1
|
Gutierrez-Mariscal FM, Lopez-Moreno A, Torres-Peña JD, Gomez-Luna P, Arenas-de Larriva AP, Romero-Cabrera JL, Luque RM, Uribarri J, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Lopez-Miranda J. Modulation of circulating levels of advanced glycation end products and its impact on intima-media thickness of both common carotid arteries: CORDIOPREV randomised controlled trial. Cardiovasc Diabetol 2024; 23:361. [PMID: 39402581 PMCID: PMC11475769 DOI: 10.1186/s12933-024-02451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Increasing evidence supports the role of advanced glycation end products (AGEs) in atherosclerosis in both diabetic and non-diabetic patients, suggesting that therapeutic strategies targeting AGEs may offer potential benefits in this population. The Mediterranean diet is associated with improved biomarkers and anthropometric measurements related with atherosclerosis in addition to its ability to modulate AGE metabolism. Our aim was to determine whether the reduction in atherosclerosis progression (measured by changes in intima-media thickness of both common carotid arteries (IMT-CC)), observed after consumption of a Mediterranean diet compared to a low-fat diet, is associated with a modulation of circulating AGE levels in patients with coronary heart disease (CHD). METHODS 1002 CHD patients were divided in: (1) Non-increased IMT-CC patients, whose IMT-CC was reduced or not changed after dietary intervention and (2) Increased IMT-CC patients, whose IMT-CC was increased after dietary intervention. Serum AGE levels (methylglyoxal-MG and Nε-Carboxymethyllysine-CML) and parameters related to AGE metabolism (AGER1 and GloxI mRNA and sRAGE levels) and reduced glutathione (GSH) levels were measured before and after 5-years of dietary intervention. RESULTS The Mediterranean diet did not affect MG levels, whereas the low-fat diet significantly increased them compared to baseline (p = 0.029), leading to lower MG levels following the Mediterranean diet than the low-fat diet (p < 0.001). The Mediterranean diet, but not the low-fat diet, produced an upregulation of AGE metabolism, with increased AGER1 and GloxI gene expression as well as increased GSH and sRAGE levels in Non-increased IMT-CC patients (all p < 0.05). Although the Mediterranean diet increased MG levels in Increased IMT-CC patients, this increment was lower compared to the low-fat diet (all p < 0.05). CONCLUSIONS Our results suggest that an improvement in modulation of AGE metabolism, which facilitates better management of circulating AGE levels, may be one of the mechanisms through which the Mediterranean diet, compared to a low-fat diet, reduces the progression of atherosclerosis in patients with CHD. Trial registration https://clinicaltrials.gov/ct2/show/NCT00924937 , Clinicaltrials.gov number, NCT00924937.
Collapse
Affiliation(s)
- Francisco M Gutierrez-Mariscal
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Lopez-Moreno
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Jose D Torres-Peña
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Purificacion Gomez-Luna
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Luis Romero-Cabrera
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Raul M Luque
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, University of Córdoba, 14004, Córdoba, Spain
| | - Jaime Uribarri
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Perez-Martinez
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Elena M Yubero-Serrano
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
- Department of Food and Health, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain.
| | - Jose Lopez-Miranda
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Molinuevo MS, Cortizo AM, Sedlinsky C. Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: In vivo and in vitro studies. J Diabetes Complications 2023; 37:108626. [PMID: 37839167 DOI: 10.1016/j.jdiacomp.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
AIMS Our objective was to study the vascular smooth muscle cells (VSMC) osteoblastic transdifferentiation in AGE exposed cells or those from diabetic animals, and its response to metformin treatment. METHODS VSMC were obtained from non-diabetic rats, grown with or without AGE; while VSMC of in vivo-ex vivo studies were obtained from non-diabetic control animals (C), diabetic (D), C treated with metformin (M) and D treated with metformin (D-M). We studied the osteoblastic differentiation by evaluating alkaline phosphatase (ALP), type I collagen (Col) and mineral deposit. RESULTS In vitro, AGE increased proliferation, migration, and osteoblastic differentiation of VSMC. Metformin cotreatment prevented the AGE induced proliferation and migration. Both AGE and metformin stimulated the expression of ALP and Col. AGE induced mineralization was prevented by metformin. VSMC from D expressed a higher production of Col and ALP. Those from D-M showed an ALP increase vs C and M, and a partial decrease vs D. Cultured in osteogenic medium, ALP, Col and mineralization increased in D vs C, remained unchanged in M, and were prevented in D-M animals. CONCLUSION Both AGE and DM favor VSMC differentiation towards the osteogenic phenotype and this effect can be prevented by metformin.
Collapse
Affiliation(s)
- María Silvina Molinuevo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina
| | - Ana María Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina.
| | - Claudia Sedlinsky
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Zaongo SD, Chen Y. Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders. Chin Med J (Engl) 2023; 136:2147-2155. [PMID: 37247620 PMCID: PMC10508460 DOI: 10.1097/cm9.0000000000002493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/31/2023] Open
Abstract
ABSTRACT Incomplete immune reconstitution remains a global challenge for human immunodeficiency virus (HIV) treatment in the present era of potent antiretroviral therapy (ART), especially for those individuals referred to as immunological non-responders (INRs), who exhibit dramatically low CD4 + T-cell counts despite the use of effective antiretroviral therapy, with long-term inhibition of viral replication. In this review, we provide a critical overview of the concept of ART-treated HIV-positive immunological non-response, and also explain the known mechanisms which could potentially account for the emergence of immunological non-response in some HIV-infected individuals treated with appropriate and effective ART. We found that immune cell exhaustion, combined with chronic inflammation and the HIV-associated dysbiosis syndrome, may represent strategic aspects of the immune response that may be fundamental to incomplete immune recovery. Interestingly, we noted from the literature that metformin exhibits properties and characteristics that may potentially be useful to specifically target immune cell exhaustion, chronic inflammation, and HIV-associated gut dysbiosis syndrome, mechanisms which are now recognized for their critically important complicity in HIV disease-related incomplete immune recovery. In light of evidence discussed in this review, it can be seen that metformin may be of particularly favorable use if utilized as adjunctive treatment in INRs to potentially enhance immune reconstitution. The approach described herein may represent a promising area of therapeutic intervention, aiding in significantly reducing the risk of HIV disease progression and mortality in a particularly vulnerable subgroup of HIV-positive individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Division of Infectious diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
4
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism 2022; 130:155160. [PMID: 35143848 DOI: 10.1016/j.metabol.2022.155160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Metformin has been in clinical use for the management of type 2 diabetes for more than 60 years and is supported by a vast database of clinical experience: this includes evidence for cardioprotection from randomised trials and real-world studies. Recently, the position of metformin as first choice glucose-lowering agent has been supplanted to some extent by the emergence of newer classes of antidiabetic therapy, namely the sodium-glucose co-transporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists. These agents have benefitted through support from large cardiovascular outcomes trials with more modern trial designs than earlier studies conducted to assess metformin. Nevertheless, clinical research on metformin continues to further assess its many potentially advantageous effects. Here, we review the evidence for improved cardiovascular outcomes with metformin in the context of the current era of diabetes outcomes trials. Focus is directed towards the potentially cardioprotective actions of metformin in patients with type 2 diabetes and heart failure (HF), now recognised as the most common complication of diabetes.
Collapse
|
6
|
Zhang X, Zhang H, Yang X, Qin Q, Sun X, Hou Y, Chen D, Jia M, Su X, Chen Y. Angiotensin II upregulates endothelin receptors through the adenosine monophosphate-activated protein kinase/sirtuin 1 pathway in vascular smooth muscle cells. J Pharm Pharmacol 2021; 73:1652-1662. [PMID: 34570873 DOI: 10.1093/jpp/rgab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This study was designed to test our hypothesis that angiotensin II (Ang II) upregulates endothelin (ET) receptors in vascular smooth muscle cells (VSMCs). METHODS Rat superior mesenteric artery (SMA) without endothelium was cultured in serum-free medium for 24 h in the presence of Ang II with or without metformin or nicotinamide. In vivo, rats were implanted subcutaneously with a mini-osmotic pump infusing AngII (500 ng/kg/min) for 4 weeks. The level of protein expression was determined using Western blotting. The contractile response to ET receptor agonists was studied using sensitive myography. Caudal artery blood pressure (BP) was measured using non-invasive tail-cuff plethysmography. KEY FINDINGS The results showed that Ang II significantly increased ET receptors and decreased phosphorylated-adenosine monophosphate-activated protein kinase α (p-AMPKα) in SMA. Furthermore, metformin significantly inhibited Ang II-upregulated ET receptors and upregulated Ang II-decreased sirtuin 1 (Sirt1). However, this effect was reversed by nicotinamide. Moreover, the in-vivo results showed that metformin not only inhibited Ang II-induced upregulation of ET receptors but also recovered Ang II-decreased p-AMPKα and Sirt1. In addition, metformin significantly inhibited Ang II-elevated BP. However, the effect was reversed by nicotinamide, except for p-AMPKα. CONCLUSIONS Ang II upregulated ET receptors in VSMCs to elevate BP by inhibiting AMPK, thereby inhibiting Sirt1.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xinpu Yang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xia Sun
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingli Su
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
L-ergothioneine and its combination with metformin attenuates renal dysfunction in type-2 diabetic rat model by activating Nrf2 antioxidant pathway. Biomed Pharmacother 2021; 141:111921. [PMID: 34346315 DOI: 10.1016/j.biopha.2021.111921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
L-ergothioneine (L-egt) is a bioactive compound recently approved by the food and drug administration as a supplement. L-egt exerts potent cyto-protective, antioxidant and anti-inflammatory properties in tissues exposed to injury, while metformin is a first-line prescription in type-2 diabetes. Therefore, the present study investigated the protective effect of L-egt alone, or combined with metformin, on renal damage in a type-2 diabetic (T2D) rat model. T2D was induced in male Sprague-Dawley rats using the fructose-streptozotocin rat model. L-egt administration, alone or combined with metformin, began after confirming diabetes and was administered orally for seven weeks. After the experiment, all animals were euthanized by decapitation, blood samples were collected, and both kidneys were excised. Biochemical analysis, Enzyme-link Immunoassay (ELISA), Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analyses were done to evaluate various biomarkers and structural changes associated with renal damage. Untreated diabetic rats showed loss of kidney functions characterized by increased serum creatinine, blood urea nitrogen, proteinuria, triglycerides, lipid peroxidation, inflammation, and decreased antioxidant enzymes. Histological evaluation showed evidence of fibrosis, mesangial expansion, and damaged basement membrane in the nephrons. However, L-egt alleviates these functional and structural derangements in the kidney, while co-administration with metformin reduced hyperglycemia and improves therapeutic outcomes. Furthermore, L-egt treatment significantly increased the expression of major antioxidant transcription factors, cytoprotective genes and decreased the expression of inflammatory genes in the kidney. Thus, combining L-egt and metformin may improve therapeutic efficacy and be used as an adjuvant therapy to alleviate renal damage in type-2 diabetes.
Collapse
|
8
|
Benomyl induced oxidative stress related DNA damage and apoptosis in H9c2 cardiomyoblast cells. Toxicol In Vitro 2021; 75:105180. [PMID: 33930522 DOI: 10.1016/j.tiv.2021.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Benomyl, benzimidazole group pesticide, has been prohibited in Europe and USA since 2003 due to its toxic effects and it has been still determined as food and environmental contaminant. In the present study, the toxic effect mechanisms of benomyl were evaluated in rat cardiomyoblast (H9c2) cells. Cytotoxicity was determined by MTT and NRU assay and, oxidative stress potential was evaluated by reactive oxygen species (ROS) production and glutathione levels. DNA damage was assessed by alkaline comet assay. Relative expressions of apoptosis related genes were evaluated; furthermore, NF-κB and JNK protein levels were determined. At 4 μM concentration (at which cell viability was >70%), benomyl increased 2-fold of ROS production level and 2-fold of apoptosis as well as DNA damage. Benomyl down-regulated miR21, TNF-α and Akt1 ≥ 48.75 and ≥ 97.90; respectively. PTEN, JNK and NF-κB expressions were upregulated. The dramatic changes in JNK and NF-κB expression levels were not observed in protein levels. These findings showed the oxidative stress related DNA damage and apoptosis in cardiomyoblast cells exposed to benomyl. However, further mechanistic and in vivo studies are needed to understand the cardiotoxic effects of benomyl and benzimidazol fungucides.
Collapse
|
9
|
Bonacina F, Da Dalt L, Catapano AL, Norata GD. Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis. Mol Aspects Med 2020; 77:100918. [PMID: 33032828 PMCID: PMC7534736 DOI: 10.1016/j.mam.2020.100918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming is a physiological cellular adaptation to intracellular and extracellular stimuli that couples to cell polarization and function in multiple cellular subsets. Pathological conditions associated to nutrients overload, such as dyslipidaemia, may disturb cellular metabolic homeostasis and, in turn, affect cellular response and activation, thus contributing to disease progression. At the vascular/immune interface, the site of atherosclerotic plaque development, many of these changes occur. Here, an intimate interaction between endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and immune cells, mainly monocytes/macrophages and lymphocytes, dictates physiological versus pathological response. Furthermore, atherogenic stimuli trigger metabolic adaptations both at systemic and cellular level that affect the EC layer barrier integrity, VSMC proliferation and migration, monocyte infiltration, macrophage polarization, lymphocyte T and B activation. Rewiring cellular metabolism by repurposing “metabolic drugs” might represent a pharmacological approach to modulate cell activation at the vascular immune interface thus contributing to control the immunometabolic response in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - L Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - A L Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCSS Multimedica, Milan, Italy.
| | - G D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS, Ospedale Bassini, Cinisello Balsamo, Italy.
| |
Collapse
|
10
|
Deng M, Su D, Xu S, Little PJ, Feng X, Tang L, Shen A. Metformin and Vascular Diseases: A Focused Review on Smooth Muscle Cell Function. Front Pharmacol 2020; 11:635. [PMID: 32457625 PMCID: PMC7227439 DOI: 10.3389/fphar.2020.00635] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin has been used in diabetes for more than 60 years and has excellent safety in the therapy of human type 2 diabetes (T2D). There is growing evidence that the beneficial health effects of metformin are beyond its ability to improve glucose metabolism. Metformin not only reduces the incidence of cardiovascular diseases (CVD) in T2D patients, but also reduces the burden of atherosclerosis (AS) in pre-diabetes patients. Vascular smooth muscle cells (VSMCs) function is an important factor in determining the characteristics of the entire arterial vessel. Its excessive proliferation contributes to the etiology of several types of CVD, including AS, restenosis, and pulmonary hypertension. Current studies show that metformin has a beneficial effect on VSMCs function. Therefore, this review provides a timely overview of the role and molecular mechanisms by which metformin acts through VSMCs to protect CVD.
Collapse
Affiliation(s)
- Mingying Deng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Su
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liqin Tang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aizong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Yousuf Y, Datu A, Barnes B, Amini-Nik S, Jeschke MG. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Res Ther 2020; 11:18. [PMID: 31915055 PMCID: PMC6950874 DOI: 10.1186/s13287-019-1480-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Profound skeletal muscle wasting and weakness is common after severe burn and persists for years after injury contributing to morbidity and mortality of burn patients. Currently, no ideal treatment exists to inhibit muscle catabolism. Metformin is an anti-diabetic agent that manages hyperglycemia but has also been shown to have a beneficial effect on stem cells after injury. We hypothesize that metformin administration will increase protein synthesis in the skeletal muscle by increasing the proliferation of muscle progenitor cells, thus mitigating muscle atrophy post-burn injury. METHODS To determine whether metformin can attenuate muscle catabolism following burn injury, we utilized a 30% total burn surface area (TBSA) full-thickness scald burn in mice and compared burn injuries with and without metformin treatment. We examined the gastrocnemius muscle at 7 and 14 days post-burn injury. RESULTS At 7 days, burn injury significantly reduced myofiber cross-sectional area (CSA) compared to sham, p < 0.05. Metformin treatment significantly attenuated muscle catabolism and preserved muscle CSA at the sham size. To investigate metformin's effect on satellite cells (muscle progenitors), we examined changes in Pax7, a transcription factor regulating the proliferation of muscle progenitors. Burned animals treated with metformin had a significant increase in Pax7 protein level and the number of Pax7-positive cells at 7 days post-burn, p < 0.05. Moreover, through BrdU proliferation assay, we show that metformin treatment increased the proliferation of satellite cells at 7 days post-burn injury, p < 0.05. CONCLUSION In summary, metformin's various metabolic effects and its modulation of stem cells make it an attractive alternative to mitigate burn-induced muscle wasting while also managing hyperglycemia.
Collapse
Affiliation(s)
- Yusef Yousuf
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada
| | - Andrea Datu
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada
| | - Ben Barnes
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada. .,Laboratory in Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
| | - Marc G Jeschke
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada. .,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Canada. .,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Kong L, Zhang H, Li H. Metformin inhibited homocysteine-induced upregulation of endothelin receptors through the Sirt1/NF-κB signaling pathway in vascular smooth muscle cells. Vascul Pharmacol 2020; 124:106613. [DOI: 10.1016/j.vph.2019.106613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
|
13
|
Zhang WX, Tai GJ, Li XX, Xu M. Inhibition of neointima hyperplasia by the combined therapy of linagliptin and metformin via AMPK/Nox4 signaling in diabetic rats. Free Radic Biol Med 2019; 143:153-163. [PMID: 31369842 DOI: 10.1016/j.freeradbiomed.2019.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 07/28/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neointima hyperplasia is the pathological basis of atherosclerosis and restenosis which have been associated with diabetes mellitus (DM). It is controversial for linagliptin and metformin to protect against vascular neointimal hyperplasia caused by DM. Given the combined therapy of linagliptin and metformin in clinical practice, we investigated whether the combination therapy inhibited neointimal hyperplasia in the carotid artery in diabetic rats. METHODS AND RESULTS Neointima hyperplasia in the carotid artery was induced by balloon-injury in the rats fed with high fat diet (HFD) combined with low dose streptozotocin (STZ) administration. In vitro, vascular smooth muscle cells (VSMCs) were incubated with high glucose (HG, 30 mM) and the proliferation, migration, apoptosis and collagen deposition were analyzed in VSMCs. We found that the combined therapy, not the monotherapy of linagliptin and metformin significantly inhibited the neointima hyperplasia and improved the endothelium-independent contraction in the balloon-injured cardia artery of diabetic rats, which was associated with the inhibition of superoxide (O2-.) production in the cardia artery. In vitro, HG-induced VSMC remodeling was shown as the remarkable upregulation of PCNA, collagan1, MMP-9, Bcl-2 and migration rate as well as the decreased apoptosis rate. Such abnormal changes were dramatically reversed by the combined use of linagliptin and metformin. Moreover, the AMP-activated protein kinase (AMPK)/Nox4 signal pathway was found to mediate VSMC remodeling responding to HG. Linagliptin and metformin were synergistical to target AMPK/Nox4 signal pathway in VSMCs incubated with HG and in the cardia artery of diabetic rats, which was superior to the monotherapy. CONCLUSIONS We demonstrated that the potential protection of the combined use of linagliptin and metformin on VSMC remodeling through AMPK/Nox4 signal pathway, resulting in the improvement of neointima hyperplasia in diabetic rats. This study provided new therapeutic strategies for vascular stenosis associated with diabetes.
Collapse
Affiliation(s)
- Wen-Xu Zhang
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Xue Li
- Department of Pharmacology, Southeast University School of Medicine, Nanjing, 210009, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Zilov AV, Abdelaziz SI, AlShammary A, Al Zahrani A, Amir A, Assaad Khalil SH, Brand K, Elkafrawy N, Hassoun AA, Jahed A, Jarrah N, Mrabeti S, Paruk I. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev 2019; 35:e3173. [PMID: 31021474 PMCID: PMC6851752 DOI: 10.1002/dmrr.3173] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Management guidelines continue to identify metformin as initial pharmacologic antidiabetic therapy of choice for people with type 2 diabetes without contraindications, despite recent randomized trials that have demonstrated significant improvements in cardiovascular outcomes with newer classes of antidiabetic therapies. The purpose of this review is to summarize the current state of knowledge of metformin's therapeutic actions on blood glucose and cardiovascular clinical evidence and to consider the mechanisms that underlie them. The effects of metformin on glycaemia occur mainly in the liver, but metformin-stimulated glucose disposal by the gut has emerged as an increasingly import site of action of metformin. Additionally, metformin induces increased secretion of GLP-1 from intestinal L-cells. Clinical cardiovascular protection with metformin is supported by three randomized outcomes trials (in newly diagnosed and late stage insulin-treated type 2 diabetes patients) and a wealth of observational data. Initial evidence suggests that cotreatment with metformin may enhance the impact of newer incretin-based therapies on cardiovascular outcomes, an important observation as metformin can be combined with any other antidiabetic agent. Multiple potential mechanisms support the concept of cardiovascular protection with metformin beyond those provided by reduced blood glucose, including weight loss, improvements in haemostatic function, reduced inflammation, and oxidative stress, and inhibition of key steps in the process of atherosclerosis. Accordingly, metformin remains well placed to support improvements in cardiovascular outcomes, from diagnosis and throughout the course of type 2 diabetes, even in this new age of improved outcomes in type 2 diabetes.
Collapse
Affiliation(s)
- Alexey V. Zilov
- Department of EndocrinologySechenov's First Moscow State Medical UniversityMoscowRussia
| | | | - Afaf AlShammary
- Diabetes Center, Department of MedicineKing Abdulaziz Medical CityRiyadhKingdom of Saudi Arabia
| | - Ali Al Zahrani
- Department of Medicine, Molecular Endocrinology Section, Department of Molecular Oncology, Research CenterKing Faisal Specialist Hospital & Research CentreRiyadhKingdom of Saudi Arabia
| | - Ashraf Amir
- Department of Family MedicineInternational Medical CenterJeddahKingdom of Saudi Arabia
| | - Samir Helmy Assaad Khalil
- Department of Internal Medicine, Unit of Diabetology, Lipidology & Metabolism, Alexandria Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Kerstin Brand
- Global Medical AffairsMerck Healthcare KGaADarmstadtGermany
| | - Nabil Elkafrawy
- Diabetes and Endocrinology UnitMenoufia UniversityAl MinufyaEgypt
| | | | - Adel Jahed
- Gabric Diabetes Education Association, Tehran, Iran and Consultant EndocrinologistTehran General HospitalTehranIran
| | - Nadim Jarrah
- Internal Medicine DepartmentThe Specialty HospitalAmmanJordan
| | - Sanaa Mrabeti
- General Medicine and EndocrinologyMedical Affairs EMEA Merck Serono Middle East FZ‐LLCDubaiUnited Arab Emirates
| | - Imran Paruk
- Department of Diabetes and Endocrinology, Nelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
15
|
Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A. Secreted frizzled‐related protein 4 and its implication in obesity and type‐2 diabetes. IUBMB Life 2019; 71:1701-1710. [DOI: 10.1002/iub.2123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - Aysha Yasmin
- Department of BiochemistryGovernment College University Faisalabad Pakistan
| | | | - Ghulam Mustafa
- Department of BiochemistryGovernment College University Faisalabad Pakistan
| | - Iqra Sarfraz
- Department of ZoologyGovernment College University Faisalabad Pakistan
| | - Azhar Rasul
- Department of ZoologyGovernment College University Faisalabad Pakistan
| |
Collapse
|
16
|
|
17
|
Pereira CA, Carneiro FS, Matsumoto T, Tostes RC. Bonus Effects of Antidiabetic Drugs: Possible Beneficial Effects on Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis. Basic Clin Pharmacol Toxicol 2018; 123:523-538. [PMID: 29890033 DOI: 10.1111/bcpt.13054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Camila A. Pereira
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Fernando S. Carneiro
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Takayuki Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Rita C. Tostes
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| |
Collapse
|
18
|
Huang Q, Wang P, Zhu Y, Lv L, Sang S. Additive Capacity of [6]-Shogaol and Epicatechin To Trap Methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8356-8362. [PMID: 28866888 DOI: 10.1021/acs.jafc.7b02917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methylglyoxal (MGO), a reactive dicarbonyl species, is thought to contribute to the development of long-term pathological diabetes as a direct toxin or as an active precursor of advanced glycation end products (AGEs). Trapping MGO by dietary phenols to inhibit the MGO induced AGE formation is an approach for alleviating diabetic complications. The present study investigated whether dietary compounds with different structures and active sites have the additive capacity to trap MGO. Ginger phenolic constituent [6]-shogaol and tea flavonoid (-)-epicatechin were selected and tested under simulated physiological conditions, showing that they additively trapped about 41% MGO at a concentration of 10 μM within 24 h. Furthermore, whether [6]-shogaol and epicatechin can retain their MGO trapping efficacy in vivo or a biotransformation limits their MGO trapping capacity remain virtually unknown. An acute mouse study was carried out by giving a single dose of [6]-shogaol, epicatechin, and the combination of both ([6]-shogaol + epicatechin) through oral gavage. A mono-MGO adduct of [6]-shogaol was identified from [6]-shogaol and [6]-shogaol + epicatechin treated mice, and mono- and di-MGO adducts of epicatechin and its metabolite, 3'-O-methyl epicatichin, were detected in urine samples collected from epicatechin and [6]-shogaol + epicatechin treated mice. To our knowledge, this is the first study demonstrating the additive MGO trapping efficacy of [6]-shogaol and epicatechin and that [6]-shogaol and epicatechin retained their MGO trapping capacity in mice.
Collapse
Affiliation(s)
- Qiju Huang
- Department of Food Science and Technology, Nanjing Normal University , No. 122 Ninghai Road, Nanjing, 210097, P. R. China
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Lishuang Lv
- Department of Food Science and Technology, Nanjing Normal University , No. 122 Ninghai Road, Nanjing, 210097, P. R. China
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
19
|
Osman I, Fairaq A, Segar L. Pioglitazone Attenuates Injury-Induced Neointima Formation in Mouse Femoral Artery Partially through the Activation of AMP-Activated Protein Kinase. Pharmacology 2017; 100:64-73. [PMID: 28482342 DOI: 10.1159/000471769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Pioglitazone (PIO), an antidiabetic drug, has been shown to attenuate vascular smooth muscle cell (VSMC) proliferation, which is a major event in atherosclerosis and restenosis after angioplasty. Till date, the likely contributory role of AMP-activated protein kinase (AMPK) toward PIO inhibition of VSMC proliferation has not been examined in vivo. This study is aimed at determining whether pharmacological inhibition of AMPK would prevent the inhibitory effect of PIO on neointima formation in a mouse model of arterial injury. METHODS Male CJ57BL/6J mice were subjected to femoral artery injury using guidewire. PIO (20 mg/kg/day) was administered orally 1 day before surgery and for 3 weeks until sacrifice in the absence or presence of compound C (an AMPK inhibitor). Injured femoral arteries were used for morphometric analysis of neointima formation. Aortic tissue lysates were used for immunoblot analysis of phosphorylated AMPK. RESULTS PIO treatment resulted in a significant decrease in intima-to-media ratio by ∼50.3% (p < 0.05, compared with vehicle control; n = 6), which was accompanied by enhanced phosphorylation of AMPK by ∼85% in the vessel wall. Compound C treatment led to a marked reduction in PIO-mediated inhibition of neointima formation. CONCLUSION PIO attenuates injury-induced neointima formation, in part, through the activation of AMPK.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|
20
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
21
|
Guo J, Pereira TJ, Dalvi P, Yeung LSN, Swain N, Breen DM, Lam L, Dolinsky VW, Giacca A. High-dose metformin (420mg/kg daily p.o.) increases insulin sensitivity but does not affect neointimal thickness in the rat carotid balloon injury model of restenosis. Metabolism 2017; 68:108-118. [PMID: 28183442 DOI: 10.1016/j.metabol.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/27/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our laboratory has shown that insulin's effect to decrease neointimal thickness after arterial injury is greatly diminished in insulin resistant conditions. Thus, in these conditions, a better alternative to insulin could be to use an insulin sensitizing agent. Metformin, the most commonly prescribed insulin sensitizer, has a cardiovascular protective role. Therefore, the objective of this study was to investigate the potential benefit of metformin on neointimal area after arterial injury in a rat model of restenosis. METHODS Rats fed with either normal or high fat diet and treated with or without oral metformin (420mg/kg daily) underwent carotid balloon injury. Effects of metformin on clamp-determined insulin sensitivity, vessel AMPK (AMP-activated protein kinase) phosphorylation (activation marker) and neointimal area were evaluated. RESULTS Metformin increased insulin sensitivity, but did not affect neointimal thickness in either the normal fat or high fat diet-fed rats. Furthermore, metformin activated AMPK in uninjured but not in injured vessels. Similarly, 10mmol/L metformin inhibited proliferation and activated AMPK in smooth muscle cells of uninjured but not injured vessels, whereas 2mmol/L metformin did not have any effect. CONCLUSION In rats, metformin does not decrease neointimal growth after arterial injury, despite increasing whole body insulin sensitivity.
Collapse
Affiliation(s)
- June Guo
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Troy J Pereira
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Prasad Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Lucy Shu Nga Yeung
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nathan Swain
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Danna M Breen
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Loretta Lam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
22
|
Osman I, Poulose N, Ganapathy V, Segar L. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells. Eur J Pharmacol 2016; 791:703-710. [PMID: 27729247 DOI: 10.1016/j.ejphar.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[14C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ninu Poulose
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
23
|
Kurdi A, De Meyer GRY, Martinet W. Potential therapeutic effects of mTOR inhibition in atherosclerosis. Br J Clin Pharmacol 2015; 82:1267-1279. [PMID: 26551391 DOI: 10.1111/bcp.12820] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
Despite significant improvement in the management of atherosclerosis, this slowly progressing disease continues to affect countless patients around the world. Recently, the mechanistic target of rapamycin (mTOR) has been identified as a pre-eminent factor in the development of atherosclerosis. mTOR is a constitutively active kinase found in two different multiprotein complexes, mTORC1 and mTORC2. Pharmacological interventions with a class of macrolide immunosuppressive drugs, called rapalogs, have shown undeniable evidence of the value of mTORC1 inhibition to prevent the development of atherosclerotic plaques in several animal models. Rapalog-eluting stents have also shown extraordinary results in humans, even though the exact mechanism for this anti-atherosclerotic effect remains elusive. Unfortunately, rapalogs are known to trigger diverse undesirable effects owing to mTORC1 resistance or mTORC2 inhibition. These adverse effects include dyslipidaemia and insulin resistance, both known triggers of atherosclerosis. Several strategies, such as combination therapy with statins and metformin, have been suggested to oppose rapalog-mediated adverse effects. Statins and metformin are known to inhibit mTORC1 indirectly via 5' adenosine monophosphate-activated protein kinase (AMPK) activation and may hold the key to exploit the full potential of mTORC1 inhibition in the treatment of atherosclerosis. Intermittent regimens and dose reduction have also been proposed to improve rapalog's mTORC1 selectivity, thereby reducing mTORC2-related side effects.
Collapse
Affiliation(s)
- Ammar Kurdi
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Zhou Y, Shi W, Luo H, Yue R, Wang Z, Wang W, Liu L, Wang WE, Wang H, Zeng C. Inhibitory effect of D1-like dopamine receptors on neuropeptide Y-induced proliferation in vascular smooth muscle cells. Hypertens Res 2015; 38:807-12. [PMID: 26178154 DOI: 10.1038/hr.2015.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/17/2015] [Accepted: 05/17/2015] [Indexed: 02/05/2023]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) is thought to have a key role in the development of atherosclerotic lesions. Neuropeptide Y (NPY), norepinephrine and dopamine are sympathetic neurotransmitters. NPY has been particularly shown to stimulate proliferation of VSMCs. NPY, norepinephrine and dopamine are all sympathetic transmitters. In our previous study, we found that in the presence of the dopamine receptor, the α1-adrenergic receptor-mediated VSMC proliferation is reduced. We hypothesize that the activation of the D1-like receptor might inhibit the NPY-mediated VSMC proliferation. In our present study, we found that NPY, mainly via the Y1 receptor, increased VSMC proliferation. This was determined by [(3)H]-thymidine incorporation, in a concentration (10(-11) to 10(-8) M)-dependent manner. In the presence of the D1-like receptor agonist, fenoldopam (10(-12) to 10(-5) M), the stimulatory effect of NPY on VSMC proliferation was reduced. The involvement of the D1-like receptor was confirmed when the inhibitory effect of fenoldopam was reversed in the presence of the D1-like receptor antagonist SCH-23390 (10(-8) M). Moreover, the inhibitory effect of fenoldopam on NPY-mediated VSMC proliferation was also blocked in the presence of the PKA inhibitor 14-22 (10(-6) M). Protein kinase A activator 8-(4-chlorophenylthio) adenosine-3,5-cyclic monophosphorothioate, Sp-isomer sodium salt (10(-6) M) could simulate the stimulatory effect of fenoldopam. It indicated that the inhibitory effect of D1-like receptors on NPY-mediated VSMC proliferation may have an important role in the regulation of blood pressure or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Yongqiao Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Rongchuan Yue
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Li Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
25
|
Xu W, Deng YY, Yang L, Zhao S, Liu J, Zhao Z, Wang L, Maharjan P, Gao S, Tian Y, Zhuo X, Zhao Y, Zhou J, Yuan Z, Wu Y. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res 2015; 166:451-8. [PMID: 26141671 DOI: 10.1016/j.trsl.2015.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Metformin is a widely used classic antidiabetic drug. However, its clinical pharmacologic mechanism remains poorly understood. In the present study, we investigated the anti-inflammatory effects of metformin on circulating peripheral blood mononuclear cells (MNCs) of patients with carotid artery atherosclerosis (AS). A total of 42 patients with carotid artery AS were randomly assigned to metformin (500 mg twice a day; Met; n = 21) or placebo control (Con; n = 21) groups. After 12 weeks of treatment, plasma concentrations of high-sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) significantly decreased in the Met group compared with the Con group. In addition, treatment with metformin significantly reduced the expression of IL-6 and TNF-α at the messenger RNA level and attenuated nuclear factor kappa B (NF-κB) DNA binding activity in MNCs. Intriguingly, metformin did not alter the expression of NF-κB p65 subunit, but markedly inhibited its acetylation. Furthermore, metformin significantly induced sirtuin 1 (SIRT1) expression in MNCs. Moreover, we found that metformin treatment dramatically induced SIRT1 expression, blocked p65 acetylation, and inhibited NF-κB activity and the expression of inflammatory factors in MNCs in vitro. We conclude that metformin has a novel direct protective role to ameliorate the proinflammatory response through SIRT1 induction, p65 acetylation reduction, NF-κB inactivation, and inflammatory inhibition in peripheral blood MNCs of patients with carotid artery AS.
Collapse
Affiliation(s)
- Wei Xu
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiovascular Department of Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Yang-Yang Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Yang
- Cardiovascular Department of Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China; Department of Vascular Surgery, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijia Zhao
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junhui Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhao Zhao
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lijun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Prabindra Maharjan
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shanshan Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuling Tian
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhen Zhuo
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhao
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiovascular Department of Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China.
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiovascular Department of Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Fung CSC, Wan EYF, Wong CKH, Jiao F, Chan AKC. Effect of metformin monotherapy on cardiovascular diseases and mortality: a retrospective cohort study on Chinese type 2 diabetes mellitus patients. Cardiovasc Diabetol 2015; 14:137. [PMID: 26453464 PMCID: PMC4600251 DOI: 10.1186/s12933-015-0304-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many factors influence whether the first-line oral anti-diabetic drug, metformin, should be initiated to a patient with type 2 diabetes mellitus (T2DM) early in the course of management in addition to lifestyle modifications. This study aims to evaluate the net effects of metformin monotherapy (MM) on the all-cause mortality and cardiovascular disease (CVD) events. METHODS A retrospective 5-year follow-up cohort study was conducted on Chinese adult patients with T2DM and without any CVD history under public primary care. Cox proportional hazard regressions were performed to compare the risk of all-cause mortality and CVD events (CHD, stroke, heart failure) between patients receiving lifestyle modifications plus MM (MM groups) and those with lifestyle modifications alone (control groups). RESULTS 3400 pairs of matched patients were compared. MM group had an incidence rate of 7.5 deaths and 11.3 CVD events per 1000 person-years during a median follow-up period of 62.5 months whereas control group had 11.1 deaths and 16.3 per 1000 person-years during a median follow-up period of 43.5-44.5 months. MM group showed a 29.5 and 30-35% risk reduction of all-cause mortality and CVD events (except heart failure) than control group (P < 0.001). MM group was more prone to progress to chronic kidney disease but this was not statistically significant. CONCLUSIONS Type 2 diabetic patients who were started on metformin monotherapy showed improvement in many of the clinical parameters and a reduction in all-cause mortality and CVD events than lifestyle modifications alone. If there is no contraindication and if tolerated, diabetic patients should be prescribed with metformin early in the course of the diabetic management to minimize their risk of having the cardiovascular events and mortality in the long run.
Collapse
Affiliation(s)
- Colman Siu Cheung Fung
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong.
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong.
| | - Carlos King Ho Wong
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong.
| | - Fangfang Jiao
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong.
| | - Anca Ka Chun Chan
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong.
| |
Collapse
|
27
|
Abstract
Cardiovascular disease is the principal cause of death in patients with type 2 diabetes (T2DM). Exposure of the vasculature to metabolic disturbances leaves a persistent imprint on vascular walls, and specifically on smooth muscle cells (SMC) that favours their dysfunction and potentially underlies macrovascular complications of T2DM. Current diabetes therapies and continued development of newer treatments has led to the ability to achieve more efficient glycaemic control. There is also some evidence to suggest that some of these treatments may exert favourable pleiotropic effects, some of which may be at the level of SMC. However, emerging interest in epigenetic markers as determinants of vascular disease, and a putative link with diabetes, opens the possibility for new avenues to develop robust and specific new therapies. These will likely need to target cell-specific epigenetic changes such as effectors of DNA histone modifications that promote or inhibit gene transcription, and/or microRNAs capable of regulating entire cellular pathways through target gene repression. The growing epidemic of T2DM worldwide, and its attendant cardiovascular mortality, dictates a need for novel therapies and personalised approaches to ameliorate vascular complications in this vulnerable population.
Collapse
Affiliation(s)
- Karen E Porter
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM) and Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, LS2 9JT, UK,
| | | |
Collapse
|
28
|
Fructose-induced metabolic syndrome decreases protein expression and activity of intestinal P-glycoprotein. Nutrition 2015; 31:871-6. [DOI: 10.1016/j.nut.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 01/03/2015] [Indexed: 11/21/2022]
|
29
|
Zhou MS, Liu C, Tian R, Nishiyama A, Raij L. Skeletal muscle insulin resistance in salt-sensitive hypertension: role of angiotensin II activation of NFκB. Cardiovasc Diabetol 2015; 14:45. [PMID: 25928697 PMCID: PMC4422462 DOI: 10.1186/s12933-015-0211-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background We have previously shown that in hypertensive Dahl salt-sensitive (DS) rats, impaired endothelium-dependent relaxation to acetylcholine and to insulin is mechanistically linked to up-regulation of angiotensin (Ang) II actions and the production of reactive oxygen species (ROS) and to activation of the proinflammatory transcription factor (NF)κB. Here we investigated whether Ang II activation of NFκB contributed to insulin resistance in the skeletal muscle of this animal model. Methods DS rats were fed either a normal (NS, 0.5% NaCl) or high (HS, 4% NaCl) salt diet for 6 weeks. In addition, 3 separate groups of HS rats were given angiotensin receptor 1 blocker candesartan (ARB, 10 mg/kg/day in drinking water), antioxidant tempol (1 mmol/L in drinking water) or NFκB inhibitor PDTC (150 mg/kg in drinking water). Results DS rats manifested an increase in soleus muscle Ang II content, ROS production and phosopho-IκBα/IκBα ratio, ARB or tempol reduced ROS and phospho-IκBα/IκBα ratio. Hypertensive DS rats also manifested a reduction in glucose infusion rate, impaired insulin-induced Akt phosphorylation and Glut-4 translocation in the soleus muscle, which were prevented with treatment of either ARB, tempol, or PDTC. Data from the rat diabetes signaling pathway PCR array showed that 8 genes among 84 target genes were altered in the muscle of hypertensive rats with the increase in gene expression of ACE1 and 5 proinflammatory genes, and decrease of 2 glucose metabolic genes. Incubation of the muscle with NFκB SN50 (a specific peptide inhibitor of NFκB) ex vivo reversed changes in hypertension-induced gene expression. Conclusion The current findings strongly suggest that the activation of NFκB inflammatory pathway by Ang II play a critical role in skeletal muscle insulin resistance in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Department of Physiology, Liaoning Medical University, Jinzhou, China. .,Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA.
| | - Chang Liu
- Department of Endocrinology, Liaoning Medical University, Jinzhou, China.
| | - Runxia Tian
- Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA.
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University School of Medicine, Kagawa, Japan.
| | - Leopoldo Raij
- Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA. .,Hypertension/Nephrology section, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Yang Y, Zheng L, Wang L, Wang S, Wang Y, Han Z. Effects of high fructose and salt feeding on systematic metabonome probed via (1) H NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:295-303. [PMID: 25641270 DOI: 10.1002/mrc.4198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/01/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt-fed rats was investigated by use of (1) H nuclear magnetic resonance (NMR)-based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time-dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2-oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N-oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. Growing evidence reveals that basal autophagy is an essential in vivo process mediating proper vascular function. Moreover, autophagy is stimulated by many stress-related stimuli in the arterial wall to protect endothelial cells and smooth muscle cells against cell death and the initiation of vascular disease, in particular atherosclerosis. Basal autophagy is atheroprotective during early atherosclerosis but becomes dysfunctional in advanced atherosclerotic plaques. Little is known about autophagy in other vascular disorders, such as aneurysm formation, arterial aging, vascular stiffness, and chronic venous disease, even though autophagy is often impaired. This finding highlights the need for pharmacological interventions with compounds that stimulate the prosurvival effects of autophagy in the vasculature. A large number of animal studies and clinical trials have indicated that oral or stent-based delivery of the autophagy inducer rapamycin or derivatives thereof, collectively known as rapalogs, effectively inhibit the basic mechanisms that control growth and destabilization of atherosclerotic plaques. Other autophagy-inducing drugs, such as spermidine or add-on therapy with widely used antiatherogenic compounds, including statins and metformin, are potentially useful to prevent vascular disease with minimal adverse effects.
Collapse
Affiliation(s)
- Guido R.Y. De Meyer
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Mandy O.J. Grootaert
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Cédéric F. Michiels
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Ammar Kurdi
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Dorien M. Schrijvers
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Bundalo M, Zivkovic M, Culafic T, Stojiljkovic M, Koricanac G, Stankovic A. Oestradiol Treatment Counteracts the Effect of Fructose-Rich Diet on Matrix Metalloproteinase 9 Expression and NFκB Activation. Folia Biol (Praha) 2015; 61:233-40. [PMID: 26789145 DOI: 10.14712/fb2015061060233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Fructose-rich diet induces metabolic changes similar to those observed in metabolic syndrome. Among other matrix metalloproteinases, MMP-9 has an important role in adverse cardiac remodelling and might have a role in the development of cardiovascular disorders associated with metabolic syndrome. The changes of MMP-9 expression could be mediated via the NFκB pathway. In this study we investigated the effect of fructose-rich diet on MMP-9 expression in the heart of male and female rats, along with the effect of fructose-rich diet and oestradiol on MMP-9 expression in ovariectomized females. We further assessed the effect of fructose-rich diet and oestradiol on NFκB activation, measured as the level of p65 phosphorylation at Ser 276. The results showed that the diet regime did not affect the heart mass. Higher MMP-9 gene expression was found in cardiac tissue of male rats fed the fructose-rich diet than in females on the same diet regime. In ovariectomized females, fructose-rich diet upregulated MMP-9 protein and mRNA expression in the heart, as well as phosphorylation of the p65 subunit of NFκB at Ser 276. Oestradiol replacement therapy reverted these changes in the heart of ovariectomized females. This study has shown that oestradiol could revert the early molecular changes in MMP-9 expression induced by fructose-rich diet that occurred before cardiac hypertrophy development by decreasing phosphorylation of the NFκB p65 subunit at Ser 276.
Collapse
Affiliation(s)
- M Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - M Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - T Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - M Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - G Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - A Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther 2014; 22:23-9. [PMID: 25477028 DOI: 10.1038/cgt.2014.66] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Preliminary studies showed that miR-21 is overexpressed in some human cancers. However, the role of miR-21 in cancer is still unclear and even controversial. Our purpose was to investigate the biological effects of miR-21 on A549 non-small cell lung cancer (NSCLC) cells and the underlying mechanisms of those effects. The expression of miR-21 was quantified in serum samples from patients with NSCLC. A549 cells were transfected with miR-NC-sponge or miR-21-sponge only, or with miR-21-sponge plus PDCD4 small-interfering RNA (siRNA). The expression of miR-21 and PDCD4 mRNA in transfected cells was quantified by real-time polymerase chain reaction and the expression of PDCD4 protein by Western blot. Cell proliferation, apoptosis, migration, and invasion assays were performed to determine the biological effects of miR-21 expression and PDCD4 inhibition. miR-21 was overexpressed in serum from patients with NSCLC. Reduced miR-21 expression was observed following transfection with miR-21-sponge in A549 NSCLC cells. Co-transfection of miR-21-sponge with PDCD4 siRNA upregulated miR-21 expression in these cells. PDCD4 mRNA and protein levels were increased 2.14-fold and 2.16-fold, respectively, following inhibition of miR-21 expression. Inhibition of miR-21 expression following transfection of miR-21-sponge reduced cell proliferation, migration, and invasion of A549 cells. Depletion of PDCD4 by siRNA transfection reversed the reduction of cell proliferation, migration, and invasion induced by inhibition of miR-21 in A549 cells. It indicates that miR-21 is highly expressed in patients with NSCLC and inhibition of miR-21 expression reduces proliferation, migration, and invasion of A549 cells by upregulating PDCD4 expression. Modulation of miR-21 or PDCD4 expression may provide a potentially novel therapeutic approach for NSCLC.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW In overweight patients with diabetes, treatment with metformin improves cardiovascular outcomes. This observation has fuelled the hypothesis that metformin has direct cardiovascular protective properties over and above glucose lowering. Here, we discuss the various cardiovascular effects of metformin observed in preclinical studies and recent clinical trials in patients, which fail to reproduce these findings. RECENT FINDINGS Laboratory studies suggest that metformin limits atherosclerosis. Also, metformin consistently limits myocardial infarct size and reduces postinfarction remodeling in rodents.Confirmation of these effects in patients, however, appears difficult. In nondiabetic patients, metformin does not reduce carotid intima media thickness. In myocardial infarction patients, the effects of metformin on infarct size are inconclusive, but these studies suffer from methodological shortcomings. Finally, chronic administration of metformin does not affect postinfarction cardiac remodeling in nondiabetic patients. SUMMARY Although recent trials in nondiabetic patients could not confirm direct effects of metformin on atherosclerosis and cardiac remodeling, an acute cardioprotective effect of metformin cannot be excluded yet. We might have to consider, though, that the beneficial effect of metformin on cardiovascular prognosis in patients with diabetes is due to its effects on glucose metabolism and body weight rather than due to pleiotropic direct cardiovascular effects.
Collapse
Affiliation(s)
- Niels P Riksen
- aDepartment of Internal Medicine bPharmacology-Toxicology, Radboud university medical center, Nijmegen, the Netherlands
| | | |
Collapse
|
35
|
Hoffmann MM, Werner C, Böhm M, Laufs U, Winkler K. Association of secreted frizzled-related protein 4 (SFRP4) with type 2 diabetes in patients with stable coronary artery disease. Cardiovasc Diabetol 2014; 13:155. [PMID: 25408147 PMCID: PMC4247677 DOI: 10.1186/s12933-014-0155-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/11/2014] [Indexed: 01/22/2023] Open
Abstract
Background Secreted frizzled-related proteins (SFRP) are regulators of Wnt-signalling. SFRP4 has been shown to regulate insulin exocytosis and is overexpressed in type 2 diabetes mellitus. Here we characterized the relation of SFRP4 to glucose and triglyceride metabolism and outcomes in patients with stable coronary artery disease on statin treatment in the prospective Homburg Cream & Sugar Study (NCT00628524). Methods Fasting SFRP4 concentrations were measured by ELISA in 504 consecutive patients with stable CAD confirmed by angiography. Results The median age was 68 years and 83% of patients were male. Oral glucose tolerance tests were performed in all patients without known diabetes for metabolic characterization. 24.4% of patients showed normal glucose tolerance, 29.4% impaired glucose tolerance and 46.2% diabetes mellitus. SFRP4 concentrations correlated with insulin (R = 0.153, p = 0.001), HbA1c (R = 0.166, p < 0.0001), fasting triglycerides (R = 0.113, p = 0.011) and higher triglycerides after lipid challenge (postprandial triglycerides R = 0.124, p = 0.005; AUC R = 0.134, p = 0.003). Higher SFRP4 concentrations were associated with type 2 diabetes, metabolic syndrome, and severity of diabetes. The primary outcome was the composite of cardiovascular death and cardiovascular hospitalization within 48 months follow-up. Comparison of event-free survival between SFRP4 tertiles showed that SFRP4 concentrations were not predictive for cardiovascular outcome. Conclusions SFRP4 concentrations are associated with impaired glucose and triglyceride metabolism but do not predict cardiovascular outcome in patients with stable coronary artery disease on treatment.
Collapse
Affiliation(s)
- Michael M Hoffmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Christian Werner
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany.
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany.
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany.
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Eriksson L, Nyström T. Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis. Cardiovasc Diabetol 2014; 13:152. [PMID: 25391818 PMCID: PMC4234893 DOI: 10.1186/s12933-014-0152-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 12/02/2022] Open
Abstract
Background The prevalence of type 2 diabetes (T2D) among adults worldwide is rapidly increasing, and in patients with diabetes the major cause of death is macrovascular disease. Endothelial cells play an important role in maintaining vascular homeostasis. Free fatty acids, which are elevated in T2D, have previously been shown to induce endothelial dysfunction and apoptosis of endothelial cells, which is considered as an important and early factor in the onset of atherosclerosis and cardiovascular disease. Metformin, which is used as first line treatment of T2D patients, is believed to exert its pharmacological effects through activation of AMP-activated protein kinase, which has emerged as a new potential target in reversing endothelial dysfunction. Methods Here we studied the protective effect of metformin against free fatty acid-induced apoptosis of human coronary artery endothelial cells (HCAECs) by assessing DNA fragmentation and cleaved caspase 3 levels. We also attempted to elucidate the underlying mechanisms by investigating the involvement of AMP-activated protein kinase, p38 MAPK and eNOS. Generation of reactive oxygen species by free fatty acid exposure was also examined. Results Our results suggest that metformin protects HCAECs from lipoapoptosis, an effect that involves eNOS and p38 MAPK, downstream of AMPK signaling, but not as previously suggested through suppression of reactive oxygen species. Conclusion The protective effect of metformin against free fatty acid induced apoptosis is potentially clinically relevant as metformin is first line treatment for patients with T2D, a patient group which is rapidly increasing and carries a high burden of cardiovascular disease.
Collapse
Affiliation(s)
- Linnéa Eriksson
- Department of Clinical Science and Education, Section of Endocrinology and Diabetology, Karolinska Institutet, Södersjukhuset AB, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden.
| | - Thomas Nyström
- Department of Clinical Science and Education, Section of Endocrinology and Diabetology, Karolinska Institutet, Södersjukhuset AB, Stockholm, Sweden.
| |
Collapse
|
37
|
Uemura Y, Shibata R, Kanemura N, Ohashi K, Kambara T, Hiramatsu-Ito M, Enomoto T, Yuasa D, Joki Y, Matsuo K, Ito M, Hayakawa S, Ogawa H, Murohara T, Ouchi N. Adipose-derived protein omentin prevents neointimal formation after arterial injury. FASEB J 2014; 29:141-51. [PMID: 25300621 DOI: 10.1096/fj.14-258129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is highly linked with the development of vascular diseases. Omentin is a circulating adipokine that is downregulated in patients with cardiovascular diseases. In this study, we investigated the role of omentin in regulation of vascular remodeling in response to injury. Wild-type (WT) mice were treated intravenously with adenoviral vectors encoding human omentin (Ad-OMT) or control β-gal and subjected to arterial wire injury. Ad-OMT treatment reduced the neointimal thickening and the frequencies of bromodeoxyuridine-positive proliferating cells in injured arteries. Treatment of vascular smooth muscle cells (VSMCs) with human omentin protein at a physiologic concentration led to suppression of growth and ERK phosphorylation after stimulation with various growth factors. Omentin stimulated AMPK signaling in VSMCs, and blockade of AMPK reversed omentin-mediated inhibition of VSMC growth and ERK phosphorylation. Furthermore, fat-specific human omentin transgenic (OMT-TG) mice exhibited reduced neointimal thickening and vascular cell growth following vascular injury. AMPK activation was enhanced in injured arteries in OMT-TG mice, and administration of AMPK inhibitor reversed the reduction of neointimal hyperplasia in OMT-TG mice. These data indicate that omentin attenuates neointimal formation after arterial injury and suppresses VSMC growth through AMPK-dependent mechanisms. Thus, omentin can represent a novel target molecule for the prevention of vascular disorders.
Collapse
Affiliation(s)
| | | | | | - Koji Ohashi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | - Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Duan Y, Zhang R, Zhang M, Sun L, Dong S, Wang G, Zhang J, Zhao Z. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus. Neural Regen Res 2014; 8:2379-88. [PMID: 25206548 PMCID: PMC4146045 DOI: 10.3969/j.issn.1673-5374.2013.25.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
Metformin may reduce food intake and body weight, but the anorexigenic effects of metformin are still poorly understood. In this study, Sprague-Dawley rats were administered a single intracere-broventricular dose of metformin and compound C, in a broader attempt to investigate the regula-tory effects of metformin on food intake and to explore the possible mechanism. Results showed that central administration of metformin significantly reduced food intake and body weight gain, par-ticularly after 4 hours. A reduction of neuropeptide Y expression and induction of AMP-activated protein kinase phosphorylation in the hypothalamus were also observed 4 hours after metformin administration, which could be reversed by compound C, a commonly-used antagonist of AMP-activated protein kinase. Furthermore, metformin also improved lipid metabolism by reducing plasma low-density lipoprotein. Our findings suggest that under normal physiological conditions, central regulation of appetite by metformin is related to a decrease in neuropeptide Y gene expres-sion, and that the activation of AMP-activated protein kinase may simply be a response to the anorexigenic effect of metformin.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Rui Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Lijuan Sun
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Suzhen Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Gang Wang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
39
|
Gholivand MB, Shamsipur M, Paimard G, Feyzi M, Jafari F. Synthesis of Fe–Cu/TiO2 nanostructure and its use in construction of a sensitive and selective sensor for metformin determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:791-8. [DOI: 10.1016/j.msec.2014.05.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 05/30/2014] [Indexed: 12/25/2022]
|
40
|
Dopamine D₄ receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc Diabetol 2014; 13:97. [PMID: 24888351 PMCID: PMC4078019 DOI: 10.1186/1475-2840-13-97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/26/2014] [Indexed: 01/11/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) proliferation and migration, which are central in the development of vascular diseases, are regulated by numerous hormones and humoral factors. Activation of the insulin receptor stimulates VSMCs proliferation while dopamine receptors, via D1 and D3 receptors, inhibit the stimulatory effects of norepinephrine on VSMCs proliferation. We hypothesize that activation of the D4 dopamine receptor may also inhibit the proliferation and migration of VSMCs, therefore, inhibit atherosclerosis. Our current study found that insulin increased the proliferation and migration of A10 cells, an effect that was reduced in the presence of a D4 receptor agonist, PD168077. The negative effect of the D4 receptor on insulin’s action may be via decreasing insulin receptor expression, because activation of the D4 receptor inhibited insulin receptor protein and mRNA expressions, indicating that the regulation occured at the transcriptional or post-transcriptional levels. To determine whether or not the inhibition of D4 receptor on insulin-mediated proliferation and migration of VSMCs has physiological significance, hyper-insulinemic Sprague–Dawley rats with balloon-injured carotid artery were treated with a D4 agonist, PD168077, (6 mg/kg/d) for 14 days. We found that PD168077 significantly inhibited neointimal formation by inhibition of VSMC proliferation. This study suggests that activation of the D4 receptor suppresses the proliferation and migration of VSMCs, therefore, inhibit atherosclerosis. The D4 receptor may be a potential therapeutic target to reduce the effects of insulin on artery remodeling.
Collapse
|
41
|
Abstract
Diabetes is a well-known risk factor for the development of cardiovascular diseases. Diabetes affects cardiac tissue through several different, yet interconnected, pathways. Damage to endothelial cells from direct exposure to high blood glucose is a primary cause of deregulated heart function. Toxic by-products of non-enzymatic glycolysis, mainly methylglyoxal, have been shown to contribute to the endothelial cell damage. Methylglyoxal is a precursor for advanced glycation end-products, and, although it is detoxified by the glyoxalase system, this protection mechanism fails in diabetes. Recent work has identified methylglyoxal as a therapeutic target for the prevention of cardiovascular complications in diabetes. A better understanding of the glyoxalase system and the effects of methylglyoxal may lead to more advanced strategies for treating cardiovascular complications associated with diabetes.
Collapse
|
42
|
Freidja ML, Vessières E, Toutain B, Guihot AL, Custaud MA, Loufrani L, Fassot C, Henrion D. AGEs breaking and antioxidant treatment improves endothelium-dependent dilation without effect on flow-mediated remodeling of resistance arteries in old Zucker diabetic rats. Cardiovasc Diabetol 2014; 13:55. [PMID: 24581152 PMCID: PMC3944955 DOI: 10.1186/1475-2840-13-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A chronic increase in blood flow in resistance arteries is associated with increased lumen diameter (outward remodeling) and improved endothelium (NO)-mediated relaxation. Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases. Nevertheless, it is impaired in 12 to 24-month old rats and in young Zucker Diabetic Fatty (ZDF) rats due to advanced glycation end products (AGEs) and oxidative stress. As type 2 diabetes occurs preferentially in older subjects we investigated flow-mediated remodeling and the effect of the AGEs breaker ALT-711 associated or not to the antioxidant TEMPOL in one-year old lean (LZ) and ZDF rats. METHODS Mesenteric resistance arteries were exposed to high (HF) or normal blood flow (NF) in vivo. They were collected after 2 weeks for in vitro analysis. RESULTS In LZ rats, diameter expansion did not occur despite a significant increase in blood flow in HF arteries. Nevertheless, endothelium-mediated relaxation was higher in HF than in NF arteries. ALT-711, alone or in combination with TEMPOL, restored outward remodeling in HF arteries in association with AGEs reduction. TEMPOL alone had no effect. ALT-711, TEMPOL or the combination of the 2 drugs did not significantly affect endothelium-mediated relaxation in HF and NF arteries.In ZDF rats, diameter did not increase despite the increase in blood flow and endothelium-mediated relaxation was further decreased in HF arteries in association with AGEs accumulation and excessive oxidative stress. In both NF and HF arteries, endothelium-mediated relaxation was lower in ZDF than in LZ rats. ALT-711, TEMPOL or their combination did not improve remodeling (diameter equivalent in HF and NF arteries). In parallel, they did not reduce AGEs level and did not improve MMPs activity. Nevertheless, ALT-711 and TEMPOL partly improved endothelium-mediated relaxation through a reduction of oxidative stress and the association of ALT-711 and TEMPOL fully restored relaxation to the level found in LZ rats. CONCLUSIONS ALT-711 did not improve outward remodeling in mature ZDF rats but it reduced oxidative stress and consequently improved endothelium-dependent relaxation. In mature LZ rats, ALT-711 improved outward remodeling and reduced AGEs level. Consequently, AGEs breaking is differently useful in ageing whether it is associated with diabetes or not.
Collapse
|