1
|
Jiang F, Li M, Dong J, Yu Y, Sun X, Wu B, Huang J, Kang L, Pei Y, Zhang L, Wang S, Xu W, Xin J, Ouyang W, Fan G, Zheng L, Tan Y, Hu Z, Xiong Y, Feng Y, Yang G, Liu Q, Song J, Liu J, Hong L, Tan P. A general temperature-guided language model to design proteins of enhanced stability and activity. SCIENCE ADVANCES 2024; 10:eadr2641. [PMID: 39602544 PMCID: PMC11601203 DOI: 10.1126/sciadv.adr2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Designing protein mutants with both high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, a deep learning model, which can suggest protein mutants with improved stability and activity without any prior experimental mutagenesis data for the specified protein. Leveraging temperature-aware language modeling, PRIME demonstrated superior predictive ability compared to current state-of-the-art models on the public mutagenesis dataset across 283 protein assays. Furthermore, we validated PRIME's predictions on five proteins, examining the impact of the top 30 to 45 single-site mutations on various protein properties, including thermal stability, antigen-antibody binding affinity, and the ability to polymerize nonnatural nucleic acid or resilience to extreme alkaline conditions. More than 30% of PRIME-recommended mutants exhibited superior performance compared to their premutation counterparts across all proteins and desired properties. We developed an efficient and effective method based on PRIME to rapidly obtain multisite mutants with enhanced activity and stability. Hence, PRIME demonstrates broad applicability in protein engineering.
Collapse
Affiliation(s)
- Fan Jiang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingchen Li
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200240, China
| | - Jiajun Dong
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
| | - Yuanxi Yu
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Banghao Wu
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Huang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liqi Kang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Liang Zhang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaojie Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxue Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingyao Xin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wanli Ouyang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tan
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200240, China
| | | | - Yi Xiong
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Key Biological Raw Material, Shanghai Academy of Experimental Medicine, Shanghai 201401, China
- Hzymes Biotechnology Co. Ltd, Wuhan, Hubei 430075, China
| | - Qian Liu
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liang Hong
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
- Zhanjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
| |
Collapse
|
2
|
Arya M, Chauhan G, Fatima T, Verma D, Sharma M. Statistical Modelling of Thermostable Cellulase Production Conditions of Thermophilic Geobacillus sp. TP-1 Isolated from Tapovan Hot Springs of the Garhwal Himalayan Mountain Ranges, India. Indian J Microbiol 2024; 64:1132-1143. [PMID: 39282208 PMCID: PMC11399532 DOI: 10.1007/s12088-024-01258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/10/2024] [Indexed: 09/18/2024] Open
Abstract
A thermo-alkali stable cellulase from Geobacillus sp. TP-1 was isolated from Tapovan hot spring soil sample. The BLASTn sequence analysis of 16S rRNA sequence revealed that the isolate belonged to the Geobacillus genus and shared the highest degree of sequence similarity (99.43%) with the different strains of Geobacillus subterraneus. The neighbour joining method of multiple sequence alignment revealed that the 16S rRNA sequence of Geobacillus sp. TP-1 shows maximum similarity with Geobacillus stearothermophilus strain S_YE6-1017-022. One-Factor-At-a-Time analysis was used to optimize the carbon source, nitrogen source, pH, temperature, inoculum size and growth profile with respect to cellulase production. When compared to un-optimized basal media, optimised medium increased cellulase production by around 3.6 times. The Plackett Burman factorial design was employed to identify the critical medium components influencing cellulase activity and temperature was determined to have a significant effect on overall cellulase production. The current strain was capable of utilising lignocellulosic waste as an alternative carbon source. The use of sugarcane molasses and wheat bran as carbon sources resulted in a significant increase (~ 7.2 fold) in cellulase production in the current study, indicating the bacterium's potential for valorising lignocellulosic biomass into value-added products, which encourages its use in lignocellulosic-based bio refineries. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01258-x.
Collapse
Affiliation(s)
- Meghna Arya
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Garima Chauhan
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Tazeem Fatima
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| | - Monica Sharma
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
3
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
de Andrades D, Alnoch RC, Alves GS, Salgado JCS, Almeida PZ, Berto GL, Segato F, Ward RJ, Buckeridge MS, Polizeli MDLTM. Recombinant GH3 β-glucosidase stimulated by xylose and tolerant to furfural and 5-hydroxymethylfurfural obtained from Aspergillus nidulans. BIORESOUR BIOPROCESS 2024; 11:77. [PMID: 39073555 PMCID: PMC11286919 DOI: 10.1186/s40643-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The β-glucosidase gene from Aspergillus nidulans FGSC A4 was cloned and overexpressed in the A. nidulans A773. The resulting purified β-glucosidase, named AnGH3, is a monomeric enzyme with a molecular weight of approximately 80 kDa, as confirmed by SDS-PAGE. Circular dichroism further validated its unique canonical barrel fold (β/α), a feature also observed in the 3D homology model of AnGH3. The most striking aspect of this recombinant enzyme is its robustness, as it retained 100% activity after 24 h of incubation at 45 and 50 ºC and pH 6.0. Even at 55 °C, it maintained 72% of its enzymatic activity after 6 h of incubation at the same pH. The kinetic parameters Vmax, KM, and Kcat/KM for ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) and cellobiose were also determined. Using ρNPG, the enzyme demonstrated a Vmax of 212 U mg - 1, KM of 0.0607 mmol L - 1, and Kcat/KM of 4521 mmol L - 1 s - 1 when incubated at pH 6.0 and 65 °C. The KM, Vmax, and Kcat/KM using cellobiose were 2.7 mmol L - 1, 57 U mg - 1, and 27 mmol -1 s - 1, respectively. AnGH3 activity was significantly enhanced by xylose and ethanol at concentrations up to 1.5 mol L - 1 and 25%, respectively. Even in challenging conditions, at 65 °C and pH 6.0, the enzyme maintained its activity, retaining 100% and 70% of its initial activity in the presence of 200 mmol L - 1 furfural and 5-hydroxymethylfurfural (HMF), respectively. The potential of this enzyme was further demonstrated by its application in the saccharification of the forage grass Panicum maximum, where it led to a 48% increase in glucose release after 24 h. These unique characteristics, including high catalytic performance, good thermal stability in hydrolysis temperature, and tolerance to elevated concentrations of ethanol, D-xylose, furfural, and HMF, position this recombinant enzyme as a promising tool in the hydrolysis of lignocellulosic biomass as part of an efficient multi-enzyme cocktail, thereby opening new avenues in the field of biotechnology and enzymology.
Collapse
Affiliation(s)
- Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Robson C Alnoch
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Enzymology and Molecular Biology of Microorganisms, Institute of Biology, Campinas State University (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Paula Z Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, 12602-810, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, 12602-810, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | | | - Maria de Lourdes T M Polizeli
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
5
|
Kumar A, Bhanja Dey T, Mishra AK, Meena KR, Mohapatra HS, Kuhad RC. Optimization and Characterization of an Ultra-Thermostable, Acidophilic, Cellulase-Free Xylanase from a New Obligate Thermophilic Geobacillus thermoleovorans AKNT10 and its Application in Saccharification of Wheat Bran. Curr Microbiol 2024; 81:287. [PMID: 39075266 DOI: 10.1007/s00284-024-03792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/01/2024] [Indexed: 07/31/2024]
Abstract
Microbial xylanases are enzymes of great importance due to their wide industrial applications, especially in the degradation of lignocellulosic biomass into fermentable sugars. This study aimed to describe the production optimization and partial characterization of an ultra-thermostable, acidophilic, cellulase-free xylanase from an obligate thermophilic eubacterium Geobacillus thermoleovorans strain-AKNT10 (Ac.No. LT158229) isolated from a hot-spring of Puga Valley located at an altitude of 4419 m in Ladakh, India. The optimization of cultural conditions improved enzyme yield by 10.49-fold under submerged fermentation. The addition of 1% (w/v) xylose induced the enzyme synthesis by ~ 165 and 371% when supplemented in the fermentation medium containing wheat bran (WB) 1 and 3%, respectively. The supplementation of sucrose reduced the xylanase production by ~ 25%. Results of partial characterization exhibited that xylanase was optimally active at pH 6.0 and 100 °C. Enzyme retained > 75%, > 83%, and > 84% of activity at 4 °C for 28 days, 100 °C for 60 min, and pHs 3-8 for 60 min, respectively. An outstanding property of AKNT10-xylanase, was the retention of > 71% residual activity at extreme conditions (121 °C and 15 psi pressure) for 15 min. Enzymatic saccharification showed that enzyme was also capable to liberate maximum reducing sugars within 4-8 h under optimized conditions thus it could be a potential candidate for the bioconversion of lignocellulosic biomass as well as other industrial purposes. To the best of our knowledge, this is the first report on such an ultra-thermo-pressure-tolerant xylanase optimally active at pH 6 and 100 °C from the genus Geobacillus.
Collapse
Affiliation(s)
- Arvind Kumar
- Jenvin Biotech, Nigohi, Shahjahanpur, Uttar Pradesh, 242407, India.
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| | - Tapati Bhanja Dey
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, 38541, Republic of Korea
| | - Khem Raj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Rajasthan, 305817, India.
| | | | - Ramesh Chander Kuhad
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
- DPG Institute of Technology and Management, Sector-34, Gurugram, Haryana, 122004, India
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
6
|
Xie C, Zhang T, Qin Z. Plasmonic-Driven Regulation of Biomolecular Activity In Situ. Annu Rev Biomed Eng 2024; 26:475-501. [PMID: 38594921 DOI: 10.1146/annurev-bioeng-110222-105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center, Richardson, Texas, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA;
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
7
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
8
|
Song X, Li J, Chang Y, Mei X, Luan J, Jiang X, Xue C. The Discovery of a Multidomain Mannanase Containing Dual-Catalytic Domain of the Same Activity: Biochemical Properties and Synergistic Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10451-10458. [PMID: 38632679 DOI: 10.1021/acs.jafc.3c09611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In recent years, the wide application of mannan has driven the demand for the exploration of mannanase. As one of the main components of hemicellulose, mannan is an important polysaccharide that ruminants need to degrade and utilize, making rumen a rich source of mannanases. In this study, gene mining of mannanases was performed using bioinformatics, and potential dual-catalytic domain mannanases were heterologously expressed to analyze their properties. The hydrolysis pattern and enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). A dual-catalytic domain mannanase Man26/5 with the same function as the substrate was successfully mined from the genome of cattle rumen microbiota. Compared to the single-catalytic domain, its higher thermal stability (≤50 °C) and catalytic efficiency confirm the synergistic effect between the two catalytic domains. It exhibited a unique "crab-like" structure where the CBM located in the middle is responsible for binding, and the catalytic domains at both ends are responsible for cutting. The exploration of its multidomain structure and synergistic patterns could provide a reference for the artificial construction and molecular modification of enzymes.
Collapse
Affiliation(s)
- Xiao Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiajing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiayi Luan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoxiao Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
9
|
Rawat M, Chauhan M, Pandey A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 2024; 206:247. [PMID: 38713374 DOI: 10.1007/s00203-024-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Collapse
Affiliation(s)
- Manvi Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
10
|
Paredes-Barrada M, Kopsiaftis P, Claassens NJ, van Kranenburg R. Parageobacillus thermoglucosidasius as an emerging thermophilic cell factory. Metab Eng 2024; 83:39-51. [PMID: 38490636 DOI: 10.1016/j.ymben.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Parageobacillus thermoglucosidasius is a thermophilic and facultatively anaerobic microbe, which is emerging as one of the most promising thermophilic model organisms for metabolic engineering. The use of thermophilic microorganisms for industrial bioprocesses provides the advantages of increased reaction rates and reduced cooling costs for bioreactors compared to their mesophilic counterparts. Moreover, it enables starch or lignocellulose degradation and fermentation to occur at the same temperature in a Simultaneous Saccharification and Fermentation (SSF) or Consolidated Bioprocessing (CBP) approach. Its natural hemicellulolytic capabilities and its ability to convert CO to metabolic energy make P. thermoglucosidasius a potentially attractive host for bio-based processes. It can effectively degrade hemicellulose due to a number of hydrolytic enzymes, carbohydrate transporters, and regulatory elements coded from a genomic cluster named Hemicellulose Utilization (HUS) locus. The growing availability of effective genetic engineering tools in P. thermoglucosidasius further starts to open up its potential as a versatile thermophilic cell factory. A number of strain engineering examples showcasing the potential of P. thermoglucosidasius as a microbial chassis for the production of bulk and fine chemicals are presented along with current research bottlenecks. Ultimately, this review provides a holistic overview of the distinct metabolic characteristics of P. thermoglucosidasius and discusses research focused on expanding the native metabolic boundaries for the development of industrially relevant strains.
Collapse
Affiliation(s)
- Miguel Paredes-Barrada
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, The Netherlands.
| |
Collapse
|
11
|
Lau MH, Madika A, Zhang Y, Minton NP. Parageobacillus thermoglucosidasius Strain Engineering Using a Theophylline Responsive RiboCas for Controlled Gene Expression. ACS Synth Biol 2024; 13:1237-1245. [PMID: 38517011 PMCID: PMC11036489 DOI: 10.1021/acssynbio.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
The relentless increase in atmospheric greenhouse gas concentrations as a consequence of the exploitation of fossil resources compels the adoption of sustainable routes to chemical and fuel manufacture based on biological fermentation processes. The use of thermophilic chassis in such processes is an attractive proposition; however, their effective exploitation will require improved genome editing tools. In the case of the industrially relevant chassis Parageobacillus thermoglucosidasius, CRISPR/Cas9-based gene editing has been demonstrated. The constitutive promoter used, however, accentuates the deleterious nature of Cas9, causing decreased transformation and low editing efficiencies, together with an increased likelihood of off-target effects or alternative mutations. Here, we rectify this issue by controlling the expression of Cas9 through the use of a synthetic riboswitch that is dependent on the nonmetabolized, nontoxic, and cheap inducer, theophylline. We demonstrate that the riboswitches are dose-dependent, allowing for controlled expression of the target gene. Through their use, we were then able to address the deleterious nature of Cas9 and produce an inducible system, RiboCas93. The benefits of RiboCas93 were demonstrated by increased transformation efficiency of the editing vectors, improved efficiency in mutant generation (100%), and a reduction of Cas9 toxicity, as indicated by a reduction in the number of single nucleotide polymorphisms (SNPs) observed. This new system provides a quick and efficient way to produce mutants in P. thermoglucosidasius.
Collapse
Affiliation(s)
- Matthew
S. H. Lau
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Abubakar Madika
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Department
of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ying Zhang
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, Nottingham
University Hospitals NHS Trust and The University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
12
|
Yang Y, Zhang C, Lu H, Wu Q, Wu Y, Li W, Li X. Improvement of thermostability and catalytic efficiency of xylanase from Myceliophthora thermophilar by N-terminal and C-terminal truncation. Front Microbiol 2024; 15:1385329. [PMID: 38659990 PMCID: PMC11039872 DOI: 10.3389/fmicb.2024.1385329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Extracting xylanase from thermophilic filamentous fungi is a feasible way to obtain xylanase with good thermal stability. Methods The transcriptomic data of Myceliophthora thermophilic destructive ATCC42464 were differentially expressed and enriched. By comparing the sequences of Mtxylan2 and more than 10 xylanases, the N-terminal and C-terminal of Mtxylan2 were truncated, and three mutants 28N, 28C and 28NC were constructed. Results and discussion GH11 xylan Mtxylan2 was identified by transcriptomic analysis, the specific enzyme activity of Mtxylan2 was 104.67 U/mg, and the optimal temperature was 65°C. Molecular modification of Mtxylan2 showed that the catalytic activity of the mutants was enhanced. Among them, the catalytic activity of 28C was increased by 9.3 times, the optimal temperature was increased by 5°C, and the residual enzyme activity remained above 80% after 30 min at 50-65°C, indicating that redundant C-terminal truncation can improve the thermal stability and catalytic performance of GH11 xylanase.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - QiuHua Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
13
|
Sharma S, Patel SN, Singh SP. A novel thermotolerant L-rhamnose isomerase variant for biocatalytic conversion of D-allulose to D-allose. Appl Microbiol Biotechnol 2024; 108:279. [PMID: 38564031 PMCID: PMC10987364 DOI: 10.1007/s00253-024-13074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.
Collapse
Affiliation(s)
- Sweety Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
- Indian Institute of Science Education and Research Mohali, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306.
| |
Collapse
|
14
|
El-Sayed MH, Elsayed DA, Gomaa AERF. Nocardiopsis synnemataformans NBRM9, an extremophilic actinomycete producing extremozyme cellulase, using lignocellulosic agro-wastes and its biotechnological applications. AIMS Microbiol 2024; 10:187-219. [PMID: 38525045 PMCID: PMC10955166 DOI: 10.3934/microbiol.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Actinomycetes are an attractive source of lignocellulose-degrading enzymes. The search for actinomycetes producing extremozyme cellulase using cheap lignocellulosic waste remains a priority goal of enzyme research. In this context, the extremophilic actinomycete NBRM9 showed promising cellulolytic activity in solid and liquid assays. This actinomycete was identified as Nocardiopsis synnemataformans based on its phenotypic characteristics alongside phylogenetic analyses of 16S rRNA gene sequencing (OQ380604.1). Using bean straw as the best agro-waste, the production of cellulase from this strain was statistically optimized using a response surface methodology, with the maximum activity (13.20 U/mL) achieved at an incubation temperature of 40 °C, a pH of 9, an incubation time of 7 days, and a 2% substrate concentration. The partially purified cellulase (PPC) showed promising activity and stability over a wide range of temperatures (20-90 °C), pH values (3-11), and NaCl concentrations (1-19%), with optimal activity at 50 °C, pH 9.0, and 10% salinity. Under these conditions, the enzyme retained >95% of its activity, thus indicating its extremozyme nature. The kinetics of cellulase showed that it has a Vmax of 20.19 ± 1.88 U/mL and a Km of 0.25 ± 0.07 mM. The immobilized PPC had a relative activity of 69.58 ± 0.13%. In the in vitro microtiter assay, the PPC was found to have a concentration-dependent anti-biofilm activity (up to 85.15 ± 1.60%). Additionally, the fermentative conversion of the hydrolyzed bean straw by Saccharomyces cerevisiae (KM504287.1) amounted to 65.80 ± 0.52% of the theoretical ethanol yield. Overall, for the first time, the present work reports the production of extremozymatic (thermo, alkali-, and halo-stable) cellulase from N. synnemataformans NBRM9. Therefore, this strain is recommended for use as a biotool in many lignocellulosic-based applications operating under harsh conditions.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Doaa A. Elsayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
| | - Abd El-Rahman F. Gomaa
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| |
Collapse
|
15
|
Myrtollari K, Calderini E, Kracher D, Schöngaßner T, Galušić S, Slavica A, Taden A, Mokos D, Schrüfer A, Wirnsberger G, Gruber K, Daniel B, Kourist R. Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3575-3584. [PMID: 38456190 PMCID: PMC10915792 DOI: 10.1021/acssuschemeng.3c06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.
Collapse
Affiliation(s)
- Kamela Myrtollari
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Elia Calderini
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| | - Tobias Schöngaßner
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Stela Galušić
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Anita Slavica
- Faculty
of Food Technology and Biotechnology, Department of Biochemical Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Andreas Taden
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Daniel Mokos
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Anna Schrüfer
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Gregor Wirnsberger
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Karl Gruber
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Bastian Daniel
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| |
Collapse
|
16
|
Fouda A, Alshallash KS, Atta HM, El Gamal MS, Bakry MM, Alawam AS, Salem SS. Synthesis, Optimization, and Characterization of Cellulase Enzyme Obtained from Thermotolerant Bacillus subtilis F3: An Insight into Cotton Fabric Polishing Activity. J Microbiol Biotechnol 2024; 34:207-223. [PMID: 37940165 PMCID: PMC10840485 DOI: 10.4014/jmb.2309.09023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
The efficacy of 40 bacterial isolates obtained from hot spring water samples to produce cellulase enzymes was investigated. As a result, the strain Bacillus subtilis F3, which was identified using traditional and molecular methods, was selected as the most potent for cellulase production. Optimization was carried out using one-factor-at-a-time (OFAT) and BOX-Behnken Design to detect the best conditions for the highest cellulase activity. This was accomplished after an incubation period of 24 h at 45°C and pH 8, with an inoculum size of 1% (v/v), 5 g/l of peptone as nitrogen source, and 7.5 g/l of CMC. Moreover, the best concentration of ammonium sulfate for cellulase enzyme precipitation was 60% followed by purification using a dialysis bag and Sephadex G-100 column chromatography to collect the purified enzyme. The purified cellulase enzyme was characterized by 5.39-fold enrichment, with a specific activity of 54.20 U/mg and a molecular weight of 439 kDa. There were 15 amino acids involved in the purified cellulase, with high concentrations of 160 and 100 mg/l for glycine and proline respectively. The highest stability and activity of the purified cellulase was attained at pH 7 and 50°C in the presence of 150 ppm of CaCl2, NaCl, and ZnO metal ions. Finally, the biopolishing activity of the cellulase enzyme, as indicated by weight loss percentages of the cotton fabric, was dependent on concentration and treatment time. Overall, the thermotolerant B. subtilis F3 strain has the potential to provide highly stable and highly active cellulase enzyme for use in biopolishing of cotton fabrics.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Khalid S. Alshallash
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Hossam M. Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mamdouh S. El Gamal
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed M. Bakry
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
17
|
Marks TJ, Rowland IR. The Diversity of Bacteriophages in Hot Springs. Methods Mol Biol 2024; 2738:73-88. [PMID: 37966592 DOI: 10.1007/978-1-0716-3549-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are ubiquitous in all environments that support microbial life. This includes hot springs, which can range in temperatures between 40 and 98 °C and pH levels between 1 and 9. Bacteriophages that survive in the higher temperatures of hot springs are known as thermophages. Thermophages have developed distinct adaptations allowing for thermostability in these extreme environments, including increased G + C DNA percentages, reliance upon the pentose phosphate metabolic pathway to avoid oxidative stress, and a codon preference for those with a GNA sequence leading to increased hydrophobic interactions and disulfide bonds. In this review, we discuss the diversity of characterized thermophages in hot spring environments that span five viral families: Myoviridae, Siphoviridae, Tectiviridae, Sphaerolipoviridae, and Inoviridae. Potential industrial and medicinal applications of thermophages will also be addressed.
Collapse
Affiliation(s)
- Timothy J Marks
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA.
| | - Isabella R Rowland
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA
| |
Collapse
|
18
|
Zhang J, Wang H, Luo Z, Yang Z, Zhang Z, Wang P, Li M, Zhang Y, Feng Y, Lu D, Zhu Y. Computational design of highly efficient thermostable MHET hydrolases and dual enzyme system for PET recycling. Commun Biol 2023; 6:1135. [PMID: 37945666 PMCID: PMC10636135 DOI: 10.1038/s42003-023-05523-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Recently developed enzymes for the depolymerization of polyethylene terephthalate (PET) such as FAST-PETase and LCC-ICCG are inhibited by the intermediate PET product mono(2-hydroxyethyl) terephthalate (MHET). Consequently, the conversion of PET enzymatically into its constituent monomers terephthalic acid (TPA) and ethylene glycol (EG) is inefficient. In this study, a protein scaffold (1TQH) corresponding to a thermophilic carboxylesterase (Est30) was selected from the structural database and redesigned in silico. Among designs, a double variant KL-MHETase (I171K/G130L) with a similar protein melting temperature (67.58 °C) to that of the PET hydrolase FAST-PETase (67.80 °C) exhibited a 67-fold higher activity for MHET hydrolysis than FAST-PETase. A fused dual enzyme system comprising KL-MHETase and FAST-PETase exhibited a 2.6-fold faster PET depolymerization rate than FAST-PETase alone. Synergy increased the yield of TPA by 1.64 fold, and its purity in the released aromatic products reached 99.5%. In large reaction systems with 100 g/L substrate concentrations, the dual enzyme system KL36F achieved over 90% PET depolymerization into monomers, demonstrating its potential applicability in the industrial recycling of PET plastics. Therefore, a dual enzyme system can greatly reduce the reaction and separation cost for sustainable enzymatic PET recycling.
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongzhao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaorong Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenwu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zixuan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengyu Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengyu Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yushan Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Yang Z, Li Z, Li B, Bu R, Tan GY, Wang Z, Yan H, Xin Z, Zhang G, Li M, Xiang H, Zhang L, Wang W. A thermostable type I-B CRISPR-Cas system for orthogonal and multiplexed genetic engineering. Nat Commun 2023; 14:6193. [PMID: 37794017 PMCID: PMC10551041 DOI: 10.1038/s41467-023-41973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Thermophilic cell factories have remarkably broad potential for industrial applications, but are limited by a lack of genetic manipulation tools and recalcitrance to transformation. Here, we identify a thermophilic type I-B CRISPR-Cas system from Parageobacillus thermoglucosidasius and find it displays highly efficient transcriptional repression or DNA cleavage activity that can be switched by adjusting crRNA length to less than or greater than 26 bp, respectively, without ablating Cas3 nuclease. We then develop an orthogonal tool for genome editing and transcriptional repression using this type I-B system in both thermophile and mesophile hosts. Empowered by this tool, we design a strategy to screen the genome-scale targets involved in transformation efficiency and established dynamically controlled supercompetent P. thermoglucosidasius cells with high efficiency ( ~ 108 CFU/μg DNA) by temporal multiplexed repression. We also demonstrate the construction of thermophilic riboflavin cell factory with hitherto highest titers in high temperature fermentation by genome-scale identification and combinatorial manipulation of multiple targets. This work enables diverse high-efficiency genetic manipulation in P. thermoglucosidasius and facilitates the engineering of thermophilic cell factories.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bixiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
20
|
Dadwal A, Singh V, Sharma S, Sahoo AK, Satyanarayana T. Structural and thermostability insights into cellobiohydrolase of a thermophilic mould Myceliophthora thermophila: in-silico studies. J Biomol Struct Dyn 2023; 41:8373-8382. [PMID: 36238990 DOI: 10.1080/07391102.2022.2133012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 10/17/2022]
Abstract
Cellobiohydrolase (CBH) is one of the cellulases with a wide range of industrial applications; it plays a pivotal role in cellulose hydrolysis and thus in biofuel production. The structural and thermostability analysis of a CBHII of the thermophilic mold Myceliophthora thermophila (MtCel6A) had been carried out using various in-silico approaches. The validation of 3 D model by the Ramachandran plot indicated 88.5% amino acid residues in the favoured regions. Docking analysis suggested MtCel6A to display a high affinity towards cellotetraose as compared to other substrates. The enzyme exhibited a high tolerance to the end product, cellobiose. The thermostability evaluation by molecular dynamic simulations and principal component analysis confirmed its tolerance to elevated temperatures. The identified thermolabile regions could be targeted for site-directed mutagenesis in order to ameliorate thermostability further. Our experimental data published earlier confirmed the present findings of in-silico studies. The structural and functional characteristics of MtCel6A highlighted its critical features that make it a useful biocatalyst in several industrial processes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
21
|
Hamre AG, Al-Sadawi R, Johannesen KM, Bisarro B, Kjendseth ÅR, Leiros HKS, Sørlie M. Initial characterization of an iron superoxide dismutase from Thermobifida fusca. J Biol Inorg Chem 2023; 28:689-698. [PMID: 37725277 PMCID: PMC10520107 DOI: 10.1007/s00775-023-02019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Superoxide dismutases (SODs) are enzymes that catalyze the dismutation of the superoxide radical anion into O2 and H2O2 in a two-step reaction. They are ubiquitous to all forms of life and four different types of metal centers are detected, dividing this class of enzymes into Cu-/Zn-, Ni-, Mn-, and Fe-SODs. In this study, a superoxide dismutase from the thermophilic bacteria Thermobifida fusca (TfSOD) was cloned and expressed before the recombinant enzyme was characterized. The enzyme was found to be active for superoxide dismutation measured by inhibition of cytochrome c oxidation and the inhibition of the autoxidation of pyrogallol. Its pH-optimum was determined to be 7.5, while it has a broad temperature optimum ranging from 20 to 90 °C. Combined with the Tm that was found to be 78.5 ± 0.5 °C at pH 8.0, TfSOD can be defined as a thermostable enzyme. Moreover, the crystal structure of TfSOD was determined and refined to 1.25 Å resolution. With electron paramagnetic resonance spectroscopy, it was confirmed that iron is the metal co-factor of TfSOD. The cell potential (Em) for the TfSOD-Fe3+/TfSOD-Fe2+ redox couple was determined to be 287 mV.
Collapse
Affiliation(s)
- Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, 1432, Ås, Norway
| | - Rim Al-Sadawi
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, 1432, Ås, Norway
| | - Kirsti Merete Johannesen
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037, Tromsö, Norway
| | - Bastien Bisarro
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, 1432, Ås, Norway
| | - Åsmund Røhr Kjendseth
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, 1432, Ås, Norway
| | - Hanna-Kirsti S Leiros
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037, Tromsö, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, 1432, Ås, Norway.
- Department for Physics and Technology, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037, Tromsö, Norway.
| |
Collapse
|
22
|
Arias PM, Butler J, Randhawa GS, Soltysiak MPM, Hill KA, Kari L. Environment and taxonomy shape the genomic signature of prokaryotic extremophiles. Sci Rep 2023; 13:16105. [PMID: 37752120 PMCID: PMC10522608 DOI: 10.1038/s41598-023-42518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
This study provides comprehensive quantitative evidence suggesting that adaptations to extreme temperatures and pH imprint a discernible environmental component in the genomic signature of microbial extremophiles. Both supervised and unsupervised machine learning algorithms were used to analyze genomic signatures, each computed as the k-mer frequency vector of a 500 kbp DNA fragment arbitrarily selected to represent a genome. Computational experiments classified/clustered genomic signatures extracted from a curated dataset of [Formula: see text] extremophile (temperature, pH) bacteria and archaea genomes, at multiple scales of analysis, [Formula: see text]. The supervised learning resulted in high accuracies for taxonomic classifications at [Formula: see text], and medium to medium-high accuracies for environment category classifications of the same datasets at [Formula: see text]. For [Formula: see text], our findings were largely consistent with amino acid compositional biases and codon usage patterns in coding regions, previously attributed to extreme environment adaptations. The unsupervised learning of unlabelled sequences identified several exemplars of hyperthermophilic organisms with large similarities in their genomic signatures, in spite of belonging to different domains in the Tree of Life.
Collapse
Affiliation(s)
- Pablo Millán Arias
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada.
| | - Joseph Butler
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Gurjit S Randhawa
- School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | - Kathleen A Hill
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
23
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
24
|
Soy S, Lakra U, Prakash P, Suravajhala P, Nigam VK, Sharma SR, Bayal N. Exploring microbial diversity in hot springs of Surajkund, India through 16S rRNA analysis and thermozyme characterization from endogenous isolates. Sci Rep 2023; 13:14221. [PMID: 37648773 PMCID: PMC10469164 DOI: 10.1038/s41598-023-41515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
Hot springs are a valuable source of biologically significant chemicals due to their high microbial diversity. To investigate the possibilities for industrial uses of these bacteria, researchers collected water and sediment samples from variety of hot springs. Our investigation employed both culture-dependent and culture-independent techniques, including 16S-based marker gene analysis of the microbiota from the hot springs of Surajkund, Jharkhand. In addition, we cultivated thermophilic isolates and screened for their ability to produce amylase, xylanase, and cellulase. After the optimized production of amylase the enzyme was partially purified and characterized using UPLC, DLS-ZP, and TGA. The retention time for the amylase was observed to be around 0.5 min. We confirmed the stability of the amylase at higher temperatures through observation of a steady thermo gravimetric profile at 400 °C. One of the thermophilic isolates obtained from the kund, demonstrated the potential to degrade lignocellulosic agricultural waste.
Collapse
Affiliation(s)
- S Soy
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - U Lakra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - P Prakash
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - P Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, India
- Systems Genomics Lab, Bioclues.org, Hyderabad, India
| | - V K Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - S R Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - N Bayal
- National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
25
|
Reislöhner S, Schermann G, Kilian M, Santamaría-Muñoz D, Zimmerli C, Kellner N, Baßler J, Brunner M, Hurt E. Identification and characterization of sugar-regulated promoters in Chaetomium thermophilum. BMC Biotechnol 2023; 23:19. [PMID: 37422618 PMCID: PMC10329369 DOI: 10.1186/s12896-023-00791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/20/2023] [Indexed: 07/10/2023] Open
Abstract
The thermophilic fungus Chaetomium thermophilum has been used extensively for biochemical and high-resolution structural studies of protein complexes. However, subsequent functional analyses of these assemblies have been hindered owing to the lack of genetic tools compatible with this thermophile, which are typically suited to other mesophilic eukaryotic model organisms, in particular the yeast Saccharomyces cerevisiae. Hence, we aimed to find genes from C. thermophilum that are expressed under the control of different sugars and examine their associated 5' untranslated regions as promoters responsible for sugar-regulated gene expression. To identify sugar-regulated promoters in C. thermophilum, we performed comparative xylose- versus glucose-dependent gene expression studies, which uncovered a number of enzymes with induced expression in the presence of xylose but repressed expression in glucose-supplemented media. Subsequently, we cloned the promoters of the two most stringently regulated genes, the xylosidase-like gene (XYL) and xylitol dehydrogenase (XDH), obtained from this genome-wide analysis in front of a thermostable yellow fluorescent protein (YFP) reporter. With this, we demonstrated xylose-dependent YFP expression by both Western blotting and live-cell imaging fluorescence microscopy. Prompted by these results, we expressed the C. thermophilum orthologue of a well-characterized dominant-negative ribosome assembly factor mutant, under the control of the XDH promoter, which allowed us to induce a nuclear export defect on the pre-60S subunit when C. thermophilum cells were grown in xylose- but not glucose-containing medium. Altogether, our study identified xylose-regulatable promoters in C. thermophilum, which might facilitate functional studies of genes of interest in this thermophilic eukaryotic model organism.
Collapse
Affiliation(s)
- Sven Reislöhner
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Geza Schermann
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Max Kilian
- Max-Planck-Institute für terrestrische Mikrobiologie, Marburg, Germany
| | | | - Christian Zimmerli
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-Von-Laue-Straße 3, Frankfurt Am Main, 60438 Germany
| | - Nikola Kellner
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jochen Baßler
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Michael Brunner
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Hocq R, Bottone S, Gautier A, Pflügl S. A fluorescent reporter system for anaerobic thermophiles. Front Bioeng Biotechnol 2023; 11:1226889. [PMID: 37476481 PMCID: PMC10355840 DOI: 10.3389/fbioe.2023.1226889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Owing to their inherent capacity to make invisible biological processes visible and quantifiable, fluorescent reporter systems have numerous applications in biotechnology. For classical fluorescent protein systems (i.e., GFP and derivatives), chromophore maturation is O2-dependent, restricting their applications to aerobic organisms. In this work, we pioneered the use of the oxygen-independent system FAST (Fluorescence Activating and absorption Shifting tag) in the thermophilic anaerobe Thermoanaerobacter kivui. We developed a modular cloning system that was used to easily clone a library of FAST expression cassettes in an E. coli-Thermoanaerobacter shuttle plasmid. FAST-mediated fluorescence was then assessed in vivo in T. kivui, and we observed bright green and red fluorescence for cells grown at 55°C. Next, we took advantage of this functional reporter system to characterize a set of homologous and heterologous promoters by quantifying gene expression, expanding the T. kivui genetic toolbox. Low fluorescence at 66°C (Topt for T. kivui) was subsequently investigated at the single-cell level using flow cytometry and attributed to plasmid instability at higher temperatures. Adaptive laboratory evolution circumvented this issue and drastically enhanced fluorescence at 66°C. Whole plasmid sequencing revealed the evolved strain carried functional plasmids truncated at the Gram-positive origin of replication, that could however not be linked to the increased fluorescence displayed by the evolved strain. Collectively, our work demonstrates the applicability of the FAST fluorescent reporter systems to T. kivui, paving the way for further applications in thermophilic anaerobes.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sara Bottone
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Gautier
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
27
|
Sardiña-Peña AJ, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Iglesias-Figueroa BF, Rascón-Cruz Q. Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy. Biotechnol Lett 2023:10.1007/s10529-023-03388-6. [PMID: 37199887 DOI: 10.1007/s10529-023-03388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To increase the thermal stability of sucrose isomerase from Erwinia rhapontici NX-5, we designed a comprehensive strategy that combines different thermostabilizing elements. RESULTS We identified 19 high B value amino acid residues for site-directed mutagenesis. An in silico evaluation of the influence of post-translational modifications on the thermostability was also carried out. The sucrose isomerase variants were expressed in Pichia pastoris X33. Thus, for the first time, we report the expression and characterization of glycosylated sucrose isomerases. The designed mutants K174Q, L202E and K174Q/L202E, showed an increase in their optimal temperature of 5 °C, while their half-lives increased 2.21, 1.73 and 2.89 times, respectively. The mutants showed an increase in activity of 20.3% up to 25.3%. The Km values for the K174Q, L202E, and K174Q/L202E mutants decreased by 5.1%, 7.9%, and 9.4%, respectively; furthermore, the catalytic efficiency increased by up to 16%. CONCLUSIONS With the comprehensive strategy followed, we successfully obtain engineered mutants more suitable for industrial applications than their counterparts: native (this research) and wild-type from E. rhapontici NX-5, without compromising the catalytic activity of the molecule.
Collapse
Affiliation(s)
- A J Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - L Ballinas-Casarrubias
- Laboratorio de Química Analítica III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - T S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - E A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - N R Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - B F Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - Q Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México.
| |
Collapse
|
28
|
Che Hussian CHA, Leong WY. Thermostable enzyme research advances: a bibliometric analysis. J Genet Eng Biotechnol 2023; 21:37. [PMID: 36971917 PMCID: PMC10043094 DOI: 10.1186/s43141-023-00494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Thermostable enzymes are enzymes that can withstand elevated temperatures as high as 50 °C without altering their structure or distinctive features. The potential of thermostable enzymes to increase the conversion rate at high temperature has been identified as a key factor in enhancing the efficiency of industrial operations. Performing procedures at higher temperatures with thermostable enzymes minimises the risk of microbial contamination, which is one of the most significant benefits. In addition, it helps reduce substrate viscosity, improve transfer speeds, and increase solubility during reaction operations. Thermostable enzymes offer enormous industrial potential as biocatalysts, especially cellulase and xylanase, which have garnered considerable amount of interest for biodegradation and biofuel applications. As the usage of enzymes becomes more common, a range of performance-enhancing applications are being explored. This article offers a bibliometric evaluation of thermostable enzymes. Scopus databases were searched for scientific articles. The findings indicated that thermostable enzymes are widely employed in biodegradation as well as in biofuel and biomass production. Japan, the United States, China, and India, as along with the institutions affiliated with these nations, stand out as the academically most productive in the field of thermostable enzymes. This study's analysis exposed a vast number of published papers that demonstrate the industrial potential of thermostable enzymes. These results highlight the significance of thermostable enzyme research for a variety of applications.
Collapse
Affiliation(s)
| | - Wai Yie Leong
- INTI International University & Colleges, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
29
|
Utilization of Indonesian root and tuber starches for glucose production by cold enzymatic hydrolysis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
30
|
Gomes Souza F, Pal K, Ampah JD, Dantas MC, Araújo A, Maranhão F, Domingues P. Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1175. [PMID: 36770184 PMCID: PMC9921263 DOI: 10.3390/ma16031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Among the most relevant themes of modernity, using renewable resources to produce biofuels attracts several countries' attention, constituting a vital part of the global geopolitical chessboard since humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing associated with free and open-source software production facilitate this work of prospecting and understanding complex scenarios. Thus, for the development of this work, the keywords "biofuel" and "nanocatalyst" were delivered to the Scopus database, which returned 1071 scientific articles. The titles and abstracts of these papers were saved in Research Information Systems (RIS) format and submitted to automatic analysis via the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data extracted from the VOSviewer were processed by software written in Python, which allowed the use of the network data generated by the Visualization of Similarities Method. Thus, it was possible to establish the relationships for the pair between the nodes of all clusters classified by Link Strength Between Items or Terms (LSBI) or by year. Indeed, other associations should arouse particular interest in the readers. However, here, the option was for a numerical criterion. However, all data are freely available, and stakeholders can infer other specific connections directly. Therefore, this innovative approach allowed inferring that the most recent pairs of terms associate the need to produce biofuels from microorganisms' oils besides cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the emission of hydrocarbons (HC) and oxides of nitrogen (NOx).
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana–Chandigarh State Hwy, Mohali 140413, Punjab, India
| | | | - Maria Clara Dantas
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Aruzza Araújo
- LABPROBIO, Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Fabíola Maranhão
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Priscila Domingues
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| |
Collapse
|
31
|
Peccati F, Alunno-Rufini S, Jiménez-Osés G. Accurate Prediction of Enzyme Thermostabilization with Rosetta Using AlphaFold Ensembles. J Chem Inf Model 2023; 63:898-909. [PMID: 36647575 PMCID: PMC9930118 DOI: 10.1021/acs.jcim.2c01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thermostability enhancement is a fundamental aspect of protein engineering as a biocatalyst's half-life is key for its industrial and biotechnological application, particularly at high temperatures and under harsh conditions. Thermostability changes upon mutation originate from modifications of the free energy of unfolding (ΔGu), making thermostabilization extremely challenging to predict with computational methods. In this contribution, we combine global conformational sampling with energy prediction using AlphaFold and Rosetta to develop a new computational protocol for the quantitative prediction of thermostability changes upon laboratory evolution of acyltransferase LovD and lipase LipA. We highlight how using an ensemble of protein conformations rather than a single three-dimensional model is mandatory for accurate thermostability predictions. By comparing our approaches with existing ones, we show that ensembles based on AlphaFold models provide more accurate and robust calculated thermostability trends than ensembles based solely on crystallographic structures as the latter introduce a strong distortion (scaffold bias) in computed thermostabilities. Eliminating this bias is critical for computer-guided enzyme design and evaluating the effect of multiple mutations on protein stability.
Collapse
Affiliation(s)
- Francesca Peccati
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain,
| | - Sara Alunno-Rufini
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain
| | - Gonzalo Jiménez-Osés
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain,Ikerbasque, Basque
Foundation for Science, 48013Bilbao, Spain,
| |
Collapse
|
32
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
33
|
Tan S, Tao X, Zheng P, Chen P, Yu X, Li N, Gao T, Wu D. Thermostability modification of β-mannanase from Aspergillus niger via flexibility modification engineering. Front Microbiol 2023; 14:1119232. [PMID: 36891394 PMCID: PMC9986629 DOI: 10.3389/fmicb.2023.1119232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction β-Mannanases can hydrolyze mannans, which are widely available in nature. However, the optimum temperature of most β-mannanases is too low to be directly utilized in industry. Methods To further improve the thermostability of Anman (mannanase from Aspergillus niger CBS513.88), B-factor and Gibbs unfolding free energy change were used to modify the flexible of Anman, and then combined with multiple sequence alignment and consensus mutation to generate an excellent mutant. At last, we analyzed the intermolecular forces between Anman and the mutant by molecular dynamics simulation. Results The thermostability of combined mutant mut5 (E15C/S65P/A84P/A195P/T298P) was increased by 70% than the wild-type Amman at 70°C, and the melting temperature (Tm) and half-life (t1/2) values were increased by 2°C and 7.8-folds, respectively. Molecular dynamics simulation showed reduced flexibility and additional chemical bonds in the region near the mutation site. Discussion These results indicate that we obtained a Anman mutant that is more suitable for industrial application, and they also confirm that a combination of rational and semi-rational techniques is helpful for screening mutant sites.
Collapse
Affiliation(s)
- Shundong Tan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaowei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ning Li
- Guangzhou Puratos Food Co., Ltd., Guangzhou, China
| | - Tiecheng Gao
- Guangzhou Puratos Food Co., Ltd., Guangzhou, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Carbonaro M, Aulitto M, Gallo G, Contursi P, Limauro D, Fiorentino G. Insight into CAZymes of Alicyclobacillus mali FL18: Characterization of a New Multifunctional GH9 Enzyme. Int J Mol Sci 2022; 24:ijms24010243. [PMID: 36613686 PMCID: PMC9820247 DOI: 10.3390/ijms24010243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the bio-based era, cellulolytic and hemicellulolytic enzymes are biocatalysts used in many industrial processes, playing a key role in the conversion of recalcitrant lignocellulosic waste biomasses. In this context, many thermophilic microorganisms are considered as convenient sources of carbohydrate-active enzymes (CAZymes). In this work, a functional genomic annotation of Alicyclobacillus mali FL18, a recently discovered thermo-acidophilic microorganism, showed a wide reservoir of putative CAZymes. Among them, a novel enzyme belonging to the family 9 of glycosyl hydrolases (GHs), named AmCel9, was identified; in-depth in silico analyses highlighted that AmCel9 shares general features with other GH9 members. The synthetic gene was expressed in Escherichia coli and the recombinant protein was purified and characterized. The monomeric enzyme has an optimal catalytic activity at pH 6.0 and has comparable activity at temperatures ranging from 40 °C to 70 °C. It also has a broad substrate specificity, a typical behavior of multifunctional cellulases; the best activity is displayed on β-1,4 linked glucans. Very interestingly, AmCel9 also hydrolyses filter paper and microcrystalline cellulose. This work gives new insights into the properties of a new thermophilic multifunctional GH9 enzyme, that looks a promising biocatalyst for the deconstruction of lignocellulose.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence:
| |
Collapse
|
35
|
Alicyclobacillus mali FL18 as a Novel Source of Glycosyl Hydrolases: Characterization of a New Thermophilic β-Xylosidase Tolerant to Monosaccharides. Int J Mol Sci 2022; 23:ijms232214310. [PMID: 36430787 PMCID: PMC9696088 DOI: 10.3390/ijms232214310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative β-xylosidase, AmβXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0-8.0 after 16 h. AmβXyl is mainly active on both para-nitrophenyl-β-D-xylopyranoside (KM 0.52 mM, kcat 1606 s-1, and kcat/KM 3088.46 mM-1·s-1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s-1, and kcat/KM 226.87 mM-1·s-1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmβXyl is a true β-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmβXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmβXyl may have several applications in many industrial fields.
Collapse
|
36
|
Antarctic aldehyde dehydrogenase from Flavobacterium PL002 as a potent catalyst for acetaldehyde determination in wine. Sci Rep 2022; 12:17301. [PMID: 36243887 PMCID: PMC9569350 DOI: 10.1038/s41598-022-22289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023] Open
Abstract
Latest solutions in biotechnologies and biosensing targeted cold-active extremozymes. Analysis of acetaldehyde as a relevant quality indicator of wine is one example of application that could benefit from using low-temperatures operating catalysts. In search of novel aldehyde dehydrogenases (ALDH) with high stability and activity at low temperatures, the recombinant S2-ALDH from the Antarctic Flavobacterium PL002 was obtained by cloning and expression in Escherichia coli BL21(DE3). Structural and phylogenetic analyses revealed strong protein similarities (95%) with psychrophilic homologs, conserved active residues and structural elements conferring enzyme flexibility. Arrhenius plot revealed a conformational shift at 30 °C, favoring catalysis (low activation energy) at lower temperatures. In addition to a broad substrate specificity with preference for acetaldehyde (Km = 1.88 mM), this enzyme showed a high tolerance for ethanol (15%) and several salts and chelators (an advantage for wine analysis), while being sensitive to mercury (I50 = 1.21 µM). The neutral optimal pH (7.5) and the stability up to 40 °C and after lyophilization represent major assets for developing S2-ALDH-based sensors. An enzymatic electrochemical assay was developed for acetaldehyde detection in wines with proven accuracy in comparison with the reference spectrophotometric method, thus evidencing the potential of S2-ALDH as effective biocatalyst for industry and biosensing.
Collapse
|
37
|
Dobruchowska JM, Bjornsdottir B, Fridjonsson OH, Altenbuchner J, Watzlawick H, Gerwig GJ, Dijkhuizen L, Kamerling JP, Hreggvidsson GO. Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus. FRONTIERS IN PLANT SCIENCE 2022; 13:981602. [PMID: 36204061 PMCID: PMC9530828 DOI: 10.3389/fpls.2022.981602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.
Collapse
Affiliation(s)
- Justyna M. Dobruchowska
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | | | | | - Josef Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | | | - Gerrit J. Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Johannis P. Kamerling
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Gudmundur O. Hreggvidsson
- Matís Ltd., Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
38
|
Molinaro C, Bénéfice M, Gorlas A, Da Cunha V, Robert HML, Catchpole R, Gallais L, Forterre P, Baffou G. Life at high temperature observed in vitro upon laser heating of gold nanoparticles. Nat Commun 2022; 13:5342. [PMID: 36097020 PMCID: PMC9468142 DOI: 10.1038/s41467-022-33074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are microorganisms that thrive at high temperature. Studying them can provide valuable information on how life has adapted to extreme conditions. However, high temperature conditions are difficult to achieve on conventional optical microscopes. Some home-made solutions have been proposed, all based on local resistive electric heating, but no simple commercial solution exists. In this article, we introduce the concept of microscale laser heating over the field of view of a microscope to achieve high temperature for the study of thermophiles, while maintaining the user environment in soft conditions. Microscale heating with moderate laser intensities is achieved using a substrate covered with gold nanoparticles, as biocompatible, efficient light absorbers. The influences of possible microscale fluid convection, cell confinement and centrifugal thermophoretic motion are discussed. The method is demonstrated with two species: (i) Geobacillus stearothermophilus, a motile thermophilic bacterium thriving around 65 °C, which we observed to germinate, grow and swim upon microscale heating and (ii) Sulfolobus shibatae, a hyperthermophilic archaeon living at the optimal temperature of 80 °C. This work opens the path toward simple and safe observation of thermophilic microorganisms using current and accessible microscopy tools. Studying microorganisms at high temperatures is challenging on conventional optical microscopes. Here, the authors introduce the concept of microscale laser heating over the full field of view by using gold nanoparticles as light absorbers, and study thermophile species up to 80 °C.
Collapse
|
39
|
Suzuki H, Morishima T, Handa A, Tsukagoshi H, Kato M, Shimizu M. Biochemical Characterization of a Pectate Lyase AnPL9 from Aspergillus nidulans. Appl Biochem Biotechnol 2022; 194:5627-5643. [PMID: 35802235 DOI: 10.1007/s12010-022-04036-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Pectinolytic enzymes have diverse industrial applications. Among these, pectate lyases act on the internal α-1,4-linkage of the pectate backbone, playing a critical role in pectin degradation. While most pectate lyases characterized thus far are of bacterial origin, fungi can also be excellent sources of pectinolytic enzymes. In this study, we performed biochemical characterization of the pectate lyase AnPL9 belonging to the polysaccharide lyase family 9 (PL9) from the filamentous fungus Aspergillus nidulans. Recombinant AnPL9 was produced using a Pichia pastoris expression system and purified. AnPL9 exhibited high activity on homogalacturonan (HG), pectin from citrus peel, pectin from apple, and the HG region in rhamnogalacturonan-I. Although digalacturonic acid and trigalacturonic acid were not degraded by AnPL9, tetragalacturonic acid was converted to 4,5-unsaturated digalacturonic acid and digalacturonic acid. These results indicate that AnPL9 degrades HG oligosaccharides with a degree of polymerization > 4. Furthermore, AnPL9 was stable within a neutral-to-alkaline pH range (pH 6.0-11.0). Our findings suggest that AnPL9 is a candidate pectate lyase for biotechnological applications in the food, paper, and textile industries. This is the first report on a fungal pectate lyase belonging to the PL9 family.
Collapse
Affiliation(s)
- Hiromitsu Suzuki
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Toshiki Morishima
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Atsuya Handa
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-0073, Japan.
| |
Collapse
|
40
|
Synergistic action of thermophilic pectinases for pectin bioconversion into D-galacturonic acid. Enzyme Microb Technol 2022; 160:110071. [DOI: 10.1016/j.enzmictec.2022.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
|
41
|
Zafar A, Hamid A, Peng L, Wang Y, Aftab MN. Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from Clostridium clariflavum: a potential addition for biofuel industry. RSC Adv 2022; 12:14917-14931. [PMID: 35702232 PMCID: PMC9115876 DOI: 10.1039/d2ra00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The present study describes the cloning, expression, purification and characterization of the xylosidase gene (1650 bp) from a thermophilic bacterium Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production. The recombinant xylosidase enzyme was purified to homogeneity by heat treatment and immobilized metal ion affinity chromatography. SDS-PAGE determined that the molecular weight of purified xylosidase was 60 kDa. This purified recombinant xylosidase showed its maximum activity at a temperature of 37 °C and pH 6.0. The purified recombinant xylosidase enzyme remains stable up to 90 °C for 4 h and retained 54.6% relative activity as compared to the control. The presence of metal ions such as Ca2+ and Mg2+ showed a positive impact on xylosidase enzyme activity whereas Cu2+ and Hg2+ inhibit its activity. Organic solvents did not considerably affect the stability of the purified xylosidase enzyme while DMSO and SDS cause the inhibition of enzyme activity. Pretreatment experiments were run in triplicate for 72 h at 30 °C using 10% NaOH. Saccharification experiment was performed by using 1% substrate (pretreated plant biomass) in citrate phosphate buffer of pH 6.5 loaded with 150 U mL−1 of purified recombinant xylosidase enzyme along with ampicillin (10 μg mL−1). Subsequent incubation was carried out at 50 °C and 100 rpm in a shaking incubator for 24 h. Saccharification potential of the recombinant xylosidase enzyme was calculated against both pretreated and untreated sugarcane bagasse and wheat straw as 9.63% and 8.91% respectively. All these characteristics of the recombinant thermotolerant xylosidase enzyme recommended it as a potential candidate for biofuel industry. The present study describes the cloning, expression, purification and characterization of a xylosidase gene from Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production.![]()
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| |
Collapse
|
42
|
Yu S, Shan X, Lyv Y, Zhou J. Bioproduction of quercetin using recombinant thermostable glycosidases from Dictyoglomus thermophilum. BIORESOUR BIOPROCESS 2022; 9:48. [PMID: 38647783 PMCID: PMC10991118 DOI: 10.1186/s40643-022-00538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Quercetin is an essential ingredient in functional foods and nutritional supplements, as well as a promising therapeutic reagent. Also, the green technique to produce quercetin via rutin biotransformation is attractive. Genes encoding two thermostable glycosidases from Dictyoglomus thermophilum were cloned and expressed in Escherichia coli, which were applied in rutin biotransformation to produce highly pure quercetin at a high temperature. The production of biocatalysts were scaled up in a 5-L bioreactor, yielding a several-fold increase in total enzyme activity and a quercetin production of 14.22 ± 0.26 g/L from 30 g/L of rutin. Feeding strategies were optimized to boost biomass and enzyme production, achieving an activity of 104,801.80 ± 161.99 U/L for rhamnosidase and 12,637.23 ± 17.94 U/L for glucosidase, and a quercetin yield of 20.24 ± 0.27 g/L from the complete conversion of rutin. This study proposes a promising approach for producing high-quality quercetin in an industrial setting.
Collapse
Affiliation(s)
- Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunbin Lyv
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
43
|
A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int J Mol Sci 2022; 23:ijms23063135. [PMID: 35328559 PMCID: PMC8954581 DOI: 10.3390/ijms23063135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
The production of biochemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Weizmannia coagulans species. So far, the genomes of 47 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of Carbohydrate-Active enZymes (CAZymes), secretion systems, and resistance mechanisms to environmental challenges. Moreover, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated (Cas) genes, was also analyzed. Overall, this study expands our understanding of the strain's genomic diversity of W. coagulans to fully exploit its potential in biotechnological applications.
Collapse
|
44
|
Pan Q, Nguyen TB, Ascher DB, Pires DEV. Systematic evaluation of computational tools to predict the effects of mutations on protein stability in the absence of experimental structures. Brief Bioinform 2022; 23:bbac025. [PMID: 35189634 PMCID: PMC9155634 DOI: 10.1093/bib/bbac025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Changes in protein sequence can have dramatic effects on how proteins fold, their stability and dynamics. Over the last 20 years, pioneering methods have been developed to try to estimate the effects of missense mutations on protein stability, leveraging growing availability of protein 3D structures. These, however, have been developed and validated using experimentally derived structures and biophysical measurements. A large proportion of protein structures remain to be experimentally elucidated and, while many studies have based their conclusions on predictions made using homology models, there has been no systematic evaluation of the reliability of these tools in the absence of experimental structural data. We have, therefore, systematically investigated the performance and robustness of ten widely used structural methods when presented with homology models built using templates at a range of sequence identity levels (from 15% to 95%) and contrasted performance with sequence-based tools, as a baseline. We found there is indeed performance deterioration on homology models built using templates with sequence identity below 40%, where sequence-based tools might become preferable. This was most marked for mutations in solvent exposed residues and stabilizing mutations. As structure prediction tools improve, the reliability of these predictors is expected to follow, however we strongly suggest that these factors should be taken into consideration when interpreting results from structure-based predictors of mutation effects on protein stability.
Collapse
Affiliation(s)
- Qisheng Pan
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, Queensland 4072, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3052, Australia
| | - Thanh Binh Nguyen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, Queensland 4072, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3052, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, Queensland 4072, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3052, Australia
- Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, Queensland 4072, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3052, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria 3053, Australia
| |
Collapse
|
45
|
Enhanced activity and stability of protein-glutaminase by Hofmeister effects. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Sadeepa D, Sirisena K, Manage PM. Diversity of microbial communities in hot springs of Sri Lanka as revealed by 16S rRNA gene high-throughput sequencing analysis. Gene 2021; 812:146103. [PMID: 34896522 DOI: 10.1016/j.gene.2021.146103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Characterization of hot spring microbiota is useful as an initial platform for exploring industrially important microbes. The present study focused on characterization of microbiota in four hot springs in Sri Lanka: Maha Oya; Wahava; Madunagala; and Kivlegama using high throughput 16S amplicon sequencing. Temperatures of the selected springs were ranged from 33.7 °C to 52.4 °C, whereas pH ranged from 7.2 to 8.2. Bacteria were found to be the dominant microbial group (>99%) compared to Archaea which represented less than 1% of microbiota. Four hot springs comprised of unique microbial community structures. Proteobacteria, Firmicutes, Bacteroidetes, Cloroflexi, Deinococcus and Actenobacteria were the major bacterial phyla. Moderately thermophilic genera such as Thermodesulfobacteria and Deinococcus-Thermus were detected as major genera that could be used in industrial applications operating at temperatures around 50 °C and alkaline reaction conditions.
Collapse
Affiliation(s)
- Dilini Sadeepa
- Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kosala Sirisena
- Department of Environmental Technology, Faculty of Technology, University of Colombo, Sri Lanka
| | - Pathmalal M Manage
- Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| |
Collapse
|
47
|
Qaiser H, Kaleem A, Abdullah R, Iqtedar M, Hoessli DC. Overview of lignocellulolytic enzyme systems with special reference to valorization of lignocellulosic biomass. Protein Pept Lett 2021; 28:1349-1364. [PMID: 34749601 DOI: 10.2174/0929866528666211105110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.
Collapse
Affiliation(s)
- Hina Qaiser
- Department of Biology, Lahore Garrison University, Lahore. Pakistan
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore. Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi. Pakistan
| |
Collapse
|
48
|
Dadwal A, Sharma S, Satyanarayana T. Recombinant cellobiohydrolase of Myceliophthora thermophila: characterization and applicability in cellulose saccharification. AMB Express 2021; 11:148. [PMID: 34735642 PMCID: PMC8568750 DOI: 10.1186/s13568-021-01311-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
A codon optimized cellobiohydrolase (CBH) encoding synthetic gene of 1188 bp from a thermophilic mold Myceliophthora thermophila (MtCel6A) was cloned and heterologously expressed in Escherichia coli for the first time. In silico analysis suggested that MtCel6A is a GH6 CBH and belongs to CBHII family, which is structurally similar to Cel6A of Humicola insolens. The recombinant MtCel6A is expressed as active inclusion bodies, and the molecular mass of the purified enzyme is ~ 45 kDa. The rMtCel6A is active in a wide range of pH (4-12) and temperatures (40-100 °C) with optima at pH 10.0 and 60 °C. It exhibits T1/2 of 6.0 and 1.0 h at 60 and 90 °C, respectively. The rMtCel6A is an extremozyme with organic solvent, salt and alkali tolerance. The Km, Vmax, kcat and kcat/Km values of the enzyme are 3.2 mg mL-1, 222.2 μmol mg-1 min-1, 2492 s-1 and 778.7 s-1 mg-1 mL-1, respectively. The product analysis of rMtCel6A confirmed that it is an exoenzyme that acts from the non-reducing end of cellulose. The addition of rMtCel6A to the commercial cellulase mix (Cellic CTec2) led to 1.9-fold increase in saccharification of the pre-treated sugarcane bagasse. The rMtCel6A is a potential CBH that finds utility in industrial processes such as in bioethanol, paper pulp and textile industries.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences & Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India
| | - Shilpa Sharma
- Department of Biological Sciences & Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India
- Department of Biological Sciences & Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences & Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India.
- Department of Biological Sciences & Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India.
| |
Collapse
|
49
|
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules 2021; 11:1557. [PMID: 34827555 PMCID: PMC8615776 DOI: 10.3390/biom11111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
Hyperthermophilic Archaea colonizing unnatural habitats of extremes conditions such as volcanoes and deep-sea hydrothermal vents represent an unmeasurable bioresource for enzymes used in various industrial applications. Their enzymes show distinct structural and functional properties and are resistant to extreme conditions of temperature and pressure where their mesophilic homologs fail. In this review, we will outline carbohydrate-active enzymes (CAZymes) from hyperthermophilic Archaea with specific focus on the two largest families, glycoside hydrolases (GHs) and glycosyltransferases (GTs). We will present the latest advances on these enzymes particularly in the light of novel accumulating data from genomics and metagenomics sequencing technologies. We will discuss the contribution of these enzymes from hyperthermophilic Archaea to industrial applications and put the emphasis on newly identifed enzymes. We will highlight their common biochemical and distinct features. Finally, we will overview the areas that remain to be explored to identify novel promising hyperthermozymes.
Collapse
Affiliation(s)
- Khadija Amin
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Ziad Abdel-Razzak
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| | - Hala Chamieh
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| |
Collapse
|
50
|
A Comprehensive Bioprocessing Approach to Foster Cheese Whey Valorization: On-Site β-Galactosidase Secretion for Lactose Hydrolysis and Sequential Bacterial Cellulose Production. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cheese whey (CW) constitutes a dairy industry by-product, with considerable polluting impact, related mostly with lactose. Numerous bioprocessing approaches have been suggested for lactose utilization, however, full exploitation is hindered by strain specificity for lactose consumption, entailing a confined range of end-products. Thus, we developed a CW valorization process generating high added-value products (crude enzymes, nutrient supplements, biopolymers). First, the ability of Aspergillus awamori to secrete β-galactosidase was studied under several conditions during solid-state fermentation (SSF). Maximum enzyme activity (148 U/g) was obtained at 70% initial moisture content after three days. Crude enzymatic extracts were further implemented to hydrolyze CW lactose, assessing the effect of hydrolysis time, temperature and initial enzymatic activity. Complete lactose hydrolysis was obtained after 36 h, using 15 U/mL initial enzymatic activity. Subsequently, submerged fermentations were performed with the produced hydrolysates as onset feedstocks to produce bacterial cellulose (5.6–7 g/L). Our findings indicate a novel approach to valorize CW via the production of crude enzymes and lactose hydrolysis, aiming to unfold the output potential of intermediate product formation and end-product applications. Likewise, this study generated a bio-based material to be further introduced in novel food formulations, elaborating and conforming with the basic pillars of circular economy.
Collapse
|