1
|
Gill J, Singh H, Sharma A. Profiles of global mutations in the human intercellular adhesion molecule-1 (ICAM-1) shed light on population-specific malaria susceptibility. BMC Genomics 2023; 24:773. [PMID: 38093209 PMCID: PMC10720214 DOI: 10.1186/s12864-023-09846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium falciparum is responsible for malaria-related morbidity and mortality. PfEMP1 (P. falciparum erythrocyte membrane protein 1) mediates infected erythrocytes adhesion to various surface vascular receptors, including intercellular adhesion molecule-1 (ICAM-1), associating this interaction with severe malaria in several studies. Genetic variation in host ICAM-1 plays a significant role in determining susceptibility to malaria infection via clinical phenotypes such as the ICAM-1Kilifi variant which has been reported to be associated with susceptibility in populations. Our genomic and structural analysis of single nucleotide polymorphisms (SNPs) in ICAM-1 revealed 9 unique mutations each in its distinct A-type and BC-type PfEMP1 DBLβ-interacting regions. These mutations are noted in only a few field isolates and mainly in the African/African American population. The ICAM-1Kilifi variant lies in a flexible loop proximal to the DBLβ-interacting region. This analysis will assist in establishing functional correlations of reported global mutations via experimental and clinical studies and in the tailored design of population-specific genetic surveillance studies. Understanding host polymorphism as an evolutionary force in diverse populations can help to predict predisposition to disease severity and will contribute towards laying the framework for designing population-specific personalized medicines for severe malaria.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India.
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India
| | - Amit Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Guo Y, Zheng B, Tian P, Zheng J, Li Y, Ding X, Xue W, Ding C. HLA class II antibody activation of endothelial cells induces M2 macrophage differentiation in peripheral blood. Clin Exp Nephrol 2023; 27:309-320. [PMID: 36611129 DOI: 10.1007/s10157-022-02307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Donor-specific human leukocyte antigen (HLA) class II antibodies (HLA-II Abs) combined with allogeneic endothelial cells (ECs) mediate high-risk rejection in kidney transplant patients. Macrophage accumulation is a significant histological feature of antibody-mediated rejection (AMR) in kidney transplant patients. Here, we further investigated the effect of HLA-II Abs on macrophage phenotypes to provide theoretical basis for clinical treatment of AMR. METHODS We prepared an experimental model containing HLA-II Ab-stimulated microvascular ECs and peripheral blood mononuclear cells (PBMCs) co-culture and explored the potential relationship of HLA-II Ab, ECs activation, and macrophage differentiation. Immune phenotype of macrophage subsets was analyzed and quantified by flow cytometry. HLA-II Ab activation of ECs induces M2 macrophage differentiation signal pathways which were investigated by qPCR and western blotting. RESULTS The stimulation of ECs by F(ab')2 fragment of HLA-II Abs led to phosphorylation of PI3K, Akt, and mTOR, which mediated IL-10, ICAM-1, VCAM-1 secretion. The enhanced ICAM-1 and IL-10 promoted the migration of PBMCs and their differentiation into CD68+ and CD163+ (M2-type) macrophages, respectively, but not CD86+ macrophages. CONCLUSION These findings revealed the PI3K/Akt/mTOR signal pathways activated by HLA-II Abs in ECs and the immune regulation ability of HLA-II Abs to induce PBMC differentiation.
Collapse
Affiliation(s)
- Yingcong Guo
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, China.
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Sinha S, Medhi B, Radotra BD, Batovska DI, Markova N, Bhalla A, Sehgal R. Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria. BMC Complement Med Ther 2022; 22:330. [PMID: 36510199 PMCID: PMC9743746 DOI: 10.1186/s12906-022-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria is a complex issue due to the availability of few therapies and chemical families against Plasmodium and mosquitoes. There is increasing resistance to various drugs and insecticides in Plasmodium and in the vector. Additionally, human behaviors are responsible for promoting resistance as well as increasing the risk of exposure to infections. Chalcones and their derivatives have been widely explored for their antimalarial effects. In this context, new derivatives of chalcones have been evaluated for their antimalarial efficacy. METHODS BALB/c mice were infected with P. berghei NK-65. The efficacy of the three most potent chalcone derivations (1, 2, and 3) identified after an in vitro compound screening test was tested. The selected doses of 10 mg/kg, 20 mg/kg, and 10 mg/kg were studied by evaluating parasitemia, changes in temperature, body weights, organ weights, histopathological features, nitric oxide, cytokines, and ICAM-1 expression. Also, localization of parasites inside the two vital tissues involved during malaria infections was done through a transmission electron microscope. RESULTS All three chalcone derivative treated groups showed significant (p < 0.001) reductions in parasitemia levels on the fifth and eighth days of post-infection compared to the infected control. These derivatives were found to modulate the immune response in a P. berghei infected malaria mouse model with a significant reduction in IL-12 levels. CONCLUSIONS The present study indicates the potential inhibitory and immunomodulatory actions of chalcones against the rodent malarial parasite P. berghei.
Collapse
Affiliation(s)
- Shweta Sinha
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bikash Medhi
- grid.415131.30000 0004 1767 2903Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B. D. Radotra
- grid.415131.30000 0004 1767 2903Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela I. Batovska
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ashish Bhalla
- grid.415131.30000 0004 1767 2903Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
4
|
Elphinstone RE, Weckman AM, McDonald CR, Tran V, Zhong K, Madanitsa M, Kalilani-Phiri L, Khairallah C, Taylor SM, Meshnick SR, Mwapasa V, ter Kuile FO, Conroy AL, Kain KC. Early malaria infection, dysregulation of angiogenesis, metabolism and inflammation across pregnancy, and risk of preterm birth in Malawi: A cohort study. PLoS Med 2019; 16:e1002914. [PMID: 31574087 PMCID: PMC6772002 DOI: 10.1371/journal.pmed.1002914] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaria in pregnancy is associated with adverse birth outcomes. However, the underlying mechanisms remain poorly understood. Tight regulation of angiogenic, metabolic, and inflammatory pathways are essential for healthy pregnancies. We hypothesized that malaria disrupts these pathways leading to preterm birth (PTB). METHODS AND FINDINGS We conducted a secondary analysis of a randomized trial of malaria prevention in pregnancy conducted in Malawi from July 21, 2011, to March 18, 2013. We longitudinally assessed circulating mediators of angiogenic, metabolic, and inflammatory pathways during pregnancy in a cohort of HIV-negative women (n = 1,628), with a median age of 21 years [18, 25], and 562 (35%) were primigravid. Pregnancies were ultrasound dated, and samples were analyzed at 13 to 23 weeks (Visit 1), 28 to 33 weeks (Visit 2), and/or 34 to 36 weeks (Visit 3). Malaria prevalence was high; 70% (n = 1,138) had PCR-positive Plasmodium falciparum infection at least once over the course of pregnancy and/or positive placental histology. The risk of delivering preterm in the entire cohort was 20% (n = 304/1506). Women with malaria before 24 weeks gestation had a higher risk of PTB (24% versus 18%, p = 0.005; adjusted relative risk [aRR] 1.30, 95% confidence interval [CI] 1.04-1.63, p = 0.021); and those who were malaria positive only before week 24 had an even greater risk of PTB (28% versus 17%, p = 0.02; with an aRR of 1.67, 95% CI 1.20-2.30, p = 0.002). Using linear mixed-effects modeling, malaria before 24 weeks gestation was associated with altered kinetics of inflammatory (C-Reactive Protein [CRP], Chitinase 3-like protein-1 [CHI3L1], Interleukin 18 Binding Protein [IL-18BP], soluble Tumor Necrosis Factor receptor II [sTNFRII], soluble Intercellular Adhesion Molecule-1 [sICAM-1]), angiogenic (soluble Endoglin [sEng]), and metabolic mediators (Leptin, Angiopoietin-like 3 [Angptl3]) over the course of pregnancy (χ2 > 13.0, p ≤ 0.001 for each). Limitations include being underpowered to assess the impact on nonviable births, being unable to assess women who had not received any antimalarials, and, because of the exposure to antimalarials in the second trimester, there were limited numbers of malaria infections late in pregnancy. CONCLUSIONS Current interventions for the prevention of malaria in pregnancy are initiated at the first antenatal visit, usually in the second trimester. In this study, we found that many women are already malaria-infected by their first visit. Malaria infection before 24 weeks gestation was associated with dysregulation of essential regulators of angiogenesis, metabolism, and inflammation and an increased risk of PTB. Preventing malaria earlier in pregnancy may reduce placental dysfunction and thereby improve birth outcomes in malaria-endemic settings.
Collapse
Affiliation(s)
- Robyn E. Elphinstone
- Sandra Rotman Centre for Global Health, University Health Network-University of Toronto, Toronto, Ontario, Canada
| | - Andrea M. Weckman
- Sandra Rotman Centre for Global Health, University Health Network-University of Toronto, Toronto, Ontario, Canada
| | - Chloe R. McDonald
- Sandra Rotman Centre for Global Health, University Health Network-University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Tran
- Sandra Rotman Centre for Global Health, University Health Network-University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Zhong
- Sandra Rotman Centre for Global Health, University Health Network-University of Toronto, Toronto, Ontario, Canada
| | | | | | - Carole Khairallah
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Steve M. Taylor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Infectious Diseases and Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Steven R. Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victor Mwapasa
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Feiko O. ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea L. Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kevin C. Kain
- Sandra Rotman Centre for Global Health, University Health Network-University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Abstract
The adhesion of malaria infected red blood cells (iRBCs) to host endothelial receptors in the microvasculature, or cytoadhesion, is associated with severe disease pathology such as multiple organ failure and cerebral malaria. Malaria iRBCs have been shown to bind to several receptors, of which intercellular adhesion molecule 1 (ICAM-1) upregulation in brain microvasculature is the only one correlated to cerebral malaria. We utilize a biophysical approach to study the interactions between iRBCs and ICAM-1. At the single molecule level, force spectroscopy experiments reveal that ICAM-1 forms catch bond interactions with Plasmodium falciparum parasite iRBCs. Flow experiments are subsequently conducted to understand multiple bond behavior. Using a robust model that smoothly transitions between our single and multiple bond results, we conclusively demonstrate that the catch bond behavior persists even under flow conditions. The parameters extracted from these experimental results revealed that the rate of association of iRBC-ICAM-1 bonds are ten times lower than iRBC-CD36 (cluster of differentiation 36), a receptor that shows no upregulation in the brains of cerebral malaria patients. Yet, the dissociation rates are nearly the same for both iRBC-receptor interactions. Thus, our results suggest that ICAM-1 may not be the sole mediator responsible for cytoadhesion in the brain.
Collapse
|
6
|
Kuleš J, Gotić J, Mrljak V, Barić Rafaj R. Blood markers of fibrinolysis and endothelial activation in canine babesiosis. BMC Vet Res 2017; 13:82. [PMID: 28363279 PMCID: PMC5376283 DOI: 10.1186/s12917-017-0995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 03/18/2017] [Indexed: 03/09/2023] Open
Abstract
Background Canine babesiosis is a tick-borne disease caused by hemoprotozoan parasites of the genus Babesia. The disease can be clinically classified into uncomplicated and complicated forms. The aim of this study was to assess the level of endothelial activation and alterations in the fibrinolytic pathway during canine babesiosis. Results Blood samples were collected on the day of admission and on the 6th day after treatment with imidocarb propionate, from 30 dogs of various breeds and of both sexes with naturally occurring babesiosis caused by B. canis. In this prospective study, plasminogen activity was assessed using a chromogenic assay, and concentrations of high mobility group box-1 protein (HMGB-1), intercellular adhesive molecule-1 (ICAM-1), vascular adhesive molecule-1 (VCAM-1), soluble urokinase receptor of plasminogen activator (suPAR), thrombin activatable fibrinolysis inhibitor (TAFI), soluble thrombomodulin (TM) and plasminogen activator inhibitor-1 (PAI-1) were determined using a canine specific ELISA. Concentrations of TM, HMGB-1, VCAM-1 and suPAR were increased in dogs with babesiosis at admission compared to healthy dogs. After treatment, concentrations of TM were lower in infected dogs compared to healthy dogs. Dogs with babesiosis also had increased concentrations of TM, ICAM-1 and HMGB-1 and decreased plasminogen and PAI-1 at presentation compared to day 6 after treatment. Dogs with complicated babesiosis had higher concentrations of TM, HMGB1 and TAFI at admission compared to the 6th day. Conclusions Biomarkers of endothelial activation and fibrinolysis were altered in dogs with babesiosis. Further studies into their usefulness as biomarkers of disease severity or prognosis is warranted.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair team VetMedZg, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Jelena Gotić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Vladimir Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia.
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| |
Collapse
|
7
|
Vásquez AM, Blair S, García LF, Segura C. Plasmodium falciparum isolates from patients with uncomplicated malaria promote endothelial inflammation. Microbes Infect 2016; 19:132-141. [PMID: 27717894 DOI: 10.1016/j.micinf.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022]
Abstract
The ability of Plasmodium falciparum infected erythrocytes (Pf-IEs) to activate endothelial cells has been described; however, the interaction of the endothelium with Pf-IEs field isolates from patients has been less characterized. Previous reports have shown that isolates alter the endothelial permeability and apoptosis. In this study, the adhesion of 19 uncomplicated malaria isolates to Human Dermal Microvascular Endothelial Cells (HDMEC), and their effect on the expression of ICAM-1 and proinflammatory molecules (sICAM-1, IL-6, IL-8, and MCP-1) was evaluated. P. falciparum isolates adhered to resting and TNFα-activated HDEMC cells at different levels. All isolates increased the ICAM-1 expression on the membrane (mICAM-1) of HDMEC and increased the release of its soluble form (sICAM-1), as well the production of IL-6, IL-8 and MCP-1 by HDMEC with no signs of cell apoptosis. No correlation between parasite adhesion and production of cytokines was observed. In conclusion, isolates from uncomplicated malaria can induce a proinflammatory response in endothelial cells that may play a role during the initial inflammatory response to parasite infection; however, a continuous activation of the endothelium can contribute to pathogenesis.
Collapse
Affiliation(s)
- Ana María Vásquez
- Grupo Malaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 610, Medellín, Colombia.
| | - Silvia Blair
- Grupo Malaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 610, Medellín, Colombia
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 410, Medellín, Colombia
| | - Cesar Segura
- Grupo Malaria, Universidad de Antioquia, Carrera 53 No. 61 - 30, Lab 610, Medellín, Colombia
| |
Collapse
|
8
|
Bleizgys A, Šapoka V. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1075-1088. [PMID: 26546313 DOI: 10.1007/s00484-015-1101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs-sICAM-1, sVCAM-1, sE-selectin and sP-selectin-were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels (β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 (β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 (β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.
Collapse
Affiliation(s)
- Andrius Bleizgys
- Clinic of Internal Diseases, Family Medicine and Oncology of Medical Faculty, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.
| | - Virginijus Šapoka
- Clinic of Internal Diseases, Family Medicine and Oncology of Medical Faculty, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania
- Vilnius University Hospital Santariskiu Clinics, Santariškių 2, LT-08661, Vilnius, Lithuania
| |
Collapse
|
9
|
Conroy AL, Hawkes M, McDonald CR, Kim H, Higgins SJ, Barker KR, Namasopo S, Opoka RO, John CC, Liles WC, Kain KC. Host Biomarkers Are Associated With Response to Therapy and Long-Term Mortality in Pediatric Severe Malaria. Open Forum Infect Dis 2016; 3:ofw134. [PMID: 27703996 PMCID: PMC5047396 DOI: 10.1093/ofid/ofw134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
Background. Host responses to infection are critical determinants of disease severity and clinical outcome. The development of tools to risk stratify children with malaria is needed to identify children most likely to benefit from targeted interventions. Methods. This study investigated the kinetics of candidate biomarkers of mortality associated with endothelial activation and dysfunction (angiopoietin-2 [Ang-2], soluble FMS-like tyrosine kinase-1 [sFlt-1], and soluble intercellular adhesion molecule-1 [sICAM-1]) and inflammation (10 kDa interferon γ-induced protein [CXCL10/IP-10] and soluble triggering receptor expressed on myeloid cells-1 [sTREM-1]) in the context of a randomized, double-blind, placebo-controlled, parallel-arm trial evaluating inhaled nitric oxide versus placebo as adjunctive therapy to parenteral artesunate for severe malaria. One hundred eighty children aged 1-10 years were enrolled at Jinja Regional Referral Hospital in Uganda and followed for up to 6 months. Results. There were no differences between the 2 study arms in the rate of biomarker recovery. Median levels of Ang-2, CXCL10, and sFlt-1 were higher at admission in children who died in-hospital (n = 15 of 180; P < .001, P = .027, and P = .004, respectively). Elevated levels of Ang-2, sTREM-1, CXCL10, and sICAM-1 were associated with prolonged clinical recovery times in survivors. The Ang-2 levels were also associated with postdischarge mortality (P < .0001). No biomarkers were associated with neurodisability. Conclusions. Persistent endothelial activation and dysfunction predict survival in children admitted with severe malaria.
Collapse
Affiliation(s)
- Andrea L Conroy
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Canada; Department of Pediatrics, Indiana University School of Medicine, Indianapolis
| | - Michael Hawkes
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Canada; Division of Pediatric Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Chloe R McDonald
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health , University Health Network-Toronto General Hospital, University of Toronto , Canada
| | - Hani Kim
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health , University Health Network-Toronto General Hospital, University of Toronto , Canada
| | - Sarah J Higgins
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health , University Health Network-Toronto General Hospital, University of Toronto , Canada
| | - Kevin R Barker
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health , University Health Network-Toronto General Hospital, University of Toronto , Canada
| | | | - Robert O Opoka
- Department of Paediatrics and Child Health , Mulago Hospital and Makerere University , Kampala , Uganda
| | - Chandy C John
- Department of Pediatrics , Indiana University School of Medicine , Indianapolis
| | - W Conrad Liles
- Department of Medicine , University of Washington , Seattle
| | - Kevin C Kain
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Canada
| |
Collapse
|
10
|
Abdi AI, Muthui M, Kiragu E, Bull PC. Measuring soluble ICAM-1 in African populations. PLoS One 2014; 9:e108956. [PMID: 25289635 PMCID: PMC4188575 DOI: 10.1371/journal.pone.0108956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
The level of plasma soluble ICAM-1 (sICAM-1) has been associated with the pathogenesis of several diseases. Previously, a commercial antibody was reported not to recognize an ICAM-1 allele known as ICAM-1kilifi prevalent among African populations. However, that study was based on 19 samples from African Americans of whom 13 had the wild type allele, five heterozygotes and one homozygote. Here, we compare plasma sICAM-1 measures using three different commercial antibodies in samples from Kenyan children genotyped for ICAM-1kilifi allele. We show that two of these antibodies have some degree of deficiency in detecting the ICAM-1kilifi allele. Consideration of the antibody used to measure sICAM-1 is important as up to 30% of the populations in Africa harbour this allele.
Collapse
Affiliation(s)
- Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Chemistry, Pwani University, Kilifi, Kenya
| | | | - Esther Kiragu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Peter C. Bull
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Storm J, Craig AG. Pathogenesis of cerebral malaria--inflammation and cytoadherence. Front Cell Infect Microbiol 2014; 4:100. [PMID: 25120958 PMCID: PMC4114466 DOI: 10.3389/fcimb.2014.00100] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Despite decades of research on cerebral malaria (CM) there is still a paucity of knowledge about what actual causes CM and why certain people develop it. Although sequestration of P. falciparum infected red blood cells has been linked to pathology, it is still not clear if this is directly or solely responsible for this clinical syndrome. Recent data have suggested that a combination of parasite variant types, mainly defined by the variant surface antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1), its receptors, coagulation and host endothelial cell activation (or inflammation) are equally important. This makes CM a multi-factorial disease and a challenge to unravel its causes to decrease its detrimental impact.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK ; Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW), University of Malawi College of Medicine Blantyre, Malawi
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK
| |
Collapse
|
12
|
Does combined peroxisome proliferator-activated receptors-agonist and pravastatin therapy attenuate the onset of diabetes-induced experimental nephropathy? Saudi Med J 2014; 35:1339-47. [PMID: 25399210 PMCID: PMC4362144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To investigate the combined effects of rosiglitazone and pravastatin on renal functions in early streptozotocin induced diabetic nephropathy (DN). METHODS This study was carried out at King Khalid University Hospital Animal House, Riyadh, Saudi Arabia from August 2013 to February 2014. Fifty male Wistar rats were assigned to normal control rats and diabetic rats that received saline, rosiglitazone, pravastatin, or rosiglitazone+pravastatin for 2 months. Their weight range was 230-250 gm, and age range was from 18-20 weeks. At the end of experiment, creatinine clearance, and urinary albumin to creatinine ratio (ACR) were measured. Blood samples were analyzed for transferrin, glycosylated hemoglobin (HbA1c), lipid profile, tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and lipid peroxide. RESULTS Rosiglitazone treatment increased creatinine clearance and plasma transferrin, and decreased urinary ACR, HbA1c, plasma TNF-α, ICAM-1, and serum lipid peroxide levels without affecting the altered lipid profile. Pravastatin treatment produced similar results and normalized the lipid alteration. The combination of rosiglitazone and pravastatin was more effective in attenuating the diabetes-induced nephropathy compared with treatment with either drug alone. CONCLUSION The combination strategy of rosiglitazone and pravastatin may provide a potential synergistic renoprotective effect against DN by improving renal functions and reducing indices of DN.
Collapse
|
13
|
Adukpo S, Kusi KA, Ofori MF, Tetteh JKA, Amoako-Sakyi D, Goka BQ, Adjei GO, Edoh DA, Akanmori BD, Gyan BA, Dodoo D. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria. PLoS One 2013; 8:e84181. [PMID: 24386348 PMCID: PMC3873986 DOI: 10.1371/journal.pone.0084181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM. METHODOLOGY/PRINCIPAL FINDINGS Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p<0.0037). Median levels of antibodies to CD36-binding VSA were comparable in the two groups at the time of admission and 7 days after treatment was initiated (p>0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. CONCLUSIONS/SIGNIFICANCE High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.
Collapse
Affiliation(s)
- Selorme Adukpo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Kwadwo A. Kusi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael F. Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - John K. A. Tetteh
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoako-Sakyi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bamenla Q. Goka
- Department of Child Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - George O. Adjei
- Department of Child Health, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Dominic A. Edoh
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
| | - Bartholomew D. Akanmori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ben A. Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dodoo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
14
|
Functional roles for C5a and C5aR but not C5L2 in the pathogenesis of human and experimental cerebral malaria. Infect Immun 2013; 82:371-9. [PMID: 24191300 DOI: 10.1128/iai.01246-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The host immune response plays an important role in the onset and progression of cerebral malaria (CM). The complement system is an essential component of the innate immune response to malaria, and its activation generates the anaphylatoxin C5a. To test the hypothesis that C5a signaling contributes to the pathogenesis of CM, we investigated a causal role for the C5a receptors C5aR and C5L2 in a mouse model of experimental CM (ECM) induced by Plasmodium berghei ANKA infection, and using a case-control design, we examined levels of C5a in plasma samples from Ugandan children presenting with CM or uncomplicated malaria (UM). In the ECM model, C5aR(-/-) mice displayed significantly improved survival compared to their wild-type (WT) counterparts (P = 0.004), whereas C5L2(-/-) mice showed no difference in survival from WT mice. Improved survival in C5aR(-/-) mice was associated with reduced levels of the proinflammatory cytokines tumor necrosis factor (TNF) and gamma interferon (IFN-γ) and the chemokine, monocyte chemoattractant protein 1 (MCP-1) (CCL2). Furthermore, endothelial integrity was enhanced, as demonstrated by increased levels of angiopoietin-1, decreased levels of angiopoietin-2 and soluble ICAM-1, and decreased Evans blue extravasation into brain parenchyma. In the case-control study, the median levels of C5a at presentation were significantly higher in children with CM versus those in children with UM (43.7 versus 22.4 ng/ml; P < 0.001). These findings demonstrate that C5a is dysregulated in human CM and contributes to the pathogenesis of ECM via C5aR-dependent inflammation and endothelial dysfunction.
Collapse
|
15
|
Maiga B, Dolo A, Touré O, Dara V, Tapily A, Campino S, Sepulveda N, Risley P, Silva N, Corran P, Rockett KA, Kwiatkowski D, Clark TG, Troye-Blomberg M, Doumbo OK. Human candidate polymorphisms in sympatric ethnic groups differing in malaria susceptibility in Mali. PLoS One 2013; 8:e75675. [PMID: 24098393 PMCID: PMC3788813 DOI: 10.1371/journal.pone.0075675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/16/2013] [Indexed: 11/30/2022] Open
Abstract
Malaria still remains a major public health problem in Mali, although disease susceptibility varies between ethnic groups, particularly between the Fulani and Dogon. These two sympatric groups share similar socio-cultural factors and malaria transmission rates, but Fulani individuals tend to show significantly higher spleen enlargement scores, lower parasite prevalence, and seem less affected by the disease than their Dogon neighbours. We have used genetic polymorphisms from malaria-associated genes to investigate associations with various malaria metrics between the Fulanai and Dogon groups. Two cross sectional surveys (transmission season 2006, dry season 2007) were performed. Healthy volunteers from the both ethnic groups (n=939) were recruited in a rural setting. In each survey, clinical (spleen enlargement, axillary temperature, weight) and parasitological data (malaria parasite densities and species) were collected, as well as blood samples. One hundred and sixty six SNPs were genotyped and 5 immunoassays (AMA1, CSP, MSP1, MSP2, total IgE) were performed on the DNA and serum samples respectively. The data confirm the reduced malaria susceptibility in the Fulani, with a higher level of the protective O-blood group, and increased circulating antibody levels to several malaria antigens (p<10(-15)). We identified SNP allele frequency differences between the 2 ethnic groups in CD36, IL4, RTN3 and ADCY9. Moreover, polymorphisms in FCER1A, RAD50, TNF, SLC22A4, and IL13 genes were correlated with antibody production (p-value<0.003). Further work is required to understand the mechanisms underpinning these genetic factors.
Collapse
Affiliation(s)
- Bakary Maiga
- Malaria Research and Training Center / Department of Epidemiology of Parasitic Diseases / Faculty of Medicine, Pharmacy and Odonto – Stomatology, BP 1805, Bamako, USTTB, Mali
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amagana Dolo
- Malaria Research and Training Center / Department of Epidemiology of Parasitic Diseases / Faculty of Medicine, Pharmacy and Odonto – Stomatology, BP 1805, Bamako, USTTB, Mali
| | - Ousmane Touré
- Malaria Research and Training Center / Department of Epidemiology of Parasitic Diseases / Faculty of Medicine, Pharmacy and Odonto – Stomatology, BP 1805, Bamako, USTTB, Mali
| | - Victor Dara
- Malaria Research and Training Center / Department of Epidemiology of Parasitic Diseases / Faculty of Medicine, Pharmacy and Odonto – Stomatology, BP 1805, Bamako, USTTB, Mali
| | - Amadou Tapily
- Malaria Research and Training Center / Department of Epidemiology of Parasitic Diseases / Faculty of Medicine, Pharmacy and Odonto – Stomatology, BP 1805, Bamako, USTTB, Mali
| | - Susana Campino
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Nuno Sepulveda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Center of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Paul Risley
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Nipula Silva
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Patrick Corran
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dominic Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ogobara K. Doumbo
- Malaria Research and Training Center / Department of Epidemiology of Parasitic Diseases / Faculty of Medicine, Pharmacy and Odonto – Stomatology, BP 1805, Bamako, USTTB, Mali
| |
Collapse
|
16
|
Wilson NO, Solomon W, Anderson L, Patrickson J, Pitts S, Bond V, Liu M, Stiles JK. Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS One 2013; 8:e60898. [PMID: 23630573 PMCID: PMC3618178 DOI: 10.1371/journal.pone.0060898] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/04/2013] [Indexed: 02/05/2023] Open
Abstract
Despite appropriate anti-malarial treatment, cerebral malaria (CM)-associated mortalities remain as high as 30%. Thus, adjunctive therapies are urgently needed to prevent or reduce such mortalities. Overproduction of CXCL10 in a subset of CM patients has been shown to be tightly associated with fatal human CM. Mice with deleted CXCL10 gene are partially protected against experimental cerebral malaria (ECM) mortality indicating the importance of CXCL10 in the pathogenesis of CM. However, the direct effect of increased CXCL10 production on brain cells is unknown. We assessed apoptotic effects of CXCL10 on human brain microvascular endothelial cells (HBVECs) and neuroglia cells in vitro. We tested the hypothesis that reducing overexpression of CXCL10 with a synthetic drug during CM pathogenesis will increase survival and reduce mortality. We utilized atorvastatin, a widely used synthetic blood cholesterol-lowering drug that specifically targets and reduces plasma CXCL10 levels in humans, to determine the effects of atorvastatin and artemether combination therapy on murine ECM outcome. We assessed effects of atorvastatin treatment on immune determinants of severity, survival, and parasitemia in ECM mice receiving a combination therapy from onset of ECM (day 6 through 9 post-infection) and compared results with controls. The results indicate that CXCL10 induces apoptosis in HBVECs and neuroglia cells in a dose-dependent manner suggesting that increased levels of CXCL10 in CM patients may play a role in vasculopathy, neuropathogenesis, and brain injury during CM pathogenesis. Treatment of ECM in mice with atorvastatin significantly reduced systemic and brain inflammation by reducing the levels of the anti-angiogenic and apoptotic factor (CXCL10) and increasing angiogenic factor (VEGF) production. Treatment with a combination of atorvastatin and artemether improved survival (100%) when compared with artemether monotherapy (70%), p<0.05. Thus, adjunctively reducing CXCL10 levels and inflammation by atorvastatin treatment during anti-malarial therapy may represent a novel approach to treating CM patients.
Collapse
Affiliation(s)
- Nana O. Wilson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Wesley Solomon
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Leonard Anderson
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - John Patrickson
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Sidney Pitts
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Vincent Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Mingli Liu
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
17
|
Higgins SJ, Xing K, Kim H, Kain DC, Wang F, Dhabangi A, Musoke C, Cserti-Gazdewich CM, Tracey KJ, Kain KC, Liles WC. Systemic release of high mobility group box 1 (HMGB1) protein is associated with severe and fatal Plasmodium falciparum malaria. Malar J 2013; 12:105. [PMID: 23506269 PMCID: PMC3606128 DOI: 10.1186/1475-2875-12-105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe falciparum malaria (SM) pathogenesis has been attributed, in part, to deleterious systemic host inflammatory responses to infection. High mobility group box 1 (HMGB1) protein is an important mediator of inflammation implicated in sepsis pathophysiology. METHODS Plasma levels of HMGB1 were quantified in a cohort of febrile Ugandan children with Plasmodium falciparum infection, enrolled in a prospective observational case-controlled study, using a commercial enzyme-linked immunosorbent assay. The utility of HMGB1 to distinguish severe malaria (SM; n = 70) from uncomplicated malaria (UM; n = 33) patients and fatal (n = 21) versus non-fatal (n = 82) malaria, at presentation, was examined. Receiver operating characteristic curve analysis was used to assess the prognostic accuracy of HMGB1. The ability of P. falciparum-parasitized erythrocytes to induce HMGB1 from peripheral blood mononuclear cells was assessed in vitro. The effect of an anti-HMGB1 neutralizing antibody on disease outcome was assessed in the experimental Plasmodium berghei ANKA rodent parasite model of SM. Mortality and parasitaemia was assessed daily and compared to isotype antibody-treated controls. RESULTS Elevated plasma HMGB1 levels at presentation were significantly associated with SM and a subsequent fatal outcome in paediatric patients with P. falciparum infection. In vitro, parasitized erythrocytes induced HMGB1 release from human peripheral blood mononuclear cells. Antibody-mediated neutralization of HMGB1 in the experimental murine model of severe malaria failed to reduce mortality. CONCLUSION These data suggest that elevated HMGB1 is an informative prognostic marker of disease severity in human SM, but do not support HMGB1 as a viable target for therapeutic intervention in experimental murine SM.
Collapse
Affiliation(s)
- Sarah J Higgins
- Sandra A Rotman Laboratory, McLaughlin-Rotman Centre for Global Health, University Health Network/University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Noone C, Parkinson M, Dowling DJ, Aldridge A, Kirwan P, Molloy SF, Asaolu SO, Holland C, O'Neill SM. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. Malar J 2013; 12:5. [PMID: 23294670 PMCID: PMC3545738 DOI: 10.1186/1475-2875-12-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria. METHODS Blood was obtained from 231 children (aged 39-73 months) who were classified according to mean P. falciparum density per μl of blood (uninfected (n = 89), low density (<1,000, n = 51), medium density (1,000-10,000, n = 65) and high density (>10,000, n = 22)). IL-12p70, IL-10, Nitric oxide, IFN-γ, TNF, IL-17, IL-4 and TGF-β, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR). T-cell sub-populations (CD4, CD3 and γδTCR) were intracellularly stained for IL-10, IFN-γ and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p <0.05 was deemed significant. RESULTS The level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection. CONCLUSIONS These findings indicate that Nigerian children infected with P. falciparum exhibit immune responses associated with active malaria infection and these responses were positively associated with increased P. falciparum parasitaemia.
Collapse
Affiliation(s)
- Cariosa Noone
- Parasite Immune Modulation Group, School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University, Glasnevin Dublin 9, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xiao X, Mruk DD, Cheng CY. Intercellular adhesion molecules (ICAMs) and spermatogenesis. Hum Reprod Update 2013; 19:167-86. [PMID: 23287428 DOI: 10.1093/humupd/dms049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli-Sertoli and Sertoli-germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move 'up and down' the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood-testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)-BTB-basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial regulatory molecules of spermatogenesis. The proposed hypothetical model serves as a framework in designing functional experiments for future studies.
Collapse
Affiliation(s)
- Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
20
|
Cserti-Gazdewich CM, Dhabangi A, Musoke C, Ssewanyana I, Ddungu H, Nakiboneka-Ssenabulya D, Nabukeera-Barungi N, Mpimbaza A, Dzik WH. Cytoadherence in paediatric malaria: ABO blood group, CD36, and ICAM1 expression and severe Plasmodium falciparum infection. Br J Haematol 2012; 159:223-36. [PMID: 22909232 PMCID: PMC3470923 DOI: 10.1111/bjh.12014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
As a leading cause of childhood mortality worldwide, selection pressure by Plasmodium falciparum continues to shape the human genome. Severe disturbances within the microcirculation result from the adhesion of infected erythrocytes to host receptors on monocytes, platelets, and endothelium. In this prospective study, we compared expression of all major host cytoadhesion receptors among Ugandan children presenting with uncomplicated malaria (n = 1078) versus children with severe malaria (n = 855), including cerebral malaria (n = 174), severe anaemia (n = 522), and lactic acidosis (n = 154). We report a significant survival advantage attributed to blood group O and increased monocyte expression of CD36 and ICAM1 (CD54). The high case fatality rate syndromes of cerebral malaria and lactic acidosis were associated with high platelet CD36 expression and thrombocytopenia, and severe malaria anaemia was characterized by low ICAM1 expression. In a logistic regression model of disease severity, odds ratios for the mitigating effects of blood group O, CD36, and ICAM1 phenotypes were greater than that of sickle haemoglobin. Host genetic adaptations to Plasmodium falciparum suggest new potential malaria treatment strategies.
Collapse
|
21
|
A revised timeline for the origin of Plasmodium falciparum as a human pathogen. J Mol Evol 2011; 73:297-304. [PMID: 22183792 DOI: 10.1007/s00239-011-9476-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
While Plasmodium falciparum is known to have had a strong effect on human evolution, the time period when P. falciparum first infected ancestors of modern humans has remained uncertain. Recent advances demonstrated that P. falciparum evolved from ancestors of gorilla parasites via host switching. Here, we estimate the range of dates during which this host switch may have occurred. DNA sequences of portions of the mitochondrial cytochrome b gene obtained from gorilla parasites closely related to human P. falciparum were aligned and compared against similar sequences from human P. falciparum. Time estimates were calculated by applying a previously established parasite cytochrome b gene mutation rate (0.012 mutations per site per million years) and by modeling uncertainty in a Monte-Carlo simulation. We estimate a 95% confidence interval for when P. falciparum first infected ancestors of modern humans to be 112,000 and 1,036,000 years ago (median estimate, 365,000 years ago). This confidence interval suggests that P. falciparum first infected human ancestors much more recently than the previous recognized estimate of 2.5 million years ago. The revised estimate may inform our understanding of certain aspects of human-malaria co-evolution. For example, this revised date suggests a closer relationship between the entry of P. falciparum in humans and the appearance of many red blood cell polymorphisms considered to be genetic adaptations to malaria. In addition, the confidence interval lies within the timeframe dating the dawn of Homo sapiens, suggesting that P. falciparum may have undergone host switching as a Plasmodia adaptation specific for our species.
Collapse
|