1
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
|
3
|
Maeda M, Seto T, Kadono C, Morimoto H, Kida S, Suga M, Nakamura M, Kataoka Y, Hamazaki T, Shintaku H. Autophagy in the Central Nervous System and Effects of Chloroquine in Mucopolysaccharidosis Type II Mice. Int J Mol Sci 2019; 20:ijms20235829. [PMID: 31757021 PMCID: PMC6928680 DOI: 10.3390/ijms20235829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare lysosomal storage disease (LSD) involving a genetic error in iduronic acid-2-sulfatase (IDS) metabolism that leads to accumulation of glycosaminoglycans within intracellular lysosomes. The primary treatment for MPS II, enzyme replacement therapy, is not effective for central nervous system (CNS) symptoms, such as intellectual disability, because the drugs do not cross the blood-brain barrier. Recently, autophagy has been associated with LSDs. In this study, we examined the morphologic relationship between neuronal damage and autophagy in IDS knockout mice using antibodies against subunit c of mitochondrial adenosine triphosphate (ATP) synthetase and p62. Immunohistological changes suggesting autophagy, such as vacuolation, were observed in neurons, microglia, and pericytes throughout the CNS, and the numbers increased over postnatal development. Oral administration of chloroquine, which inhibits autophagy, did not suppress damage to microglia and pericytes, but greatly reduced neuronal vacuolation and eliminated neuronal cells with abnormal inclusions. Thus, decreasing autophagy appears to prevent neuronal degeneration. These results suggest that an autophagy modulator could be used in addition to conventional enzyme replacement therapy to preserve the CNS in patients with MPS II.
Collapse
Affiliation(s)
- Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
- Correspondence: (T.S.); (M.M.); Tel.: +81-66-645-3816 (T.S.); +81-78-304-7160 (M.M.)
| | - Toshiyuki Seto
- Department of Medical Genetics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
- Correspondence: (T.S.); (M.M.); Tel.: +81-66-645-3816 (T.S.); +81-78-304-7160 (M.M.)
| | - Chiho Kadono
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
| | - Hideto Morimoto
- JCR Pharmaceuticals Co., Ltd., Hyogo 659-0021, Japan; (H.M.); (S.K.)
| | - Sachiho Kida
- JCR Pharmaceuticals Co., Ltd., Hyogo 659-0021, Japan; (H.M.); (S.K.)
| | - Mitsuo Suga
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Japan Electron Optics Laboratory (JEOL) Ltd., Tokyo 196-8558, Japan
| | - Motohiro Nakamura
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Japan Electron Optics Laboratory (JEOL) Ltd., Tokyo 196-8558, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
| |
Collapse
|
4
|
Bhattacharyya S, Feferman L, Tobacman JK. Effect of CFTR modifiers on arylsulfatase B activity in cystic fibrosis and normal human bronchial epithelial cells. Pulm Pharmacol Ther 2016; 36:22-30. [DOI: 10.1016/j.pupt.2015.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 11/01/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
5
|
Bhattacharyya S, Zhang X, Feferman L, Johnson D, Tortella FC, Guizzetti M, Tobacman JK. Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury. J Neurochem 2015; 134:728-39. [PMID: 25943740 DOI: 10.1111/jnc.13156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 01/11/2023]
Abstract
In an established rat model of penetrating ballistic-like brain injury (PBBI), arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) activity was significantly reduced at the ipsilateral site of injury, but unaffected at the contralateral site or in sham controls. In addition, the ARSB substrate chondroitin 4-sulfate (C4S) and total sulfated glycosaminoglycans increased. The mRNA expression of chondroitin 4-sulfotransferase 1 (C4ST1; CHST11) and the sulfotransferase activity rose at the ipsilateral site of injury (PBBI-I), indicating contributions from both increased production and reduced degradation to the accumulation of C4S. In cultured, fetal rat astrocytes, following scratch injury, the ARSB activity declined and the nuclear hypoxia inducible factor-1α increased significantly. In contrast, sulfotransferase activity and chondroitin 4-sulfotransferase expression increased following astrocyte exposure to TGF-β1, but not following scratch. These different pathways by which C4S increased in the cell preparations were both evident in the response to injury in the PBBI-I model. Hence, findings support effects of injury because of mechanical disruption inhibiting ARSB and to chemical mediation by TGF-β1 increasing CHST11 expression and sulfotransferase activity. The increase in C4S following traumatic brain injury is because of contributions from impaired degradation and enhanced synthesis of C4S which combine in the pathogenesis of the glial scar. This is the first report of how two mechanisms contribute to the increase in chondroitin 4-sulfate (C4S) in TBI. Following penetrating ballistic-like brain injury in a rat model and in the scratch model of injury in fetal rat astrocytes, Arylsulfatase B activity declined, leading to accumulation of C4S. TGF-β1 exposure increased expression of chondroitin 4-sulfotransferase. Hence, the increase in C4S in TBI is attributable to both impaired degradation and enhanced synthesis, combining in the pathogenesis of the glial scar.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Xiaolu Zhang
- Jesse Brown VA Medical Center, Chicago, Illinois, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - David Johnson
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Frank C Tortella
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marina Guizzetti
- Jesse Brown VA Medical Center, Chicago, Illinois, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Oregon Health and Science University, Portland, Oregon, USA.,VA Portland Health Care System, Portland, Oregon, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
6
|
Bhattacharyya S, Feferman L, Tobacman JK. Arylsulfatase B regulates versican expression by galectin-3 and AP-1 mediated transcriptional effects. Oncogene 2014; 33:5467-76. [PMID: 24240681 PMCID: PMC4024465 DOI: 10.1038/onc.2013.483] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/15/2022]
Abstract
Arylsulfatase B (N-acetylgalactosamine-4-sulfatase; ARSB) removes 4-sulfate groups from chondroitin-4-sulfate (C4S) and dermatan sulfate and is required for their degradation. In human prostate stromal and epithelial cells, when ARSB was silenced, C4S, versican and versican promoter activity increased, and the galectin-3 that co-immunoprecipitated with C4S declined. Galectin-3 silencing inhibited the ARSB-silencing-induced increases in versican and versican promoter due to effects on the AP-1-binding site in the versican promoter. These findings demonstrate for the first time the transcriptional mechanism whereby ARSB can regulate expression of an extracellular matrix proteoglycan with C4S attachments. In addition, following ARSB silencing, C4S that co-immunoprecipitated with versican increased, whereas co-immunoprecipitated EGFR declined, total EGFR increased and exogenous EGF-induced cell proliferation increased, suggesting profound effects of ARSB on vital cell processes.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Leonid Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| |
Collapse
|
7
|
Zhang X, Bhattacharyya S, Kusumo H, Goodlett CR, Tobacman JK, Guizzetti M. Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol. Glia 2013; 62:259-71. [PMID: 24311516 DOI: 10.1002/glia.22604] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022]
Abstract
In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
8
|
Feferman L, Bhattacharyya S, Deaton R, Gann P, Guzman G, Kajdacsy-Balla A, Tobacman JK. Arylsulfatase B (N-acetylgalactosamine-4-sulfatase): potential role as a biomarker in prostate cancer. Prostate Cancer Prostatic Dis 2013; 16:277-84. [PMID: 23835622 PMCID: PMC3763935 DOI: 10.1038/pcan.2013.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/10/2013] [Accepted: 05/26/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase)
degrades chondroitin-4-sulfate (C4S) and is reduced in malignant colonic and
mammary tissues, but has not previously been evaluated in prostate
cancer. METHODS ARSB immunostaining was performed on two tissue microarrays (TMA) and
analyzed by digital image analysis, generating ARSB H-scores for prevalence
and intensity of epithelial, stromal, and combined epithelial and stromal
immunostaining. Also, paired malignant and normal prostate tissues were
analyzed for ARSB activity, C4S, total sulfated glycosaminoglycans, and
versican content. The quantities of C4S and of the epidermal growth factor
receptor that co-immunoprecipitated with versican were determined in the
normal and malignant paired prostate tissues. RESULTS 44 cases of prostate cancer were paired by age (± 5y), race,
Gleason score (in order), and pathologic TNM score. The pairs differed by
recurrence vs. non-recurrence of elevated PSA at 4 or more years. When TMA
cores were analyzed for ARSB H-score, 18 of the 22 pairs had lower ARSB
H-scores in the recurrent member of the pair, whereas higher initial PSA
values were associated with recurrence in only 65% of the paired
cases. In a second TMA, Gleason scores 6 and 7 were associated with higher
ARSB H-scores than Gleason scores 8 and 9 for stroma, epithelium, and stroma
and epithelium combined (p=0.052, p=0.015, p<0.0001, respectively)
and were inversely correlated (r = −0.98, −0.97, and
−0.99, respectively). In other paired normal and malignant prostate
tissues, ARSB activity was significantly higher in the normal tissues, and
C4S and versican values were lower (p<0.0001). C4S that
co-immunoprecipitated with versican was greater in the malignant than in the
normal tissue, whereas total EGFR that co-immunoprecipitated with versican
was reduced. DISCUSSION Study findings suggest that ARSB may be useful as a prognostic
biomarker in prostate cancer, and that the biological action of ARSB on
chondroitin sulfate may impact upon versican’s effects in the tumor
microenvironment.
Collapse
Affiliation(s)
- L Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Sharma G, Burke J, Bhattacharyya S, Sharma N, Katyal S, Park RL, Tobacman J. Reduced Arylsulfatase B activity in leukocytes from cystic fibrosis patients. Pediatr Pulmonol 2013; 48:236-44. [PMID: 22550062 PMCID: PMC3638799 DOI: 10.1002/ppul.22567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/31/2012] [Indexed: 11/12/2022]
Abstract
The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) removes 4-sulfate groups from chondroitin-4-sulfate and dermatan sulfate and is required for the degradation of these sulfated glycosaminoglycans (sGAGs). Since these GAGs accumulate in patients with Cystic Fibrosis (CF), we investigated the activity of ARSB in leukocytes of patients with CF, to consider if reduced activity of ARSB might contribute to the pathophysiology of CF. Previous cell-based experiments had demonstrated that when the deficiency of the cystic fibrosis transmembrane regulator (CFTR) was corrected in bronchial epithelial cells, the ARSB activity increased significantly. De-identified, citrated blood samples were collected from 16 children with CF and 31 control subjects, seen in the Pediatric Clinic at Rush University Medical Center. Polymorphonuclear leukocytes (PMN) and mononuclear cell (MC) populations were separated by density gradient, and blinded determinations of ARSB activity were performed using the exogenous substrate 4-methylumbilliferyl sulfate. Interleukin-6 was measured in the plasma samples by ELISA. ARSB activity was significantly less in the PMN and MC from the CF patients than controls (P < 0.0001, unpaired t-test, two-tailed). Interleukin-6 levels in plasma were significantly greater in the CF population (P < 0.001). Mean age, age range, and male:female ratio of CF patients and controls were similar, and no association of ARSB activity with age, gender, or CFTR genotype was evident. Since recombinant human ARSB is used successfully for replacement therapy in Mucopolysaccharidosis VI, it may be useful to restore ARSB activity to normal levels and increase degradation of sulfated GAGs in CF patients.
Collapse
Affiliation(s)
- Girish Sharma
- Department of Pediatrics, Rush University Medical Center, Chicago Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kotlo K, Bhattacharyya S, Yang B, Feferman L, Tejaskumar S, Linhardt R, Danziger R, Tobacman JK. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin. Glycoconj J 2013; 30:667-76. [PMID: 23385884 DOI: 10.1007/s10719-013-9468-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.
Collapse
Affiliation(s)
- Kumar Kotlo
- University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fröhlich E, Meindl C, Roblegg E, Ebner B, Absenger M, Pieber TR. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Part Fibre Toxicol 2012; 9:26. [PMID: 22789069 PMCID: PMC3425083 DOI: 10.1186/1743-8977-9-26] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polystyrene particles (CPS) of different sizes (20-500 nm) on lysosomes of the endothelial cell line EAhy926 after short (24h) and long (72h-96h) exposure times. Lysosomal localization of CPS, as well as lysosomal pH, lysosomal membrane integrity, morphology of the endosomal-lysosomal system and activities of the lysosomal enzymes,cathepsin B and sulfatases, upon exposure to CPS were recorded. Results CPS in sizes ≤100 nm showed high co-localization with lysosomes already after 4h, larger CPS after 24h. None of the particles at non-cytotoxic concentrations caused marked changes in lysosomal pH or destroyed lysosomal membrane integrity. At 24h of exposure, 20 nm CPS induced significant dilatation of the endosomal-lysosomal system and reduced activity of lysosomal sulfatases. After 72h, these alterations were less pronounced. Conclusions Despite accumulation in lysosomes CPS induced only small changes in lysosomes. Upon longer contact, these changes are even less pronounced. The presented panel of assays may serve to identify effects on lysosomes also for other NPs.
Collapse
|
12
|
Bhattacharyya S, Tobacman JK. Hypoxia reduces arylsulfatase B activity and silencing arylsulfatase B replicates and mediates the effects of hypoxia. PLoS One 2012; 7:e33250. [PMID: 22428001 PMCID: PMC3302843 DOI: 10.1371/journal.pone.0033250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022] Open
Abstract
This report presents evidence of 1) a role for arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in mediating intracellular oxygen signaling; 2) replication between the effects of ARSB silencing and hypoxia on sulfated glycosaminoglycan content, cellular redox status, and expression of hypoxia-associated genes; and 3) a mechanism whereby changes in chondroitin-4-sulfation that follow either hypoxia or ARSB silencing can induce transcriptional changes through galectin-3. ARSB removes 4-sulfate groups from the non-reducing end of chondroitin-4-sulfate and dermatan sulfate and is required for their degradation. For activity, ARSB requires modification of a critical cysteine residue by the formylglycine generating enzyme and by molecular oxygen. When primary human bronchial and human colonic epithelial cells were exposed to 10% O2×1 h, ARSB activity declined by ∼41% and ∼30% from baseline, as nuclear hypoxia inducible factor (HIF)-1α increased by ∼53% and ∼37%. When ARSB was silenced, nuclear HIF-1α increased by ∼81% and ∼61% from baseline, and mRNA expression increased to 3.73 (±0.34) times baseline. Inversely, ARSB overexpression reduced nuclear HIF-1α by ∼37% and ∼54% from baseline in the epithelial cells. Hypoxia, like ARSB silencing, significantly increased the total cellular sulfated glycosaminoglycans and chondroitin-4-sulfate (C4S) content. Both hypoxia and ARSB silencing had similar effects on the cellular redox status and on mRNA expression of hypoxia-associated genes. Transcriptional effects of both ARSB silencing and hypoxia may be mediated by reduction in galectin-3 binding to more highly sulfated C4S, since the galectin-3 that co-immunoprecipitated with C4S declined and the nuclear galectin-3 increased following ARSB knockdown and hypoxia.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells. Biochimie 2012; 94:1309-16. [PMID: 22410212 DOI: 10.1016/j.biochi.2012.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/26/2012] [Indexed: 11/21/2022]
Abstract
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.
Collapse
|
14
|
Bhattacharyya S, Tobacman JK. Molecular signature of kappa-carrageenan mimics chondroitin-4-sulfate and dermatan sulfate and enables interaction with arylsulfatase B. J Nutr Biochem 2011; 23:1058-63. [PMID: 22079206 DOI: 10.1016/j.jnutbio.2011.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/24/2011] [Accepted: 05/24/2011] [Indexed: 12/31/2022]
Abstract
The common food additive kappa-carrageenan (κ-CGN) is a sulfated polysaccharide that resembles chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). All have a sulfate group on C4 of a glycoside (galactose for CGN and N-acetylgalactosamine for C4S), and the sulfate-bearing glycoside is linked in a β-1,4-configuration to an unsulfated, six-carbon sugar (galactose for CGN, glucuronate for C4S and iduronate for DS). The enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfate) is the highly selective enzyme that removes the four-sulfate group from the nonreducing terminus of C4S and DS, thereby regulating subsequent degradation. In this report, κ-CGN is shown to be a substrate for recombinant human ARSB (rhARSB). Sulfate was generated from both C4S and κ-CGN following incubation with rhARSB. Exposure of human colonic epithelial cells to κ-CGN, but not to C4S, produced reactive oxygen species (ROS) and increased interleukin (IL)-8 secretion. The ROS production from κ-CGN was reduced by exposure to rhARSB, but increased by competition from C4S or DS, but not from chondroitin-6-sulfate. Prior treatment of either lambda- or iota-CGN with rhARSB had no impact on ROS, IL-8 or inorganic sulfate production, demonstrating a specific effect of the molecular configuration of κ-CGN. By mimicry of C4S and DS and by interaction with ARSB, κ-CGN can directly interfere with the normal cellular functions of C4S, DS and ARSB. Since C4S and DS are present in high concentration in tissues, the impact of κ-CGN exposure may be due to some extent to interference with the normal biological functions of ARSB, C4S and DS.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
15
|
Prabhu SV, Bhattacharyya S, Guzman-Hartman G, Macias V, Kajdacsy-Balla A, Tobacman JK. Extra-lysosomal localization of arylsulfatase B in human colonic epithelium. J Histochem Cytochem 2011; 59:328-35. [PMID: 21378286 DOI: 10.1369/0022155410395511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The enzyme arylsulfatase B (N-acetylgalactosamine-4-sulfatase; ARSB; ASB) removes 4-sulfate groups from the sulfated glycosaminoglycans (sGAG) chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Inborn deficiency of ARSB leads to the lysosomal storage disease mucopolysaccharidosis VI, characterized by accumulation of sGAG in vital organs, disruption of normal physiological processes, severe morbidity, and premature death. Recent published work demonstrated extra-lysosomal localization with nuclear and cell membrane ARSB observed in bronchial and colonic epithelial cells, cerebrovascular cells, and hepatic cells. In this report, the authors present ARSB immunostaining in a colonic microarray and show differences in distribution, intensity, and pattern of ARSB staining among normal colon, adenomas, and adenocarcinomas. Distinctive, intense luminal membrane staining was present in the normal epithelial cells but reduced in the malignancies and less in the grade 3 than in the grade 1 adenocarcinomas. In the normal cores, a distinctive pattern of intense cytoplasmic positivity at the luminal surface was followed by reduced staining deeper in the crypts. ARSB enzymatic activity was significantly greater in normal than in malignant tissue. These study findings affirm extra-lysosomal localization of ARSB and suggest that altered ARSB immunostaining and reduced activity may be useful indicators of malignant transformation in human colonic tissue.
Collapse
Affiliation(s)
- Sanjiv V Prabhu
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
16
|
Arylsulfatase B regulates interaction of chondroitin-4-sulfate and kininogen in renal epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:472-7. [PMID: 20152898 DOI: 10.1016/j.bbadis.2010.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/23/2022]
Abstract
The enzyme arylsulfatase B (N-acetylgalactosamine 4-sulfatase; ASB; ARSB), which removes 4-sulfate groups from the nonreducing end of chondroitin-4-sulfate (C4S;CSA) and dermatan sulfate, has cellular effects, beyond those associated with the lysosomal storage disease mucopolysaccharidosis VI. Previously, reduced ASB activity was reported in cystic fibrosis patients and in malignant human mammary epithelial cell lines in tissue culture compared to normal cells. ASB silencing and overexpression were associated with alterations in syndecan-1 and decorin expression in MCF-7 cells and in IL-8 secretion in human bronchial epithelial cells. In this report, we present the role of ASB in the regulation of the kininogen-bradykinin axis owing to its effect on chondroitin-4-sulfation and the interaction of C4S with kininogen. Silencing or overexpression of ASB in normal rat kidney epithelial cells in tissue culture modified the content of total sulfated glycosaminoglycans (sGAGs), C4S, kininogen, and bradykinin in spent media and cell lysates. Treatment of the cultured cells with chondroitinase ABC also increased the secretion of bradykinin into the spent media and reduced the C4S-associated kininogen. When ASB was overexpressed, the cellular kininogen that associated with C4S declined, suggesting a vital role for chondroitin-4-sulfation in regulating the kininogen-C4S interaction. These findings suggest that ASB, owing to its effect on chondroitin-4-sulfation, may impact on the kininogen-bradykinin axis and, thereby, may influence blood pressure. Because ASB activity is influenced by several ions, including chloride and phosphate, ASB activity may provide a link between salt responsiveness and the bradykinin-associated mechanism of blood pressure regulation.
Collapse
|