1
|
Egbulefu C, Black K, Su X, Karmakar P, Habimana-Griffin L, Sudlow G, Prior J, Chukwu E, Zheleznyak A, Xu B, Xu Y, Esser A, Mixdorf M, Moss E, Manion B, Reed N, Gubin M, Lin CY, Schreiber R, Weilbaecher K, Achilefu S. Induction of complementary immunogenic necroptosis and apoptosis cell death pathways inhibits cancer metastasis and relapse. RESEARCH SQUARE 2024:rs.3.rs-3992212. [PMID: 38558990 PMCID: PMC10980095 DOI: 10.21203/rs.3.rs-3992212/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-β) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.
Collapse
Affiliation(s)
- Christopher Egbulefu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75235-9397, USA
| | - Kvar Black
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Xinming Su
- Department of Medicine, Washington University in St. Louis, MO 63110, USA
| | - Partha Karmakar
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | | | - Gail Sudlow
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Julie Prior
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Ezeugo Chukwu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Alex Zheleznyak
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Baogang Xu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Yalin Xu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Alison Esser
- Department of Medicine, Washington University in St. Louis, MO 63110, USA
| | - Matthew Mixdorf
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Evan Moss
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Brad Manion
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Nathan Reed
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Matthew Gubin
- Department of Pathology and Immunology, Washington University in St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, MO 63110, USA
| | - Robert Schreiber
- Department of Pathology and Immunology, Washington University in St. Louis, MO 63110, USA
| | | | - Samuel Achilefu
- Department of Radiology, Washington University in St. Louis, MO 63110, USA
- Department of Medicine, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75235-9397, USA
| |
Collapse
|
2
|
Farkas S, Cioca D, Murányi J, Hornyák P, Brunyánszki A, Szekér P, Boros E, Horváth P, Hujber Z, Rácz GZ, Nagy N, Tóth R, Nyitray L, Péterfi Z. Chlorotoxin binds to both matrix metalloproteinase 2 and neuropilin 1. J Biol Chem 2023; 299:104998. [PMID: 37394009 PMCID: PMC10477481 DOI: 10.1016/j.jbc.2023.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Chlorotoxin (CTX), a scorpion venom-derived 36-residue miniprotein, binds to and is taken up selectively by glioblastoma cells. Previous studies provided controversial results concerning target protein(s) of CTX. These included CLC3 chloride channel, matrix metalloproteinase 2 (MMP-2), regulators of MMP-2, annexin A2, and neuropilin 1 (NRP1). The present study aimed at clarifying which of the proposed binding partners can really interact with CTX using biochemical methods and recombinant proteins. For this purpose, we established two new binding assays based on anchoring the tested proteins to microbeads and quantifying the binding of CTX by flow cytometry. Screening of His-tagged proteins anchored to cobalt-coated beads indicated strong interaction of CTX with MMP-2 and NRP1, whereas binding to annexin A2 was not confirmed. Similar results were obtained with fluorophore-labeled CTX and CTX-displaying phages. Affinity of CTX to MMP-2 and NRP1 was assessed by the "immunoglobulin-coated bead" test, in which the proteins were anchored to beads by specific antibodies. This assay yielded highly reproducible data using both direct titration and displacement approach. The affinities of labeled and unlabeled CTX appeared to be similar for both MMP-2 and NRP1 with estimated KD values of 0.5 to 0.7 μM. Contrary to previous reports, we found that CTX does not inhibit the activity of MMP-2 and that CTX not only with free carboxyl end but also with carboxamide terminal end binds to NRP1. We conclude that the presented robust assays could also be applied for affinity-improving studies of CTX to its genuine targets using phage display libraries.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Patrik Horváth
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
3
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
4
|
Tsedev U, Lin CW, Hess GT, Sarkaria JN, Lam FC, Belcher AM. Phage Particles of Controlled Length and Genome for In Vivo Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS NANO 2022; 16:11676-11691. [PMID: 35830573 DOI: 10.1021/acsnano.1c08720] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
M13 bacteriophage (phage) are versatile, genetically tunable nanocarriers that have been recently adapted for use as diagnostic and therapeutic platforms. Applying p3 capsid chlorotoxin fusion with the "inho" circular single-stranded DNA (cssDNA) gene packaging system, we produced miniature chlorotoxin inho (CTX-inho) phage particles with a minimum length of 50 nm that can target intracranial orthotopic patient-derived GBM22 glioblastoma tumors in the brains of mice. Systemically administered indocyanine green conjugated CTX-inho phage accumulated in brain tumors, facilitating shortwave infrared detection. Furthermore, we show that our inho phage can carry cssDNA that are transcriptionally active when delivered to GBM22 glioma cells in vitro. The ability to modulate the capsid display, surface loading, phage length, and cssDNA gene content makes the recombinant M13 phage particle an ideal delivery platform.
Collapse
Affiliation(s)
- Uyanga Tsedev
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ching-Wei Lin
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Gaelen T Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, Unites States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Fred C Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division of Neurosurgery, Saint Elizabeth's Medical Center, Brighton, Massachusetts 02135, United States
| | - Angela M Belcher
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Tan Y, Xiong M, Liu Q, Yin Y, Yin X, Liao S, Wang Y, Hu L, Zhang XB. Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles for drug delivery. RSC Adv 2022; 12:31173-31179. [DOI: 10.1039/d2ra05172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles (SPN-DNA) for drug delivery based on the minimized nonspecific adhesivity to cells.
Collapse
Affiliation(s)
- Ying Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Yao Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Shiyi Liao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Youjuan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Ling Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 41008, P. R. China
| |
Collapse
|
6
|
Yadegari-Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Role of Endocytosis Pathways in Electropermeablization of MCF7 Cells Using Low Voltage and High Frequency Electrochemotherapy. CELL JOURNAL 2021; 23:445-450. [PMID: 34455720 PMCID: PMC8405087 DOI: 10.22074/cellj.2021.7203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Objective The cell membrane is a major barrier for delivery of hydrophilic drugs and molecules into the cells. Although
low voltage and high frequency electric fields (LVHF) are proposed to overcome the cell membrane barrier, the
mechanism of membrane permeabilization is unclear. The aim of study is to investigate endocytosis pathways as a
possible mechanism for enhancing uptake of bleomycin by LVHF. Materials and Methods In this experimental study, MCF-7 cells were exposed to bleomycin or to electric fields with
various strengths (10-80 V/cm), frequency of 5 kHz, 4000 electric pulse and 100 µs duration in the presence and
absence of three endocytosis inhibitors-chlorpromazine (Cpz), amiloride (Amilo) and genistein (Geni). We determined
the efficiency of these chemotherapeutic agents in each group.
Results LVHF, depending on the intensity, induced different endocytosis pathways. Electric field strengths of 10 and
20 V/cm stimulated the macropinocytosis route. Clathrin-mediated endocytosis was observed at electric field intensities
of 10, 30, 60 and 70 V/cm, whereas induction of caveolae-mediated endocytosis was observed only at the lowest
electric field intensity (10 V/cm).
Conclusion The results of this study imply that LVHF can induce different endocytosis pathways in MCF-7 cells, which
leads to an increase in bleomycin uptake.
Collapse
Affiliation(s)
- Sajedeh Yadegari-Dehkordi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Unnikrishnan BS, Preethi GU, Sreelekha TT. A comprehensive study on 2D, 3D and solid tumor environment to explore a multifunctional biogenic nanoconjugate. Sci Rep 2021; 11:8721. [PMID: 33888736 PMCID: PMC8062514 DOI: 10.1038/s41598-021-87364-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Emergence of nanotechnology created a drastic change in the field of cancer therapy due to their unique features in drug delivery and imaging. Polysaccharide based nanoparticles have received extensive attention in recent years as promising nanoparticle mediated drug delivery systems. Polysaccharides are endorsed with versatile merits including high drug encapsulation efficiency, efficient drug protection against chemical or enzymatic degradation, unique ability to create a controlled release and cellular internalization. In the current study, we have fabricated doxorubicin-loaded carboxymethylated PST001 coated iron oxide nanoparticles (DOX@CM-PST-IONPs) for better management of cancer. CM-PST coated iron oxide nanoparticles co-encapsulated with chemotherapeutic drug doxorubicin, can be utilized for targeted drug delivery. Biocompatible and non-toxic nanoconjugates was found to be effective in both 2-D and 3-D cell culture system with efficient cancer cell internalization. The bench-marked potential of CM-PIONPs to produce reactive oxygen species makes it a noticeable drug delivery system to compact neoplasia. These nanoconjugates can lay concrete on a better way for the elimination of cancer spheroids and tumor burden.
Collapse
Affiliation(s)
- B S Unnikrishnan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College P.O., Thiruvananthapuram, Kerala, 695011, India
| | - G U Preethi
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College P.O., Thiruvananthapuram, Kerala, 695011, India
| | - T T Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College P.O., Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
8
|
Rádis-Baptista G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins (Basel) 2021; 13:147. [PMID: 33671927 PMCID: PMC7919042 DOI: 10.3390/toxins13020147] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-penetrating peptides (CPPs) comprise a class of short polypeptides that possess the ability to selectively interact with the cytoplasmic membrane of certain cell types, translocate across plasma membranes and accumulate in the cell cytoplasm, organelles (e.g., the nucleus and mitochondria) and other subcellular compartments. CPPs are either of natural origin or de novo designed and synthesized from segments and patches of larger proteins or designed by algorithms. With such intrinsic properties, along with membrane permeation, translocation and cellular uptake properties, CPPs can intracellularly convey diverse substances and nanomaterials, such as hydrophilic organic compounds and drugs, macromolecules (nucleic acids and proteins), nanoparticles (nanocrystals and polyplexes), metals and radionuclides, which can be covalently attached via CPP N- and C-terminals or through preparation of CPP complexes. A cumulative number of studies on animal toxins, primarily isolated from the venom of arthropods and snakes, have revealed the cell-penetrating activities of venom peptides and toxins, which can be harnessed for application in biomedicine and pharmaceutical biotechnology. In this review, I aimed to collate examples of peptides from animal venoms and toxic secretions that possess the ability to penetrate diverse types of cells. These venom CPPs have been chemically or structurally modified to enhance cell selectivity, bioavailability and a range of target applications. Herein, examples are listed and discussed, including cysteine-stabilized and linear, α-helical peptides, with cationic and amphipathic character, from the venom of insects (e.g., melittin, anoplin, mastoparans), arachnids (latarcin, lycosin, chlorotoxin, maurocalcine/imperatoxin homologs and wasabi receptor toxin), fish (pardaxins), amphibian (bombesin) and snakes (crotamine and cathelicidins).
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| |
Collapse
|
9
|
C-Terminal Amidation of Chlorotoxin Does Not Affect Tumour Cell Proliferation and Has No Effect on Toxin Cytotoxicity. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Crook ZR, Nairn NW, Olson JM. Miniproteins as a Powerful Modality in Drug Development. Trends Biochem Sci 2020; 45:332-346. [PMID: 32014389 PMCID: PMC7197703 DOI: 10.1016/j.tibs.2019.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.
Collapse
Affiliation(s)
- Zachary R Crook
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Room D4-100, Seattle, WA 98109, USA
| | - Natalie W Nairn
- Blaze Bioscience, Inc, 530 Fairview Ave N., Suite 1400, Seattle, WA 98109, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Room D4-100, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
12
|
Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, Xun Z, Wang D, Ding P. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomater 2019; 96:517-536. [PMID: 31284098 DOI: 10.1016/j.actbio.2019.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform, due to their specific composition and biological properties. However, challenges like considerable complexity, low isolation yield, drug payload, and potential safety concerns substantially reduce their pharmaceutical acceptability. Given that the nano-bio-interface is a crucial factor for nanocarrier behavior and function, modification of synthetic nanoparticles with the intrinsic hallmarks of exosomes' membrane to create exosome mimetics could allow for siRNA delivery in a safer and more efficient manner. Herein, connexin 43 (Cx43)-embedded, exosome-mimicking lipid bilayers coated chitosan nanoparticles (Cx43/L/CS NPs) were constructed by using cell-free (CF) synthesis systems with plasmids encoding Cx43 in the presence of lipid-coated CS NPs (L/CS NPs). The integration of de novo synthesized Cx43 into the lipid bilayers of L/CS NPs occurred cotranslationally during one-pot reaction and, more importantly, the integrated Cx43 was functionally active in transport. In addition to considerably lower cytotoxicity (<four-fold) than cationic Lipo 2000, the obtained Cx43/L/CS-siRNA NPs showed feasible cellular uptake and silencing efficacy that was significantly higher than free siRNA and CS-siRNA NPs. By using a gap junction (GJ) inhibitor, 18β-glycyrrhetinic acid, we demonstrated that Cx43 facilitated the delivery of siRNA into Cx43-expressing U87 MG cells. Additionally, the cellular entry of Cx43/L/CS-siRNA NPs may rely on different endocytic mechanisms, depending on the types of recipient cells. However, Cx43/L/CS-siRNA NPs still exhibited far from adequate delivery efficiency compared with transfection reagent Lipo 2000. Taken together, our study provides a brand new strategy to construct Cx43-functionalized, exosome-mimetic nanoparticles, which may further encourage the establishment of more biomimetic nanocarriers with higher biocompatibility and delivery efficiency. SIGNIFICANCE OF STATEMENT: The major issue to move RNA interference (RNAi) therapy from bench to bedside is the lack of safe and efficient delivery vehicles. Given the certain advantages and limitations of exosomes and synthetic nanocarriers, a promising strategy is to facilitate positive feedbacks between the two fields, in which the superiority of exosomes regarding special membrane composition beneficial for cytoplasmic delivery and the better pharmaceutical acceptance of synthetic nanocarriers could be combined. In this study, we reported to construct Cx43-integrated, exosome-mimetic lipid bilayers coated nanoparticles by using CF synthesis technique. The obtained Cx43/L/CS-siRNA NPs were characterized by desirable cytotoxicity profile and feasible delivery efficiency. This study provides a new avenue and insights for the synthesis of more biocompatible and effective bio-mimetic siRNA delivery platforms.
Collapse
|
13
|
Dastpeyman M, Giacomin P, Wilson D, Nolan MJ, Bansal PS, Daly NL. A C-Terminal Fragment of Chlorotoxin Retains Bioactivity and Inhibits Cell Migration. Front Pharmacol 2019; 10:250. [PMID: 30949052 PMCID: PMC6435586 DOI: 10.3389/fphar.2019.00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Chlorotoxin was originally isolated from the venom of the Israeli scorpion Leiurus quinquestriatus, and has potential as a tumor imaging agent based on its selective binding to tumor cells. Several targets have been suggested for chlorotoxin including voltage-gated chloride channels, and it has been shown to have anti-angiogenic activity and inhibit cell migration. The structure of chlorotoxin is stabilized by four disulfide bonds and contains β-sheet and helical structure. Interestingly, the reduced form has previously been shown to inhibit cell migration to the same extent as the wild type, but structural analysis indicates that the reduced form of the peptide does not maintain the native secondary structure and appears unstructured in solution. This lack of structure suggests that a short stretch of amino acids might be responsible for the bioactivity. To explore this hypothesis, we have synthesized fragments of chlorotoxin without disulfide bonds. As expected for such small peptides, NMR analysis indicated that the peptides were unstructured in solution. However, the peptide corresponding to the eight C-terminal residues inhibited cell migration, in contrast to the other fragments. Our results suggest that the C-terminal region plays a critical role in the bioactivity of chlorotoxin.
Collapse
Affiliation(s)
- Mohadeseh Dastpeyman
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - David Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matthew J Nolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paramjit S Bansal
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
14
|
Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem 2019; 11:323-336. [PMID: 30802141 DOI: 10.4155/fmc-2018-0403] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer remains a critical obstacle for efficient chemotherapy. Many MDR reversal agents have been discovered but failed in clinical trials due to severe toxic effects. Gaseous signaling molecules (GSMs), such as oxygen, nitric oxide, hydrogen sulfide and carbon monoxide, play key roles in regulating cell biological function and MDR. Compared with other toxic chemosensitizing agents, GSMs are endogenous and biocompatible molecules with little side effects. Research show that GSM modulators, including pharmaceutical formulations of GSMs (combined with conventional chemotherapeutic drugs) and GSM-donors (small molecules with GSMs releasing property), can overcome or reverse MDR. This review discusses the roles of these four GSMs in modulating MDR, and summarizes GSMs modulators in treating cancers with drug resistance.
Collapse
|
15
|
Ojeda PG, Henriques ST, Pan Y, Nicolazzo JA, Craik DJ, Wang CK. Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers 2018; 108. [PMID: 28459137 DOI: 10.1002/bip.23025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Chlorotoxin (CTX), a disulfide-rich peptide from the scorpion Leiurus quinquestriatus, has several promising biopharmaceutical properties, including preferential affinity for certain cancer cells, high serum stability, and cell penetration. These properties underpin its potential for use as a drug design scaffold, especially for the treatment of cancer; indeed, several analogs of CTX have reached clinical trials. Here, we focus on its ability to internalize into cells-a trait associated with a privileged subclass of peptides called cell-penetrating peptides-and whether it can be improved through conservative substitutions. Mutants of CTX were made using solid-phase peptide synthesis and internalization into human cervical carcinoma (HeLa) cells was monitored by fluorescence and confocal microscopy. CTX_M1 (ie, [K15R/K23R]CTX) and CTX_M2 (ie, [K15R/K23R/Y29W]CTX) mutants showed at least a twofold improvement in uptake compared to CTX. We further showed that these mutants internalize into HeLa cells largely via an energy-dependent mechanism. Importantly, the mutants have high stability, remaining intact in serum for over 24 h; thus, retaining the characteristic stability of their parent peptide. Overall, we have shown that simple conservative substitutions can enhance the cellular uptake of CTX, suggesting that such type of mutations might be useful for improving uptake of other peptide toxins.
Collapse
Affiliation(s)
- Paola G Ojeda
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
16
|
Xiang S, Sarem M, Shah S, Shastri VP. Liposomal Treatment of Cancer Cells Modulates Uptake Pathway of Polymeric Nanoparticles by Altering Membrane Stiffness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704245. [PMID: 29460335 DOI: 10.1002/smll.201704245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Nanomedicines can be taken up by cells via nonspecific and dynamin-dependent (energy-dependent) clathrin and caveolae-mediated endocytosis. While significant effort has focused on targeting pathway-specific transporters, the role of nanobiophysics in the cell lipid bilayer nanoparticle uptake pathway remains largely unexplored. In this study, it is demonstrated that stiffness of lipid bilayer is a key determinant of uptake of liposomes by mammalian cells. Dynamin-mediated endocytosis (DME) of liposomes is found to correlate with its phase behavior, with transition toward solid phase promoting DME, and transition toward fluidic phase resulting in dynamin-independent endocytosis. Since liposomes can transfer lipids to cell membrane, it is sought to engineer the biophysical properties of the membrane of breast epithelial tumor cells (MD-MBA-231) by treatment with phosphatidylcholine liposomes, and elucidate its effect on the uptake of polymeric nanoparticles. Analysis of the giant plasma membrane vesicles derived from treated cells using flicker spectroscopy reveals that liposome treatment alters membrane stiffness and DME of nanoparticles. Since liposomes have a history of use in drug delivery, localized priming of tumors with liposomes may present a hitherto unexploited means of targeting tumors based on biophysical interactions.
Collapse
Affiliation(s)
- Shengnan Xiang
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Melika Sarem
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| | - Samveg Shah
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| |
Collapse
|
17
|
Kerkis I, de Brandão Prieto da Silva AR, Pompeia C, Tytgat J, de Sá Junior PL. Toxin bioportides: exploring toxin biological activity and multifunctionality. Cell Mol Life Sci 2017; 74:647-661. [PMID: 27554773 PMCID: PMC11107510 DOI: 10.1007/s00018-016-2343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Toxins have been shown to have many biological functions and to constitute a rich source of drugs and biotechnological tools. We focus on toxins that not only have a specific activity, but also contain residues responsible for transmembrane penetration, which can be considered bioportides-a class of cell-penetrating peptides that are also intrinsically bioactive. Bioportides are potential tools in pharmacology and biotechnology as they help deliver substances and nanoparticles to intracellular targets. Bioportides characterized so far are peptides derived from human proteins, such as cytochrome c (CYCS), calcitonin receptor (camptide), and endothelial nitric oxide synthase (nosangiotide). However, toxins are usually disregarded as potential bioportides. In this review, we discuss the inclusion of some toxins and molecules derived thereof as a new class of bioportides based on structure activity relationship, minimization, and biological activity studies. The comparative analysis of the amino acid residue composition of toxin-derived bioportides and their short molecular variants is an innovative analytical strategy which allows us to understand natural toxin multifunctionality in vivo and plan novel pharmacological and biotechnological products. Furthermore, we discuss how many bioportide toxins have a rigid structure with amphiphilic properties important for both cell penetration and bioactivity.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| | | | - Celine Pompeia
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Louvain, Belgium
| | - Paulo L de Sá Junior
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
18
|
Bhattarai P, Vance D, Hatefi A, Khaw BA. An in vitro demonstration of overcoming drug resistance in SKOV3 TR and MCF7 ADR with targeted delivery of polymer pro-drug conjugates. J Drug Target 2017; 25:436-450. [PMID: 27937085 DOI: 10.1080/1061186x.2016.1271421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug resistance is a common phenomenon that occurs in cancer chemotherapy. Delivery of chemotherapeutic agents as polymer pro-drug conjugates (PPDCs) pretargeted with bispecific antibodies could circumvent drug resistance in cancer cells. To demonstrate this approach to overcome drug resistance, Paclitaxel (Ptxl)-resistant SKOV3 TR human ovarian- and doxorubicin (Dox)-resistant MCF7 ADR human mammary-carcinoma cell lines were used. Pre-targeting over-expressed biotin or HER2/neu receptors on cancer cells was conducted by biotinylated anti-DTPA or anti-HER2/neu affibody - anti-DTPA Fab bispecific antibody complexes. The targeting PPDCs are either D-Dox-PGA or D-Ptxl-PGA. Cytotoxicity studies demonstrate that the pretargeted approach increases cytotoxicity of Ptxl or Dox in SKOV3 TR or MCF7 ADR resistant cell lines by 5.4 and 27 times, respectively. Epifluorescent microscopy - used to track internalization of D-Dox-PGA and Dox in MCF7 ADR cells - shows that the pretargeted delivery of D-Dox-PGA resulted in a 2- to 4-fold increase in intracellular Dox concentration relative to treatment with free Dox. The mechanism of internalization of PPDCs is consistent with endocytosis. Enhanced drug delivery and intracellular retention following pretargeted delivery of PPDCs resulted in greater tumor cell toxicity in the current in vitro studies.
Collapse
Affiliation(s)
- Prashant Bhattarai
- a Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| | - Dylan Vance
- b Department of Biology , College of Sciences, Northeastern University , Boston , MA , USA
| | - Arash Hatefi
- c Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers University , Piscataway , NJ , USA
| | - Ban An Khaw
- a Department of Pharmaceutical Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
19
|
Ma K, Fu D, Yu D, Cui C, Wang L, Guo Z, Mao C. Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells. Biomaterials 2017; 121:55-63. [PMID: 28081459 DOI: 10.1016/j.biomaterials.2016.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/21/2016] [Accepted: 12/31/2016] [Indexed: 01/24/2023]
Abstract
A Sleeping Beauty (SB) transposon system is made of a transposon plasmid (containing gene encoding a desired functional or therapeutic protein) and a transposase plasmid (encoding an enzyme capable of cutting and pasting the gene into the host cell genome). It is a kind of natural, nonviral gene delivery vehicle, which can achieve efficient genomic insertion, providing long-term transgenic expression. However, before the SB transposon system could play a role in promoting gene expression, it has to be delivered efficiently first across cell membrane and then into cell nuclei. Towards this end, we used a nanoparticle-like lipid-based protocell, a closed bilayer of the neutral lipids with the DNA encapsulated inside, to deliver the SB transposon system to cancer cells. The SB transposon system was amplified in situ inside the protocells by a polymerase chain reaction (PCR) process, realizing more efficient loading and delivery of the target gene. To reach a high transfection efficiency, we introduced two targeting moieties, folic acid (FA) as a cancer cell-targeting motif and Dexamethasone (DEX) as a nuclear localization signaling molecule, into the protocells. As a result, the FA enabled the modified targeting protocells to deliver the DNA into the cancer cells with an increased efficiency and the DEX promoted the DNA to translocate to cell nuclei, eventually leading to the increased chromosome insertion efficiency of the SB transposon. In vivo study strongly suggested that the transfection efficiency of FA-modified protocells in the tumor tissue was much higher than that in other tissues, which was consistent with the in vitro results. Our studies implied that with the targeting ligand modification, the protocells could be utilized as an efficient targeting gene carrier. Since the protocells were made of neutral lipids without cationic charges, the cytotoxicity of protocells was significantly lower than that of traditional cationic gene carriers such as cationic liposomes and polyethylenimine, enabling the protocells to be employed in a wider dosage range in gene therapy. Our work shows that the protocells are a promising gene carrier for future clinical applications.
Collapse
Affiliation(s)
- Kun Ma
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China; Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, OK, 73019, USA.
| | - Duo Fu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Dongli Yu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Changhao Cui
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Li Wang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Zhaoming Guo
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, OK, 73019, USA; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
20
|
Watanabe S, Borthakur D, Bressan A. Localization of Banana bunchy top virus and cellular compartments in gut and salivary gland tissues of the aphid vector Pentalonia nigronervosa. INSECT SCIENCE 2016; 23:591-602. [PMID: 25728903 DOI: 10.1111/1744-7917.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
| |
Collapse
|
21
|
Oller-Salvia B, Teixidó M, Giralt E. From venoms to BBB shuttles: Synthesis and blood-brain barrier transport assessment of apamin and a nontoxic analog. Biopolymers 2016; 100:675-86. [PMID: 24281722 DOI: 10.1002/bip.22257] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 12/17/2022]
Abstract
Venoms are currently the focus of many drug discovery programs because they contain highly bioactive and selective components. Among them, apamin, a peptide found in bee venom, has received considerable attention because of its affinity for certain potassium channels and also because of its interesting structure and high stability to extreme pH and temperatures. Although apamin has long been claimed to cross the blood-brain barrier (BBB), only a few studies have been performed producing controversial results. In this article, it is shown that not only apamin is indeed able to penetrate the BBB in a cell-based model but also that an analog reported to be nontoxic passes through this barrier. Furthermore, the permeability values obtained, together with some evidence of an active transport mechanism and an amazing stability to serum proteases, make these peptides promising candidates for BBB shuttles.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Science Park, Baldiri Reixac 10, Barcelona, 08028, Spain
| | | | | |
Collapse
|
22
|
Ojeda PG, Wang CK, Craik DJ. Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers 2016; 106:25-36. [DOI: 10.1002/bip.22748] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Paola G. Ojeda
- Institute for Molecular Bioscience, the University of Queensland; Brisbane QLD 4072 Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, the University of Queensland; Brisbane QLD 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
23
|
Cherng JY, Lin CH. Covalent attachment of an influenza hemagglutinin-derived peptide to urethane-based cationic polymers affects their transfection efficiency in DNA delivery and their course in cell entry. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
25
|
Cheng Y, Zhao J, Qiao W, Chen K. Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:385-405. [PMID: 25143859 PMCID: PMC4138135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
Malignant gliomas, especially glioblastoma multiforme, are the most widely distributed and deadliest brain tumors because of their resistance to surgical and medical treatment. Research of glioma-specific bioconjugates for diagnosis and therapy developed rapidly during the past several years. Many studies have demonstrated that chlorotoxin (CTX) and Buthus martensii Karsch chlorotoxin (BmK CT) specifically inhibited glioma cells growth and metastasis, and accelerated tumor apoptosis. The bioconjugates of CTX or BmK CT with other molecules have played an increasing role in diagnostic imaging and treatment of gliomas. To date, CTX-based bioconjugates have achieved great success in phase I/II clinical trials about safety profiles. Here, we will provide a review on the important role of ion channels in the underlying mechanisms of gliomas invasive growth and how CTX suppresses gliomas proliferation and migration. We will summarize the recent advances in the applications of CTX bioconjugates for gliomas diagnosis and treatment. In addition, we will review recent studies on BmK CT bioconjugates and compare their efficacies with CTX derivatives. Finally, we will address advantages and challenges in the use of CTX or BmK CT bioconjugates as specific agents for theranostic applications in gliomas.
Collapse
Affiliation(s)
- Yongjun Cheng
- Department of Nuclear Medicine, The First People’s Hospital, Shanghai Jiaotong UniversityShanghai 200080, P.R. China
| | - Jinhua Zhao
- Department of Nuclear Medicine, The First People’s Hospital, Shanghai Jiaotong UniversityShanghai 200080, P.R. China
| | - Wenli Qiao
- Department of Nuclear Medicine, The First People’s Hospital, Shanghai Jiaotong UniversityShanghai 200080, P.R. China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90033, USA
| |
Collapse
|
26
|
Arzamasov AA, Vassilevski AA, Grishin EV. Chlorotoxin and related peptides: Short insect toxins from scorpion venom. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 40:387-98. [DOI: 10.1134/s1068162014040013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Qin C, He B, Dai W, Lin Z, Zhang H, Wang X, Wang J, Zhang X, Wang G, Yin L, Zhang Q. The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein ClC-3. Biomaterials 2014; 35:5908-20. [DOI: 10.1016/j.biomaterials.2014.03.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
|
28
|
Northfield SE, Wang CK, Schroeder CI, Durek T, Kan MW, Swedberg JE, Craik DJ. Disulfide-rich macrocyclic peptides as templates in drug design. Eur J Med Chem 2014; 77:248-57. [DOI: 10.1016/j.ejmech.2014.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 01/04/2023]
|
29
|
Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors. Anal Biochem 2013; 440:212-9. [DOI: 10.1016/j.ab.2013.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/05/2023]
|
30
|
Zwanziger D, Staat C, Andjelkovic AV, Blasig IE. Claudin-derived peptides are internalized via specific endocytosis pathways. Ann N Y Acad Sci 2012; 1257:29-37. [PMID: 22671586 DOI: 10.1111/j.1749-6632.2012.06567.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Claudin proteins are involved in the paracellular tightening of epithelia and endothelia. Their internalization, which can be modulated by extracellular stimuli, for example, proinflammatory cytokines, is a prerequisite for the regulation of the paracellular barrier to allow, for instance, cell migration or drug delivery. The internalization of peptide sequences of claudins is completely unknown. Here, we studied the internalization of two peptides, TAMRA-claudin-1 and TAMRA-claudin-5, derivatives of the extracellular loop of claudin-1 and -5, respectively, in either epithelial or endothelial cells. The cellular uptake of the claudin-1 peptide follows the clathrin-mediated endocytosis as indicated by inhibitors and respective tracers for colocalization. In addition, macropinocytosis and caveolae-mediated endocytosis of the peptide was observed. In contrast, the claudin-5 peptide is mainly internalized via the caveolae-mediated endocytosis evidenced by the colocalization with respective tracers and vesicle markers, whereas the nonselective macropinocytosis seems to be involved in a less effective manner. In conclusion, the assumption is supported that claudin peptides can be internalized by specific and nonspecific pathways.
Collapse
Affiliation(s)
- Denise Zwanziger
- Leibniz Institut für Molekulare Pharmakologie, Berlin-Buch, Germany
| | | | | | | |
Collapse
|