n = 17; CMCdb/db, n = 13; Veh, n = 14). Hemodynamic measurements performed 35 days after transplantation showed that, despite normalization of their properties in vitro, and unlike CMCWT cells, CMCdb/db cells did not improve load-dependent and -independent parameters of left ventricular function. These results suggest that diabetes adversely affects the reparative capacity of CMCs and that modulating CMC characteristics via culture in lower glucose does not render them efficacious for cell therapy.
Collapse
Affiliation(s)
- Parul Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yiru Guo
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yibing Nong
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marjan Nasr
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Qianhong Li
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - James A Bradley
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Bradford G Hill
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Qu W, Shi S, Sun L, Zhang F, Zhang S, Mu S, Zhao Y, Liu B, Cao X. Construction of a microRNA‑associated feed‑forward loop network that identifies regulators of cardiac hypertrophy and acute myocardial infarction. Int J Mol Med 2018; 42:2062-2070. [PMID: 30066833 PMCID: PMC6108862 DOI: 10.3892/ijmm.2018.3790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
Feed‑forward loops (FFLs) are three‑gene modules that exert significant effects on a series of biological processes and carcinogenesis development. MicroRNA‑associated FFLs (miR‑FFLs) represent a new era in disease research. However, analysis of the miR‑FFL network motifs has yet to be systematically performed, and their potential role in cardiac hypertrophy and acute myocardial infarction (AMI) requires investigation. The present study used a computational method to establish a comprehensive miR‑FFL network for cardiac hypertrophy and AMI, by integrating high‑throughput data from different sources and performing multi‑aspect analysis of the network features. Several heart disease‑associated miR‑FFL motifs were identified that were specific or common to the two diseases investigated. Functional analysis further revealed that miR‑FFL motifs provided specific drug targets for the clinical treatment of cardiac hypertrophy and AMI. Associations between specific drugs associated with heart disease and dysregulated FFLs were also identified. The present study highlighted the components of FFL motifs in cardiac hypertrophy and AMI, and revealed their possibility as heart disease biomarkers and novel treatment targets.
Collapse
Affiliation(s)
- Wenbo Qu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Shuai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Lixiu Sun
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Fan Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Shengming Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Shuainan Mu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Yanru Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Bingchen Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Xue Cao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| |
Collapse
|
20
|
Prasai A, El Ayadi A, Mifflin RC, Wetzel MD, Andersen CR, Redl H, Herndon DN, Finnerty CC. Characterization of Adipose-Derived Stem Cells Following Burn Injury. Stem Cell Rev Rep 2018. [PMID: 28646271 PMCID: PMC5730636 DOI: 10.1007/s12015-017-9721-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Severe burns induce a prolonged inflammatory response in subcutaneous adipose tissue that modulates signaling in adipose-derived stem cells (ASCs), which hold potential for healing burn wounds or generating skin substitutes. Using a 60% rat scald burn model, we conducted a series of experiments to determine which cells isolated from the adipose tissue produced inflammatory mediators and how these changes affect ASC fate and function. The stromal vascular fraction (SVF), adipocytes, and ASCs were isolated from adipose tissue at varying times up to 4 weeks postburn and from non-injured controls. Endpoints included inflammatory marker expression, expression of ASC-specific cell-surface markers, DNA damage, differentiation potential, and proliferation. Inflammatory marker expression was induced in adipocytes and the SVF at 24 and 48 h postburn; expression of inflammatory marker mRNA transcripts and protein returned to normal in the SVF isolated 1 week postburn. In enriched ASCs, burns did not alter cell-surface expression of stem cell markers, markers of inflammation, differentiation potential, or proliferative ability. These results suggest that adipocytes and the SVF produce large quantities of inflammatory mediators, but that ASCs do not, after burns and that ASCs are unaffected by burn injury or culturing procedures.. They also suggest that cells isolated over 48 h after injury are best for cell culture or tissue engineering purposes.
Collapse
Affiliation(s)
- Anesh Prasai
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children®-Galveston, Galveston, TX, USA
| | - Randy C Mifflin
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children®-Galveston, Galveston, TX, USA
| | - Michael D Wetzel
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
| | - Clark R Andersen
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children®-Galveston, Galveston, TX, USA
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children®-Galveston, Galveston, TX, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA. .,Shriners Hospitals for Children®-Galveston, Galveston, TX, USA. .,Institute for Translational Sciences and Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-1220, USA.
| |
Collapse
|
21
|
van Rhijn-Brouwer FCC, Gremmels H, Fledderus JO, Verhaar MC. Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease: Implications for Cellular Therapy. Cell Transplant 2018; 27:765-785. [PMID: 29895169 PMCID: PMC6047272 DOI: 10.1177/0963689717738257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.
Collapse
Affiliation(s)
- F C C van Rhijn-Brouwer
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Gremmels
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Effects of Hexachlorophene, a Chemical Accumulating in Adipose Tissue, on Mouse and Human Mesenchymal Stem Cells. Tissue Eng Regen Med 2018; 15:211-222. [PMID: 30603548 PMCID: PMC6171693 DOI: 10.1007/s13770-017-0103-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
The hexachlorophene (HCP) is a highly lipophilic chlorinated bisphenol present in hygienic and dermatological products. The HCP accumulates preferentially in adipose tissue that is a privileged source of mesenchymal stem cells (MSCs). The evaluation of the potential effects of HCP on MSCs is important for their medical application. Here we examined the effects of HCP on murine adipose tissue-derived stem cells (ADSCs) and human umbilical cord-derived stem cells (UCSCs) in cell culture. We found that 10−4 and 10−5 M HCP inhibits proliferation, osteogenesis and increases apoptosis of ADSCs and UCSCs. While the effect of HCP on proliferation and differentiation potential of these two cell lines was similar, the UCSCs appeared much more resistant to HCP-induced apoptosis than ADSCs. These results suggest that the adipose tissue-derived ADSCs have higher sensitive for HCP than umbilical cord-derived UCSCs and indicate that the umbilical cord can be a preferable source of MSCs for prospective medical applications in the future.
Collapse
|
23
|
Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes From Adipose-derived Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Wnt/β-Catenin Signaling Pathway. J Cardiovasc Pharmacol 2017; 70:225-231. [PMID: 28582278 PMCID: PMC5642342 DOI: 10.1097/fjc.0000000000000507] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) and their secreted exosomes exert a cardioprotective role in jeopardized myocardium. However, the specific effects and underlying mechanisms of exosomes derived from adipose-derived MSCs (ADMSCs) on myocardial ischemia/reperfusion (I/R) injury remain largely unclear. In this study, ADMSC-derived exosomes (ADMSCs-ex) were administrated into the rats subjected to I/R injury and H9c2 cells exposed to hypoxia/reoxygenation (H/R). Consequently, administration of ADMSCs-ex significantly reduced I/R-induced myocardial infarction, accompanied with a decrease in serum levels of creatine kinase-myocardial band, lactate dehydrogenase, and cardiac troponin I (cTnI). Simultaneously, ADMSCs-ex dramatically antagonized I/R-induced myocardial apoptosis, along with the upregulation of Bcl-2 and downregulation of Bax, and inhibition of Caspase 3 activity in rat myocardium. Similarly, ADMSCs-ex significantly reduced cell apoptosis and the expression of Bax, but markedly increased cell viability and the expression of Bcl-2 and Cyclin D1 under H/R. Furthermore, ADMSCs-ex observably induced the activation of Wnt/β-catenin signaling by attenuating I/R- and H/R-induced inhibition of Wnt3a, p-GSK-3β (Ser9), and β-catenin expression. Importantly, treatment with Wnt/β-catenin inhibitor XAV939 partly neutralized ADMSC-ex-induced antiapoptotic and prosurvival effects in H9c2 cells. In conclusion, we confirmed that ADMSCs-ex protect ischemic myocardium from I/R injury through the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaojun Cui
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zhangyou He
- Department of Internal Medicine, Shenzhen Guangming New District Central Hospital, Shenzhen, China
| | - Zihao Liang
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| | - Zhenyi Chen
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| | - Haifeng Wang
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, Institute of Stem Cell and Regenerative Medicine, Dongguan Campus, Guangdong Medical University, Dongguan, China
- Department of Research and Development, Guangdong Landau Biotechnology Co, Ltd, Guangzhou, China; and
| |
Collapse
|
24
|
Rezabakhsh A, Cheraghi O, Nourazarian A, Hassanpour M, Kazemi M, Ghaderi S, Faraji E, Rahbarghazi R, Avci ÇB, Bagca BG, Garjani A. Type 2 Diabetes Inhibited Human Mesenchymal Stem Cells Angiogenic Response by Over-Activity of the Autophagic Pathway. J Cell Biochem 2017; 118:1518-1530. [DOI: 10.1002/jcb.25814] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Aysa Rezabakhsh
- Faculty of Pharmacy; Department of Pharmacology and Toxicology; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee of Tabriz University of Medical Sciences; Tabriz; Iran
| | - Omid Cheraghi
- Faculty of Natural Sciences; Department of Biology; University of Tabriz; Tabriz Iran
| | - Alireza Nourazarian
- Faculty of Medicine; Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mehdi Hassanpour
- Faculty of Medicine; Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences; Tabriz Iran
| | - Masoumeh Kazemi
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Shahrooz Ghaderi
- Faculty of Advanced Medical Sciences; Department of Molecular Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Esmaeil Faraji
- Faculty of Medicine; Department of Internal Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Advanced Medical Sciences; Department of Applied Cell Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Çığır Biray Avci
- Faculty of Medicine; Department of Medical Biology; Ege University; Izmir Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine; Department of Medical Biology; Ege University; Izmir Turkey
| | - Alireza Garjani
- Faculty of Pharmacy; Department of Pharmacology and Toxicology; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
25
|
Aikawa E, Fujita R, Asai M, Kaneda Y, Tamai K. Receptor for Advanced Glycation End Products-Mediated Signaling Impairs the Maintenance of Bone Marrow Mesenchymal Stromal Cells in Diabetic Model Mice. Stem Cells Dev 2016; 25:1721-1732. [PMID: 27539289 DOI: 10.1089/scd.2016.0067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have been demonstrated to contribute to tissue regeneration. However, chronic pathological conditions, such as diabetes and aging, can result in a decreased number and/or quality of BM-MSCs. We therefore investigated the maintenance mechanism of BM-MSCs by studying signaling through the receptor for advanced glycation end products (RAGE), which is thought to be activated under various pathological conditions. The abundance of endogenous BM-MSCs decreased in a type 2 diabetes mellitus (DM2) model, as determined by performing colony-forming unit (CFU) assays. Flow cytometric analysis revealed that the prevalence of the Lin-/ckit-/CD106+/CD44- BM population, which was previously identified as a slow-cycling BM-MSC population, also decreased. Furthermore, in a streptozotocin-induced type 1 DM model (DM1), the CFUs of fibroblasts and the prevalence of the Lin-/ckit-/CD106+/CD44- BM population also significantly decreased. BM-MSCs in RAGE knockout (KO) mice were resistant to such reduction induced by streptozotocin treatment, suggesting that chronic RAGE signaling worsened the maintenance mechanism of BM-MSCs. Using an in vitro culture condition, BM-MSCs from RAGE-KO mice showed less proliferation and expressed significantly more Nanog and Oct-4, which are key factors in multipotency, than did wild-type BM-MSCs. Furthermore, RAGE-KO BM-MSCs showed a greater capacity for differentiation into mesenchymal lineages, such as adipocytes and osteocytes. These data suggested that RAGE signaling inhibition is useful for maintaining BM-MSCs in vitro. Together, our findings indicated that perturbation of BM-MSCs in DM could be partially explained by chronic RAGE signaling and that targeting the RAGE signaling pathway is a viable approach for maintaining BM-MSCs under chronic pathological conditions.
Collapse
Affiliation(s)
- Eriko Aikawa
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Ryo Fujita
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan .,2 Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan .,3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Maiko Asai
- 4 Faculty of Medicine, Hiroshima University , Higashihiroshima, Japan
| | - Yasufumi Kaneda
- 3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Katsuto Tamai
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| |
Collapse
|
26
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
27
|
Yaochite JNU, Caliari-Oliveira C, de Souza LEB, Neto LS, Palma PVB, Covas DT, Malmegrim KCR, Voltarelli JC, Donadi EA. Therapeutic efficacy and biodistribution of allogeneic mesenchymal stem cells delivered by intrasplenic and intrapancreatic routes in streptozotocin-induced diabetic mice. Stem Cell Res Ther 2015; 6:31. [PMID: 25884215 PMCID: PMC4432770 DOI: 10.1186/s13287-015-0017-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Mesenchymal stromal/stem cells (MSCs) are multipotent cells that have the ability to express and secrete a wide range of immunomodulatory molecules, cytokines, growth factors and antiapoptotic proteins. MSCs modulate both innate and adaptive immune responses making them potential candidates for the treatment of patients with type 1 diabetes mellitus (T1D). However, one problem frequently associated with the systemic MSCs administration is the entrapment of the cells mainly in the lungs. In this sense, trying to avoid the lung barrier, the purpose of this study was to evaluate the long-term therapeutic efficacy and biodistribution of allogeneic adipose tissue-derived MSCs (ADMSCs) injected via two different delivery routes (intrasplenic/I.Sp and intrapancreatic/I.Pc) in a murine model of diabetes induced by streptozotocin (STZ). Methods Experimental diabetes was induced in C57BL/6 male mice by multiple low-doses of STZ. MSCs were isolated from adipose tissue (ADMSCs) of Balb/c mice. A single dose of 1x106 ADMSCs was microinjected into the spleen or into the pancreas of diabetic mice. Control group received injection of PBS by I.Sp or I.Pc delivery routes. Glycemia, peripheral glucose response, insulin-producing β cell mass, regulatory T cell population, cytokine profile and cell biodistribution were evaluated after ADMSCs/PBS administration. Results ADMSCs injected by both delivery routes were able to decrease blood glucose levels and improve glucose tolerance in diabetic mice. ADMSCs injected by I.Sp route reverted hyperglycemia in 70% of diabetic treated mice, stimulating insulin production by pancreatic β cells. Using the I.Pc delivery route, 42% of ADMSCs-treated mice responded to the therapy. Regulatory T cell population remained unchanged after ADMSCs administration but pancreatic TGF-β levels were increased in ADMSCs/I.Sp-treated mice. ADMSCs administrated by I.Sp route were retained in the spleen and in the liver and ADMSCs injected by I.Pc route remained in the pancreas. However, ADMSCs injected by these delivery routes remained only few days in the recipients. Conclusion Considering the potential role of MSCs in the treatment of several disorders, this study reports alternative delivery routes that circumvent cell entrapment into the lungs promoting beneficial therapeutic responses in ADMSCs-treated diabetic mice. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0017-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Navarro Ueda Yaochite
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil. .,Tenente Catão Roxo 2501, Monte Alegre 14051-140, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Caliari-Oliveira
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Eduardo Botelho de Souza
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Lourenço Sbragia Neto
- Department of Surgery and Anatomy, Pediatric Surgery Division, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Patrícia Vianna Bonini Palma
- Regional Blood Center of Ribeirão Preto, University of São Paulo, Tenente Catão Roxo 2501, Monte Alegre 14051-140, Ribeirão Preto, São Paulo, Brazil.
| | - Dimas Tadeu Covas
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Monte Alegre 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | | | - Eduardo Antônio Donadi
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
28
|
Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, Jun EJ, Shim JY, Choi J, Kim CJ. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 2015; 24:575-86. [PMID: 25437179 DOI: 10.1089/scd.2014.0349] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human umbilical cord mesenchymal stromal cells (hUC-MSCs) of Wharton's jelly origin undergo adipogenic, osteogenic, and chondrogenic differentiation in vitro. Recent studies have consistently shown their therapeutic potential in various human disease models. However, the biological effects of major pregnancy complications on the cellular properties of hUC-MSCs remain to be studied. In this study, we compared the basic properties of hUC-MSCs obtained from gestational diabetes mellitus (GDM) patients (GDM-UC-MSCs) and normal pregnant women (N-UC-MSCs). Assessments of cumulative cell growth, MSC marker expression, cellular senescence, and mitochondrial function-related gene expression were performed using a cell count assay, senescence-associated β-galactosidase staining, quantitative real-time reverse transcription-polymerase chain reaction, immunoblotting, and cell-based mitochondrial functional assay system. When compared with N-UC-MSCs, GDM-UC-MSCs showed decreased cell growth and earlier cellular senescence with accumulation of p16 and p53, even though they expressed similar levels of CD105, CD90, and CD73 MSC marker proteins. GDM-UC-MSCs also displayed significantly lower osteogenic and adipogenic differentiation potentials than N-UC-MSCs. Furthermore, GDM-UC-MSCs exhibited a low mitochondrial activity and significantly reduced expression of the mitochondrial function regulatory genes ND2, ND9, COX1, PGC-1α, and TFAM. Here, we report intriguing and novel evidence that maternal metabolic derangement during gestation affects the biological properties of fetal cells, which may be a component of fetal programming. Our findings also underscore the importance of the critical assessment of the biological impact of maternal-fetal conditions in biological studies and clinical applications of hUC-MSCs.
Collapse
Affiliation(s)
- Jooyeon Kim
- 1 Departments of Pathology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu J, Fu Z, Chen Y, Tang N, Wang L, Wang F, Sun R, Yan S. Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J 2015; 62:339-52. [PMID: 25739585 DOI: 10.1507/endocrj.ej14-0584] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The effects and possible mechanisms of adipose-derived stem cells (ASC) infusion on type 2 diabetic rats were investigated in this study. Twenty normal male Sprague-Dawley rats were included in normal control group, and 40 male diabetic rats were randomly divided into diabetic control group and ASC group (which received ASC infusion). After therapy, levels of fasting plasma glucose (FPG), HbA1c, serum insulin and C-peptide, recovery of islet cells, inflammatory cytokines, and insulin sensitivity were analyzed. After ASC infusion, compared with diabetic control group, hyperglycemia in ASC group was ameliorated in 2 weeks and maintained for about 6 weeks, and plasma concentrations of insulin and C-peptide were significantly improved (P<0.01). Number of islet β cells and concentration of vWF in islets in ASC group increased, while activity of caspase-3 in islets was reduced. Moreover, concentrations of TNF-α, IL-6 and IL-1β in ASC group obviously decreased (P<0.05). The expression of GLUT4, INSR, and phosphorylation of insulin signaling molecules in insulin target tissues were effectively improved. ASC infusion could aid in T2DM through recovery of islet β cells and improvement of insulin sensitivity. Autologous ASC infusion might be an effective method for T2DM.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovasc Diabetol 2014; 13:150. [PMID: 25361524 PMCID: PMC4233236 DOI: 10.1186/s12933-014-0150-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs). Methods PACs were isolated from bone marrow of 10–12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 μmol/L) or GW9662 (10 μmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model. Results ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells. Transcriptome analysis showed an upregulation of prooxidative and proinflammatory pathways, and downregulation of several proangiogenic genes in db/db PACs. Interestingly, db/db PACs had also a decreased level of PPARγ and changed expression of PPARγ-regulated genes. Using normoglycemic PPARγ+/− mice we demonstrated that reduced expression of PPARγ does not influence neovascularization either in wound healing or in hind limb ischemia models. Conclusions In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0150-7) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Xu J, Huang Z, Lin L, Fu M, Song Y, Shen Y, Ren D, Gao Y, Su Y, Zou Y, Chen Y, Zhang D, Hu W, Qian J, Ge J. miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. Int J Mol Med 2014; 35:59-71. [PMID: 25355277 PMCID: PMC4249746 DOI: 10.3892/ijmm.2014.1985] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022] Open
Abstract
The present study was carried out to investigate the hypothesis that organic nitrates can attenuate the senescence of mesenchymal stem cells (MSCs), a superior cell source involved in the regeneration and repair of damaged tissue. MSCs were treated with high glucose (HG) in order to induce senescence, which was markedly attenuated by pre-treatment with isosorbide dinitrate (ISDN), a commonly used nitrate, as indicated by senescence-associated galactosidase (SA-β-gal) activity, p21 expression, as well as by the mRNA levels of DNA methyltransferase 1 (DNMT1) and differentiated embryo chondrocyte expressed gene 1 (DEC1), which are senescence-related biomarkers. It was also found that the senescent MSCs (induced by HG glucose) exhibited a marked downregulation in ERK activity and forkhead box M1 (FOXM1) expression, which was reversed by ISDN preconditioning. Of note, the inhibition of ERK phosphorylation or the downregulation of FOXM1 statistically abolished the favourable effects of ISDN. In addition, the investigation of the senescence-associated miR-130 family suggested that miR-130b mediates the beneficial effects of ISDN; it was found that the protective effects of ISDN against the senescence of MSCs were prominently reversed by the knockdown of miR-130b. Furthermore, the downregulation of ERK phosphorylation or FOXM1 expression decreased the miR-130b expression level; however, the suppression of miR-130b demonstrated no significant impact on ERK phosphorylation or FOXM1 expression. Taken together, to the best of our knowledge, the present study is the first to demonstrate the favourable effects of ISDN against HG-induced MSC senescence, which are mediated through the activation of the ERK/FOXM1 pathway and the upregulation of miR-130b.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Cardiology, Minhang Hospital, Ruijin Hospital Group, Shanghai Jiaotong University School of Medicine, Shanghai 201199, P.R. China
| | - Zheyong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Li Lin
- Department of Cardiology, Eastern Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Mingqiang Fu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yanan Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yunli Shen
- Department of Cardiology, Eastern Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Daoyuan Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yanhua Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yueguang Chen
- Department of Cardiology, Minhang Hospital, Ruijin Hospital Group, Shanghai Jiaotong University School of Medicine, Shanghai 201199, P.R. China
| | - Dadong Zhang
- Department of Cardiology, Minhang Hospital, Ruijin Hospital Group, Shanghai Jiaotong University School of Medicine, Shanghai 201199, P.R. China
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Ruijin Hospital Group, Shanghai Jiaotong University School of Medicine, Shanghai 201199, P.R. China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
Molgat ASD, Tilokee EL, Rafatian G, Vulesevic B, Ruel M, Milne R, Suuronen EJ, Davis DR. Hyperglycemia inhibits cardiac stem cell-mediated cardiac repair and angiogenic capacity. Circulation 2014; 130:S70-6. [PMID: 25200058 DOI: 10.1161/circulationaha.113.007908] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The impact of diabetes mellitus on the cardiac regenerative potential of cardiac stem cells (CSCs) is unknown yet critical, given that individuals with diabetes mellitus may well require CSC therapy in the future. Using human and murine CSCs from diabetic cardiac tissue, we tested the hypothesis that hyperglycemic conditions impair CSC function. METHODS AND RESULTS CSCs cultured from the cardiac biopsies of patients with diabetes mellitus (hemoglobin A1c, 10±2%) demonstrated reduced overall cell numbers compared with nondiabetic sourced biopsies (P=0.04). When injected into the infarct border zone of immunodeficient mice 1 week after myocardial infarction, CSCs from patients with diabetes mellitus demonstrated reduced cardiac repair compared with nondiabetic patients. Conditioned medium from CSCs of patients with diabetes mellitus displayed a reduced ability to promote in vitro blood vessel formation (P=0.02). Similarly, conditioned medium from CSCs cultured from the cardiac biopsies of streptozotocin-induced diabetic mice displayed impaired angiogenic capacity (P=0.0008). Somatic gene transfer of the methylglyoxal detoxification enzyme, glyoxalase-1, restored the angiogenic capacity of diabetic CSCs (diabetic transgenic versus nondiabetic transgenic; P=0.8). Culture of nondiabetic murine cardiac biopsies under high (25 mmol/L) glucose conditions reduced CSC yield (P=0.003), impaired angiogenic (P=0.02) and chemotactic (P=0.003) response, and reduced CSC-mediated cardiac repair (P<0.05). CONCLUSIONS Diabetes mellitus reduces the ability of CSCs to repair injured myocardium. Both diabetes mellitus and preconditioning CSCs in high glucose attenuated the proangiogenic capacity of CSCs. Increased expression of glyoxalase-1 restored the proangiogenic capacity of diabetic CSCs, suggesting a means of reversing diabetic CSC dysfunction by interfering with the accumulation of reactive dicarbonyls.
Collapse
Affiliation(s)
- André S D Molgat
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Everad L Tilokee
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Ghazaleh Rafatian
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Branka Vulesevic
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Marc Ruel
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Ross Milne
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Darryl R Davis
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Knaän-Shanzer S. Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells 2014; 32:603-8. [PMID: 24123756 DOI: 10.1002/stem.1568] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/13/2013] [Accepted: 09/14/2013] [Indexed: 01/04/2023]
Abstract
Multipotentiality and anti-inflammatory activity, the two main properties of mesenchymal stem cells (MSCs), underlie their therapeutic prospective. During the past decade, numerous studies in animal models and clinical trials explored the potential of MSCs in the treatment of diseases associated with tissue regeneration and inflammatory control. Other qualities of MSCs: ready accessibility in bone marrow and fat tissue and rapid expansion in culture make the therapeutic use of patients' own cells feasible. The prevailing belief that MSCs are nonimmunogenic encouraged the use of unrelated donor cells in immune-competent recipients. The data emerging from studies performed with immune-incompatible cells in animal models for a wide-range of human diseases show, however, conflicting results and cast doubt on the immune privileged status of MSCs. Our analysis of the preclinical literature in this review is aimed to gain a better understanding of the therapeutic potential of immune-incompatible MSCs. Emphasis was laid on applications for enhancement of tissue repair in the absence of immune-suppressive therapy.
Collapse
Affiliation(s)
- Shoshan Knaän-Shanzer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Liu Y, Liu T, Han J, Yang Z, Xue X, Jiang H, Wang H. Advanced age impairs cardioprotective function of mesenchymal stem cell transplantation from patients to myocardially infarcted rats. Cardiology 2014; 128:209-19. [PMID: 24818643 DOI: 10.1159/000360393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) have limited clinical therapeutic effects in older myocardial infarction (MI) patients. Thus, whether younger MSCs might confer greater protection is worth investigating. METHODS Human MSCs (hMSCs) were isolated before coronary artery bypass graft surgery and growth characteristics of hMSCs at passage 3 were observed. Vascular endothelial growth factor (VEGF) and Bcl-2 mRNA and protein expression from hMSCs were measured. In vivo, 45 adult male rats with MI were randomized to receive one of three treatments: old hMSCs, young hMSCs or culture medium (control) transplanted into infarcted myocardium. Echocardiography, TUNEL, immunohistochemistry and Western blot were used to assess results. RESULTS hMSC proliferation in the old group was significantly lower than the young group. VEGF decreased 35% and Bcl-2 decreased more than 60% at the mRNA level; VEGF and Bcl-2 protein were decreased in the old versus the young group. hMSC transplantation may improve cardiac function, but MSC source may affect therapeutic efficacy. Similar data were obtained from TUNEL, immunohistochemistry and Western blot. CONCLUSION Transplantation of hMSCs improves heart function, but proliferative ability and myocardial protection decrease with older MSCs, likely due to differences between VEGF and Bcl-2 expression and reduced anti-apoptosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The prevalence of diabetes continues to increase world-wide and is a leading cause of morbidity, mortality, and rapidly rising health care costs. Although strict glucose control combined with good pharmacological and non-pharmacologic interventions can increase diabetic patient life span, the frequency and mortality of myocardial ischemia and infarction remain drastically increased in diabetic patients. Therefore, more effective therapeutic approaches are urgently needed. Over the past 15 years, cellular repair of the injured adult heart has become the focus of a rapidly expanding broad spectrum of pre-clinical and clinical research. Recent clinical trials have achieved favorable initial endpoints with improvements in cardiac function and clinical symptoms following cellular therapy. Due to the increased risk of cardiac disease, cardiac regeneration may be one strategy to treat patients with diabetic cardiomyopathy and/or myocardial infarction. However, pre-clinical studies suggest that the diabetic myocardium may not be a favorable environment for the transplantation and survival of stem cells due to altered kinetics in cellular homing, survival, and in situ remodeling. Therefore, unique conditions in the diabetic myocardium will require novel solutions in order to increase the efficiency of cellular repair following ischemia and/or infarction. This review briefly summarizes some of the recent advances in cardiac regeneration in non-diabetic conditions and then provides an overview of some of the issues related to diabetes that must be addressed in the coming years.
Collapse
Affiliation(s)
- Lu Cai
- Kosair Children's Hospital Research Institute, Louisville, KY USA ; Department of Pediatrics, University of Louisville, Louisville, KY USA
| | - Bradley B Keller
- Department of Pediatrics, University of Louisville, Louisville, KY USA ; Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
36
|
Pileggi A, Xu X, Tan J, Ricordi C. Mesenchymal stromal (stem) cells to improve solid organ transplant outcome: lessons from the initial clinical trials. Curr Opin Organ Transplant 2013; 18:672-81. [PMID: 24220050 PMCID: PMC4391704 DOI: 10.1097/mot.0000000000000029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Discuss the recent progress on the clinical use of mesenchymal stromal (stem) cells (MSC) in solid organ transplantation (SOT). RECENT FINDINGS Tissue repair and immunomodulatory properties have been recognized for MSC obtained from different human tissues. MSC-based therapy has been proposed to reduce ischemia-reperfusion injury and to promote immune tolerance. The results of recent clinical trial support the safety and promising effects of autologous and allogeneic MSC in SOT. Collectively, the use of MSC in recipients of living donor kidney transplantation was associated with improved graft function, reduced rejection, ability to omit induction and/or lower maintenance immunosuppression regimen, as well as to treat rejection episodes. SUMMARY We are living in very exciting times with the implementation of novel clinical trials aimed at establishing safety, feasibility and efficacy of cellular therapies including MSC to improve SOT outcomes. The results of the initial clinical trials support the safety of MSC-based therapy and justifying cautious optimism for the immediate future.
Collapse
Affiliation(s)
- Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, Miami, FL 33136, USA
- The DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33136, USA
| | - Xiumin Xu
- Cell Transplant Center, Diabetes Research Institute, Miami, FL 33136, USA
| | - Jianming Tan
- Cell and Stem Cell Institute of Xiamen University, Fuzhou, Fujian 350025, P.R. China
- Affiliated Fuzhou General Hospital of Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, Miami, FL 33136, USA
- The DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|