1
|
Taha SR, Boulos F. E-cadherin staining in the diagnosis of lobular versus ductal neoplasms of the breast: the emperor has no clothes. Histopathology 2025; 86:327-340. [PMID: 39138705 PMCID: PMC11707503 DOI: 10.1111/his.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Categorizing breast neoplasia as ductal or lobular is a daily exercise that relies on a combination of histologic and immunohistochemical tools. The historically robust link between loss of the E-cadherin molecule and lobular neoplasia has rendered staining for E-cadherin by immunohistochemistry a staple of this diagnostic process. Unfortunately, discordances between E-cadherin expression and histomorphology, and variations in E-cadherin staining patterns and intensities abound in clinical practice, but are often neglected in favour of a binary interpretation of the E-cadherin result. In this article, we highlight the complexities of E-cadherin expression through a review of the E-cadherin protein and its associated gene (CDH1), the mechanisms leading to aberrant/absent E-cadherin expression, and the implications of these factors on the reliability of the E-cadherin immunohistochemical stain in the classification of ductal versus lobular mammary neoplasia.
Collapse
MESH Headings
- Female
- Humans
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Cadherins/metabolism
- Cadherins/analysis
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Lobular/diagnosis
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Immunohistochemistry
Collapse
Affiliation(s)
- Seyed R Taha
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Fouad Boulos
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
2
|
Jiang L, Wang J, Liu Z, Zhang Q, Yang XL. Seryl-tRNA synthetase inhibits Wnt signaling and breast cancer progression and metastasis. FASEB J 2025; 39:e70294. [PMID: 39760229 DOI: 10.1096/fj.202401720r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Tumors require ample protein synthesis to grow, and aminoacyl-tRNA synthetases, as critical translation factors, are expected to support cancer progression. Unexpectedly, overexpression of seryl-tRNA synthetase (SerRS) suppresses primary tumor growth of breast cancer. However, the effects of SerRS on metastasis have not been studied. We observe a decrease in SerRS expression in breast cancer patient metastases compared with matched primary tumors, suggesting an inhibitory role of SerRS in metastasis. Through mouse metastasis models using breast cancer cell lines overexpressing SerRS, we show that SerRS impedes not only primary tumor growth but also establishment of metastases, and the effect of SerRS on metastasis can be independent of its impact on the primary tumor. SerRS also inhibits tumor growth with induced, post-tumor-onset overexpression, demonstrating its potential as an anticancer therapeutic. Tumor RNA-seq analysis identified Wnt signaling among the top SerRS-regulated pathways. Using cell-based studies, we confirm SerRS suppresses Wnt signaling and metastatic processes in breast cancer cells. To the best of our knowledge, this is the first study to show a component of the translation machinery can act as both a tumor and metastasis suppressor.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Ze Liu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Qian Zhang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
3
|
Aslan F, Almalı N, Kaya Z, Güven M, Şahin ES, Özdemir A, Duran S, Binici S, Karan BM, Uygur S. Linking CDH1 SNPs to gastric cancer risk: a comprehensive analysis of rs16260, rs13689, and rs9929218. Mol Biol Rep 2024; 51:1162. [PMID: 39550749 DOI: 10.1007/s11033-024-10094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE Single nucleotide polymorphisms (SNPs) are linked to carcinogenesis. Pathogenic variants in the CDH1 gene are associated with gastric cancer. This study examines the genotype and allele frequencies of three SNPs (rs16260, rs13689, and rs9929218) in the CDH1 gene and their relationship with gastric cancer risk. MATERIALS AND METHODS The study involved 105 gastric cancer patients with pathology results and 105 healthy controls. Clinical, histopathological, and demographic data were collected and compared between the two groups. RESULTS No significant differences were found for rs16260 (- 160 C > A) and rs9929218 (G > A) between patients and controls (p > 0.05). For rs13689 (T > C), the T allele frequency was 90% in patients versus 69% in controls, while the C allele frequency was 10% in patients versus 31% in controls. A significant difference was observed for this SNP, with a higher T allele frequency in patients (OR = 4.03 CI95% 2.4-6.7, p < 0.0001) compared with controls, suggesting a fourfold increased risk of gastric cancer. Genotype frequencies were 80% wild-type (TT) and 20% heterozygous-type (TC) in patients, and 58% TT, 22% TC, and 20% mutant-type (CC) in controls (p < 0.0001). The frequencies of non-C allele carriers (TT) were present in 80% of patients versus 58.1% of controls (OR = 2.88 CI95% 1.56-5.34, p = 0.0006). CONCLUSION This study is the first to link the rs13689 SNP's T allele and TT genotype with increased gastric cancer risk. Our results suggest that the rs13689 T allele may contribute significantly to disease susceptibility, while the rs16260 CC genotype and rs9929218 GG genotype may influence risk in smokers.
Collapse
Affiliation(s)
- Fırat Aslan
- Faculty of Medicine, Department of General Surgery, Van Yuzuncu Yıl University, Van, Turkey.
- Department of General Surgery, Van Education and Research Hospital, Van, Turkey.
| | - Necat Almalı
- Faculty of Medicine, Department of General Surgery, Van Yuzuncu Yıl University, Van, Turkey
| | - Zehra Kaya
- Faculty of Medicine, Department of Medical Biology, Van Yuzuncu Yıl University, Van, Turkey
| | - Mustafa Güven
- Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Elif Sena Şahin
- Faculty of Medicine, Department of Medical Biology, Van Yuzuncu Yıl University, Van, Turkey
| | - Abdulselam Özdemir
- Faculty of Medicine, Department of General Surgery, Van Yuzuncu Yıl University, Van, Turkey
- Department of General Surgery, Dağkapı State Hospital, Diyarbakır, Turkey
| | - Seren Duran
- Faculty of Medicine, Department of Medical Biology, Van Yuzuncu Yıl University, Van, Turkey
| | - Serhat Binici
- Faculty of Medicine, Department of General Surgery, Van Yuzuncu Yıl University, Van, Turkey
- General Surgery Department, Şırnak State Hospital, Şırnak, Turkey
| | - Burak Muğdat Karan
- Faculty of Medicine, Department of Medical Biology, Van Yuzuncu Yıl University, Van, Turkey
| | - Serhat Uygur
- Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
4
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. E-Cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res 2024; 84:2820-2835. [PMID: 38959339 PMCID: PMC11374473 DOI: 10.1158/0008-5472.can-23-3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Claudia Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashleigh J. Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Bishwa Ranjan Si
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwoo Kim
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Hoffner
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Fieni C, Sorrentino C, Ciummo SL, Fontana A, Lotti LV, Scialis S, Calvo Garcia D, Caulo M, Di Carlo E. Immunoliposome-based targeted delivery of the CRISPR/Cas9gRNA-IL30 complex inhibits prostate cancer and prolongs survival. Exp Mol Med 2024; 56:2033-2051. [PMID: 39232121 PMCID: PMC11447253 DOI: 10.1038/s12276-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
The development of selective and nontoxic immunotherapy targeting prostate cancer (PC) is challenging. Interleukin (IL)30 plays immunoinhibitory and oncogenic roles in PC, and its tumor-specific suppression may have significant clinical implications. CRISPR/Cas9-mediated IL30 gene deletion in PC xenografts using anti-PSCA antibody-driven lipid nanocomplexes (Cas9gRNA-hIL30-PSCA NxPs) revealed significant genome editing efficiency and circulation stability without off-target effects or organ toxicity. Biweekly intravenous administration of Cas9gRNA-hIL30-PSCA NxPs to PC-bearing mice inhibited tumor growth and metastasis and improved survival. Mechanistically, Cas9gRNA-hIL30-PSCA NxPs suppressed ANGPTL 1/2/4, IL1β, CCL2, CXCL1/6, SERPINE1-F1, EFNB2, PLG, PF4, VEGFA, VEGFD, ANG, TGFβ1, EGF and HGF expression in human PC cells while upregulated CDH1, DKK3 and PTEN expression, leading to low proliferation and extensive ischemic necrosis. In the syngeneic PC model, IL30-targeting immunoliposomes downregulated NFKB1 expression and prevented intratumoral influx of CD11b+Gr-1+MDCs, Foxp3+Tregs, and NKp46+RORγt+ILC3, and prolonged host survival by inhibiting tumor progression. This study serves as a proof of principle that immunoliposome-based targeted delivery of Cas9gRNA-IL30 represent a potentially safe and effective strategy for PC treatment.
Collapse
Affiliation(s)
- Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UDA-TECHLAB Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Sofia Scialis
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Darien Calvo Garcia
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
6
|
Loaiza-Moss J, Braun U, Leitges M. Transcriptome Profiling of Mouse Embryonic Fibroblast Spontaneous Immortalization: A Comparative Analysis. Int J Mol Sci 2024; 25:8116. [PMID: 39125691 PMCID: PMC11311763 DOI: 10.3390/ijms25158116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. In our research, we characterized the poly-A RNA transcriptome changes after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were screened using DESeq2 and characterized by gene ontology enrichment analysis and protein-protein interaction (PPI) network analysis to identify the potential hub genes. In our study, we identified changes in the expression of genes involved in proliferation regulation, cell adhesion, immune response and transcriptional regulation in immortalized MEFs. In addition, we performed a comparative analysis with previously reported MEF immortalization data, where we propose a predicted gene regulatory network model in immortalized MEFs based on the altered expression of Mapk11, Cdh1, Chl1, Zic1, Hoxd10 and the novel hub genes Il6 and Itgb2.
Collapse
Affiliation(s)
| | | | - Michael Leitges
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. Johns, NL A1B 3V6, Canada; (J.L.-M.); (U.B.)
| |
Collapse
|
7
|
Sculthorpe D, Denton A, Rusnita D, Fadhil W, Ilyas M, Mukherjee A. Advantages of automated immunostain analyses for complex membranous immunostains: An exemplar investigating loss of E-cadherin expression in colorectal cancer. Pathol Res Pract 2024; 260:155470. [PMID: 39032383 DOI: 10.1016/j.prp.2024.155470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As pathology moves towards digitisation, biomarker profiling through automated image analysis provides potentially objective and time-efficient means of assessment. This study set out to determine how a complex membranous immunostain, E-cadherin, assessed using an automated digital platform fares in comparison to manual evaluation in terms of clinical correlations and prognostication. Tissue microarrays containing 1000 colorectal cancer samples, stained with clinical E-cadherin antibodies were assessed through both manual scoring and automated image analysis. Both manual and automated scores were correlated to clinicopathological and survival data. E-cadherin data generated through digital image analysis was superior to manual evaluation when investigating for clinicopathological correlations in colorectal cancer. Loss of membranous E-cadherin, assessed on automated platforms, correlated with: right sided tumours (p = <0.001), higher T-stage (p = <0.001), higher grade (p = <0.001), N2 nodal stage (p = <0.001), intramural lymphovascular invasion (p = 0.006), perineural invasion (p = 0.028), infiltrative tumour edge (p = 0.001) high tumour budding score (p = 0.038), distant metastasis (p = 0.035), and poorer 5-year (p= 0.042) survival status. Manual assessment was only correlated with higher grade tumours, though other correlations become apparent only when assessed for morphological expression pattern (circumferential, basolateral, parallel) irrespective of intensity. Digital assessment of E-cadherin is effective for prognostication of colorectal cancer and may potentially offer benefits of improved objectivity, accuracy, and economy of time. Incorporating tools to assess patterns of staining may further improve such digital assessment in the future.
Collapse
Affiliation(s)
- Declan Sculthorpe
- Translational Medical Sciences, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Amy Denton
- Translational Medical Sciences, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Dewi Rusnita
- Translational Medical Sciences, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Wakkas Fadhil
- Translational Medical Sciences, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Ilyas
- Translational Medical Sciences, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, United Kingdom
| | - Abhik Mukherjee
- Translational Medical Sciences, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
8
|
Dai Y, Inagaki NF, Ueki R, Sando S, Hasegawa K, Ito T. Hepatocyte Growth Factor DNA Aptamer for Prevention of Postoperative Peritoneal Adhesion via Enhancement of Fibrinolysis and Inhibition of Mesothelial Mesenchymal Transition. ACS APPLIED BIO MATERIALS 2024; 7:4679-4689. [PMID: 38963794 DOI: 10.1021/acsabm.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent complication of abdominal surgery, posing a significant hindrance to postsurgical recovery. Although several strategies have been developed to alleviate and prevent adhesions, their efficacy remains unsatisfactory. For the first time, we studied the therapeutic effect and mechanism of our recently developed thermally stable oligonucleotide-based mimetics of hepatocyte growth factor (HGF DNA aptamer) to prevent PPA. The HGF DNA aptamer effectively inhibited canonical TGF-β1 signaling transduction, partially suppressing mesothelial mesenchymal transition. Additionally, the aptamer, respectively, upregulated and downregulated the expression of tissue plasminogen activator and plasminogen activator inhibitor 1, thereby enhancing fibrinolytic activity. As a pleiotropic factor, the HGF DNA aptamer also enhanced the migratory and proliferative capacities of mesothelial cells. Finally, the aptamer demonstrated a higher level of effectiveness in preventing PPAs than the commercially available antiperitoneal adhesion barrier, Seprafilm. Due to its therapeutic benefits, excellent stability, biosafety, cost-effectiveness, and versatility, the HGF DNA aptamer demonstrates promise for preventing PPA in future clinical settings.
Collapse
Affiliation(s)
- Yizhou Dai
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Radiology and Biomedical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Ueki
- Department of Chemistry & Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry & Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Radiology and Biomedical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Sadlecki P, Walentowicz-Sadlecka M. Molecular landscape of borderline ovarian tumours: A systematic review. Open Med (Wars) 2024; 19:20240976. [PMID: 38859878 PMCID: PMC11163159 DOI: 10.1515/med-2024-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Pawel Sadlecki
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| |
Collapse
|
10
|
Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene 2024; 909:148293. [PMID: 38373660 DOI: 10.1016/j.gene.2024.148293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.
Collapse
Affiliation(s)
- Ser Hui San
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
11
|
Kao CN, Chen CC, Chu WL, Luo CW, Huang WL, Moi SH, Hou MF, Pan MR. Evaluating Recurrence Risk in Patients Undergoing Breast-conserving Surgery Using E-cadherin Staining as a Biomarker. In Vivo 2024; 38:1143-1151. [PMID: 38688621 PMCID: PMC11059884 DOI: 10.21873/invivo.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Following the National Comprehensive Cancer Network guidelines, radiotherapy is administered after breast-conserving surgery (BCS) in patients with more than four positive lymph nodes. Four positive lymph nodes are typically considered an indicator to assess disease spread and patient prognosis. However, the subjective counting of positive axillary lymph nodes underscores the need for biomarkers to improve diagnostic precision and reduce the risk of unnecessary treatments. Loss of E-cadherin expression is associated with cancer metastasis, but its potential as a predictive marker for cancer treatment remains uncertain. This study aimed to investigate the validity of E-cadherin as a reference for adjuvant radiotherapy in breast cancer patients with positive lymph nodes post-mastectomy. MATERIALS AND METHODS Immunohistochemistry was performed on 60 clinical tissue specimens to assess these implications. RESULTS Although no significant result was found in a single E-cadherin subgroup (low, medium, and high subgroups according to the X-tile algorithm), the proposed multivariate model, including the E-cadherin category, breast cancer subtype, and tumor size, yielded satisfactory recurrence risk estimation results for patients undergoing BCS. Patients with a low E-cadherin category, triple-negative breast cancers, and tumor size over 5 cm could have an increased risk of recurrence. CONCLUSION Our study proposed a multivariate model that serves as a candidate prognostic factor for recurrence-free survival in patients undergoing BCS and radiotherapy. Utilizing this model for patient stratification in high-risk diseases and as a standard for assessing postoperative intensified therapy can potentially improve patient outcomes.
Collapse
Affiliation(s)
- Chieh-Ni Kao
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, R.O.C
| | - Chia-Chi Chen
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
- Department of Pathology, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Wan-Ling Chu
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, R.O.C
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| | - Wei-Lun Huang
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, R.O.C.;
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
12
|
Khan NG, Adiga D, Rai PS, Kabekkodu SP. Integrated In-Silico and In Vitro analysis to Decipher the contribution of bisphenol-A in cervical cancer. Toxicology 2024; 504:153791. [PMID: 38555994 DOI: 10.1016/j.tox.2024.153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Bisphenol A (BPA) is a synthetic chemical widely used as a monomer for producing polycarbonate plastics. The present investigation employed an in-silico approach to identify BPA-responsive genes and comprehend the biological functions affected using in vitro studies. A Comparative Toxicogenomics Database search identified 29 BPA-responsive genes in cervical cancer (CC). Twenty-nine genes were screened using published datasets, and thirteen of those showed differential expression between normal and CC samples. Protein-Protein Interaction Networks (PPIN) analysis identified BIRC5, CASP8, CCND1, EGFR, FGFR3, MTOR, VEGFA, DOC2B, WNT5A, and YY1 as hub genes. KM-based survival analysis identified that CCND, EGFR, VEGFA, FGFR3, DOC2B, and YY1 might affect CC patient survival. SiHa and CaSki cell proliferation, migration, and invasion were all considerably accelerated by BPA exposure. Changes in cell morphology, remodeling of the actin cytoskeleton, increased number and length of filopodia, elevated intracellular reactive oxygen species and calcium, and lipid droplet accumulation were noted upon BPA exposure. BPA treatment upregulated the expression of epithelial to mesenchymal transition pathway members and enhanced the nuclear translocation of CTNNB1. We showed that the enhanced migration and nuclear translocation of CTNNB1 upon BPA exposure is a calcium-dependent process. The present study identified potential BPA-responsive genes and provided novel insights into the biological effects and mechanisms affected by BPA in CC. Our study raises concern over the use of BPA.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
13
|
Shome R, Sen P, Sarkar S, Ghosh SS. Single-cell transcriptomics reveals the intra-tumoral heterogeneity and SQSTM1/P62 and Wnt/β-catenin mediated epithelial to mesenchymal transition and stemness of triple-negative breast cancer. Exp Cell Res 2024; 438:114032. [PMID: 38583856 DOI: 10.1016/j.yexcr.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by the complex tumor microenvironment (TME) consisting of an abundance of mesenchymal stem cells (MSCs), which is known to facilitate epithelial-to-mesenchymal transition (EMT). The development of single-cell genomics is a powerful method for defining the intricate genetic landscapes of malignancies. In this study, we have employed single-cell RNA sequencing (scRNA-seq) to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare consequential cell subpopulations of significance. The scRNA-seq analysis of TNBC and Normal patient derived samples revealed that EMT markers and transcription factors were most upregulated in MSC population. Further, exploration of gene expression analysis among TNBC and Normal patient-derived MSCs ascertained the role of SQSTM1/P62 and Wnt/β-catenin in TNBC progression. Wnt/β-catenin and Wnt/PCP signaling pathways are prominent contributors of EMT, stemness, and cancer stem cell (CSC) properties of TNBC. SQSTM1/P62 cooperates with the components of the Wnt/PCP signaling pathway and is critically involved at the interface of autophagy and EMT. Moreover, siRNA targeting SQSTM1/P62 and inhibitor of Wnt/β-catenin (FH535) in conjunction was used to explore molecular modification of EMT and stemness markers. Although SQSTM1/P62 is not crucial for cell survival, cytotoxicity assay revealed synergistic interaction between the siRNA/inhibitor. Modulation of these important pathways helped in reduction of expression of genes and proteins contributing to CSC properties. Gene and protein expression analysis revealed the induction of EMT to MET. Moreover, co-treatment resulted in inactivation of non-canonical Wnt VANGL2-JNK signaling axis. The synergistic impact of inhibition of SQSTM1/P62 and Wnt/β-catenin signaling facilitates the development of a potential therapeutic regimen for TNBC.
Collapse
Affiliation(s)
- Rajib Shome
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India.
| |
Collapse
|
14
|
Conti S, Venturini V, Cañellas-Socias A, Cortina C, Abenza JF, Stephan-Otto Attolini C, Middendorp Guerra E, Xu CK, Li JH, Rossetti L, Stassi G, Roca-Cusachs P, Diz-Muñoz A, Ruprecht V, Guck J, Batlle E, Labernadie A, Trepat X. Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells. Nat Commun 2024; 15:3363. [PMID: 38637494 PMCID: PMC11026456 DOI: 10.1038/s41467-024-47227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Colorectal cancer (CRC) tumors are composed of heterogeneous and plastic cell populations, including a pool of cancer stem cells that express LGR5. Whether these distinct cell populations display different mechanical properties, and how these properties might contribute to metastasis is poorly understood. Using CRC patient derived organoids (PDOs), we find that compared to LGR5- cells, LGR5+ cancer stem cells are stiffer, adhere better to the extracellular matrix (ECM), move slower both as single cells and clusters, display higher nuclear YAP, show a higher survival rate in response to mechanical confinement, and form larger transendothelial gaps. These differences are largely explained by the downregulation of the membrane to cortex attachment proteins Ezrin/Radixin/Moesin (ERMs) in the LGR5+ cells. By analyzing single cell RNA-sequencing (scRNA-seq) expression patterns from a patient cohort, we show that this downregulation is a robust signature of colorectal tumors. Our results show that LGR5- cells display a mechanically dynamic phenotype suitable for dissemination from the primary tumor whereas LGR5+ cells display a mechanically stable and resilient phenotype suitable for extravasation and metastatic growth.
Collapse
Affiliation(s)
- Sefora Conti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valeria Venturini
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emily Middendorp Guerra
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Catherine K Xu
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Anna Labernadie
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Principe Felipe (CIPF), Valencia, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Facultat de Medicina, University of Barcelona (UB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
15
|
Gonzalez T, Nie Q, Chaudhary LN, Basel D, Reddi HV. Methylation signatures as biomarkers for non-invasive early detection of breast cancer: A systematic review of the literature. Cancer Genet 2024; 282-283:1-8. [PMID: 38134587 DOI: 10.1016/j.cancergen.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Early detection of breast cancer would help alleviate the burden of treatment for early-stage breast cancer and help patient prognosis. There is currently no established gene panel that utilizes the potential of DNA methylation as a molecular signature for the early detection of breast cancer. This systematic review aims to identify the optimal methylation biomarkers for a non-invasive liquid biopsy assay and the gaps in knowledge regarding biomarkers for early detection of breast cancer. METHODS Following the PRISMA-ScR method, Pubmed and Google Scholar was searched for publications related to methylation biomarkers in breast cancer over a five-year period. Eligible publications were mined for key data fields such as study aims, cohort demographics, types of breast cancer studied, technologies used, and outcomes. Data was analyzed to address the objectives of the review. RESULTS Literature search identified 112 studies of which based on eligibility criteria, 13 studies were included. 28 potential methylation gene targets were identified, of which 23 were methylated at the promoter region, 1 was methylated in the body of the gene and 4 were methylated at yet to be identified locations. CONCLUSIONS Our evaluation shows that at minimum APC, RASSFI, and FOXA1 genes would be a promising set of genes to start with for the early detection of breast cancer, based on the sensitivity and specificity outlined in the studies. Prospective studies are needed to optimize biomarkers for broader impact in early detection of breast cancer.
Collapse
Affiliation(s)
- Tessa Gonzalez
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA
| | - Qian Nie
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA
| | - Lubna N Chaudhary
- Division of Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, CT, USA
| | - Donald Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, CT, USA
| | - Honey V Reddi
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA.
| |
Collapse
|
16
|
Ragheb MA, Mohamed FG, Diab HM, Ragab MS, Emara M, Elwahy AHM, Abdelhamid IA, Soliman MH. Novel Bis(2-cyanoacrylamide) Linked to Sulphamethoxazole: Synthesis, DNA Interaction, Anticancer, ADMET, Molecular Docking, and DFT Studies. Chem Biodivers 2024; 21:e202301341. [PMID: 38314957 DOI: 10.1002/cbdv.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In the light of advancement and potential extensive use of medication design and therapy, new bis(cyanoacrylamides) incorporating sulphamethoxazole derivatives (7 a-7 f) were synthesized and confirmed by different spectral tools. In vitro anticancer activity towards different human cancer cells (HCT116, MDA-MB-231 and A549) was assessed using MTT assay. Among all derivatives, 4C- and 6C-spacer derivatives (7 e and 7 f) had the most potent growth inhibitory activities against HCT116 cells with IC50 values of 39.7 and 28.5 μM, respectively. 7 e and 7 f induced apoptosis and suppressed migration of HCT116 cells. These compounds also induced a significant increase in caspase-3 and CDH1 activities, and a downregulation of Bcl2 using ELISA. pBR322 DNA cleavage activities of cyanoacrylamides were determined using agarose gel electrophoresis. Furthermore, 7 e and 7 f showed good DNA and BSA binding affinities using different spectroscopic techniques. Furthermore, molecular docking for 7 e and 7 f was performed to anticipate their binding capabilities toward various proteins (Bcl2, CDH1 and BSA). The docking results were well correlated with those of experimental results. Additionally, density functional theory and ADMET study were performed to evaluate the molecular and pharmacokinetic features of 7 e and 7 f, respectively. Thus, this work reveals promising antitumor lead compounds that merit future research and activity enhancement.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Fatma G Mohamed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hadeer M Diab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science, Technology and innovation, 12578-, Giza, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
17
|
Rivera-Peña B, Folawiyo O, Turaga N, Rodríguez-Benítez RJ, Felici ME, Aponte-Ortiz JA, Pirini F, Rodríguez-Torres S, Vázquez R, López R, Sidransky D, Guerrero-Preston R, Báez A. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27:89. [PMID: 38268779 PMCID: PMC10804364 DOI: 10.3892/ol.2024.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
Differentially methylated regions (DMRs) can be used as head and neck squamous cell carcinoma (HNSCC) diagnostic, prognostic and therapeutic targets in precision medicine workflows. DNA from 21 HNSCC and 10 healthy oral tissue samples was hybridized to a genome-wide tiling array to identify DMRs in a discovery cohort. Downstream analyses identified differences in promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions associated with tumor differentiation, nodal involvement and survival. Genome-wide DMR analysis showed 2,565 DMRs common to the three subsites. A total of 738 DMRs were unique to laryngeal cancer (n=7), 889 DMRs were unique to oral cavity cancer (n=10) and 363 DMRs were unique to pharyngeal cancer (n=6). Based on the genome-wide analysis and a Gene Ontology analysis, 10 candidate genes were selected to test for prognostic value and association with clinicopathological features. TIMP3 was associated with tumor differentiation in oral cavity cancer (P=0.039), DAPK1 was associated with nodal involvement in pharyngeal cancer (P=0.017) and PAX1 was associated with tumor differentiation in laryngeal cancer (P=0.040). A total of five candidate genes were selected, DAPK1, CDH1, PAX1, CALCA and TIMP3, for a prevalence study in a larger validation cohort: Oral cavity cancer samples (n=42), pharyngeal cancer tissues (n=25) and laryngeal cancer samples (n=52). PAX1 hypermethylation differed across HNSCC anatomic subsites (P=0.029), and was predominantly detected in laryngeal cancer. Kaplan-Meier survival analysis (P=0.043) and Cox regression analysis of overall survival (P=0.001) showed that DAPK1 methylation is associated with better prognosis in HNSCC. The findings of the present study showed that the HNSCC subsites oral cavity, pharynx and larynx display substantial differences in aberrant DNA methylation patterns, which may serve as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bianca Rivera-Peña
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nitesh Turaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rosa J. Rodríguez-Benítez
- Department of General Social Sciences, Faculty of Social Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Marcos E. Felici
- Oral Health Division, Puerto Rico Department of Health, San Juan 00927, Puerto Rico
| | - Jaime A. Aponte-Ortiz
- Department of General Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Instituto Romagnolo per lo Studio dei Tumori ‘Dino Amadori’, Meldola I-47014, Italy
| | | | - Roger Vázquez
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Ricardo López
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Research and Development, LifeGene-Biomarks, San Juan 00909, Puerto Rico
| | - Adriana Báez
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
18
|
Celli L, Gasparini P, Biino G, Zannini L, Cardano M. CRISPR/Cas9 mediated Y-chromosome elimination affects human cells transcriptome. Cell Biosci 2024; 14:15. [PMID: 38291538 PMCID: PMC10829266 DOI: 10.1186/s13578-024-01198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Sexual dimorphism represents a key concept in the comprehension of molecular processes guiding several sex-specific physiological and pathological mechanisms. It has been reported that genes involved in many disorders show a sex-dependent expression pattern. Moreover, the loss of Y chromosome (LOY), found to be a physiological age-driven phenomenon, has been linked to many neurodegenerative and autoimmune disorders, and to an increased cancer risk. These findings drove us towards the consideration that LOY may cause the de-regulation of disease specific networks, involving genes located in both autosomal and sex chromosomes. RESULTS Exploiting the CRISPR/Cas9 and RNA-sequencing technologies, we generated a Y-deficient human cell line that has been investigated for its gene expression profile. Our results showed that LOY can influence the transcriptome displaying relevant enriched biological processes, such as cell migration regulation, angiogenesis and immune response. Interestingly, the ovarian follicle development pathway was found enriched, supporting the female-mimicking profile of male Y-depleted cells. CONCLUSION This study, besides proposing a novel approach to investigate sex-biased physiological and pathological conditions, highlights new roles for the Y chromosome in the sexual dimorphism characterizing human health and diseases. Moreover, this analysis paves the way for the research of new therapeutic approaches for sex dimorphic and LOY-related diseases.
Collapse
Affiliation(s)
- Ludovica Celli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Italy
| | - Patrizia Gasparini
- Epigenomic and Biomarkers of Solid Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Ginevra Biino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy
| | - Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy.
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy.
| |
Collapse
|
19
|
Tekin C, Ercelik M, Dunaev P, Galembikova A, Tezcan G, Aksoy SA, Budak F, Isık O, Ugras N, Boichuk S, Tunca B. Leaf Extract from European Olive (Olea europaea L.) Post-Transcriptionally Suppresses the Epithelial-Mesenchymal Transition and Sensitizes Gastric Cancer Cells to Chemotherapy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:97-115. [PMID: 38467548 DOI: 10.1134/s0006297924010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024]
Abstract
The overall survival of patients with the advanced and recurrent gastric cancer (GC) remains unfavorable. In particular, this is due to cancer spreading and resistance to chemotherapy associated with the epithelial-mesenchymal transition (EMT) of tumor cells. EMT can be identified by the transcriptome profiling of GC for EMT markers. Indeed, analysis of the TCGA and GTEx databases (n = 408) and a cohort of GC patients (n = 43) revealed that expression of the CDH2 gene was significantly decreased in the tumors vs. non-tumor tissues and correlated with the overall survival of GC patients. Expression of the EMT-promoting transcription factors SNAIL and ZEB1 was significantly increased in GC. These data suggest that targeting the EMT might be an attractive therapeutic approach for patients with GC. Previously, we demonstrated a potent anti-cancer activity of the olive leaf extract (OLE). However, its effect on the EMT regulation in GC remained unknown. Here, we showed that OLE efficiently potentiated the inhibitory effect of the chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (Cis) on the EMT and their pro-apoptotic activity, as was demonstrated by changes in the expression of the EMT markers (E- and N-cadherins, vimentin, claudin-1) in GC cells treated with the aforementioned chemotherapeutic agents in the presence of OLE. Thus, culturing GC cells with 5-FU + OLE or Cis + OLE attenuated the invasive properties of cancer cells. Importantly, upregulation of expression of the apoptotic markers (PARP cleaved form) and increase in the number of cells undergoing apoptosis (annexin V-positive) were observed for GC cells treated with a combination of OLE and 5-FU or Cis. Collectively, our data illustrate that OLE efficiently interferes with the EMT in GC cells and potentiates the pro-apoptotic activity of certain chemotherapeutic agents used for GC therapy.
Collapse
Affiliation(s)
- Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan, Russia
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
- Experimental Animal Breeding and Research Unit, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Medical Faculty, Bursa Uludag University Bursa, Turkey
| | - Ozgen Isık
- Department of General Surgery, Medical Faculty, Bursa Uludag University Bursa, Turkey
| | - Nesrin Ugras
- Department of Pathology, Medical Faculty, Bursa Uludag University, Bursa, Turkey
| | - Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan, Russia.
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
20
|
Chitale S, Wu W, Mukherjee A, Lannon H, Suresh P, Nag I, Ambrosi CM, Gertner RS, Melo H, Powers B, Wilkins H, Hinton H, Cheah M, Boynton ZG, Alexeyev A, Sword D, Basan M, Park H, Ham D, Abbott J. A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening. Nat Commun 2023; 14:7576. [PMID: 37990016 PMCID: PMC10663594 DOI: 10.1038/s41467-023-43333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
High-content imaging for compound and genetic profiling is popular for drug discovery but limited to endpoint images of fixed cells. Conversely, electronic-based devices offer label-free, live cell functional information but suffer from limited spatial resolution or throughput. Here, we introduce a semiconductor 96-microplate platform for high-resolution, real-time impedance imaging. Each well features 4096 electrodes at 25 µm spatial resolution and a miniaturized data interface allows 8× parallel plate operation (768 total wells) for increased throughput. Electric field impedance measurements capture >20 parameter images including cell barrier, attachment, flatness, and motility every 15 min during experiments. We apply this technology to characterize 16 cell types, from primary epithelial to suspension cells, and quantify heterogeneity in mixed co-cultures. Screening 904 compounds across 13 semiconductor microplates reveals 25 distinct responses, demonstrating the platform's potential for mechanism of action profiling. The scalability and translatability of this semiconductor platform expands high-throughput mechanism of action profiling and phenotypic drug discovery applications.
Collapse
Affiliation(s)
| | - Wenxuan Wu
- CytoTronics Inc., Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Avik Mukherjee
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | - Henry Hinton
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | | | | | - Markus Basan
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Jeffrey Abbott
- CytoTronics Inc., Boston, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
21
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
22
|
Kong C, Qu X, Liu M, Xu W, Chen D, Zhang Y, Zhang S, Zhu F, Liu Z, Li J, Huang C, Wang C. Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance. Nat Commun 2023; 14:6860. [PMID: 37891324 PMCID: PMC10611751 DOI: 10.1038/s41467-023-42628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
E-cadherin is an essential cell‒cell adhesion protein that mediates canonical cadherin-catenin complex formation in epithelial lateral membranes. Ankyrin-G (AnkG), a scaffold protein linking membrane proteins to the spectrin-based cytoskeleton, coordinates with E-cadherin to maintain epithelial cell polarity. However, the molecular mechanisms governing this complex formation and its relationships with the cadherin-catenin complex remain elusive. Here, we report that AnkG employs a promiscuous manner to encapsulate three discrete sites of E-cadherin by the same region, a dynamic mechanism that is distinct from the canonical 1:1 molar ratio previously described for other AnkG or E-cadherin-mediated complexes. Moreover, we demonstrate that AnkG-binding-deficient E-cadherin exhibited defective accumulation at the lateral membranes and show that disruption of interactions resulted in cell polarity malfunction. Finally, we demonstrate that E-cadherin is capable of simultaneously anchoring to AnkG and β-catenin, providing mechanistic insights into the functional orchestration of the ankyrin-spectrin complex with the cadherin-catenin complex. Collectively, our results show that complex formation between E-cadherin and AnkG is dynamic, which enables the maintenance of epithelial cell polarity by ensuring faithful targeting of the adhesion molecule-scaffold protein complex, thus providing molecular mechanisms for essential E-cadherin-mediated complex assembly at cell‒cell junctions.
Collapse
Affiliation(s)
- Chao Kong
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiaozhan Qu
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Da Chen
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yanshen Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenbang Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chengdong Huang
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
23
|
Liman N, Sağsöz H. The immunolocalization of cadherins and beta-catenin in the cervix and vagina of cycling cows. Vet Res Commun 2023; 47:1155-1175. [PMID: 36729278 DOI: 10.1007/s11259-023-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/14/2023] [Indexed: 02/03/2023]
Abstract
The adherens junctions (AJs) maintain the epithelial cell layers' structural integrity and barrier function. AJs also play a vital role in various biological and pathological processes. AJs perform these functions through the cadherin-catenin adhesion complex. This study investigated the presence, cell-specific localization, and temporal distribution of AJ components such as classical type I cadherins and beta-catenin in the cow cervix and vagina during the estrous cycle. Immunohistochemistry and Western blot analysis results demonstrated that beta-catenin and epithelial (E)-, neural (N)-, and placental (P)-cadherins are expressed in the cow cervix and vagina during the estrous cycle. These adhesion molecules were localized in the membrane and cytoplasm of the ciliated and non-ciliated cervical cells and the stratified vaginal epithelial cells. Positive immunostaining for P-, N-cadherin, and beta-catenin was also observed in the vascular endothelial cells of the cervical and vaginal stroma. Quantitative immunohistochemistry examinations revealed that in the cervical and vaginal epithelia, P-cadherin's optical density values (ODv) were the highest; in contrast, the N-cadherin ODv were the lowest. The ODv of P-cadherin and beta-catenin in the cervical epithelium and E-cadherin in the vagina were significantly higher in the luteal phase versus the follicular phase of the estrous cycle. Furthermore, the ODv of P-cadherin, N-cadherin, and beta-catenin in the cervix's central and peripheral epithelial regions were different during the estrous cycle. These findings indicate that classical cadherins and beta-catenin in the cervix and vagina exhibit cell- and tissue-specific expression patterns under the influence of estrogen and progesterone hormones during the estrous cycle.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
24
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
25
|
Kalaimani G, Rao UDK, Joshua E, Ranganathan K. E-cadherin Expression in Premalignant Lesions, Premalignant Conditions, Oral Squamous Cell Carcinoma, and Normal Mucosa: An Immunohistochemical Study. Cureus 2023; 15:e44266. [PMID: 37772225 PMCID: PMC10528546 DOI: 10.7759/cureus.44266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a multi-step process. Epithelial-mesenchymal transition (EMT) is an important step in the progression of OSCC. One of the components that influence EMT is E-cadherin. The aim of this study was to determine the expression of E-cadherin in oral submucous fibrosis (OSMF), various grades of epithelial dysplasia, OSCC, and to compare it with the expression in the normal mucosa. Material and methods E-cadherin immunohistochemical detection was done using a monoclonal antibody of clone EP-6TM and the PolyExcel HRP/DAB chromogen detection system. A total of 100 samples, were divided into four groups, which included epithelial dysplasia (group 2) (30 cases), oral submucous fibrosis (group 3) (OSMF-30 cases), and oral squamous cell carcinoma (group 4) (OSCC-30 cases), which was compared with normal mucosa (group 1) (10 cases). The positive control used for E-cadherin was ductal breast carcinoma. Results All the cases of normal mucosa, epithelial dysplasia, and OSMF showed positivity for E-cadherin expression. In OSCC, 97% of cases expressed E-cadherin except one case. Out of 30 cases of epithelial dysplasia, 53% of mild epithelial dysplasia had a moderate intensity of expression and 75% had a mild intensity of E-cadherin expression. In moderately differentiated OSCC, 82% of cases showed mild intensity. Tissue localization of the E-cadherin stain in the basal layer decreased from normal mucosa to grades of epithelial dysplasia and OSCC. The pattern of E-cadherin staining in all the cases of group I, group II, and group III was membranous. In 97% of OSCC cases, both membranous and cytoplasmic staining were seen. Conclusion E-cadherin expression was reduced in increasing grades of epithelial dysplasia, OSCC, and OSMF compared to that of normal mucosa. E-cadherin expression is reduced as the lesions progress to malignancy. Hence, E-cadherin can be considered a surrogate marker of malignancy.
Collapse
Affiliation(s)
| | - Uma Devi K Rao
- Oral Pathology and Microbiology, Ragas Dental College and Hospital, Chennai, IND
| | - Elizabeth Joshua
- Oral Pathology and Microbiology, Ragas Dental College and Hospital, Chennai, IND
| | - Kannan Ranganathan
- Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Chennai, IND
| |
Collapse
|
26
|
Chitale S, Wu W, Mukherjee A, Lannon H, Suresh P, Nag I, Ambrosi CM, Gertner RS, Melo H, Powers B, Wilkins H, Hinton H, Cheah M, Boynton Z, Alexeyev A, Sword D, Basan M, Park H, Ham D, Abbott J. A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543281. [PMID: 37333319 PMCID: PMC10274629 DOI: 10.1101/2023.06.01.543281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Profiling compounds and genetic perturbations via high-content imaging has become increasingly popular for drug discovery, but the technique is limited to endpoint images of fixed cells. In contrast, electronic-based devices offer label-free, functional information of live cells, yet current approaches suffer from low-spatial resolution or single-well throughput. Here, we report a semiconductor 96-microplate platform designed for high-resolution real-time impedance "imaging" at scale. Each well features 4,096 electrodes at 25 µm spatial resolution while a miniaturized data interface allows 8× parallel plate operation (768 total wells) within each incubator for enhanced throughputs. New electric field-based, multi-frequency measurement techniques capture >20 parameter images including tissue barrier, cell-surface attachment, cell flatness, and motility every 15 min throughout experiments. Using these real-time readouts, we characterized 16 cell types, ranging from primary epithelial to suspension, and quantified heterogeneity in mixed epithelial and mesenchymal co-cultures. A proof-of-concept screen of 904 diverse compounds using 13 semiconductor microplates demonstrates the platform's capability for mechanism of action (MOA) profiling with 25 distinct responses identified. The scalability of the semiconductor platform combined with the translatability of the high dimensional live-cell functional parameters expands high-throughput MOA profiling and phenotypic drug discovery applications.
Collapse
|
27
|
Dar MS, Abbas R, Shah Z, Latoo SH, Gowhar O. Immunohistochemical expression of E-Cadherin and Cyclin D1 in different grades of oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:476-480. [PMID: 38033971 PMCID: PMC10683894 DOI: 10.4103/jomfp.jomfp_257_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 12/02/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common oral malignancy, representing up to 80-90% of all malignant neoplasms of the oral cavity. It results from the multistep accumulation of heterogeneous genetic changes. Important risk factors for OSCC include the use of tobacco or betel quid chewing, alcohol consumption, human papillomavirus and poor nutrition. E-Cadherin as a tumour suppressor gene sets a threshold for Wnt/β-catenin signalling. When expression of E-Cadherin is lost, potentiation of Wnt signalling pathway occurs leading to loss of cell-cell adhesion. The cyclin D1 gene (CCND1) located on chromosome 11q13 encodes a nuclear protein that is the regulatory subunit of Cdk-4 and Cdk-6. Cyclin D1 plays a major role in cell cycle transition from G1 to S phase by contributing to inactivation of the retinoblastoma gene product, and overexpression of CCND1 has been reported in 35-40% cases of OSCC. Aim Considering this, we decided to evaluate and compare the expression of CE-Cadherin and Cyclin D1 in different grades of OSCC. Materials and Methods A retrospective study was carried out on 60 formalin-fixed paraffin embedded tissue blocks comprising of 20 cases of well-differentiated OSCC, 20 cases of moderately differentiated OSCC and 20 cases of poorly differentiated OSCC. Diagnosed (using H and E), with oral mucosa taken as control. Results There was downregulation of E-Cadherin and overexpression of Cyclin D1 in increasing grades of OSCC and the difference was statistically significant. E-Cadherin was localised to membranous and shifted to cytoplasm as the grade worsened. Cyclin D1 was localised to nuclei of cells and the expression was seen more at the peripheral portions of tumour islands depicting the proliferative activity of tumour front. Conclusion The study revealed a good prognostic role of both E-Cadherin and Cyclin D1 in OSCC. The markers can be used for prognostic as well as therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad S. Dar
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
| | - Rezhat Abbas
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
| | - Zeenat Shah
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
| | - Suheel H. Latoo
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
| | - Owais Gowhar
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
28
|
Sicairos B, Alam S, Du Y. A comprehensive analysis of different types of databases reveals that CDH1 mRNA and E-cadherin protein are not downregulated in most carcinoma tissues and carcinoma cell lines. BMC Cancer 2023; 23:441. [PMID: 37189027 DOI: 10.1186/s12885-023-10916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The CDH1 gene codes for the epithelial-cadherin (E-cad) protein, which is embedded in the plasma membrane of epithelial cells to form adherens junctions. E-cad is known to be essential for maintaining the integrity of epithelial tissues, and the loss of E-cad has been widely considered a hallmark of metastatic cancers enabling carcinoma cells to acquire the ability to migrate and invade nearby tissues. However, this conclusion has come under scrutiny. METHODS To assess how CDH1 and E-cad expression changes during cancer progression, we analyzed multiple large transcriptomics, proteomics, and immunohistochemistry datasets on clinical cancer samples and cancer cell lines to determine the CDH1 mRNA and E-cad protein expression profiles in tumor and normal cells. RESULTS In contrast to the textbook knowledge of the loss of E-cad during tumor progression and metastasis, the levels of CDH1 mRNA and E-cad protein are either upregulated or remain unchanged in most carcinoma cells compared to normal cells. In addition, the CDH1 mRNA upregulation occurs in the early stages of tumor development and the levels remain elevated as tumors progress to later stages across most carcinoma types. Furthermore, E-cad protein levels are not downregulated in most metastatic tumor cells compared to primary tumor cells. The CDH1 mRNA and E-cad protein levels are positively correlated, and the CDH1 mRNA levels are positively correlated to cancer patient's survival. We have discussed potential mechanisms underlying the observed expression changes in CDH1 and E-cad during tumor progression. CONCLUSIONS CDH1 mRNA and E-cadherin protein are not downregulated in most tumor tissues and cell lines derived from commonly occurring carcinomas. The role of E-cad in tumor progression and metastasis may have previously been oversimplified. CDH1 mRNA levels may serve as a reliable biomarker for the diagnosis of some tumors (such as colon and endometrial carcinomas) due to the marked upregulation of CDH1 mRNA in the early stages of tumor development of these carcinomas.
Collapse
Affiliation(s)
- Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shorna Alam
- Bentonville West High School, Centerton, AR, 72719, USA
- Present address: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
29
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Lim HJ, Zhuang L, Fitzgerald RC. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J Exp Clin Cancer Res 2023; 42:57. [PMID: 36869400 PMCID: PMC9985294 DOI: 10.1186/s13046-023-02622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is an autosomal dominant cancer syndrome attributed to germline CDH1 mutations that carries a high risk for early onset DGC. HDGC raises a significant health issue due to its high penetrance and mortality unless diagnosed early. The definitive treatment is to undergo prophylactic total gastrectomy which is associated with significant morbidity., highlighting the urgent need for alternative treatment methods. However, there is limited literature examining potential therapeutic strategies building on emerging insights into the molecular basis of progressive lesions in the context of HDGC. The aim of this review is to summarise the current understanding of HDGC in the context of CDH1 pathogenic variants followed by a review of the proposed mechanisms for progression. In addition, we discuss the development of novel therapeutic approaches and highlight pertinent areas for further research. A literature search was therefore performed for relevant studies examining CDH1 germline variants, second-hit mechanisms of CDH1, pathogenesis of HDGC and potential therapeutic strategies in databases, including PubMed, ScienceDirect and Scopus. Germline mutations are mostly truncating CDH1 variants affecting extracellular domains of E-cadherin, generally due to frameshift, single nucleotide variants or splice site mutations. A second somatic hit of CDH1 most commonly occurs via promoter methylation as shown in 3 studies, but studies are limited with a small sample size. The multi-focal development of indolent lesions in HDGC provide a unique opportunity to understand genetic events that drive the transition to the invasive phenotype. To date, a few signalling pathways have been shown to facilitate the progression of HDGC, including Notch and Wnt. In in-vitro studies, the ability to inhibit Notch signalling was lost in cells transfected with mutant forms of E-cadherin, and increased Notch-1 activity correlated with apoptosis resistance. Furthermore, in patient samples, overexpression of Wnt-2 was associated with cytoplasmic and nuclear β-catenin accumulation and increased metastatic potential. As loss-of-function mutations are challenging to target therapeutically, these findings pave the way towards a synthetic lethal approach in CDH1-deficient cells with some promising results in-vitro. In future, if we could better understand the molecular vulnerabilities in HDGC, there may be opportunities to offer alternative treatment pathways to avoid gastrectomy.
Collapse
Affiliation(s)
- Hui Jun Lim
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK.
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
| | - Lizhe Zhuang
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK
| | - Rebecca C Fitzgerald
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK
| |
Collapse
|
31
|
Genetic Considerations in the Locoregional Management of Breast Cancer: a Review of Current Evidence. CURRENT BREAST CANCER REPORTS 2023. [DOI: 10.1007/s12609-023-00478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
32
|
Pathway-guided monitoring of the disease course in bladder cancer with longitudinal urine proteomics. COMMUNICATIONS MEDICINE 2023; 3:8. [PMID: 36646893 PMCID: PMC9842762 DOI: 10.1038/s43856-023-00238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Monitoring bladder cancer over time requires invasive and costly procedures. Less invasive approaches are required using readily available biological samples such as urine. In this study, we demonstrate a method for longitudinal analysis of the urine proteome to monitor the disease course in patients with bladder cancer. METHODS We compared the urine proteomes of patients who experienced recurrence and/or progression (n = 13) with those who did not (n = 17). We identified differentially expressed proteins within various pathways related to the hallmarks of cancer. The variation of such pathways during the disease course was determined using our differential personal pathway index (dPPi) calculation, which could indicate disease progression and the need for medical intervention. RESULTS Seven hallmark pathways are used to develop the dPPi. We demonstrate that we can successfully longitudinally monitor the disease course in bladder cancer patients through a combination of urine proteomic analysis and the dPPi calculation, over a period of 62 months. CONCLUSIONS Using the information contained in the patient's urinary proteome, the dPPi reflects the individual's course of bladder cancer, and helps to optimise the use of more invasive procedures such as cystoscopy.
Collapse
|
33
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
34
|
Sheikh-Ahmad M, Shalata Y, Bejar J, Kreizman Shefer H, Sirhan MF, Laniado M, Matter I, Agbarya A, Reut M, Yovanovich E, Saiegh L. The Correlation between Proliferative Immunohistochemical Markers and Papillary Thyroid Carcinoma Aggressiveness. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010110. [PMID: 36676734 PMCID: PMC9862399 DOI: 10.3390/medicina59010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Background and Objectives: Papillary thyroid carcinoma (PTC) is one of the most common malignancies of the endocrine system. In order to improve the ability to predict tumor behavior, several studies have been conducted to search for surrogate prognostic immunohistochemical tumor markers. Objective: To evaluate the correlation between the intensity of different immunohistochemical marker staining in PTC and the risk for extrathyroidal extension and metastases. Materials and Methods: The study comprised patients who underwent hemi- or total thyroidectomy. Thyroid tissues were immunohistochemically stained for different tumor proliferative markers: Minichromosome maintenance proteins 2 (MCM2), Ki-67 labeling index, E-Cadherin, Neuropilin-1 and Metallothionein. The correlation between the intensity of each marker staining and the final diagnosis (benign neoplasm and PTC) and the correlation between the intensity of each staining and tumor extrathyroidal extension and metastases were evaluated. Results: The study included 66 patients. Staining for Metallothionein, E-Cadherin and MCM2 significantly differed between benign neoplasm (n = 22) and thyroid-confined PTC (n = 21) (p = 0.002, 0.004 and 0.005, respectively), between benign neoplasm and PTC with extrathyroidal extension (n = 11) (p = 0.001, 0.006 and 0.01, respectively), and between benign neoplasm and PTC with metastases (n = 12) (p = 0.01, <0.001 and 0.037, respectively). No staining correlated with extrathyroidal extension. The intensity of E-Cadherin staining was significantly lower in PTC with metastases than thyroid confined PTC and PTC with extrathyroidal extension (p = 0.028 and 0.021, respectively). Conclusions: Immunohistochemical staining for Metallothionein, E-Cadherin and MCM2 significantly distinguished between benign thyroid tumor and PTC. E-Cadherin staining significantly and inversely correlated with the presence of metastases.
Collapse
Affiliation(s)
- Mohammad Sheikh-Ahmad
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
- Correspondence: ; Tel.: +972-4-8359510; Fax: +972-4-8359519
| | - Yara Shalata
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Jacob Bejar
- Department of Pathology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Hila Kreizman Shefer
- Department of Pathology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Majd F. Sirhan
- Department of Pathology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Monica Laniado
- Department of Surgery, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Ibrahim Matter
- Department of Surgery, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Abed Agbarya
- Department of Oncology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Maria Reut
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Ekaterina Yovanovich
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| | - Leonard Saiegh
- Institute of Endocrinology, Bnai Zion Medical Center, 47 Golomb St., Haifa 31048, Israel
| |
Collapse
|
35
|
Hereditary Diffuse Gastric Cancer: A 2022 Update. J Pers Med 2022; 12:jpm12122032. [PMID: 36556253 PMCID: PMC9783673 DOI: 10.3390/jpm12122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is ranked fifth among the most commonly diagnosed cancers, and is the fourth leading cause of cancer-related deaths worldwide. The majority of gastric cancers are sporadic, while only a small percentage, less than 1%, are hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy, characterized by early-onset, highly-penetrant autosomal dominant inheritance mainly of the germline alterations in the E-cadherin gene (CDH1) and β-catenin (CTNNA1). In the present study, we provide an overview on the molecular basis of HDGC and outline the essential elements of genetic counseling and surveillance. We further provide a practical summary of current guidelines on clinical management and treatment of individuals at risk and patients with early disease.
Collapse
|
36
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
37
|
Kalkan U, Biyik I, Simsek S. T-Cadherin, E-Cadherin, PR-A, and ER-α Levels in Deep Infiltrating Endometriosis. Int J Gynecol Pathol 2022; 41:593-599. [PMID: 35149616 DOI: 10.1097/pgp.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The goal of this study was to compare the T-cadherin, E-cadherin, progesterone receptor (PR), and estrogen receptor (ER) staining levels of deep infiltrating endometriosis (DIE) tissue, ovarian endometriomas and normal endometrial tissues in the same individuals. The tissue sections of both DIE nodule(s) and endometrioma(s) of 15 cases were examined. As a control group, normal endometrial tissue sections of 23 cases were examined. T-cadherin, E-cadherin, ER-α, and PR-A staining levels of DIE, endometrioma tissues, and endometrial tissues were compared immunohistochemically. H -score was calculated to compare the expression of T-cadherin, E-cadherin, ER-α, and PR-A in immunohistochemical staining based on the percentage of cells stained at each intensity level. T-cadherin, E-cadherin, ER, and PR H -score were lowest in DIE tissue and highest in endometrial tissue ( P <0.0001, <0.0001, <0.0001, and <0.0001, respectively). In correlation analysis, a positive correlation was found between T-cadherin, E-cadherin, PR, and ER H -score ( P <0.0001 for each). T-cadherin, E-cadherin, ER, and PR H -score were lowest in DIE tissue and highest in endometrium tissue. We think that examination of DIE tissue and endometrioma tissue from the same individual excludes the possibility of an effect due to different genetic and environmental factors from different individuals. With the help of this exclusion we showed that DIE and endometrioma have different biological properties.
Collapse
|
38
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
39
|
Bacterial Involvement in Progression and Metastasis of Adenocarcinoma of the Stomach. Cancers (Basel) 2022; 14:cancers14194886. [PMID: 36230809 PMCID: PMC9562638 DOI: 10.3390/cancers14194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Infectious bacteria influence primary gastric carcinogenesis, organotropism, and metastatic progression by altering the microenvironment at the primary and secondary tumors. Key species include Helicobacter pylori (H. pylori) and Mycoplasma hyorhinis (M. hyorhinis). Inflammation caused by H. pylori virulence factors, such as CagA, VacA, and oipA, disrupt epithelial integrity, which allows the primary tumor to progress through the metastatic process. Evidence supports the activation of aquaporin-5 by CagA-positive H. pylori infection, promoting epithelial–mesenchymal transition via the extracellular signal-regulated kinase/mitogen-activated protein kinase (MEK/ERK) pathway, thus laying the foundation for metastatic disease. M. hyorhinis has also been implicated in gastric neoplasia via β-catenin stabilization and subsequent activation of the WNT-signaling pathway, promoting gastric cancer cell motility and inciting cancer progression. Abstract Gastric cancer metastasis is a process in which the tumor microenvironment may carry significant influence. Helicobacter pylori (H. pylori) infection is well-established as a contributor to gastric carcinoma. However, the role that these bacteria and others may play in gastric carcinoma metastasis is a current focus of study. A review of the literature was conducted to elucidate the process by which gastric adenocarcinoma metastasizes, including its ability to utilize both the lymphatic system and the venous system to disseminate. Studies that investigate the tumor microenvironment at both the primary and secondary sites were assessed in detail. H. pylori and Mycoplasma hyorhinis (M. hyorhinis) were found to be important drivers of the pathogenesis of gastric adenocarcinoma by modifying various steps in cell metastasis, including epithelial–mesenchymal transition, cell migration, and cell invasion. H. pylori is also a known driver of MALT lymphoma, which is often reversible simply with the eradication of infection. M. hyorhinis has been implicated in gastric neoplasia via β-catenin stabilization and subsequent activation of the WNT-signaling pathway, promoting gastric cancer cell motility and inciting cancer progression. Fusobacterium nucleatum (F. nucleatum) and its association with worse prognosis in diffuse-type gastric adenocarcinoma are also reviewed. Recognition of the roles that bacteria play within the metastatic cascade is vital in gastrointestinal adenocarcinoma treatment and potential reoccurrence. Further investigation is needed to establish potential treatment for metastatic gastric carcinoma by targeting the tumor microenvironment.
Collapse
|
40
|
Singh P, Joon A, Kumari M, Singh T, Bal A, Maan P, Ghosh S. Role of a Disease-associated ST3Gal-4 in Non-small Cell Lung Cancer. Cell Biochem Biophys 2022; 80:781-793. [PMID: 36083411 DOI: 10.1007/s12013-022-01091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Sialylation promotes tumorigenesis by affecting various cancer-related events, including apoptosis inhibition, cell growth, invasion, migration, metastasis, chemo-resistance, and immunomodulation in favor of tumor progression. An altered expression of sialyltransferase enzymes is responsible for synthesizing various tumor-associated sialylated structures. In the present study, our findings have revealed a significant up-regulation of ST3Gal-4 transcript in the two major subtypes of NSCLC cell lines [squamous cell carcinoma cell line (NCI-H520) and adenocarcinoma cell line (A549)]. Thus, the role of the ST3Gal-4 gene was assessed on cancer-associated signal transduction pathways in these cells in view of proliferation, invasion, and migration. ST3Gal-4 was silenced by transfection of both the cell lines with esi-ST3Gal-4-RNA, which RT-PCR and western immunoblotting confirmed. Silencing of ST3Gal-4 resulted in a decreased expression of MAL-I interacting membrane-HSP60, identified earlier as an α2,3-sialylated glycoprotein, thus pointing towards the possible role of ST3Gal-4 in its sialylation. The proliferation, invasion, and migration of both types of NSCLC cells were reduced significantly in the ST3Gal-4 silenced cells. Our findings were substantiated by the down-regulation of β-catenin and E-cadherin, a reduced expression of activated AKT1, ERK1/2, and NF-ƙB in these cells. We propose that ST3Gal-4 may be the disease-associated sialyltransferase involved in α2,3 sialylation of the membrane proteins, including HSP60 of the NSCLC cells. This may lead to the conformational alteration of these proteins, required for the activation of E-cadherin/β-catenin, AKT, and ERK/NF-ƙB mediated signal transduction pathways in these cells, resulting in their proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Munmun Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Tanya Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, 160012, India
| | - Pratibha Maan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
41
|
Basu N, Narad P, Guptasarma ML, Tandon C, Das BC, Tandon S. Computational and In Vitro Approaches to Elucidate the Anti-cancer Effects of Arnica montana in Hormone-Dependent Breast Cancer. HOMEOPATHY 2022; 111:288-300. [PMID: 35790192 DOI: 10.1055/s-0042-1743565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Use of homeopathic medicines for the treatment of cancers has increased in the last several years. Arnica montana is an anti-inflammatory homeopathic medicine used in traumatic conditions and because of this property we performed investigations for its potential as a chemotherapeutic agent against breast cancer. METHODS An ethanolic extract of Arnica montana (mother tincture, MT), prepared according to the Homoeopathic Pharmacopoeia of India, was characterized by gas chromatography-mass spectroscopy (GC-MS), followed by computational (in silico) analysis using molecular docking, to identify specific compounds that can bind and modulate the activity of key proteins involved in breast cancer survival and progression. To validate the in silico findings, in a controlled experiment breast cancer cells (MCF7) were treated in vitro with Arnica montana and the cytotoxic effects assessed by flowcytometry, fluorescence microscopy, scratch assay, clonogenic potential and gene expression analysis. RESULTS Phytochemical characterization of ethanolic extract of Arn MT by GC-MS allowed identification of several compounds. Caryophyllene oxide and 7-hydroxycadalene were selected for molecular docking studies, based on their potential drug-like properties. These compounds displayed selective binding affinity to some of the recognized target proteins of breast cancer, which included estrogen receptor alpha (ERα), progesterone receptor (PR), epidermal growth factor receptor (EGFR), mTOR (mechanistic target of rapamycin) and E-cadherin. In vitro studies revealed induction of apoptosis in MCF7 cells following treatment with Arn MT. Furthermore, treatment with Arn MT revealed its ability to inhibit migration and colony forming abilities of the cancer cells. CONCLUSION Considering the apoptotic and anti-migratory effects of Arnica montana in breast cancer cells in vitro, there is a need for this medicine to be further validated in an in vivo model.
Collapse
Affiliation(s)
- Nilanjana Basu
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Priyanka Narad
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manni Luthra Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.,Amity University Punjab, Mohali, India
| |
Collapse
|
42
|
Javdani H, Mollaei H, Karimi F, Mahmoudi S, Farahi A, Mirzaei-Parsa MJ, Shahabi A. Review article epithelial to mesenchymal transition‑associated microRNAs in breast cancer. Mol Biol Rep 2022; 49:9963-9973. [PMID: 35716288 DOI: 10.1007/s11033-022-07553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Despite major advances, breast cancer (BC) is the most commonly diagnosed carcinoma and remains a deadly disease among women worldwide. Many researchers point toward an important role of an epithelial to mesenchymal transition (EMT) in BC development and promoting metastasis. Here, will be discussed that how functional changes of transcription factors, signaling pathways, and microRNAs (miRNA) in BC promote EMT. A thorough understanding the EMT biology can be important to determine reversing the process and design treatment approaches. There are frequent debates as to whether EMT is really relevant to BC in vivo, in which due to the intrinsic heterogeneity and tumor microenvironment. Nevertheless, given the importance of EMT in cancer progression and metastasis, the implementation of therapies against cancer-associated EMT will continue to help us develop and test potential treatments.
Collapse
Affiliation(s)
- Hossein Javdani
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzaneh Karimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shiva Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Farahi
- Student Research Committee, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohamad Javad Mirzaei-Parsa
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran. .,Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, P. O. Box: 7618747653, Kerman, Iran.
| |
Collapse
|
43
|
Genenger B, Perry JR, Ashford B, Ranson M. A tEMTing target? Clinical and experimental evidence for epithelial-mesenchymal transition in the progression of cutaneous squamous cell carcinoma (a scoping systematic review). Discov Oncol 2022; 13:42. [PMID: 35666359 PMCID: PMC9170863 DOI: 10.1007/s12672-022-00510-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a disease with globally rising incidence and poor prognosis for patients with advanced or metastatic disease. Epithelial-mesenchymal transition (EMT) is a driver of metastasis in many carcinomas, and cSCC is no exception. We aimed to provide a systematic overview of the clinical and experimental evidence for EMT in cSCC, with critical appraisal of type and quality of the methodology used. We then used this information as rationale for potential drug targets against advanced and metastatic cSCC. All primary literature encompassing clinical and cell-based or xenograft experimental studies reporting on the role of EMT markers or related signalling pathways in the progression of cSCC were considered. A screen of 3443 search results yielded 86 eligible studies comprising 44 experimental studies, 22 clinical studies, and 20 studies integrating both. From the clinical studies a timeline illustrating the alteration of EMT markers and related signalling was evident based on clinical progression of the disease. The experimental studies reveal connections of EMT with a multitude of factors such as genetic disorders, cancer-associated fibroblasts, and matrix remodelling via matrix metalloproteinases and urokinase plasminogen activator. Additionally, EMT was found to be closely tied to environmental factors as well as to stemness in cSCC via NFκB and β-catenin. We conclude that the canonical EGFR, canonical TGF-βR, PI3K/AKT and NFκB signalling are the four signalling pillars that induce EMT in cSCC and could be valuable therapeutic targets. Despite the complexity, EMT markers and pathways are desirable biomarkers and drug targets for the treatment of advanced or metastatic cSCC.
Collapse
Affiliation(s)
- Benjamin Genenger
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| | - Jay R Perry
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Bruce Ashford
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
44
|
Hereditary diffuse gastric cancer (HDGC). An overview. Clin Res Hepatol Gastroenterol 2022; 46:101820. [PMID: 34656755 DOI: 10.1016/j.clinre.2021.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
It is estimated that up to 10% of gastric carcinomas show familial aggregation. In contrast, around 1-3 % (approximately 33,000 yearly) are genuinely hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy characterized by autosomal dominant inheritance of pathological variants of the CDH1 and CTNNA1 genes encoding the adhesion molecules E-cadherin and α-catenin, respectively. The multifocal nature of the disease and the difficulty of visualizing precursor lesions by endoscopy underscore the need to be aware of this malignancy as surgical prevention can be fully protective. Here, we provide an overview of the main epidemiological, clinical, genetic, and pathological features of HDGC, as well as updated guidelines for its diagnosis, genetic testing, counseling, surveillance, and management. We conclude that HDGC is a rare, highly penetrant disease that is difficult to diagnose and manage, so it is necessary to correctly identify it to offer patients and their families' adequate management following the recommendations of the IGCL. A critical point is identifying a mutation in HDGC families to determine whether unaffected relatives are at risk for cancer.
Collapse
|
45
|
Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial Involvement in Progression and Metastasis of Colorectal Neoplasia. Cancers (Basel) 2022; 14:1019. [PMID: 35205767 PMCID: PMC8870662 DOI: 10.3390/cancers14041019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
While the gut microbiome is composed of numerous bacteria, specific bacteria within the gut may play a significant role in carcinogenesis, progression, and metastasis of colorectal carcinoma (CRC). Certain microbial species are known to be associated with specific cancers; however, the interrelationship between bacteria and metastasis is still enigmatic. Mounting evidence suggests that bacteria participate in cancer organotropism during solid tumor metastasis. A critical review of the literature was conducted to better characterize what is known about bacteria populating a distant site and whether a tumor depends upon the same microenvironment during or after metastasis. The processes of carcinogenesis, tumor growth and metastatic spread in the setting of bacterial infection were examined in detail. The literature was scrutinized to discover the role of the lymphatic and venous systems in tumor metastasis and how microbes affect these processes. Some bacteria have a potent ability to enhance epithelial-mesenchymal transition, a critical step in the metastatic cascade. Bacteria also can modify the microenvironment and the local immune profile at a metastatic site. Early targeted antibiotic therapy should be further investigated as a measure to prevent metastatic spread in the setting of bacterial infection.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Amanda D. Morgan
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Lauren D. Hagenstein
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Garrett M. Florey
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA;
| | - James M. Small
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA;
| |
Collapse
|
46
|
Grochowska M, Perlejewski K, Laskus T, Radkowski M. The Role of Gut Microbiota in Gastrointestinal Tract Cancers. Arch Immunol Ther Exp (Warsz) 2022; 70:7. [PMID: 35112169 PMCID: PMC8810472 DOI: 10.1007/s00005-021-00641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Disturbances in gastrointestinal (GI) microbiota could play a significant role in the development of GI cancers, but the underlying mechanisms remain largely unclear. While some bacteria seem to facilitate carcinogenesis, others appear to be protective. So far only one bacterium (Helicobacter pylori) has been classified by the International Agency for Cancer Research as carcinogenic in humans but many other are the subject of intense research. Most studies on the role of microbiota in GI tract oncogenesis focus on pancreatic and colorectal cancers with the following three species: Helicobacter pylori, Escherichia coli, and Porphyromonas gingivalis as likely causative factors. This review summarizes the role of bacteria in GI tract oncogenesis.
Collapse
Affiliation(s)
- Marta Grochowska
- Department of Immunopathology, Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Karol Perlejewski
- Department of Immunopathology, Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology, Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022; 12:biom12010127. [PMID: 35053275 PMCID: PMC8773690 DOI: 10.3390/biom12010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Collapse
|
48
|
Drury J, Rychahou PG, Kelson CO, Geisen ME, Wu Y, He D, Wang C, Lee EY, Evers BM, Zaytseva YY. Upregulation of CD36, a Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis by Increasing MMP28 and Decreasing E-Cadherin Expression. Cancers (Basel) 2022; 14:252. [PMID: 35008415 PMCID: PMC8750155 DOI: 10.3390/cancers14010252] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Altered fatty acid metabolism continues to be an attractive target for therapeutic intervention in cancer. We previously found that colorectal cancer (CRC) cells with a higher metastatic potential express a higher level of fatty acid translocase (CD36). However, the role of CD36 in CRC metastasis has not been studied. Here, we demonstrate that high expression of CD36 promotes invasion of CRC cells. Consistently, CD36 promoted lung metastasis in the tail vein model and GI metastasis in the cecum injection model. RNA-Seq analysis of CRC cells with altered expression of CD36 revealed an association between high expression of CD36 and upregulation of MMP28, a novel member of the metallopeptidase family of proteins. Using shRNA-mediated knockdown and overexpression of CD36, we confirmed that CD36 regulates MMP28 expression in CRC cells. siRNA-mediated knockdown of MMP28 decreases invasion of CRC cells, suggesting that MMP28 regulates the metastatic properties of cells downstream of CD36. Importantly, high expression of MMP28 leads to a significant decrease in active E-cadherin and an increase in the products of E-cadherin cleavage, CTF1 and CTF2. In summary, upregulation of CD36 expression promotes the metastatic properties of CRC via upregulation of MMP28 and an increase in E-cadherin cleavage, suggesting that targeting the CD36-MMP28 axis may be an effective therapeutic strategy for CRC metastasis.
Collapse
Affiliation(s)
- James Drury
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| | - Piotr G. Rychahou
- Department of Surgery and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.G.R.); (B.M.E.)
| | - Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| | - Yuanyuan Wu
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Y.W.); (D.H.); (C.W.)
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Y.W.); (D.H.); (C.W.)
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (Y.W.); (D.H.); (C.W.)
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - B. Mark Evers
- Department of Surgery and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.G.R.); (B.M.E.)
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (J.D.); (C.O.K.); (M.E.G.)
| |
Collapse
|
49
|
Kheirollahi M, Seyed Tabaei S, Vishteh M, Zeinalian M, Mamaghani A, Zolfaghari M, Mirzapour A, Barati M. Methylation and polymorphism in CDH1 gene promoter among patients with diffuse gastric cancer. Int J Prev Med 2022; 13:44. [PMID: 35529508 PMCID: PMC9069152 DOI: 10.4103/ijpvm.ijpvm_288_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The promoter methylation and single nucleotide polymorphisms (SNPs) affect the transcription activity of cancer-related genes in several cancers including diffuse gastric cancer (DGC). Here we aimed to evaluate the promoter methylation status and the rs16260 at the promoter region of the CDH1 gene in DGC. Methods: This case-control study was performed of 48 formalin-fixed paraffin-embedded (FFPE) blocks of DGC patients and 41 fresh frozen tissue samples of healthy individuals. Methylation status was evaluated using methylation-specific polymerase chain reaction (PCR) and the rs16260 at the promoter region of the CDH1 gene was assessed using PCR and sequencing method. Results: The occurrence of methylation at the promoter region of the CDH1 gene in DGC patients was significantly higher than control samples (P < 0.0001). The methylated status was significantly associated with the poor differentiated histological type of DGC (P = 0.0428). The frequency of AC genotype and the A allele in DGC patients was significantly higher than the control subjects (P = 0.006 and 0.003, respectively). Conclusions: Here we showed that methylation at the CDH1 promoter may contribute to the DGC development, and also the AC genotype was associated with the risk of DGC.
Collapse
|
50
|
Matsushige T, Sakabe T, Umekita Y. Investigation of the Subcellular Localization-Dependent Anti- or Pro-Tumor Functions of Maspin in Human Lung Adenocarcinoma Cell Line. Yonago Acta Med 2022; 65:44-52. [DOI: 10.33160/yam.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Takahiro Matsushige
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Tomohiko Sakabe
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshihisa Umekita
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|