1
|
Keven JB, Vinit R, Katusele M, Reimer LJ, Zimmerman PA, Karl S, Walker ED. Genetic differentiation and bottleneck effects in the malaria vectors Anopheles farauti and Anopheles punctulatus after an LLIN-based vector control program in Papua New Guinea. Ecol Evol 2024; 14:e10917. [PMID: 38371856 PMCID: PMC10869881 DOI: 10.1002/ece3.10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Implementation of long-lasting insecticide-treated net (LLIN) programs to control human malaria transmission leads to substantial reductions in the abundance of Anopheles mosquitoes, but the impact on the population genetic structure of the malaria vectors is poorly known, nor has it been investigated in Papua New Guinea, where malaria is highly endemic and where several species of Anopheles have vector roles. Here, we applied Wright's F-statistic, analysis of molecular variance, Bayesian structure analysis, and discriminant analysis of principle components to microsatellite genotype data to analyze the population genetic structure of Anopheles farauti between and within the northern and southern lowland plains and of Anopheles punctulatus within the northern plain of Papua New Guinea after such a program. Bottleneck effects in the two malaria vectors were analyzed using Luikart and Cornuet's tests of heterozygosity. A large, panmictic population of An. punctulatus pre-LLIN program diverged into two subregional populations corresponding to Madang and East Sepik provinces post-LLIN distribution and experienced a genetic bottleneck during this process. By contrast, the An. farauti population existed as two regional populations isolated by mountain ranges pre-LLIN, a genetic structure that persisted after the distribution of LLINs with no further geographic differentiation nor evidence of a genetic bottleneck. These findings show the differential response of populations of different vector species to interventions, which has implications for program sustainability and gene flow.
Collapse
Affiliation(s)
- John B. Keven
- Department of Population Health and Disease Prevention, Program in Public HealthUniversity of California‐IrvineIrvineCaliforniaUSA
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Vector‐borne Diseases UnitPapua New Guinea Institute of Medical ResearchMadangMadang ProvincePapua New Guinea
| | - Rebecca Vinit
- Vector‐borne Diseases UnitPapua New Guinea Institute of Medical ResearchMadangMadang ProvincePapua New Guinea
| | - Michelle Katusele
- Vector‐borne Diseases UnitPapua New Guinea Institute of Medical ResearchMadangMadang ProvincePapua New Guinea
| | - Lisa J. Reimer
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Pathology DepartmentCase Western Reserve UniversityClevelandOhioUSA
| | - Stephan Karl
- Vector‐borne Diseases UnitPapua New Guinea Institute of Medical ResearchMadangMadang ProvincePapua New Guinea
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Katusele M, Lagur S, Endersby-Harshman N, Demok S, Goi J, Vincent N, Sakur M, Dau A, Kilepak L, Gideon S, Pombreaw C, Makita L, Hoffmann A, Robinson LJ, Laman M, Karl S. Insecticide resistance in malaria and arbovirus vectors in Papua New Guinea, 2017-2022. Parasit Vectors 2022; 15:426. [PMID: 36376932 PMCID: PMC9664807 DOI: 10.1186/s13071-022-05493-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Insecticide resistance (IR) monitoring is essential for evidence-based control of mosquito-borne diseases. While widespread pyrethroid resistance in Anopheles and Aedes species has been described in many countries, data for Papua New Guinea (PNG) are limited. Available data indicate that the local Anopheles populations in PNG remain pyrethroid-susceptible, making regular IR monitoring even more important. In addition, Aedes aegypti pyrethroid resistance has been described in PNG. Here, Anopheles and Aedes IR monitoring data generated from across PNG between 2017 and 2022 are presented. METHODS Mosquito larvae were collected in larval habitat surveys and through ovitraps. Mosquitoes were reared to adults and tested using standard WHO susceptibility bioassays. DNA from a subset of Aedes mosquitoes was sequenced to analyse the voltage-sensitive sodium channel (Vssc) region for any resistance-related mutations. RESULTS Approximately 20,000 adult female mosquitoes from nine PNG provinces were tested. Anopheles punctulatus sensu lato mosquitoes were susceptible to pyrethroids but there were signs of reduced mortality in some areas. Some Anopheles populations were also resistant to DDT. Tests also showed that Aedes. aegypti in PNG are resistant to pyrethroids and DDT and that there was also likelihood of bendiocarb resistance. A range of Vssc resistance mutations were identified. Aedes albopictus were DDT resistant and were likely developing pyrethroid resistance, given a low frequency of Vssc mutations was observed. CONCLUSIONS Aedes aegypti is highly pyrethroid resistant and also shows signs of resistance against carbamates in PNG. Anopheles punctulatus s.l. and Ae. albopictus populations exhibit low levels of resistance against pyrethroids and DDT in some areas. Pyrethroid-only bed nets are currently the only programmatic vector control tool used in PNG. It is important to continue to monitor IR in PNG and develop proactive insecticide resistance management strategies in primary disease vectors to retain pyrethroid susceptibility especially in the malaria vectors for as long as possible.
Collapse
Affiliation(s)
- Michelle Katusele
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Solomon Lagur
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Nancy Endersby-Harshman
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria Australia
| | - Samuel Demok
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Joelyn Goi
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Naomi Vincent
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Burnet Institute of Medical Research, Melbourne, Victoria Australia
- Papua New Guinea National Department of Health, Port Moresby, National Capitol District Papua New Guinea
| | - Muker Sakur
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Absalom Dau
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Lemen Kilepak
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Stephen Gideon
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Papua New Guinea National Department of Health, Port Moresby, National Capitol District Papua New Guinea
| | - Christine Pombreaw
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Leo Makita
- Papua New Guinea National Department of Health, Port Moresby, National Capitol District Papua New Guinea
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria Australia
| | - Leanne J. Robinson
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Burnet Institute of Medical Research, Melbourne, Victoria Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria Australia
| | - Moses Laman
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Stephan Karl
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland Australia
| |
Collapse
|
3
|
Cleary E, Hetzel MW, Clements ACA. A review of malaria epidemiology and control in Papua New Guinea 1900 to 2021: Progress made and future directions. FRONTIERS IN EPIDEMIOLOGY 2022; 2:980795. [PMID: 38455277 PMCID: PMC10910954 DOI: 10.3389/fepid.2022.980795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/29/2022] [Indexed: 03/09/2024]
Abstract
The research and control of malaria has a long history in Papua New Guinea, sometimes resulting in substantial changes to the distribution of infection and transmission dynamics in the country. There have been four major periods of malaria control in PNG, with the current control programme having commenced in 2004. Each previous control programme was successful in reducing malaria burden in the country, but multiple factors led to programme failures and eventual breakdown. A comprehensive review of the literature dating from 1900 to 2021 was undertaken to summarize control strategies, epidemiology, vector ecology and environmental drivers of malaria transmission in PNG. Evaluations of historical control programs reveal poor planning and communication, and difficulty in sustaining financial investment once malaria burden had decreased as common themes in the breakdown of previous programs. Success of current and future malaria control programs in PNG is contingent on adequate planning and management of control programs, effective communication and engagement with at-risk populations, and cohesive targeted approaches to sub-national and national control and elimination.
Collapse
Affiliation(s)
- Eimear Cleary
- Research School of Population Health, Australian National University, Canberra, ACT, Australia
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Archie C. A. Clements
- Curtin University, Perth, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
4
|
Robinson LJ, Laman M, Makita L, Lek D, Dori A, Farquhar R, Vantaux A, Witkowski B, Karl S, Mueller I. Asia-Pacific International Center of Excellence in Malaria Research: Maximizing Impact on Malaria Control Policy and Public Health in Cambodia and Papua New Guinea. Am J Trop Med Hyg 2022; 107:124-130. [PMID: 36228920 PMCID: PMC9662209 DOI: 10.4269/ajtmh.21-1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 01/31/2023] Open
Abstract
The Asia-Pacific International Center of Excellence in Malaria Research (ICEMR) was funded in 2016 to conduct a coordinated set of field and in-depth biological studies in Cambodia and Papua New Guinea (PNG), in sites that span the range of transmission intensities currently found in the Asia-Pacific regions. The overall objective is to gain an understanding of key parasite, human host, and vector factors involved in maintaining transmission in the face of intensified control and elimination programs, and to develop novel approaches to identify and target residual transmission foci. In this article, we will describe how the ICEMR program was designed to address key knowledge gaps and priority areas for the malaria control programs in each country. In PNG, partners have worked together on two consecutive ICEMR grants (2009-2016 and 2017-2024) and we present a case study of the partnership and engagement approach that has led to stronger coordination of research activities and integration with program, informing country-level strategic planning and prioritization of control activities. In both settings, the ICEMR program has generated insights into transmission foci, risk factors for ongoing transmission, highlighting the hidden burden of vivax malaria, and the need for additional complementary vector control tools. Finally, we will summarize the emerging research questions and priority areas-namely surveillance, vivax malaria, new vector control tools, and community/health systems-oriented approaches-where further tool development and implementation research have been identified as being needed to guide policy.
Collapse
Affiliation(s)
- Leanne J. Robinson
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea;,Burnet Institute, Melbourne, Australia;,Walter & Eliza Hall Institute of Medical Research, Melbourne, Australia;,Address correspondence to Leanne J. Robinson, Burnet Institute, 85 Commercial Road, Melbourne, Australia. E-mail:
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leo Makita
- National Department of Health, Waigani, Papua New Guinea
| | - Dysoley Lek
- National Centre for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia;,School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Annie Dori
- PNG Australia Transition to Health (PATH) Program, Waigani, Papua New Guinea
| | - Rachael Farquhar
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Amelie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Ivo Mueller
- Walter & Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
5
|
Keven JB, Katusele M, Vinit R, Rodríguez-Rodríguez D, Hetzel MW, Robinson LJ, Laman M, Karl S, Walker ED. Vector composition, abundance, biting patterns and malaria transmission intensity in Madang, Papua New Guinea: assessment after 7 years of an LLIN-based malaria control programme. Malar J 2022; 21:7. [PMID: 34983530 PMCID: PMC8729043 DOI: 10.1186/s12936-021-04030-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background A malaria control programme based on distribution of long-lasting insecticidal bed nets (LLINs) and artemisinin combination therapy began in Papua New Guinea in 2009. After implementation of the programme, substantial reductions in vector abundance and malaria transmission intensity occurred. The research reported here investigated whether these reductions remained after seven years of sustained effort. Methods All-night (18:00 to 06:00) mosquito collections were conducted using human landing catches and barrier screen methods in four villages of Madang Province between September 2016 and March 2017. Anopheles species identification and sporozoite infection with Plasmodium vivax and Plasmodium falciparum were determined with molecular methods. Vector composition was expressed as the relative proportion of different species in villages, and vector abundance was quantified as the number of mosquitoes per barrier screen-night and per person-night. Transmission intensity was quantified as the number of sporozoite-infective vector bites per person-night. Results Five Anopheles species were present, but vector composition varied greatly among villages. Anopheles koliensis, a strongly anthropophilic species was the most prevalent in Bulal, Matukar and Wasab villages, constituting 63.7–73.8% of all Anopheles, but in Megiar Anopheles farauti was the most prevalent species (97.6%). Vector abundance varied among villages (ranging from 2.8 to 72.3 Anopheles per screen-night and 2.2–31.1 Anopheles per person-night), and spatially within villages. Malaria transmission intensity varied among the villages, with values ranging from 0.03 to 0.5 infective Anopheles bites per person-night. Most (54.1–75.1%) of the Anopheles bites occurred outdoors, with a substantial proportion (25.5–50.8%) occurring before 22:00. Conclusion The estimates of vector abundance and transmission intensity in the current study were comparable to or higher than estimates in the same villages in 2010–2012, indicating impeded programme effectiveness. Outdoor and early biting behaviours of vectors are some of the likely explanatory factors. Heterogeneity in vector composition, abundance and distribution among and within villages challenge malaria control programmes and must be considered when planning them. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04030-4.
Collapse
Affiliation(s)
- John B Keven
- Department of Entomology, Michigan State University, East Lansing, MI, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA. .,Papua New Guinea Institute of Medical Research, Vector-Borne Diseases Unit, Madang, Papua New Guinea.
| | - Michelle Katusele
- Papua New Guinea Institute of Medical Research, Vector-Borne Diseases Unit, Madang, Papua New Guinea
| | - Rebecca Vinit
- Papua New Guinea Institute of Medical Research, Vector-Borne Diseases Unit, Madang, Papua New Guinea
| | | | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Vector-Borne Diseases Unit, Madang, Papua New Guinea.,Burnet Institute, Melbourne, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Vector-Borne Diseases Unit, Madang, Papua New Guinea
| | - Stephan Karl
- Papua New Guinea Institute of Medical Research, Vector-Borne Diseases Unit, Madang, Papua New Guinea.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Edward D Walker
- Department of Entomology, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Keven JB, Katusele M, Vinit R, Rodríguez-Rodríguez D, Hetzel MW, Robinson LJ, Laman M, Karl S, Foran DR, Walker ED. Nonrandom Selection and Multiple Blood Feeding of Human Hosts by Anopheles Vectors: Implications for Malaria Transmission in Papua New Guinea. Am J Trop Med Hyg 2021; 105:1747-1758. [PMID: 34583342 PMCID: PMC8641310 DOI: 10.4269/ajtmh.21-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/21/2021] [Indexed: 11/07/2022] Open
Abstract
Nonrandom selection and multiple blood feeding of human hosts by Anopheles mosquitoes may exacerbate malaria transmission. Both patterns of blood feeding and their relationship to malaria epidemiology were investigated in Anopheles vectors in Papua New Guinea (PNG). Blood samples from humans and mosquito blood meals were collected in villages and human genetic profiles ("fingerprints") were analyzed by genotyping 23 microsatellites and a sex-specific marker. Frequency of blood meals acquired from different humans, identified by unique genetic profiles, was fitted to Poisson and negative binomial distributions to test for nonrandom patterns of host selection. Blood meals with more than one genetic profiles were classified as mosquitoes that fed on multiple humans. The age of a person bitten by a mosquito was determined by matching the blood-meal genetic profile to the villagers' genetic profiles. Malaria infection in humans was determined by PCR test of blood samples. The results show nonrandom distribution of blood feeding among humans, with biased selection toward males and individuals aged 15-30 years. Prevalence of Plasmodium falciparum infection was higher in this age group, suggesting males in this age range could be super-spreaders of malaria parasites. The proportion of mosquitoes that fed on multiple humans ranged from 6% to 13% among villages. The patterns of host utilization observed here can amplify transmission and contribute to the persistence of malaria in PNG despite efforts to suppress it with insecticidal bed nets. Excessive feeding on males aged 15-30 years underscores the importance of targeted interventions focusing on this demographic group.
Collapse
Affiliation(s)
- John B. Keven
- Department of Microbiology and Molecular Genetics, and Department of Entomology, Michigan State University, East Lansing, Michigan
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Michelle Katusele
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Rebecca Vinit
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Daniela Rodríguez-Rodríguez
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Department of Epidemiology and Public Health, University of Basel, Basel, Switzerland
| | - Manuel W. Hetzel
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Department of Epidemiology and Public Health, University of Basel, Basel, Switzerland
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Vector-Borne Diseases and Tropical Public Health Group, Burnet Institute, Melbourne, Victoria, Australia
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Stephan Karl
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - David R. Foran
- School of Criminal Justice and Department of Integrative Biology, Michigan State University, Michigan
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, and Department of Entomology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Opoku R, Amoah PA, Nyamekye KA. Examining the incentives and disincentives in the maintenance of Insecticide-Treated Nets among householders in Ghana. Int J Health Plann Manage 2021; 36:2263-2276. [PMID: 34363240 DOI: 10.1002/hpm.3294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/23/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study explored the factors that affect the incentive to care for Insecticide-Treated Nets (ITNs) among householders in the Shai-Osudoku District of Ghana. METHODS The study employed a descriptive qualitative design. Four in-depth interviews (IDIs) and four focus group discussions (FGDs) were conducted to gather the data from 38 participants. A thematic technique was used to analyse the data. FINDINGS Householders were aware of the importance and use of ITNs. The factors underlying the motivation of householders to care for ITNs included their need to stay healthy; inadequate funds to acquire new ITNs and pay for healthcare cost; and their knowledge of the use and efficacy of ITNs. It was also found that obtaining the nets at no cost; limited time available to mend the ITNs; and limited knowledge on how to mend the ITNs disincentivised householders from effectively caring for the nets. CONCLUSIONS There is a need to rethink current ITN intervention programmes in ways that will improve the contents of public education messages and strengthen monitoring frameworks to ensure that householders take optimum care of their nets.
Collapse
Affiliation(s)
- Robert Opoku
- PMI VectorLink Project, Population Services International (PSI), Accra, Ghana
| | - Padmore Adusei Amoah
- School of Graduate Studies, Asia Pacific Institute of Ageing Studies, Institute of Policy Studies, Lingnan University, Tuen Mun, Hong Kong
| | - Kingsley Atta Nyamekye
- Department of Geographical Sciences and Planning- School of Geo-Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| |
Collapse
|
8
|
Millat-Martínez P, Gabong R, Balanza N, Luana S, Sanz S, Raulo S, Elizah A, Wali C, Paivu B, Dalmas J, Tabie S, Karl S, Laman M, Pomat W, Mitjà O, Baro B, Bassat Q. Coverage, determinants of use and repurposing of long-lasting insecticidal nets two years after a mass distribution in Lihir Islands, Papua New Guinea: a cross-sectional study. Malar J 2021; 20:336. [PMID: 34348727 PMCID: PMC8336363 DOI: 10.1186/s12936-021-03867-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Universal coverage with long-lasting insecticidal nets (LLINs) is an essential component of malaria control programmes. Three-yearly mass distribution of LLINs in Papua New Guinea (PNG) has been successful in reducing infection transmission since 2009, but malaria prevalence ramped up from 2015 onwards. Although LLIN universal coverage is mostly achieved during these campaigns, it may not be related with net use over time. Uses given to LLINs and non-compliance of this strategy were evaluated. METHODS A knowledge, attitude and practice (KAP) cross-sectional study was conducted in Lihir Islands, PNG, 2-2.5 years after the last LLIN mass distribution campaign. Data on bed net ownership, use and maintenance behaviour was collected using a household questionnaire administered by trained community volunteers. Logistic regression models were used to identify factors associated with owning at least one LLIN and sleeping under a LLIN the previous night. RESULTS Among 2694 households surveyed, 27.4 % (95 % CI: 25.8-29.2) owned at least one LLIN and 8.7 % (95 % CI: 7.6-9.8) had an adequate LLIN coverage (at least one LLIN for every two people). Out of 13,595 individuals in the surveyed households, 13.6 % (95 % CI: 13.0--4.2) reported having slept under a LLIN the preceding night. Determinants for sleeping under LLIN included living in a household with adequate LLIN coverage [adjusted OR (aOR) = 5.82 (95 % CI: 3.23-10.49)], household heads knowledge about LLINs [aOR = 16.44 (95 % CI: 8.29-32.58)], and female gender [aOR = 1.92 (95 % CI: 1.53-2.40)] (all p-values < 0.001). LLIN use decreased with older age [aOR = 0.29 (95 % CI: 0.21-0.40) for ≥ 15 year-olds, aOR = 0.38 (95 % CI: 0.27-0.55) for 5-14 year-olds] compared to < 5 year-olds (p-value < 0.001). Knowledge on the use of LLIN was good in 37.0 % of the household heads. Repurposed nets were reported serving as fishing nets (30.4 %), fruits and seedlings protection (26.6 %), covering up food (19.0 %) and bed linen (11.5 %). CONCLUSIONS Two years after mass distribution, LLIN coverage and use in Lihir Islands is extremely low. Three yearly distribution campaigns may not suffice to maintain an acceptable LLIN coverage unless knowledge on maintenance and use is promoted trough educational campaigns.
Collapse
Affiliation(s)
- Pere Millat-Martínez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain. .,Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea.
| | - Rebecca Gabong
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Núria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sakaia Luana
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Sergi Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Basic Clinical Practice, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Silvia Raulo
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Arthur Elizah
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Chilaka Wali
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Benjamin Paivu
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Julian Dalmas
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Samson Tabie
- Lihir Malaria Elimination Programme (LMEP), Lihir Island, Papua New Guinea
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia.,Papua New Guinea Institute of Medical Research, Goroka/Madang, Papua New Guinea
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Goroka/Madang, Papua New Guinea
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka/Madang, Papua New Guinea
| | - Oriol Mitjà
- Fight AIDS and Infectious Diseases Foundation, Badalona, Spain.,Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| | - Bàrbara Baro
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
9
|
Cleary E, Hetzel MW, Siba PM, Lau CL, Clements ACA. Spatial prediction of malaria prevalence in Papua New Guinea: a comparison of Bayesian decision network and multivariate regression modelling approaches for improved accuracy in prevalence prediction. Malar J 2021; 20:269. [PMID: 34120604 PMCID: PMC8201920 DOI: 10.1186/s12936-021-03804-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Considerable progress towards controlling malaria has been made in Papua New Guinea through the national malaria control programme’s free distribution of long-lasting insecticidal nets, improved diagnosis with rapid diagnostic tests and improved access to artemisinin combination therapy. Predictive prevalence maps can help to inform targeted interventions and monitor changes in malaria epidemiology over time as control efforts continue. This study aims to compare the predictive performance of prevalence maps generated using Bayesian decision network (BDN) models and multilevel logistic regression models (a type of generalized linear model, GLM) in terms of malaria spatial risk prediction accuracy. Methods Multilevel logistic regression models and BDN models were developed using 2010/2011 malaria prevalence survey data collected from 77 randomly selected villages to determine associations of Plasmodium falciparum and Plasmodium vivax prevalence with precipitation, temperature, elevation, slope (terrain aspect), enhanced vegetation index and distance to the coast. Predictive performance of multilevel logistic regression and BDN models were compared by cross-validation methods. Results Prevalence of P. falciparum, based on results obtained from GLMs was significantly associated with precipitation during the 3 driest months of the year, June to August (β = 0.015; 95% CI = 0.01–0.03), whereas P. vivax infection was associated with elevation (β = − 0.26; 95% CI = − 0.38 to − 3.04), precipitation during the 3 driest months of the year (β = 0.01; 95% CI = − 0.01–0.02) and slope (β = 0.12; 95% CI = 0.05–0.19). Compared with GLM model performance, BDNs showed improved accuracy in prediction of the prevalence of P. falciparum (AUC = 0.49 versus 0.75, respectively) and P. vivax (AUC = 0.56 versus 0.74, respectively) on cross-validation. Conclusions BDNs provide a more flexible modelling framework than GLMs and may have a better predictive performance when developing malaria prevalence maps due to the multiple interacting factors that drive malaria prevalence in different geographical areas. When developing malaria prevalence maps, BDNs may be particularly useful in predicting prevalence where spatial variation in climate and environmental drivers of malaria transmission exists, as is the case in Papua New Guinea.
Collapse
Affiliation(s)
- Eimear Cleary
- Research School of Population Health, Australian National University, Canberra, Australia.
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,Centre for Health Research and Diagnostics, Divine Word University, Madang, Papua New Guinea
| | - Colleen L Lau
- Research School of Population Health, Australian National University, Canberra, Australia.,School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Archie C A Clements
- Faculty of Health Sciences, Curtin University, Bentley, Australia.,Telethon Kids Institute, Nedlands, Australia
| |
Collapse
|
10
|
Hii J, Hustedt J, Bangs MJ. Residual Malaria Transmission in Select Countries of Asia-Pacific Region: Old Wine in a New Barrel. J Infect Dis 2021; 223:S111-S142. [PMID: 33906222 PMCID: PMC8079134 DOI: 10.1093/infdis/jiab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Despite substantial reductions in malaria burden and improvement in case management, malaria remains a major public health challenge in the Asia-Pacific region. Residual malaria transmission (RMT) is the fraction of total transmission that persists after achievement of full operational coverage with effective insecticide-treated bed nets (ITNs)/long-lasting insecticidal nets (LLINs) and/or indoor residual spray interventions. There is a critical need to standardize and share best practices for entomological, anthropological, and product development investigative protocols to meet the challenges of RMT and elimination goals. Methods A systematic review was conducted to describe when and where RMT is occurring, while specifically targeting ownership and usage of ITN/LLINs, indoor residual spray application, insecticide susceptibility of vectors, and human and vector biting behavior, with a focus on nighttime activities. Results Sixty-six publications from 1995 to present met the inclusion criteria for closer review. Associations between local vector control coverage and use with behaviors of human and mosquito vectors varied by locality and circumstance. Consequently, the magnitude of RMT is insufficiently studied and analyzed with sparse estimates of individual exposure in communities, insufficient or incomplete observations of ITN/LLIN use, and the local human population movement into and from high-risk areas. Conclusions This review identified significant gaps or deficiencies that require urgent attention, namely, developing standardized procedures and methods to estimate risk exposure beyond the peridomestic setting, analytical approaches to measure key human-vector interactions, and seasonal location-specific agricultural or forest use calendars, and establishing the collection of longitudinal human and vector data close in time and location.
Collapse
Affiliation(s)
- Jeffrey Hii
- Malaria Consortium Asia, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | | | - Michael J Bangs
- Public Health and Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasertart University, Bangkok, Thailand
| |
Collapse
|
11
|
Rodríguez-Rodríguez D, Katusele M, Auwun A, Marem M, Robinson LJ, Laman M, Hetzel MW, Pulford J. Human Behavior, Livelihood, and Malaria Transmission in Two Sites of Papua New Guinea. J Infect Dis 2021; 223:S171-S186. [PMID: 33906224 PMCID: PMC8079136 DOI: 10.1093/infdis/jiaa402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Malaria transmission is currently resurging in Papua New Guinea (PNG). In addition to intervention coverage, social and cultural factors influence changes in epidemiology of malaria in PNG. This study aimed to better understand the role of human behavior in relation to current malaria control efforts. Methods A mixed-method design was used in 2 sites in PNG. In-depth interviews, focus group discussions, cross-sectional malaria indicator survey, and population census were implemented. Results We identified 7 population groups based on demographics and behavioral patterns with potential relevance to Anopheles exposure. People spend a substantial amount of time outdoors or in semiopen structures. Between 4 pm and 8 am, all types of activities across all groups in both study sites may be exposing individuals to mosquito bites; sleeping under a long-lasting insecticidal net was the exception. The later in the night, the more outdoor presence was concentrated in adult men. Conclusions Our findings highlight the potential of outdoor exposure to hamper malaria control as people spend a remarkable amount of time outdoors without protection from mosquitoes. To prevent ongoing transmission, targeting of groups, places, and activities with complementary interventions should consider setting-specific human behaviors in addition to epidemiological and entomological data.
Collapse
Affiliation(s)
- Daniela Rodríguez-Rodríguez
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Michelle Katusele
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Alma Auwun
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Magdalene Marem
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Leanne J Robinson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Burnet Institute, Melbourne, Australia
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Justin Pulford
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
12
|
Worrall E, Were V, Matope A, Gama E, Olewe J, Mwambi D, Desai M, Kariuki S, Buff AM, Niessen LW. Coverage outcomes (effects), costs, cost-effectiveness, and equity of two combinations of long-lasting insecticidal net (LLIN) distribution channels in Kenya: a two-arm study under operational conditions. BMC Public Health 2020; 20:1870. [PMID: 33287766 PMCID: PMC7720381 DOI: 10.1186/s12889-020-09846-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Malaria-endemic countries distribute long-lasting insecticidal nets (LLINs) through combined channels with ambitious, universal coverage (UC) targets. Kenya has used eight channels with variable results. To inform national decision-makers, this two-arm study compares coverage (effects), costs, cost-effectiveness, and equity of two combinations of LLIN distribution channels in Kenya. METHODS Two combinations of five delivery channels were compared as 'intervention' and 'control' arms. The intervention arm comprised four channels: community health volunteer (CHV), antenatal and child health clinics (ANCC), social marketing (SM) and commercial outlets (CO). The control arm consisted of the intervention arm channels except mass campaign (MC) replaced CHV. Primary analysis used random sample household survey data, service-provider costs, and voucher or LLIN distribution data to compare between-arm effects, costs, cost-effectiveness, and equity. Secondary analyses compared costs and equity by channel. RESULTS The multiple distribution channels used in both arms of the study achieved high LLIN ownership and use. The intervention arm had significantly lower reported LLIN use the night before the survey (84·8% [95% CI 83·0-86·4%] versus 89·2% [95% CI 87·8-90·5%], p < 0·0001), higher unit costs ($10·56 versus $7·17), was less cost-effective ($86·44, 95% range $75·77-$102·77 versus $69·20, 95% range $63·66-$77·23) and more inequitable (Concentration index [C.Ind] = 0·076 [95% CI 0·057 to 0·095 versus C.Ind = 0.049 [95% CI 0·030 to 0·067]) than the control arm. Unit cost per LLIN distributed was lowest for MC ($3·10) followed by CHV ($10·81) with both channels being moderately inequitable in favour of least-poor households. CONCLUSION In line with best practices, the multiple distribution channel model achieved high LLIN ownership and use in this Kenyan study setting. The control-arm combination, which included MC, was the most cost-effective way to increase UC at household level. Mass campaigns, combined with continuous distribution channels, are an effective and cost-effective way to achieve UC in Kenya. The findings are relevant to other countries and donors seeking to optimise LLIN distribution. TRIAL REGISTRATION The assignment of the intervention was not at the discretion of the investigators; therefore, this study did not require registration.
Collapse
Affiliation(s)
- Eve Worrall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Vincent Were
- Centre for Applied Health Research and Delivery (CAHRD), Liverpool School of Tropical Medicine, Liverpool, UK
- Kenya Medical Research Institute and Centre for Global Health Research, Kisumu, Kenya
| | - Agnes Matope
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Elvis Gama
- Directorate of Quality Management and Digital Health, Ministry of Health and Population, Lilongwe, Malawi
| | - Joseph Olewe
- Kenya Medical Research Institute and Centre for Global Health Research, Kisumu, Kenya
| | - Dennis Mwambi
- Population Services Kenya (PS Kenya), Nairobi, Kenya
- Population Reference Bureau, Nairobi, Kenya
| | - Meghna Desai
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Simon Kariuki
- Kenya Medical Research Institute and Centre for Global Health Research, Kisumu, Kenya
| | - Ann M. Buff
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA USA
- U.S. President’s Malaria Initiative, Nairobi, Kenya
| | - Louis W. Niessen
- Centre for Applied Health Research and Delivery (CAHRD), Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
13
|
Kattenberg JH, Razook Z, Keo R, Koepfli C, Jennison C, Lautu-Gumal D, Fola AA, Ome-Kaius M, Barnadas C, Siba P, Felger I, Kazura J, Mueller I, Robinson LJ, Barry AE. Monitoring Plasmodium falciparum and Plasmodium vivax using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Mol Ecol 2020; 29:4525-4541. [PMID: 32985031 PMCID: PMC10008436 DOI: 10.1111/mec.15654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Abstract
Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs = 7.1-6.4, HE = 0.77-0.71; Madang: Rs = 8.2-6.1, HE = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs = 11.4-9.3, HE = 0.83-0.80; Madang: Rs = 12.2-14.5, HE = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
Collapse
Affiliation(s)
- Johanna Helena Kattenberg
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Raksmei Keo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Jennison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Abebe A Fola
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Céline Barnadas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - James Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Alyssa E Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Kattenberg JH, Gumal DL, Ome-Kaius M, Kiniboro B, Philip M, Jally S, Kasian B, Sambale N, Siba PM, Karl S, Barry AE, Felger I, Kazura JW, Mueller I, Robinson LJ. The epidemiology of Plasmodium falciparum and Plasmodium vivax in East Sepik Province, Papua New Guinea, pre- and post-implementation of national malaria control efforts. Malar J 2020; 19:198. [PMID: 32503607 PMCID: PMC7275396 DOI: 10.1186/s12936-020-03265-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background In the past decade, national malaria control efforts in Papua New Guinea (PNG) have received renewed support, facilitating nationwide distribution of free long-lasting insecticidal nets (LLINs), as well as improvements in access to parasite-confirmed diagnosis and effective artemisinin-combination therapy in 2011–2012. Methods To study the effects of these intensified control efforts on the epidemiology and transmission of Plasmodium falciparum and Plasmodium vivax infections and investigate risk factors at the individual and household level, two cross-sectional surveys were conducted in the East Sepik Province of PNG; one in 2005, before the scale-up of national campaigns and one in late 2012-early 2013, after 2 rounds of LLIN distribution (2008 and 2011–2012). Differences between studies were investigated using Chi square (χ2), Fischer’s exact tests and Student’s t-test. Multivariable logistic regression models were built to investigate factors associated with infection at the individual and household level. Results The prevalence of P. falciparum and P. vivax in surveyed communities decreased from 55% (2005) to 9% (2013) and 36% to 6%, respectively. The mean multiplicity of infection (MOI) decreased from 1.8 to 1.6 for P. falciparum (p = 0.08) and from 2.2 to 1.4 for P. vivax (p < 0.001). Alongside these reductions, a shift towards a more uniform distribution of infections and illness across age groups was observed but there was greater heterogeneity across the study area and within the study villages. Microscopy positive infections and clinical cases in the household were associated with high rate infection households (> 50% of household members with Plasmodium infection). Conclusion After the scale-up of malaria control interventions in PNG between 2008 and 2012, there was a substantial reduction in P. falciparum and P. vivax infection rates in the studies villages in East Sepik Province. Understanding the extent of local heterogeneity in malaria transmission and the driving factors is critical to identify and implement targeted control strategies to ensure the ongoing success of malaria control in PNG and inform the development of tools required to achieve elimination. In household-based interventions, diagnostics with a sensitivity similar to (expert) microscopy could be used to identify and target high rate households.
Collapse
Affiliation(s)
- Johanna H Kattenberg
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea.,Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biomedical Sciences, Institute of Tropical Medicine, Malariology Unit, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Dulcie L Gumal
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea.,Disease Elimination Program, Vector-borne Diseases and Tropical Public Health Group, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Maria Ome-Kaius
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea.,Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Benson Kiniboro
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea
| | - Matthew Philip
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea
| | - Shadrach Jally
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea
| | - Bernadine Kasian
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea
| | - Naomi Sambale
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea
| | - Peter M Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea
| | - Stephan Karl
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea.,Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Medicine, Deakin University, Geelong and Burnet Institute, Melbourne, VIC, Australia
| | - Ingrid Felger
- Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Parasites and Insect Vectors, Malaria Parasites and Hosts Unit, Pasteur Institute, 25-28 rue du Docteur-Roux, 75724, Paris Cedex 15, France
| | - Leanne J Robinson
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, 511, MP, Papua New Guinea. .,Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Disease Elimination Program, Vector-borne Diseases and Tropical Public Health Group, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
15
|
Ome-Kaius M, Kattenberg JH, Zaloumis S, Siba M, Kiniboro B, Jally S, Razook Z, Mantila D, Sui D, Ginny J, Rosanas-Urgell A, Karl S, Obadia T, Barry A, Rogerson SJ, Laman M, Tisch D, Felger I, Kazura JW, Mueller I, Robinson LJ. Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children. BMC Med 2019; 17:220. [PMID: 31813381 PMCID: PMC6900859 DOI: 10.1186/s12916-019-1456-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination.
Collapse
Affiliation(s)
- Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Johanna Helena Kattenberg
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Sophie Zaloumis
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Matthew Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Shadrach Jally
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Zahra Razook
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Daisy Mantila
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Desmond Sui
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Jason Ginny
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | | | - Stephan Karl
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Alyssa Barry
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | | | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea. .,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, Australia. .,Burnet Institute, Melbourne, Australia.
| |
Collapse
|
16
|
Rodriguez-Rodriguez D, Maraga S, Lorry L, Robinson LJ, Siba PM, Mueller I, Pulford J, Ross A, Hetzel MW. Repeated mosquito net distributions, improved treatment, and trends in malaria cases in sentinel health facilities in Papua New Guinea. Malar J 2019; 18:364. [PMID: 31718659 PMCID: PMC6852945 DOI: 10.1186/s12936-019-2993-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022] Open
Abstract
Background Long-lasting insecticidal nets (LLIN), improved diagnosis and artemisinin-based combination therapy (ACT) have reduced malaria prevalence in Papua New Guinea since 2008. Yet, national incidence trends are inconclusive due to confounding effects of the scale-up of rapid diagnostic tests, and inconsistencies in routine reporting. Methods Malaria trends and their association with LLIN and ACT roll-out between 2010 and 2014 in seven sentinel health facilities were analysed. The analysis included 35,329 fever patients. Intervention effects were estimated using regression models. Results Malaria incidence initially ranged from 20 to 115/1000 population; subsequent trends varied by site. Overall, LLIN distributions had a cumulative effect, reducing the number of malaria cases with each round (incidence rate ratio ranging from 0.12 to 0.53 in five sites). No significant reduction was associated with ACT introduction. Plasmodium falciparum remained the dominant parasite in all sentinel health facilities. Resurgence occurred in one site in which a shift to early and outdoor biting of anophelines had previously been documented. Conclusions LLINs, but not ACT, were associated with reductions of malaria cases in a range of settings, but sustainability of the gains appear to depend on local factors. Malaria programmes covering diverse transmission settings such as Papua New Guinea must consider local heterogeneity when choosing interventions and ensure continuous monitoring of trends.
Collapse
Affiliation(s)
- Daniela Rodriguez-Rodriguez
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Seri Maraga
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Lina Lorry
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Burnet Institute, Melbourne, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Institut Pasteur, Paris, France
| | | | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Tapera O. Determinants of long-lasting insecticidal net ownership and utilization in malaria transmission regions: evidence from Zimbabwe Demographic and Health Surveys. Malar J 2019; 18:278. [PMID: 31429761 PMCID: PMC6701104 DOI: 10.1186/s12936-019-2912-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Long-lasting insecticidal nets (LLINs) were first introduced in 2010 as a vector control intervention, to complement indoor residual spraying, to reduce malaria transmission in Zimbabwe. The objective of this study was to investigate factors that were associated with LLIN ownership and utilization among households in malaria transmission regions of Zimbabwe. Methods A secondary analysis of cross sectional data from the Zimbabwe demographic and health survey (ZDHS) conducted in 2010 and 2015 surveys round was conducted. The analysis used household-level datasets from across the country to generate evidence for the study. Univariate analysis was used to yield descriptive statistics. Principal component analysis (PCA) was used to calculate wealth quintiles. Binary logistic regression approach was used to identify determinants of LLIN ownership and utilization after controlling for other factors. Data analyses were conducted using STATA version 14 software. Results There were no major changes in demographic characteristics of households sampled between 2010 and 2015 survey cycles. LLIN ownership increased significantly by 42 percentage points from 2010 to 2015. There was a tremendous increase in universal coverage of LLINs between 2010 and 2015. The overall utilization levels of LLINs among children under-5 years decreased by 11 percentage points between 2010 and 2015. LLIN usage amongst households followed the same trend with that of the under-fives. Using logistic regression model for 2015 data, region/province, type of place of residence, availability of electricity, radio, roof type, gender of head of household, having telephone, type of cooking fuel, presence of mobile phone, owning a bank account, IRS spraying in the previous 12 months, wealth index, and satellite television decorder were independently associated with net ownership among households. Type of place of residence, age of household head, type of cooking fuel, IRS in previous 12 months, and pregnancy were associated with LLIN utilization. Conclusion This study revealed increasing LLIN coverage and low usage in malaria-transmission regions of Zimbabwe. Strengthening of LLIN campaigns, social behaviour change communication (SBCC) interventions and programme routine monitoring are recommended.
Collapse
Affiliation(s)
- Oscar Tapera
- Department of Mathematics, Faculty of Science, Midlands State University, Gweru, Zimbabwe.
| |
Collapse
|
18
|
White MT, Walker P, Karl S, Hetzel MW, Freeman T, Waltmann A, Laman M, Robinson LJ, Ghani A, Mueller I. Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. Nat Commun 2018; 9:3300. [PMID: 30120250 PMCID: PMC6097992 DOI: 10.1038/s41467-018-05860-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023] Open
Abstract
Plasmodium vivax poses unique challenges for malaria control and elimination, notably the potential for relapses to maintain transmission in the face of drug-based treatment and vector control strategies. We developed an individual-based mathematical model of P. vivax transmission calibrated to epidemiological data from Papua New Guinea (PNG). In many settings in PNG, increasing bed net coverage is predicted to reduce transmission to less than 0.1% prevalence by light microscopy, however there is substantial risk of rebounds in transmission if interventions are removed prematurely. In several high transmission settings, model simulations predict that combinations of existing interventions are not sufficient to interrupt P. vivax transmission. This analysis highlights the potential options for the future of P. vivax control: maintaining existing public health gains by keeping transmission suppressed through indefinite distribution of interventions; or continued development of strategies based on existing and new interventions to push for further reduction and towards elimination.
Collapse
Affiliation(s)
- Michael T White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Patrick Walker
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, Norfolk Place, W2 1PG, UK
| | - Stephan Karl
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang 511, Papua New Guinea
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Tim Freeman
- Rotarians Against Malaria, Port Moresby 121, Papua New Guinea
| | - Andreea Waltmann
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang 511, Papua New Guinea
| | - Leanne J Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang 511, Papua New Guinea
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
- Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Azra Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, Norfolk Place, W2 1PG, UK
| | - Ivo Mueller
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
| |
Collapse
|
19
|
Koimbu G, Czeher C, Katusele M, Sakur M, Kilepak L, Tandrapah A, Hetzel MW, Pulford J, Robinson L, Karl S. Status of Insecticide Resistance in Papua New Guinea: An Update from Nation-Wide Monitoring of Anopheles Mosquitoes. Am J Trop Med Hyg 2018; 98:162-165. [PMID: 29141726 DOI: 10.4269/ajtmh.17-0454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Insecticide resistance (IR) monitoring is an important component of vector-borne disease control. The last assessment of IR in Papua New Guinea (PNG) was conducted in 2010. Since then, vector populations have been exposed to higher levels of pyrethroids with the continued nation-wide distribution of insecticide-treated nets. Here, we provide an update on phenotypic IR in four highly malaria-endemic areas of PNG. IR against deltamethrin, lambda-cyhalothrin, and dichlorodiphenyltrichloroethane was assessed using World Health Organization bioassays. A total of 108 bioassays for each insecticide were conducted screening 2,290 adult female anopheline mosquitoes. No phenotypic resistance was observed. Bioassay parameters agreed well with those observed in other studies that used the same assays and insecticides. These results indicate that the three tested insecticides are still universally effective in PNG. Continued IR monitoring (every 1-2 years) in PNG is recommended to detect reduced susceptibility early and adjust guidelines to prevent widespread resistance.
Collapse
Affiliation(s)
- Gussy Koimbu
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Cyrille Czeher
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Michelle Katusele
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Muker Sakur
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Lemen Kilepak
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Anthony Tandrapah
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Justin Pulford
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leanne Robinson
- University of Melbourne, Melbourne, Australia.,Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Stephan Karl
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Hetzel MW, Pulford J, Ura Y, Jamea-Maiasa S, Tandrapah A, Tarongka N, Lorry L, Robinson LJ, Lilley K, Makita L, Siba PM, Mueller I. Insecticide-treated nets and malaria prevalence, Papua New Guinea, 2008-2014. Bull World Health Organ 2017; 95:695-705B. [PMID: 29147042 PMCID: PMC5689189 DOI: 10.2471/blt.16.189902] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate changes in malaria prevalence in Papua New Guinea after the distribution of long-lasting Insecticide-treated nets, starting in 2004, and the introduction of artemisinin-based combination therapy in 2011. Methods Two malaria surveys were conducted in 2010–2011 and 2013–2014. They included 77 and 92 randomly selected villages, respectively. In each village, all members of 30 randomly selected households gave blood samples and were assessed for malaria infection by light microscopy. In addition, data were obtained from a malaria survey performed in 2008–2009. Results The prevalence of malaria below 1600 m in altitude decreased from 11.1% (95% confidence interval, CI: 8.5–14.3) in 2008–2009 to 5.1% (95% CI 3.6–7.4) in 2010–2011 and 0.9% (95% CI 0.6–1.5) in 2013–2014. Prevalence decreased with altitude. Plasmodium falciparum was more common than P. vivax overall, but not everywhere, and initially the prevalence of P. vivax infection decreased more slowly than P. falciparum infection. Malaria infections were clustered in households. In contrast to findings in 2008–2009, no significant association between net use and prevalence was found in the later two surveys. The prevalence of both fever and splenomegaly also decreased but their association with malaria infection became stronger. Conclusion Large-scale insecticide-treated net distribution was associated with an unprecedented decline in malaria prevalence throughout Papua New Guinea, including epidemic-prone highland areas. The decline was accompanied by broader health benefits, such as decreased morbidity. Better clinical management of nonmalarial fever and research into residual malaria transmission are required.
Collapse
Affiliation(s)
- Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, 4002, Switzerland
| | - Justin Pulford
- International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Yangta Ura
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Sharon Jamea-Maiasa
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Anthony Tandrapah
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Nandao Tarongka
- Deceased, formerly, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Lina Lorry
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Ken Lilley
- Australian Army Malaria Institute, Enoggera, Australia
| | - Leo Makita
- National Department of Health, Waigani, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
21
|
Hofmann NE, Karl S, Wampfler R, Kiniboro B, Teliki A, Iga J, Waltmann A, Betuela I, Felger I, Robinson LJ, Mueller I. The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea. eLife 2017; 6:23708. [PMID: 28862132 PMCID: PMC5606846 DOI: 10.7554/elife.23708] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/18/2017] [Indexed: 01/20/2023] Open
Abstract
The molecular force of blood-stage infection (molFOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum (Pf) and Pv blood-stage infections/year (Pf-molFOB = 0–18, Pv-molFOB = 0–23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections. Including relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater heterogeneity at individual (Pv-molFOB = 0–36) and village levels. Pf- and Pv-molFOB were strongly associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden by the high burden of Pv relapses. Clinical trial registration: ClinicalTrials.gov NCT02143934 Malaria is caused by five different species of parasites that are transmitted to humans by bites from parasite-carrying mosquitos. Once in human blood, the parasites rapidly multiply. People who live in countries where malaria is common may become infected and never show any symptoms because their immune systems are able to keep parasite numbers low. Repeated infections, or infection with more than one species of malaria parasite also are common. Some species of malaria, including Plasmodium vivax, can hibernate in the liver for weeks or months after the infection and only become active later. Asymptomatic infections, multi-parasite infections, and reactivating parasites make it hard to measure how often new malaria infections occur. One way scientists can determine if a new infection has occurred is by genotyping the parasites in a person’s blood. Genotyping involves looking for small differences in the parasite DNA. For example, a study in Papua New Guinea, where P. vivax is very common, showed that reactivations of hibernating parasites were more common than new infections. Now, Hofmann et al. use the same study in Papua New Guinea to compare the frequency and consequences of new infections with P. vivax and another malaria parasite, Plasmodium falciparum. In the study, 466 children from 6 villages were followed for 8 months with tests every 2 to 4 weeks to genotype the parasites in their blood. Some of the children were treated with antimalarial drugs to help wipe out any existing parasites including hibernating ones. While P. vivax was about twice as common in blood samples—likely due to reactivation—genotyping showed that new infections with the two parasites occur at equal rates and often at the same times and locations. Hofmann et al. also showed that some villages and some children had much higher rates of infection than others. This difference could not fully be explained by use of bednets or other preventive measures. Children were more likely to become ill from P. falciparum than P. vivax even though P. vivax was more common. But children with more frequent infections with P. falciparum seemed better able to manage the parasites and were less likely to develop symptoms that those with infrequent infections. The experiments show that genotyping may help scientists better track new malaria infections and develop better strategies to prevent or treat malaria.
Collapse
Affiliation(s)
- Natalie E Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Stephan Karl
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Rahel Wampfler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Albina Teliki
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Andreea Waltmann
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Melbourne, Melbourne, Australia
| | - Inoni Betuela
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Leanne J Robinson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,University of Melbourne, Melbourne, Australia.,Burnet Institute, Melbourne, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Melbourne, Melbourne, Australia.,ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-University of Barcelona, Barcelona, Spain.,Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Rosewell A, Makita L, Muscatello D, John LN, Bieb S, Hutton R, Ramamurthy S, Shearman P. Health information system strengthening and malaria elimination in Papua New Guinea. Malar J 2017; 16:278. [PMID: 28679421 PMCID: PMC5499047 DOI: 10.1186/s12936-017-1910-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022] Open
Abstract
Background The objective of the study was to describe an m-health initiative to strengthen malaria surveillance in a 184-health facility, multi-province, project aimed at strengthening the National Health Information System (NHIS) in a country with fragmented malaria surveillance, striving towards enhanced control, pre-elimination. Methods A remote-loading mobile application and secure online platform for health professionals was created to interface with the new system (eNHIS). A case-based malaria testing register was developed and integrated geo-coded households, villages and health facilities. A malaria programme management dashboard was created, with village-level malaria mapping tools, and statistical algorithms to identify malaria outbreaks. Results Since its inception in 2015, 160,750 malaria testing records, including village of residence, have been reported to the eNHIS. These case-based, geo-coded malaria data are 100% complete, with a median data entry delay of 9 days from the date of testing. The system maps malaria to the village level in near real-time as well as the availability of treatment and diagnostics to health facility level. Data aggregation, analysis, outbreak detection, and reporting are automated. Conclusions The study demonstrates that using mobile technologies and GIS in the capture and reporting of NHIS data in Papua New Guinea provides timely, high quality, geo-coded, case-based malaria data required for malaria elimination. The health systems strengthening approach of integrating malaria information management into the eNHIS optimizes sustainability and provides enormous flexibility to cater for future malaria programme needs.
Collapse
Affiliation(s)
- Alexander Rosewell
- PNG Remote Sensing Centre, PO Box 1733, Waterfront, Konedobu, Port Moresby, Papua New Guinea. .,School of Public Health and Community Medicine, University of New South Wales, Sydney, 2052, Australia.
| | - Leo Makita
- National Department of Health, Port Moresby, Papua New Guinea
| | - David Muscatello
- School of Public Health and Community Medicine, University of New South Wales, Sydney, 2052, Australia
| | | | - Sibauk Bieb
- National Department of Health, Port Moresby, Papua New Guinea
| | | | - Sundar Ramamurthy
- PNG Remote Sensing Centre, PO Box 1733, Waterfront, Konedobu, Port Moresby, Papua New Guinea
| | - Phil Shearman
- PNG Remote Sensing Centre, PO Box 1733, Waterfront, Konedobu, Port Moresby, Papua New Guinea.,School of Botany and Zoology, The Australian National University, Linnaeus Way, Canberra, 0200, Australia
| |
Collapse
|
23
|
Kuadima JJ, Timinao L, Naidi L, Tandrapah A, Hetzel MW, Czeher C, Pulford J. Long-term acceptability, durability and bio-efficacy of ZeroVector ® durable lining for vector control in Papua New Guinea. Malar J 2017; 16:93. [PMID: 28241875 PMCID: PMC5329951 DOI: 10.1186/s12936-017-1742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background This study examined the acceptability, durability and bio-efficacy of pyrethroid-impregnated durable lining (DL) over a three-year period post-installation in residential homes across Papua New Guinea (PNG). Methods ZeroVector® ITPS had previously been installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires, DL visual inspections and group interviews (GIs) were completed with household heads at 12- and 36-months post-installation. Three DL samples were collected from all households in which it remained 36-months post-installation to evaluate the bio-efficacy of DL on Anopheles mosquitoes. Bio-efficacy testing followed WHO guidelines for the evaluation of indoor residual spraying. Results The DL was still intact in 86 and 39% of study homes at the two time periods, respectively. In homes in which the DL was still intact, 92% of household heads considered the appearance at 12-months post installation to be the same as, or better than, that at installation compared to 59% at 36-months post-installation. GIs at both time points confirmed continuing high acceptance of DL, based in large part of the perceived attractiveness and functionality of the material. However, participants frequently asserted that they, or their family members, had ceased or reduced their use of mosquito nets as a result of the DL installation. A total of 16 houses were sampled for bio-efficacy testing across the 4 study sites at 36-months post-installation. Overall, combining all sites and samples, both knock-down at 30 min and mortality at 24 h were 100%. Conclusions The ZeroVector® DL installation remained highly acceptable at 36-months post-installation, the material and fixtures proved durable and the efficacy against malaria vectors did not decrease. However, the DL material had been removed from over 50% of the original study homes 3 years post-installation, largely due to deteriorating housing infrastructure. Furthermore, the presence of the DL installation appeared to reduce ITN use among many participating householders. The study findings suggest DL may not be an appropriate vector control method for large-scale use in the contemporary PNG malaria control programme.
Collapse
Affiliation(s)
- Joseph J Kuadima
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, EHP 441, Papua New Guinea
| | - Lincoln Timinao
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, EHP 441, Papua New Guinea
| | - Laura Naidi
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, EHP 441, Papua New Guinea
| | - Anthony Tandrapah
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, EHP 441, Papua New Guinea
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, PO Box 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Cyrille Czeher
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, EHP 441, Papua New Guinea
| | - Justin Pulford
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, EHP 441, Papua New Guinea. .,Liverpool School of Tropical Medicine, Liverpool, Pembroke Place, Liverpool, l35QA, UK.
| |
Collapse
|
24
|
Feterl M, Graves P, Seehofer L, Warner J, Wood P, Miles K, Hutton R. The Epidemiology of Malaria in Kutubu, Southern Highlands Province, Papua New Guinea, before and during a Private Sector Initiative for Malaria Control. Trop Med Infect Dis 2017; 2:E2. [PMID: 30270861 PMCID: PMC6082053 DOI: 10.3390/tropicalmed2010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Papua New Guinea (PNG) has a significant malaria burden, is resource constrained, and has isolated populations with limited access to health services. Home-based management is a key element of the national program that supports strategies of early detection, diagnosis and treatment. We describe the epidemiology of malaria near Lake Kutubu in the Southern Highlands Province through reported data on suspected and confirmed malaria in patients accessing public health facilities or using a novel, incentivised, social marketing approach for malaria treatment at the village level. Monthly case data reported by nine health facilities and 14 village-based providers, known as Marasin Stoa Kipas (MSK), were extracted from outpatient registers and MSK malaria case forms. Descriptive statistics of diagnostic use, monthly incidence, test positivity rate and species distribution were estimated. Summary statistics of service delivery demonstrate patient access and diagnostic coverage in program areas. From May 2005 to September 2013, 15,726 individuals were tested with either rapid diagnostic test and/or microscopy at health facilities, and 42% had a positive result for malaria (n = 6604); of these 67.1% (n = 4431) were positive for P. falciparum (alone or mixed) and 32.9% were positive for non-P. falciparum species (alone or mixed). From October 2007 to September 2013, 9687 individuals were tested with either RDT and/or microscopy at MSK sites and 44.2% (n = 4283) tested positive for malaria; of these, 65.3% (n = 2796) were positive for P. falciparum, while 34.7% (n = 1487) were positive for non-P. falciparum species. Up to April 2010 there was an intermittent and upward trend in the reported incidence of all species of confirmed malaria, reaching 50 per 1000 population per month for both sites combined, followed by a steady decline to four per 1000 population per month in 2013, with P. vivax the most common infection. This study is the most recent longitudinal overview of malaria in the Southern Highlands since 2003. It outlines patient access to a community-based model of care. The analysis shows changes in health facility versus MSK use, a strongly decreasing trend in incidence of confirmed malaria from 2010 to 2013, and a shift from predominantly P. falciparum to P. vivax infection.
Collapse
Affiliation(s)
- Marshall Feterl
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Cairns 6811, Australia.
| | - Patricia Graves
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Cairns 6811, Australia.
| | - Liesel Seehofer
- Oil Search Foundation, PO Box 842, Port Moresby, Papua New Guinea.
| | - Jeffery Warner
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Cairns 6811, Australia.
| | - Peter Wood
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Cairns 6811, Australia.
| | - Kevin Miles
- Oil Search Foundation, PO Box 842, Port Moresby, Papua New Guinea.
| | - Ross Hutton
- Oil Search Foundation, PO Box 842, Port Moresby, Papua New Guinea.
| |
Collapse
|
25
|
Karl S, White MT, Milne GJ, Gurarie D, Hay SI, Barry AE, Felger I, Mueller I. Spatial Effects on the Multiplicity of Plasmodium falciparum Infections. PLoS One 2016; 11:e0164054. [PMID: 27711149 PMCID: PMC5053403 DOI: 10.1371/journal.pone.0164054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution.
Collapse
Affiliation(s)
- Stephan Karl
- Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Vector-borne Diseases Unit, Papua New Guinea Insititute of Medical Research, Madang, Madang Province, Papua New Guinea
- * E-mail:
| | - Michael T. White
- Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - George J. Milne
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia
| | - David Gurarie
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alyssa E. Barry
- Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Felger
- Department of Medical Parasitology and Infection Biology Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivo Mueller
- Population-Based Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Hetzel MW, Morris H, Tarongka N, Barnadas C, Pulford J, Makita L, Siba PM, Mueller I. Prevalence of malaria across Papua New Guinea after initial roll-out of insecticide-treated mosquito nets. Trop Med Int Health 2015; 20:1745-55. [PMID: 26427024 DOI: 10.1111/tmi.12616] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To assess the population prevalence of malaria in villages across Papua New Guinea (PNG) following the first roll-out of free long-lasting insecticidal nets (LLIN). METHODS Between October 2008 and August 2009, a household survey was conducted in 49 random villages in districts covered by the LLIN distribution campaign. The survey extended to 19 villages in sentinel sites that had not yet been covered by the campaign. In each village, 30 households were randomly sampled, household heads were interviewed and capillary blood samples were collected from all consenting household members for microscopic diagnosis of malaria. RESULTS Malaria prevalence ranged from 0% to 49.7% with a weighted average of 12.1% (95% CI 9.5, 15.3) in the national sample. More people were infected with Plasmodium falciparum (7.0%; 95% CI 5.4, 9.1) than with P. vivax (3.8%; 95% CI 2.4, 5.7) or P. malariae (0.3%; 95% CI 0.1, 0.6). Parasitaemia was strongly age-dependent with a P. falciparum peak at age 5-9 years and a P. vivax peak at age 1-4 years, yet with differences between geographical regions. Individual LLIN use and high community coverage were associated with reduced odds of infection (OR = 0.64 and 0.07, respectively; both P < 0.001). Splenomegaly in children and anaemia were common morbidities attributable to malaria. CONCLUSIONS Malaria prevalence across PNG is again at levels comparable to the 1970s. The strong association of LLIN use with reduced parasitaemia supports efforts to achieve and maintain high country-wide coverage. P. vivax infections will require special targeted approaches across PNG.
Collapse
Affiliation(s)
- Manuel W Hetzel
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Hector Morris
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Nandao Tarongka
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Céline Barnadas
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Justin Pulford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,School of Public Health, The University of Queensland, Herston, Qld, Australia
| | - Leo Makita
- National Department of Health, Waigani, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia.,Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Whidden CE, Premaratne RG, Jayanetti SR, Fernando SD. Patterns and predictive factors of long-lasting insecticidal net usage in a previously high malaria endemic area in Sri Lanka: a cross-sectional survey. Trans R Soc Trop Med Hyg 2015; 109:553-62. [PMID: 26187622 DOI: 10.1093/trstmh/trv056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) have been widely distributed in Sri Lanka for malaria control. Their effectiveness depends on proper utilisation and maintenance at the household level. METHODS A cross-sectional study was performed to examine the patterns and predictive factors of LLIN maintenance and use in Anuradhapura district. Data was collected and analysed from 530 LLIN-owning households, selected by a multi-stage cluster sampling technique. Multivariable logistic regression identified factors associated with proper maintenance at the household level. Hierarchical linear modelling identified factors associated with LLIN use the previous night. RESULTS Almost 75% (377/504) of households had used all their LLINs the previous night, while 82.9% (418/504) had used at least one. Only 3.2% (15/474) were maintaining the LLIN in such a way as to maximise its insecticidal efficacy. Six variables were significantly associated (p<0.05) with use the previous night: more residents, fewer plain nets, reporting practical benefits of LLINs, conical shape, newer nets and lack of side effects. Two variables were significantly associated with proper maintenance: increasing level of education and taking safety precautions while washing. CONCLUSIONS Results suggest LLIN practices could improve in settings of low malaria transmission if distribution programmes took into account recipient preferences, promoted LLIN use over plain nets, and emphasised the techniques and significance of proper net maintenance.
Collapse
Affiliation(s)
| | | | | | - S Deepika Fernando
- Department of Parasitology, Faculty of Medicine, P.O. Box 271, Kynsey Road, Colombo 8, Sri Lanka
| |
Collapse
|
28
|
Logue K, Small ST, Chan ER, Reimer L, Siba PM, Zimmerman PA, Serre D. Whole-genome sequencing reveals absence of recent gene flow and separate demographic histories for Anopheles punctulatus mosquitoes in Papua New Guinea. Mol Ecol 2015; 24:1263-74. [PMID: 25677924 DOI: 10.1111/mec.13107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 02/01/2023]
Abstract
Anopheles mosquitoes are the vectors of several human diseases including malaria. In many malaria endemic areas, several species of Anopheles coexist, sometimes in the form of related sibling species that are morphologically indistinguishable. Determining the size and organization of Anopheles populations, and possible ongoing gene flow among them is important for malaria control and, in particular, for monitoring the spread of insecticide resistance alleles. However, these parameters have been difficult to evaluate in most Anopheles species due to the paucity of genetic data available. Here, we assess the extent of contemporary gene flow and historical variations in population size by sequencing and de novo assembling the genomes of wild-caught mosquitoes from four species of the Anopheles punctulatus group of Papua New Guinea. Our analysis of more than 50 Mb of orthologous DNA sequences revealed no evidence of contemporary gene flow among these mosquitoes. In addition, investigation of the demography of two of the An. punctulatus species revealed distinct population histories. Overall, our analyses suggest that, despite their similarities in morphology, behaviour and ecology, contemporary sympatric populations of An. punctulatus are evolving independently.
Collapse
Affiliation(s)
- Kyle Logue
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA; Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | | | | | | | |
Collapse
|