1
|
Yang J, Cheng R, Pan X, Pan S, Du M, Yao H, Hu Z, Zhang S, Zhang X. Single-Cell Unsaturated Lipid Profiling for Studying Chemoresistance Heterogeneity of Triple-Negative Breast Cancer Cells. Anal Chem 2024. [PMID: 38334074 DOI: 10.1021/acs.analchem.3c04887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Chemoresistance to triple-negative breast cancer (TNBC) is a critical issue in clinical practice. Lipid metabolism takes a unique role in breast cancer cells; especially, unsaturated lipids involving cell membrane fluidity and peroxidation are highly remarked. At present, for the lack of a high-resolution molecular recognition platform at the single-cell level, it is still hard to systematically study chemoresistance heterogeneity based on lipid unsaturation proportion. By designing a single-cell mass spectrometry workflow based on CyESI-MS, we profiled the unsaturated lipids of TNBC cells to evaluate lipidomic remodeling under platinum stress. Profiling revealed the heterogeneity of the polyunsaturated lipid proportion of TNBC cells under cisplatin treatment. A cluster of cells identified by polyunsaturated lipid accumulation was found to be involved in platinum sensitivity. Furthermore, we found that the chemoresistance of TNBC cells could be regulated by fatty acid supplementation, which determinates the composition of unsaturated lipids. These discoveries provide insights for monitoring and controlling cellular unsaturated lipid proportions to overcome chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Jinlei Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Runsong Cheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingyu Pan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Siyuan Pan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Murong Du
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huan Yao
- National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China
| | - Zhian Hu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing 100083, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Bispo DSC, Correia M, Carneiro TJ, Martins AS, Reis AAN, de Carvalho ALMB, Marques MPM, Gil AM. Impact of Conventional and Potential New Metal-Based Drugs on Lipid Metabolism in Osteosarcoma MG-63 Cells. Int J Mol Sci 2023; 24:17556. [PMID: 38139388 PMCID: PMC10743680 DOI: 10.3390/ijms242417556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This work investigated the mechanisms of action of conventional drugs, cisplatin and oxaliplatin, and the potentially less deleterious drug Pd2Spermine (Spm) and its Pt(II) analog, against osteosarcoma MG-63 cells, using nuclear-magnetic-resonance metabolomics of the cellular lipidome. The Pt(II) chelates induced different responses, namely regarding polyunsaturated-fatty-acids (increased upon cisplatin), suggesting that cisplatin-treated cells have higher membrane fluidity/permeability, thus facilitating cell entry and justifying higher cytotoxicity. Both conventional drugs significantly increased triglyceride levels, while Pt2Spm maintained control levels; this may reflect enhanced apoptotic behavior for conventional drugs, but not for Pt2Spm. Compared to Pt2Spm, the more cytotoxic Pd2Spm (IC50 comparable to cisplatin) induced a distinct phospholipids profile, possibly reflecting enhanced de novo biosynthesis to modulate membrane fluidity and drug-accessibility to cells, similarly to cisplatin. However, Pd2Spm differed from cisplatin in that cells had equivalent (low) levels of triglycerides as Pt2Spm, suggesting the absence/low extent of apoptosis. Our results suggest that Pd2Spm acts on MG-63 cells mainly through adaptation of cell membrane fluidity, whereas cisplatin seems to couple a similar effect with typical signs of apoptosis. These results were discussed in articulation with reported polar metabolome adaptations, building on the insight of these drugs' mechanisms, and particularly of Pd2Spm as a possible cisplatin substitute.
Collapse
Affiliation(s)
- Daniela S. C. Bispo
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Marlene Correia
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Ana S. Martins
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Aliana A. N. Reis
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.S.C.B.); (M.C.); (T.J.C.); (A.S.M.); (A.A.N.R.)
| |
Collapse
|
3
|
Sengul F, Vatansev H, Ozturk B. Investigation the effects of bee venom and H-dental-derived mesenchymal stem cells on non-small cell lung cancer cells (A549). Mol Biol Rep 2023; 51:2. [PMID: 38057592 DOI: 10.1007/s11033-023-09002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lung cancer, one of the most common oncological diseases worldwide, continues to be the leading cause of cancer-related deaths. The development of new approaches for lung cancer, which still has a low survival rate despite medical advances, is of great importance. METHODS AND RESULTS In this study, bee venom (BV), conditioned medium of MSCs isolated from dental follicles (MSC-CM) and cisplatin were applied at different doses and their effects on A549 cell line were evaluated. Dental follicles were used as a source of MSCs source and differentiation kits, and characterization studies (flow cytometry) were performed. Cell viability was measured by the MTT method and apoptosis was measured by an Annexin V-FITC/PI kit on flow cytometer. IC50 dose values were determined according to the 24th hour and were determined as 15.8 µg/mL for BV, 10.78% for MSC-CM and 5.77 µg/mL for cisplatin. IC50 values found for BV and MSC-CM were also given in combination and the effects were observed. It was found that the applied substances caused BV to decrease in cell viability and induced apoptosis in cells. In addition to the induction of apoptosis in BV, MSC-CM, and combined use, all three applications led to an increase in Bax protein expression and a decrease in Bcl-2 protein expression. The molecular mechanism of anticancer activity through inhibition of Bax and Bcl-2 proteins and the NF-κB signaling pathway may be suggested. CONCLUSION Isolated MSCs in our study showed anticancer activity and BV and MSC-CM showed synergistic antiproliferative and apoptotic effects.
Collapse
Affiliation(s)
- Fatma Sengul
- Department of Biochemistry, Faculty of Pharmacy, University of Adiyaman, Central Classroom C Block Floor:3, 02040, Adiyaman, Turkey.
| | - Husamettin Vatansev
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| | - Bahadir Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| |
Collapse
|
4
|
Geng P, Zhao J, Li Q, Wang X, Qin W, Wang T, Shi X, Liu X, Chen J, Qiu H, Xu G. Z-Ligustilide Combined with Cisplatin Reduces PLPP1-Mediated Phospholipid Synthesis to Impair Cisplatin Resistance in Lung Cancer. Int J Mol Sci 2023; 24:17046. [PMID: 38069368 PMCID: PMC10706864 DOI: 10.3390/ijms242317046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Lung cancer is a malignant tumor with one of the highest morbidity and mortality rates in the world. Approximately 80-85% of lung cancer is diagnosed as non-small lung cancer (NSCLC), and its 5-year survival rate is only 21%. Cisplatin is a commonly used chemotherapy drug for the treatment of NSCLC. Its efficacy is often limited by the development of drug resistance after long-term treatment. Therefore, determining how to overcome cisplatin resistance, enhancing the sensitivity of cancer cells to cisplatin, and developing new therapeutic strategies are urgent clinical problems. Z-ligustilide is the main active ingredient of the Chinese medicine Angelica sinensis, and has anti-tumor activity. In the present study, we investigated the effect of the combination of Z-ligustilide and cisplatin (Z-ligustilide+cisplatin) on the resistance of cisplatin-resistant lung cancer cells and its mechanism of action. We found that Z-ligustilide+cisplatin decreased the cell viability, induced cell cycle arrest, and promoted the cell apoptosis of cisplatin-resistant lung cancer cells. Metabolomics combined with transcriptomics revealed that Z-ligustilide+cisplatin inhibited phospholipid synthesis by upregulating the expression of phospholipid phosphatase 1 (PLPP1). A further study showed that PLPP1 expression was positively correlated with good prognosis, whereas the knockdown of PLPP1 abolished the effects of Z-ligustilide+cisplatin on cell cycle and apoptosis. Specifically, Z-ligustilide+cisplatin inhibited the activation of protein kinase B (AKT) by reducing the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3). Z-ligustilide+cisplatin induced cell cycle arrest and promoted the cell apoptosis of cisplatin-resistant lung cancer cells by inhibiting PLPP1-mediated phospholipid synthesis. Our findings demonstrate that the combination of Z-Ligustilide and cisplatin is a promising approach to the chemotherapy of malignant tumors that are resistant to cisplatin.
Collapse
Affiliation(s)
- Pengyu Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Jinhui Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Ting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (H.Q.)
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (H.Q.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.G.); (J.Z.); (Q.L.); (X.W.); (W.Q.); (T.W.); (X.S.); (X.L.)
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
5
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
6
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova M, Shirmanova M. Development of resistance to 5-fluorouracil affects membrane viscosity and lipid composition of cancer cells. Methods Appl Fluoresc 2022; 10. [PMID: 35970177 DOI: 10.1088/2050-6120/ac89cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
The investigations reported here were designed to determine whether the bulk plasma membrane is involved in mechanisms of acquired resistance of colorectal cancer cells to 5-fluorouracil (5-FU). Fluorescence lifetime imaging microscopy (FLIM) of live cultured cells stained with viscosity-sensitive probe BODIPY 2 was exploited to non-invasively assess viscosity in the course of treatment and adaptation to the drug. In parallel, lipid composition of membranes was examined with the time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results showed that a single treatment with 5-FU induced only temporal changes of viscosity in 5-FU sensitive cells immediately after adding the drug. Acquisition of chemoresistance was accompanied by persistent increase of viscosity, which was preserved upon treatment without any changes. Lipidomic analysis revealed that the resistant cells had a lower level of monounsaturated fatty acids and increased sphingomyelin or decreased phosphatidylcholine in their membranes, which partly explain increase of the viscosity. Thus, we propose that a high membrane viscosity mediates the acquisition of resistance to 5-FU.
Collapse
Affiliation(s)
- Liubov Shimolina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Aleksandr Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moskva, Moskva, 119991, RUSSIAN FEDERATION
| | - Aleksandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Nadezhda Ignatova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Irina Druzhkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| | - Margarita Gubina
- Russian Academy of Sciences, Kosygin st. 4, Moskva, Moskva, 119991, RUSSIAN FEDERATION
| | - Elena Zagaynova
- Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Niznij Novgorod, Nižegorodskaâ, 603950, RUSSIAN FEDERATION
| | - Marina Kuimova
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London , SW7 2AZ, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Marina Shirmanova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Niznij Novgorod, Nižegorodskaâ, 603005, RUSSIAN FEDERATION
| |
Collapse
|
7
|
Lutz NW, Bernard M. Methodological Developments for Metabolic NMR Spectroscopy from Cultured Cells to Tissue Extracts: Achievements, Progress and Pitfalls. Molecules 2022; 27:molecules27134214. [PMID: 35807461 PMCID: PMC9268249 DOI: 10.3390/molecules27134214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
This is a broad overview and critical review of a particular group of closely related ex vivo and in vitro metabolic NMR spectroscopic methods. The scope of interest comprises studies of cultured cells and excised tissue, either intact or after physicochemical extraction of metabolites. Our detailed discussion includes pitfalls that have led to erroneous statements in the published literature, some of which may cause serious problems in metabolic and biological interpretation of results. To cover a wide range of work from relevant research areas, we consider not only the most recent achievements in the field, but also techniques that proved to be valid and successful in the past, although they may not have generated a very significant number of papers more recently. Thus, this comparative review also aims at providing background information useful for judiciously choosing between the metabolic ex vivo/in vitro NMR methods presented. Finally, the methods of interest are discussed in the context of, and in relation to, other metabolic analysis protocols such as HR-MAS and cell perfusion NMR, as well as the mass spectrometry approach.
Collapse
|
8
|
Moon HM, Park JS, Lee IB, Kang YI, Jung HJ, An D, Shin Y, Kim MJ, Kim HI, Song JJ, Kim J, Lee NK, Hong SC. Cisplatin fastens chromatin irreversibly even at a high chloride concentration. Nucleic Acids Res 2021; 49:12035-12047. [PMID: 34865121 PMCID: PMC8643659 DOI: 10.1093/nar/gkab922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is one of the most potent anti-cancer drugs developed so far. Recent studies highlighted several intriguing roles of histones in cisplatin's anti-cancer effect. Thus, the effect of nucleosome formation should be considered to give a better account of the anti-cancer effect of cisplatin. Here we investigated this important issue via single-molecule measurements. Surprisingly, the reduced activity of cisplatin under [NaCl] = 180 mM, corresponding to the total concentration of cellular ionic species, is still sufficient to impair the integrity of a nucleosome by retaining its condensed structure firmly, even against severe mechanical and chemical disturbances. Our finding suggests that such cisplatin-induced fastening of chromatin can inhibit nucleosome remodelling required for normal biological functions. The in vitro chromatin transcription assay indeed revealed that the transcription activity was effectively suppressed in the presence of cisplatin. Our direct physical measurements on cisplatin-nucleosome adducts suggest that the formation of such adducts be the key to the anti-cancer effect by cisplatin.
Collapse
Affiliation(s)
- Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02841, Korea
| | - Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02841, Korea
| | - Young-Im Kang
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Hae Jun Jung
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Dongju An
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yumi Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min Ji Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Nam-Kyung Lee
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Martins AS, Batista de Carvalho ALM, Marques MPM, Gil AM. Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs. Molecules 2021; 26:4805. [PMID: 34443394 PMCID: PMC8401043 DOI: 10.3390/molecules26164805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.
Collapse
Affiliation(s)
- Ana S. Martins
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Lazaris V, Hatziri A, Symeonidis A, Kypreos KE. The Lipoprotein Transport System in the Pathogenesis of Multiple Myeloma: Advances and Challenges. Front Oncol 2021; 11:638288. [PMID: 33842343 PMCID: PMC8032975 DOI: 10.3389/fonc.2021.638288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple myeloma (MM) is an incurable neoplastic hematologic disorder characterized by malignant plasma cells, mainly in the bone marrow. MM is associated with multiple factors, such as lipid metabolism, obesity, and age-associated disease development. Although, the precise pathogenetic mechanisms remain unknown, abnormal lipid and lipoprotein levels have been reported in patients with MM. Interestingly, patients with higher APOA1 levels, the major apolipoprotein of high density lipoprotein (HDL), have better overall survival. The limited existing studies regarding serum lipoproteins in MM are inconclusive, and often contradictory. Nevertheless, it appears that deregulation of the lipoprotein transport system may facilitate the development of the disease. Here, we provide a critical review of the literature on the role of lipids and lipoproteins in MM pathophysiology. We also propose novel mechanisms, linking the development and progression of MM to the metabolism of blood lipoproteins. We anticipate that proteomic and lipidomic analyses of serum lipoproteins along with analyses of their functionality may improve our understanding and shed light on novel mechanistic aspects of MM pathophysiology.
Collapse
Affiliation(s)
- Vasileios Lazaris
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Aikaterini Hatziri
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
12
|
Shimolina LE, Gulin AA, Paez-Perez M, López-Duarte I, Druzhkova IN, Lukina MM, Gubina MV, Brooks NJ, Zagaynova EV, Kuimova MK, Shirmanova MV. Mapping cisplatin-induced viscosity alterations in cancer cells using molecular rotor and fluorescence lifetime imaging microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200248R. [PMID: 33331150 PMCID: PMC7744042 DOI: 10.1117/1.jbo.25.12.126004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander A. Gulin
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Miguel Paez-Perez
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Ismael López-Duarte
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Irina N. Druzhkova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Margarita V. Gubina
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nicolas J. Brooks
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Elena V. Zagaynova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina K. Kuimova
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Marina V. Shirmanova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| |
Collapse
|
13
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
14
|
Diniz IMA, Souto GR, Freitas IDP, de Arruda JAA, da Silva JM, Silva TA, Mesquita RA. Photobiomodulation Enhances Cisplatin Cytotoxicity in a Culture Model with Oral Cell Lineages. Photochem Photobiol 2019; 96:182-190. [PMID: 31424557 DOI: 10.1111/php.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
Cisplatin plays a central role in cancer chemotherapy, but resistance to this drug remains a major obstacle in treatment. Drawbacks related to cisplatin failure may be associated with cell energy metabolism. This study investigated whether photobiomodulation (PBM) can potentiate the effects of cisplatin on keratinocytes (HaCat) and cancer cells (SCC25 and HN12). Cells were treated with laser (GaAlAs; 660 nm; 60 mW; 0.33 J; 2.14 W cm-2 ; 11.7 J cm-2 and 6 s) and cisplatin (7.8 μg mL-1 ) to evaluate cell viability, Ki-67, VEGF, TGF-β1, EGF expression and ROS production. Observations were validated in the SCC25 cell lineage, where the type of cell death (necrosis/apoptosis) and the amount of ATP were assessed. Cell lineages showed increased sensitivity to cisplatin associated with PBM (Cis-PBM). Ki-67 was augmented in all cell lineages treated with Cis-PBM when compared to cisplatin alone (Cis). Cis or Cis-PBM significantly decreased VEGF expression in cancer cells, while no changes were seen in the expression of TGF-β1 or EGF compared to control. ROS levels were similar in the Cis and Cis-PBM groups. Cells treated with Cis-PBM died by apoptosis, leading to greater consumption of ATP. These observations suggest that PBM may potentiate the effects of cisplatin, leading to increased drug cytotoxicity and enhanced cell death.
Collapse
Affiliation(s)
- Ivana M A Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna R Souto
- Department of Dentistry, School of Dentistry, Pontifícia Universidade Católica, Belo Horizonte, MG, Brazil
| | - Iuri D P Freitas
- Department of Dentistry, School of Dentistry, Faculdade de SeteLagoas, SeteLagoas, MG, Brazil
| | - José Alcides A de Arruda
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janine M da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo A Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Martinho N, Santos TCB, Florindo HF, Silva LC. Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Front Physiol 2019; 9:1898. [PMID: 30687116 PMCID: PMC6336831 DOI: 10.3389/fphys.2018.01898] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
Cisplatin and other platinum(II) analogs are widely used in clinical practice as anti-cancer drugs for a wide range of tumors. The primary mechanism by which they exert their action is through the formation of adducts with genomic DNA. However, multiple cellular targets by platinum(II) complexes have been described. In particular, the early events occurring at the plasma membrane (PM), i.e., platinum-membrane interactions seem to be involved in the uptake, cytotoxicity and cell-resistance to cisplatin. In fact, PM influences signaling events, and cisplatin-induced changes on membrane organization and fluidity were shown to activate apoptotic pathways. This review critically discusses the sequence of events caused by lipid membrane-platinum interactions, with emphasis on the mechanisms that lead to changes in the biophysical properties of the membranes (e.g., fluidity and permeability), and how these correlate with sensitivity and resistance phenotypes of cells to platinum(II) complexes.
Collapse
Affiliation(s)
- Nuno Martinho
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia C B Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Helena F Florindo
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Response of Cisplatin Resistant Skov-3 Cells to [Pt( O,O'-Acac)(γ-Acac)(DMS)] Treatment Revealed by a Metabolomic ¹H-NMR Study. Molecules 2018; 23:molecules23092301. [PMID: 30205612 PMCID: PMC6225129 DOI: 10.3390/molecules23092301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 01/10/2023] Open
Abstract
The novel [Pt(O,O′-acac)(γ-acac)(DMS)], Ptac2S, Pt(II) complex has recently gained increasing attention as a potential anticancer agent for its pharmacological activity shown in different tumor cell lines, studied both in vitro and in vivo. The mechanism of action of Ptac2S, operating on non-genomic targets, is known to be very different from that of cis-[PtCl2(NH3)2], cisplatin, targeting nucleic acids. In this work, we evaluated the cytotoxicity of Ptac2S on the cisplatin resistant Epithelial Ovarian Carcinoma (EOC), SKOV-3 cells, by the MTT assay. A 1H-NMR metabolomic approach coupled with multivariate statistical analysis was used for the first time for Ptac2S to figure out the biological mechanisms of action of the complex. The metabolic variations of intracellular metabolites and the composition of the corresponding extracellular culture media were compared to those of cisplatin (cells were treated at the IC50 doses of both drugs). The reported comparative metabolomic analysis revealed a very different metabolic profile between Ptac2S and cisplatin treated samples, thus confirming the different mechanism of action of Ptac2S also in the Epithelial Ovarian Carcinoma (EOC), SKOV-3 cells line. In particular, higher levels of pyruvate were observed in Ptac2S treated, with respect to cisplatin treated, cells (in both aqueous and culture media). In addition, a very different lipid expression resulted after the exposure to the two drugs (Ptac2S and cisplatin). These results suggest a possible explanation for the Ptac2S ability to circumvent cisplatin resistance in SKOV-3 cells.
Collapse
|
17
|
Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Sci Rep 2017; 7:8911. [PMID: 28827680 PMCID: PMC5566551 DOI: 10.1038/s41598-017-09426-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Although cisplatin plays a central role in cancer chemotherapy, the mechanisms of cell response to this drug have been unexplored. The present study demonstrates the relationships between the intracellular pH (pHi), cell bioenergetics and the response of cervical cancer to cisplatin. pHi was measured using genetically encoded sensor SypHer2 and metabolic state was accessed by fluorescence intensities and lifetimes of endogenous cofactors NAD(P)H and FAD. Our data support the notion that cisplatin induces acidification of the cytoplasm early after the treatment. We revealed in vitro that a capacity of cells to recover and maintain alkaline pHi after the initial acidification is the crucial factor in mediating the cellular decision to survive and proliferate at a vastly reduced rate or to undergo cell death. Additionally, we showed for the first time that pHi acidification occurs after prolonged therapy in vitro and in vivo, and this, likely, favors metabolic reorganization of cells. A metabolic shift from glycolysis towards oxidative metabolism accompanied the cisplatin-induced inhibition of cancer cell growth in vitro and in vivo. Overall, these findings contribute to an understanding of the mechanisms underlying the responsiveness of an individual cell and tumor to therapy and are valuable for developing new therapeutic strategies.
Collapse
|
18
|
Kaebisch E, Fuss TL, Vandergrift L, Toews K, Habbel P, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies I-cell line and animal models. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3700. [PMID: 28301071 PMCID: PMC5501085 DOI: 10.1002/nbm.3700] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 12/31/2016] [Indexed: 05/09/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS allows for direct measurements of non-liquid tissue and cell specimens to present valuable insights into the cellular metabolisms of physiological and pathological processes. HRMAS produces high-resolution spectra comparable to those obtained from solutions of specimen extracts but without complex metabolite extraction processes, and preserves the tissue cellular structure in a form suitable for pathological examinations following spectroscopic analysis. The technique has been applied in a wide variety of biomedical and biochemical studies and become one of the major platforms of metabolomic studies. By quantifying single metabolites, metabolite ratios, or metabolic profiles in their entirety, HRMAS presents promising possibilities for diagnosis and prediction of clinical outcomes for various diseases, as well as deciphering of metabolic changes resulting from drug therapies or xenobiotic interactions. In this review, we evaluate HRMAS MRS results on animal models and cell lines reported in the literature, and present the diverse applications of the method for the understanding of pathological processes and the effectiveness of therapies, development of disease animal models, and new progress in HRMAS methodology.
Collapse
Affiliation(s)
- Eva Kaebisch
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Taylor L. Fuss
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Lindsey Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Karin Toews
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding Author: Leo L. Cheng, PhD, 149 13 Street, CNY-6, Charlestown, MA 02129, Ph.617-724-6593, Fax.617-726-5684,
| |
Collapse
|
19
|
Shimolina LE, Izquierdo MA, López-Duarte I, Bull JA, Shirmanova MV, Klapshina LG, Zagaynova EV, Kuimova MK. Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci Rep 2017; 7:41097. [PMID: 28134273 PMCID: PMC5278387 DOI: 10.1038/srep41097] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023] Open
Abstract
The microscopic viscosity plays an essential role in cellular biophysics by controlling the rates of diffusion and bimolecular reactions within the cell interior. While several approaches have emerged that have allowed the measurement of viscosity and diffusion on a single cell level in vitro, the in vivo viscosity monitoring has not yet been realized. Here we report the use of fluorescent molecular rotors in combination with Fluorescence Lifetime Imaging Microscopy (FLIM) to image microscopic viscosity in vivo, both on a single cell level and in connecting tissues of subcutaneous tumors in mice. We find that viscosities recorded from single tumor cells in vivo correlate well with the in vitro values from the same cancer cell line. Importantly, our new method allows both imaging and dynamic monitoring of viscosity changes in real time in live animals and thus it is particularly suitable for diagnostics and monitoring of the progress of treatments that might be accompanied by changes in microscopic viscosity.
Collapse
Affiliation(s)
- Lyubov’ E. Shimolina
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod, 603005, Russia
- Institute of Biology and Biomedicine, Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny Novgorod, 603950, Russia
| | | | - Ismael López-Duarte
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - James A. Bull
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Marina V. Shirmanova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod, 603005, Russia
| | - Larisa G. Klapshina
- Razuvaev Institute of Organometallic Chemistry RAS, Tropinina Street, 49, Nizhny Novgorod, 603950, Russia
| | - Elena V. Zagaynova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod, 603005, Russia
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
20
|
Live Cell Imaging of Viscosity in 3D Tumour Cell Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1035:143-153. [PMID: 29080136 DOI: 10.1007/978-3-319-67358-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.
Collapse
|
21
|
Li A, Song J, Lai Q, Liu B, Wang H, Xu Y, Feng X, Sun X, Du Z. Hypermethylation of ATP-binding cassette B1 (ABCB1) multidrug resistance 1 (MDR1) is associated with cisplatin resistance in the A549 lung adenocarcinoma cell line. Int J Exp Pathol 2016; 97:412-421. [PMID: 27995666 DOI: 10.1111/iep.12212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
Development of multiple drug resistance has been attributed to the overexpression of the ATP-binding cassette B1 (ABCB1) gene. In this study, the major purpose was to assess the expression and methylation levels of ABCB1 in human lung adenocarcinoma and to reveal the relationship between these processes and acquisition of cisplatin (DDP) resistance in the human cancer cell line A549. Methylation and expression levels of the ABCB1 gene ABCB1 in clinical human lung tissue were assessed using bisulphite sequencing, reverse transcription real-time PCR (RT2 -PCR) and Western blot methods. Cell viability, DDP resistance and apoptosis of A549 cells were evaluated using the Cell Counting Kit-8 and fluorescence-activated cell sorter analysis. Our results showed that the onset of resistance to the cisplatin analogue, DDP, was associated with hypermethylation of the ABCB1 gene. Expression of the ABCB1 gene was enhanced at both mRNA and protein levels. Treatment with 5-Aza-C contributed to the hypomethylation of the ABCB1 gene and decreased ABCB1 protein expression in A549 cells. In conclusion, this in vitro and human tissue study of lung adenocarcinoma cells demonstrated that hypermethylation of the ABCB1 gene correlated with increased gene expression and was associated with the acquisition of resistance to the cisplatin analogue, DDP in human lung adenocarcinoma cells. Taken together, our study highlighted the connection between increased ABCB1 methylation level and upregulated expression of the gene in lung cancer. Moreover, the abnormally high expression of ABCB1 in A549 cells contributed to the development of the DDP resistance.
Collapse
Affiliation(s)
- Angui Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jianfei Song
- Department of Cardiothoracic Surgery, The 2nd Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qi Lai
- Department of Thoracic Surgery, Xiangya Hospital Cental South University, Changsha, Hunan, China
| | - Bangqing Liu
- Department of Cardiothoracic Surgery, The 2nd Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Haiyong Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yinhui Xu
- Department of Cardiothoracic Surgery, The 2nd Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyan Feng
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaolin Sun
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhenzong Du
- Department of Cardiothoracic Surgery, Nanxishan Hospital of Guangxi Province, Guilin, Guangxi, China
| |
Collapse
|
22
|
Raghunathan K, Ahsan A, Ray D, Nyati MK, Veatch SL. Membrane Transition Temperature Determines Cisplatin Response. PLoS One 2015; 10:e0140925. [PMID: 26484687 PMCID: PMC4618528 DOI: 10.1371/journal.pone.0140925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced resistance may be due to certain changes in the bio-physical properties of plasma membranes. Giant plasma membrane vesicles (GPMVs) isolated from cortical cytoskeleton exhibit a miscibility transition between a single liquid phase at high temperature and two distinct coexisting liquid phases at low temperature. The temperature at which this transition occurs is hypothesized to reflect the magnitude of membrane heterogeneity at physiological temperature. We find that addition of cisplatin to vesicles isolated from cisplatin-sensitive cells result in a lowering of this miscibility transition temperature, whereas in cisplatin-resistant cells such treatment does not affect the transition temperature. To explore if this is a cause or consequence of cisplatin resistance, we tested if addition of cisplatin in combination with agents that modulate GPMV transition temperatures can affect cisplatin sensitivity. We found that cells become more sensitive to cisplatin when isopropanol, an agent that lowers GPMV transition temperature, was combined with cisplatin. Conversely, cells became resistant to cisplatin when added in combination with menthol that raises GPMV transition temperatures. These data suggest that changes in plasma membrane heterogeneity augments or suppresses signaling events initiated in the plasma membranes that can determine response to cisplatin. We postulate that desired perturbations of membrane heterogeneity could provide an effective therapeutic strategy to overcome cisplatin resistance for certain patients.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mukesh K. Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
23
|
Dai CH, Li J, Chen P, Jiang HG, Wu M, Chen YC. RNA interferences targeting the Fanconi anemia/BRCA pathway upstream genes reverse cisplatin resistance in drug-resistant lung cancer cells. J Biomed Sci 2015; 22:77. [PMID: 26385482 PMCID: PMC4575453 DOI: 10.1186/s12929-015-0185-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance. In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin. RESULT Using small interfering RNA (siRNA), knockdown of FANCF, FANCL, or FANCD2 inhibited function of the FA/BRCA pathway in A549, A549/DDP and SK-MES-1 cells, and potentiated sensitivity of the three cells to cisplatin. The extent of proliferation inhibition induced by cisplatin after knockdown of FANCF and/or FANCL in A549/DDP cells was significantly greater than in A549 and SK-MES-1 cells, suggesting that depletion of FANCF and/or FANCL can reverse resistance of cisplatin-resistant lung cancer cells to cisplatin. Furthermore, knockdown of FANCL resulted in higher cisplatin sensitivity and dramatically elevated apoptosis rates compared with knockdown of FANCF in A549/DDP cells, indicating that FANCL play an important role in the repair of cisplatin-induced DNA damage. CONCLUSION Knockdown of FANCF, FANCL, or FANCD2 by RNAi could synergize the effect of cisplatin on suppressing cell proliferation in cisplatin-resistant lung cancer cells through inhibition of FA/BRCA pathway.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhengjiang, 212001, China.
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhengjiang, 212001, China.
| | - Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhengjiang, 212001, China.
| | - He-Guo Jiang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhengjiang, 212001, China.
| | - Ming Wu
- Institute of Medical Science, Jiangsu University, Zhengjiang, 212013, China.
| | - Yong-Chang Chen
- Institute of Medical Science, Jiangsu University, Zhengjiang, 212013, China.
| |
Collapse
|
24
|
Gatti L, Cassinelli G, Zaffaroni N, Lanzi C, Perego P. New mechanisms for old drugs: Insights into DNA-unrelated effects of platinum compounds and drug resistance determinants. Drug Resist Updat 2015; 20:1-11. [PMID: 26003720 DOI: 10.1016/j.drup.2015.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023]
Abstract
Platinum drugs have been widely used for the treatment of several solid tumors. Although DNA has been recognized as the primary cellular target for these agents, there are unresolved issues concerning their effects and the molecular mechanisms underlying the antitumor efficacy. These cytotoxic agents interact with sub-cellular compartments other than the nucleus. Here, we review how such emerging phenomena contribute to the pharmacologic activity as well as to drug resistance phenotypes. DNA-unrelated effects of platinum drugs involve alterations at the plasma membrane and in endo-lysosomal compartments. A direct interaction with the mitochondria also appears to be implicated in drug-induced cell death. Moreover, the pioneering work of a few groups has shown that platinum drugs can act on the tumor microenvironment as well, and potentiate antitumor activity of the immune system. These poorly understood aspects of platinum drug activity sites may be harnessed to enhance their antitumor efficacy. A complete understanding of DNA-unrelated effects of platinum compounds might reveal new aspects of drug resistance allowing the implementation of the antitumor therapeutic efficacy of platinum compound-based regimens and minimization of their toxic side effects.
Collapse
Affiliation(s)
- Laura Gatti
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy.
| |
Collapse
|
25
|
Wang DF, Rong WT, Lu Y, Hou J, Qi SS, Xiao Q, Zhang J, You J, Yu SQ, Xu Q. TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3888-3901. [PMID: 25644220 DOI: 10.1021/am508340m] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we successfully synthesized d-α-tocopheryl polyethylene glycol 2000 succinate (TPGS2k) and prepared TPGS2k-modified poly(lactic-co-glycolic acid) nanoparticles (TPGS2k/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), designated TPGS2k/PLGA/SN-38 NPs. Characterization measurements showed that TPGS2k/PLGA/SN-38 NPs displayed flat and spheroidal particles with diameters of 80-104 nm. SN-38 was encapsulated in TPGS2k emulsified PLGA NPs with the entrapment efficiency and loading rates of SN-38 83.6 and 7.85%, respectively. SN-38 could release constantly from TPGS2k/PLGA/SN-38 NPs in vitro. TPGS2k/PLGA/SN-38 NPs induced significantly higher cytotoxicity on A549 cells and the multidrug resistance (MDR) cell line (A549/DDP cells and A549/Taxol cells) compared with free SN-38. Further studies on the mechanism of the NPs in increasing the death of MDR cells showed that following the SN-38 releasing into cytoplasm the remaining TPGS2k/PLGA NPs could reverse the P-gp mediated MDR via interfering with the structure and function of mitochondria and rather than directly inhibiting the enzymatic activity of P-gp ATPase. Therefore, TPGS2k/PLGA NPs can reduce the generation of ATP and the release of energy for the requisite of P-gp efflux transporters. The results indicated that TPGS2k/PLGA NPs could become the nanopharmaceutical materials with the capability to reversal MDR and improve anticancer effects of some chemotherapy drugs as P-gp substrates.
Collapse
Affiliation(s)
- Dong-Fang Wang
- Jiangsu Key Laboratory for Supramolecular Medicinal Materials and Applications, College of Life Sciences, Nanjing Normal University , Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lamego I, Duarte IF, Marques MPM, Gil AM. Metabolic markers of MG-63 osteosarcoma cell line response to doxorubicin and methotrexate treatment: comparison to cisplatin. J Proteome Res 2014; 13:6033-45. [PMID: 25382592 DOI: 10.1021/pr500907d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A high resolution magic angle spinning NMR metabolomics study of the effects of doxorubicin (DOX), methotrexate (MTX) and cisplatin (cDDP) on MG-63 cells is presented and unveils the cellular metabolic adaptations to these drugs, often used together in clinical protocols. Although cDDP-treated cells were confirmed to undergo extensive membrane degradation accompanied by increased neutral lipids, DOX- and MTX-treated cells showed no lipids increase and different phospholipid signatures, which suggests that (i) DOX induces significant membrane degradation, decreased membrane synthesis, and apparent inhibition of de novo lipid synthesis, and (ii) MTX induces decreased membrane synthesis, while no membrane disruption or de novo lipid synthesis seem to occur. Nucleotide signatures were in apparent agreement with the different drug action mechanisms, a link having been found between UDP-GlcNAc and the active pathways of membrane degradation and energy metabolism, for cDDP and DOX, with a relation to oxidative state and DNA degradation, for cDDP. Correlation studies unveiled drug-specific antioxidative signatures, which pinpointed m- and s-inositols, taurine, glutamate/glutamine, and possibly creatine as important in glutathione metabolism. These results illustrate the ability of NMR metabolomics to measure cellular responses to different drugs, a first step toward understanding drug synergism and the definition of new biomarkers of drug efficacy.
Collapse
Affiliation(s)
- Inês Lamego
- CICECO-Departmento de Química, Universidade de Aveiro , Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
27
|
Duarte IF, Ladeirinha AF, Lamego I, Gil AM, Carvalho L, Carreira IM, Melo JB. Potential Markers of Cisplatin Treatment Response Unveiled by NMR Metabolomics of Human Lung Cells. Mol Pharm 2013; 10:4242-51. [DOI: 10.1021/mp400335k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. F. Duarte
- CICECO,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A. F. Ladeirinha
- Laboratory
of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - I. Lamego
- CICECO,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A. M. Gil
- CICECO,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - L. Carvalho
- University Hospitals of Coimbra, 3000-075 Coimbra, Portugal
- Institute
of Pathological Anatomy, Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- CIMAGO,
Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - I. M. Carreira
- Laboratory
of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- CIMAGO,
Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - J. B. Melo
- Laboratory
of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- CIMAGO,
Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
28
|
Wang Y, Guo M, Lu Y, Ding LY, Ron WT, Liu YQ, Song FF, Yu SQ. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. NANOTECHNOLOGY 2012; 23:495103. [PMID: 23149859 DOI: 10.1088/0957-4484/23/49/495103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work might provide a new insight into the design of pharmacologically inactive excipients that can serve as P-gp modulators instead of drugs that are P-gp inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Key Laboratory for Supramolecular Medicinal Materials and Applications, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abramov Y, Carmi S, Anteby SO, Ringel I. Ex vivo 1H and 31P magnetic resonance spectroscopy as a means for tumor characterization in ovarian cancer patients. Oncol Rep 2012; 29:321-8. [PMID: 23042519 DOI: 10.3892/or.2012.2071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/18/2012] [Indexed: 11/06/2022] Open
Abstract
We aimed to determine whether cells obtained from malignant ovarian tumors had different ex vivo 1H- and 31P (phosphorus-31)-magnetic resonance (MR) spectra compared to cells obtained from benign ovarian cysts. In addition, we aimed to assess the metabolic effects of chemotherapy on malignant cells obtained from peritoneal effusions of ovarian cancer patients. We included 20 ovarian cancer patients undergoing explorative laparotomy for tumor resection, 15 patients undergoing oophorectomy for benign ovarian cysts and 8 patients with advanced ovarian cancer with cancerous peritoneal effusion undergoing palliative percutaneous drainage. Ovarian and metastatic tissues were obtained from all patients undergoing laparotomy and analyzed using 1H magnetic resonance spectroscopy (MRS). Cancerous cells from peritoneal effusions were incubated with 3 different anti-mitotic drugs (paclitaxel, cisplatin and carboplatin) at LC50 and the consequent metabolic changes were monitored using 31P-MRS. 1H-MRS revealed significantly higher intracellular lactate levels in cells obtained from ovarian tumors, most prominently in the moderately to poorly differentiated histological types, while total choline (Chol) compounds were higher in the moderately to poorly differentiated subgroup only. Ovarian cancer cells obtained from peritoneal effusions showed a significantly decreased glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE) and uridine diphospho-sugar (UDPS) levels following ex vivo exposure to all 3 anti-mitotic drugs. Ex vivo 1H-MRS identified significant metabolic differences between cells obtained from ovarian tumors compared to those originating in benign ovarian cysts, including increased lactate and total choline compound levels. The 31P-MRS technique allowed characterization and monitoring of metabolic changes occurring in ovarian cancer cells in response to chemotherapy.
Collapse
Affiliation(s)
- Yoram Abramov
- Department of Obstetrics and Gynecology, Carmel Medical Center, Technion University, Rappaport Faculty of Medicine, Haifa, Israel.
| | | | | | | |
Collapse
|
30
|
Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 2012; 136:35-55. [DOI: 10.1016/j.pharmthera.2012.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022]
|
31
|
Brozovic A, Ambriović-Ristov A, Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 2010; 40:347-59. [PMID: 20163198 DOI: 10.3109/10408441003601836] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cisplatin (cDDP) is an anticancer agent that is widely used in the treatment of many solid tumors. A major obstacle to successful cDDP-based chemotherapy, however, is the intrinsic and acquired resistance of tumor cells to this drug. Greater insight into the molecular mechanisms underlying the modulation of cellular responses to cDDP will aid in the development and optimization of new therapeutic strategies. Apart from induction of DNA damage, recent data have suggested that cDDP also induces the formation of reactive oxygen species that can trigger cell death. Cell death occurs as the result of several simultaneously activated signaling pathways. The specific pathway responsible for cell death depends on the cell type and the treatment conditions. This review focuses on the relationship between glutathione and BCL-2 and their protective role in cDDP-induced reactive oxygen species formation and cDDP resistance.
Collapse
Affiliation(s)
- Anamaria Brozovic
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia.
| | | | | |
Collapse
|
32
|
Baritaki S, Apostolakis S, Kanellou P, Dimanche-Boitrel MT, Spandidos DA, Bonavida B. Reversal of tumor resistance to apoptotic stimuli by alteration of membrane fluidity: therapeutic implications. Adv Cancer Res 2007; 98:149-90. [PMID: 17433910 DOI: 10.1016/s0065-230x(06)98005-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In recent years, significant development and improvement have been observed in the treatment of cancer; however, relapses and recurrences occur frequently and there have not been any current therapies to treat such cancers. Cancers resistant to conventional therapies develop several mechanisms to escape death-inducing stimuli. A poorly understood mechanism is the involvement of the cancer cell plasma membrane composition and architecture and their involvement in regulating drug-inducing stimuli leading to cell death. Although the basic structure of the biological membrane was established 80 years ago, study of the physical properties of lipid bilayers still provides significant information regarding membrane organization and dynamics. Membrane fluidity is probably the most important physicochemical property of cell membranes. Alterations of membrane fluidity can seriously affect functional properties of the cell and induction of apoptotic pathways resulting in cell death. The role of membrane fluidity in the apoptotic process is clearly exemplified as it is seriously disrupted as a result of cell injury. The molecular signaling pathways leading to apoptosis are currently promising areas of research investigation and lead to unravel the underlying molecular mechanisms of tumor cells resistance to apoptotic stimuli and hence the development of new effective therapeutic agents. Recent findings indicate that most anticancer agents induce apoptosis, directly or indirectly, through alterations of tumor cell membrane fluidity. The present chapter summarizes the relationship between alterations of tumor cell membrane fluidity and tumor cell response to apoptotic-inducing stimuli. Several potential therapeutic applications directed at tumor cell membrane fluidity are proposed.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
Liu Q, Qu Y, Van Antwerpen R, Farrell N. Mechanism of the Membrane Interaction of Polynuclear Platinum Anticancer Agents. Implications for Cellular Uptake. Biochemistry 2006; 45:4248-56. [PMID: 16566599 DOI: 10.1021/bi052517z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction between phospholipids and polynuclear platinum drugs was studied as a mechanism model for cellular uptake of anticancer drugs. The interaction was studied by differential scanning calorimetry (DSC), 31P nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma optical emission spectroscopy (ICP-OES), and electrospray ionization mass spectrometry (ESI-MS). The transition temperature, enthalpy, and entropy of negatively charged phospholipids DPPS, DPPA, and DPPG were changed upon reaction with the trinuclear platinum complex [{trans-PtCl(NH3)2}2mu-Pt(NH3)2{H2N(CH2)6NH2}2](NO3)4 (I, BBR3464) and the dinuclear analogue [{trans-PtCl(NH3)2}mu-{(NH2)(CH2)3NH2(CH2)4(NH2)}Cl3 (II, BBR3571). This suggests that these platinum complexes interacted not only with the phosphate headgroup but also with the region of the fatty acid tail of liposomes and finally changed the fluidity of the membrane. Both noncovalent (presumably electrostatic and hydrogen bonding) and covalent interactions were involved in the reactions of the negatively charged phospholipids DPPA, DPPS, and DPPG with the highly positively charged platinum complexes. In contrast, few differences were seen for the zwitterionic phospholipids DPPC and DPPE. The binding ratio of BBR3464 to DPPA liposomes was higher than the ratio of BBR3464 to DPPS liposomes, and similar differences were seen for BBR3571. The binding ratios of the platinum complexes to negatively charged phospholipids DPPA, DPPS, and DPPG were slightly lower in a 100 mM chloride solution than in a chloride-free solution. The binding of BBR3464 and BBR3571 with the liposomes was significantly stronger than that with cis-[PtCl2(NH3)2], cisplatin. ESI-MS confirmed that the products of the incubation of BBR3464 with DPPA and DPPS correspond to chloride displacement and formation of [Pt3(NH3)6{NH2(CH2)6NH2}2(DPPA)2]2+ (1) and [Pt3(NH3)6{NH2(CH2)6NH2}2(DPPS)2]2+ (2), respectively. Similar observations were made for BBR3571. 31P NMR spectra confirmed that the site of binding for DPPA was the phosphate oxygen, whereas for DPPS, a binding site of the nitrogen of the serine side chain is indicated. Noncovalent interactions were also confirmed by use of the analogue [{Pt(NH3)3}2mu-Pt(NH3)2{H2N(CH2)6NH2}2](NO3)6 (III, 0,0,0/t,t,t). The implications of these results for the mechanism of cellular uptake of polynuclear platinum complexes are discussed.
Collapse
Affiliation(s)
- Qin Liu
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | | | | | | |
Collapse
|