1
|
Bhatt P, Li Y, Xagoraraki I. Genomic mapping of wastewater bacteriophage may predict potential bacterial pathogens infecting the community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176834. [PMID: 39396796 DOI: 10.1016/j.scitotenv.2024.176834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Most existing wastewater surveillance studies that focus on viruses have identified a large fraction of bacteriophages. Identifying bacteria by considering bacteriophage-host interactions is a novel method for detecting bacterial pathogens circulating in a community, using wastewater surveillance. This study aims to identify human-related bacterial pathogens in municipal wastewater collected in metro Detroit, using high-throughput sequencing and bioinformatics. Untreated municipal wastewater samples were collected on August 11, 2020, and bacteriophages were concentrated using the VIRus ADsorption-ELution (VIRADEL) method. Bacteriophage-related contigs in samples ranged from 15.53 % to 18.91 %, with 2477 classified and 8853 unclassified contigs. Most identified bacteriophages were from Caudoviricetes and Malgrandaviricetes classes belonging to 19 families. Hosts of bacteriophages were predicted with the PhaBOX (CHERRY) tool. The results indicated that out of the 2477 classified phages, 2373 were associated with known bacterial hosts. Also, out of 8853 unclassified bacteriophages, 8421 were associated with known bacterial hosts, and the remaining 432 were with unknown bacterial hosts. Among all bacteriophage-associated hosts, 399 were identified as pathogenic bacteria at the species level. Approximately, 85 % of the identified pathogenic bacteria are reported to be associated with human diseases. Genome quality assessments showed that 15 bacteriophages had nearly complete genomes, which were further analyzed to understand bacteriophage-bacteria interactions in wastewater. Identified hosts of these complete-genome phages included human pathogens such as Salmonella enterica, Bacillus cereus, Achromobacter xylosoxidans, and Escherichia coli. The S. enterica bacteriophage (k141_1005294) genomic map was annotated, and responsible open reading frames (ORFs) were characterized to illustrate bacteriophage behavior during infection of pathogenic bacteria in untreated wastewater. To the best of our knowledge, this is the first attempt to characterize human bacterial pathogens in wastewater through bacteriophage-pathogen interactions. Novel bioinformatic approaches enhance pathogen detection and improve the understanding of community wastewater microbiomes.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Cagri MA, Sahin M, Ersoy Y, Aydin C, Buyuk F. Geese as reservoirs of human colon cancer-associated Streptococcus gallolyticus. Res Vet Sci 2024; 176:105341. [PMID: 38963992 DOI: 10.1016/j.rvsc.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Recently, an increased number of reports have described pathogens of animal origin that cause a variety of infections and a rise in their transmission to humans. Streptococcus gallolyticus, a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is one of these pathogens and infects a wide range of hosts from mammals to poultry and has a broad functionality ranging from pathogenicity to food fermentation. As S. gallolyticus causes complications including bacteremia, infective endocarditis, and colorectal malignancy in humans, it is important to investigate its occurrence in various hosts, including geese, to prevent potential zoonotic transmissions. This study aimed to investigate the presence of S. gallolyticus in the droppings of clinically healthy and diarrheic geese, which were raised intensively and semi-intensively, by the in vitro culture method, characterize the isolates recovered by PCR and sequence-based molecular methods and determine their antibiotic susceptibility by the disk diffusion and gradient test methods. For this purpose, 150 samples of fresh goose droppings were used. Culture positivity for S. gallolyticus was determined as 8% (12/150). PCR analysis identified 54.55% (n = 6) of the isolates as S. gallolyticus subsp. gallolyticus and 45.45% (n = 5) as S. gallolyticus subsp. pasteurianus. Following the 16S rRNA sequence and ERIC-PCR analyses, S. gallolyticus subspecies exhibited identical cluster and band profiles that could be easily distinguished from each other and were clonally identified. High rates of susceptibility to florfenicol, penicillin, rifampicin, and vancomycin were detected among the isolates, regardless of the subspecies diversity. Both subspecies showed high levels of resistance to bacitracin, clindamycin, doxycycline, tetracycline, trimethoprim-sulfamethoxazole, and erythromycin and multiple MDR profiles, indicating their potential to become superbugs. This first report from Türkiye demonstrates the occurrence of the S. gallolyticus subspecies in geese. In view of the recent increase of geese production and the consumption of goose meat in Türkiye, the occurrence of S. gallolyticus in geese should not be ignored to prevent zoonotic transmission.
Collapse
Affiliation(s)
| | - Mitat Sahin
- Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye; Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic
| | - Yaren Ersoy
- Institute of Health Sciences, Department of Microbiology, Kafkas University, Kars, Türkiye
| | - Cansu Aydin
- Institute of Health Sciences, Department of Microbiology, Erciyes University, Kayseri, Türkiye
| | - Fatih Buyuk
- Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye.
| |
Collapse
|
3
|
Kanjanabuch P, Banjongjit A, Purisinsith S, Towannang P, Kanjanabuch T. Streptococcus mitis Peritonitis in a Peritoneal Dialysis Patient: A Case Report Highlighting the Importance of Dental Hygiene. Cureus 2024; 16:e64693. [PMID: 39156445 PMCID: PMC11327416 DOI: 10.7759/cureus.64693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Viridans-group streptococci, including the Streptococcus mitis/oralis subgroup, can cause peritoneal dialysis (PD)-related peritonitis. The link between dental pathology and PD-related peritonitis remains to be fully elucidated. We report a case of an 83-year-old man undergoing nocturnal intermittent PD due to kidney failure from diabetic nephropathy who developed S. mitis peritonitis and septicemia traced back to a periodontal abscess. Despite having no prior history of peritonitis and maintaining good nutritional status, the patient presented with generalized abdominal pain and a low-grade fever. The initial treatment included intraperitoneal antibiotics. Root cause analysis identified multiple periodontitis and dental abscesses as the primary source of infection, confirmed by DNA sequencing of cultures from the abscesses and blood, which matched S. mitis. This case highlights the critical role of oral flora in causing invasive diseases in immunocompromised individuals, including PD patients, and illustrates how dental infections can lead to PD-related peritonitis through hematogenous spread. Our case also stresses the importance of meticulous dental care and regular dental examinations to prevent such infections in PD patients.
Collapse
Affiliation(s)
- Patnarin Kanjanabuch
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Bangkok, THA
| | | | | | - Piyaporn Towannang
- Continuous Ambulatory Peritoneal Dialysis (CAPD) Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, THA
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
- Continuous Ambulatory Peritoneal Dialysis (CAPD) Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, THA
| |
Collapse
|
4
|
Walsh CJ, Srinivas M, Stinear TP, van Sinderen D, Cotter PD, Kenny JG. GROND: a quality-checked and publicly available database of full-length 16S-ITS-23S rRNA operon sequences. Microb Genom 2024; 10:001255. [PMID: 38847800 PMCID: PMC11261877 DOI: 10.1099/mgen.0.001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/07/2024] [Indexed: 07/24/2024] Open
Abstract
Sequence comparison of 16S rRNA PCR amplicons is an established approach to taxonomically identify bacterial isolates and profile complex microbial communities. One potential application of recent advances in long-read sequencing technologies is to sequence entire rRNA operons and capture significantly more phylogenetic information compared to sequencing of the 16S rRNA (or regions thereof) alone, with the potential to increase the proportion of amplicons that can be reliably classified to lower taxonomic ranks. Here we describe GROND (Genome-derived Ribosomal Operon Database), a publicly available database of quality-checked 16S-ITS-23S rRNA operons, accompanied by multiple taxonomic classifications. GROND will aid researchers in analysis of their data and act as a standardised database to allow comparison of results between studies.
Collapse
Affiliation(s)
- Calum J. Walsh
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne VIC 3000, Australia
| | - Meghana Srinivas
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy P. Stinear
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, 792 Elizabeth Street, Melbourne VIC 3000, Australia
| | - Douwe van Sinderen
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc Moorepark, Cork, Ireland
| | - John G. Kenny
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc Moorepark, Cork, Ireland
| |
Collapse
|
5
|
Hyeon JY, Kim J, Chung DH, Helal ZH, Polkowski R, Lee DH, Risatti GR. Genome analysis of Streptococcus spp. isolates from animals in pre-antibiotic era with respect to antibiotic susceptibility and virulence gene profiles. Vet Res 2024; 55:51. [PMID: 38622639 PMCID: PMC11017511 DOI: 10.1186/s13567-024-01302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Junwon Kim
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - David H Chung
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Zeinab H Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Robert Polkowski
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Paul B. Concatenated 16S rRNA sequence analysis improves bacterial taxonomy. F1000Res 2023; 11:1530. [PMID: 37767069 PMCID: PMC10521043 DOI: 10.12688/f1000research.128320.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Microscopic, biochemical, molecular, and computer-based approaches are extensively used to identify and classify bacterial populations. Advances in DNA sequencing and bioinformatics workflows have facilitated sophisticated genome-based methods for microbial taxonomy although sequencing of the 16S rRNA gene is widely employed to identify and classify bacterial communities as a cost-effective and single-gene approach. However, the 16S rRNA sequence-based species identification accuracy is limited because of the occurrence of multiple copies of the 16S rRNA gene and higher sequence identity between closely related species. The availability of the genomes of several bacterial species provided an opportunity to develop comprehensive species-specific 16S rRNA reference libraries. Methods: Sequences of the 16S rRNA genes were retrieved from the whole genomes available in the Genome databases. With defined criteria, four 16S rRNA gene copy variants were concatenated to develop a species-specific reference library. The sequence similarity search was performed with a web-based BLAST program, and MEGA software was used to construct the phylogenetic tree. Results: Using this approach, species-specific 16S rRNA gene libraries were developed for four closely related Streptococcus species ( S. gordonii, S. mitis, S. oralis, and S. pneumoniae). Sequence similarity and phylogenetic analysis using concatenated 16S rRNA copies yielded better resolution than single gene copy approaches. Conclusions: The approach is very effective in classifying genetically closely related bacterial species and may reduce misclassification of bacterial species and genome assemblies.
Collapse
Affiliation(s)
- Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
7
|
Lin KP, Yeh TK, Chuang YC, Wang LA, Fu YC, Liu PY. Blood Culture Negative Endocarditis: A Review of Laboratory Diagnostic Approaches. Int J Gen Med 2023; 16:317-327. [PMID: 36718144 PMCID: PMC9884005 DOI: 10.2147/ijgm.s393329] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Infective endocarditis is a potentially fatal condition, and identifying the pathogen is crucial to optimizing antibiotic treatment. While a blood culture takes time and may yield negative results, it remains the gold standard for diagnosis, blood culture-negative endocarditis, which accounts for up to 20% of infective endocarditis cases, poses a clinical challenge with increasing mortality. To better understand the etiology of blood culture-negative infective endocarditis, we reviewed non-culture-based strategies and compared the results. Serology tests work best in limited pathogens, such as Coxiella burnetii and Bartonella infections. Most of the pathogens identified by broad-range PCR tests are Streptococcus spp, Staphylococcus spp and Propionibacterium spp. adding specific real-time PCR assays to the systematic PCR testing of patients with blood culture-negative endocarditis will increase the efficiency of diagnosis. Recently, metagenomic next-generation sequencing has also shown promising results.
Collapse
Affiliation(s)
- Kuan-Pei Lin
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Kuang Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan,Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Chuan Chuang
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-An Wang
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yun-Ching Fu
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan,Correspondence: Yun-Ching Fu; Po-Yu Liu, Taichung Veterans General Hospital, No. 1650, Section 4, Taiwan Blvd, Xitun District, Taichung City, 40705, Taiwan, Tel +886-4-2359-2525 ext.3110, Fax +886-4-2359-5046, Email ;
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Pinatih KJP, Suardana IW, Sukrama IDM, Swacita IBN, Putri RK. Biochemical and molecular identification of Gram-positive isolates with β-hemolysis activity isolated from the nasal swab of pigs during the human meningitis outbreak in Badung Regency, Bali-Indonesia. Vet World 2022; 15:140-146. [PMID: 35369582 PMCID: PMC8924401 DOI: 10.14202/vetworld.2022.140-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Aim The nasal cavity of a pig serves as an entry point and a habitat for the colonization of commensal microbes and pathogenic bacteria. Based on biochemical and serological tests, Streptococcus b-hemolytic Group C was identified as the Gram-positive bacteria, which resulted in the 1994 outbreak and death of thousands of pigs in Bali. Furthermore, this agent is zoonotic and frequently results in the development of meningitis lesions in the infected pig. Recently, a meningitis outbreak in humans was also reported after the consumption of pig-derived foods at Sibang Kaja, Badung-Bali. This study aimed to identify and characterize Gram-positive β-hemolytic organisms collected from nasal swab of pigs from the outbreak area, as well as to compare API Kit and 16S rRNA gene analysis methods. Materials and Methods This study commenced with the cultivation of two isolates, Punggul Swab Nasal (PSN) 2 and PSN 19, which were characterized by β-hemolysis activity. These samples were then conventionally and molecularly identified using Kit API 20 Strep and 16S ribosomal RNA (rRNA) gene primers, respectively. Results Using the Kit API 20 Strep, both isolates were identified as Enterococcus faecium, which was previously classified as Group D Streptococci. Based on the 16S rRNA gene sequencing, PSN 2 and PSN 19 were molecularly confirmed to have 99 and 98.1% similarities with E. faecium (NR042054), respectively. Furthermore, both isolates share the same clade in the phylogenetic tree analysis. Conclusion Using Kit API 20 Strep and 16S rRNA gene analysis, the PSN 2 and PSN 9 Gram-positive isolates with β-hemolysis activity from pig nasal swabs were identified as E. faecium.
Collapse
Affiliation(s)
- K. J. Putra Pinatih
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - I. W. Suardana
- Department of Preventive Veterinary Medicine, Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - I. D. M. Sukrama
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - I. B. N. Swacita
- Department of Preventive Veterinary Medicine, Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| | - R. K. Putri
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman Denpasar-Bali, 80234, Indonesia
| |
Collapse
|
9
|
Belstrøm D, Constancias F, Markvart M, Sikora M, Sørensen CE, Givskov M. Transcriptional Activity of Predominant Streptococcus Species at Multiple Oral Sites Associate With Periodontal Status. Front Cell Infect Microbiol 2021; 11:752664. [PMID: 34621696 PMCID: PMC8490622 DOI: 10.3389/fcimb.2021.752664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Streptococcus species are predominant members of the oral microbiota in both health and diseased conditions. The purpose of the present study was to explore if different ecological characteristics, such as oxygen availability and presence of periodontitis, associates with transcriptional activity of predominant members of genus Streptococcus. We tested the hypothesis that genetically closely related Streptococcus species express different transcriptional activities in samples collected from environments with critically different ecological conditions determined by site and inflammatory status. Methods Metagenomic and metatranscriptomic data was retrieved from 66 oral samples, subgingival plaque (n=22), tongue scrapings (n=22) and stimulated saliva (n=22) collected from patients with periodontitis (n=11) and orally healthy individuals (n=11). Species-specific transcriptional activity was computed as Log2(RNA/DNA), and transcriptional activity of predominant Streptococcus species was compared between multiple samples collected from different sites in the same individual, and between individuals with different oral health status. Results The predominant Streptococcus species were identified with a site-specific colonization pattern of the tongue and the subgingival plaque. A total of 11, 4 and 2 pathways expressed by S. parasanguinis, S. infantis and S. salivarius, respectively, were recorded with significantly higher transcriptional activity in saliva than in tongue biofilm in healthy individuals. In addition, 18 pathways, including pathways involved in synthesis of peptidoglycan, amino acid biosynthesis, glycolysis and purine nucleotide biosynthesis expressed by S. parasanguinis and 3 pathways expressed by S. salivarius were identified with significantly less transcriptional activity in patients with periodontitis. Conclusion Data from the present study significantly demonstrates the association of site-specific ecological conditions and presence of periodontitis with transcriptional activity of the predominant Streptococcus species of the oral microbiota. In particular, pathways expressed by S. parasanguinis being involved in peptidoglycan, amino acid biosynthesis, glycolysis, and purine nucleotide biosynthesis were identified to be significantly associated with oral site and/or inflammation status.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, Singapore
| | - Merete Markvart
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christiane Elisabeth Sørensen
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, Singapore.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
11
|
Kosecka-Strojek M, Wolska M, Żabicka D, Sadowy E, Międzobrodzki J. Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing. Pathogens 2020; 9:pathogens9110939. [PMID: 33187333 PMCID: PMC7696602 DOI: 10.3390/pathogens9110939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococci and enterococci are significant opportunistic pathogens in epidemiology and infectious medicine. High genetic and taxonomic similarities and several reclassifications within genera are the most challenging in species identification. The aim of this study was to identify Streptococcus and Enterococcus species using genetic and phenotypic methods and to determine the most discriminatory identification method. Thirty strains recovered from clinical samples representing 15 streptococcal species, five enterococcal species, and four nonstreptococcal species were subjected to bacterial identification by the Vitek® 2 system and Sanger-based sequencing methods targeting the 16S rRNA, sodA, tuf, rpoB, and recA genes. Phenotypic methods allowed the identification of 10 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains (Leuconostoc, Granulicatella, and Globicatella genera). The combination of sequencing methods allowed the identification of 21 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains. The 16S rRNA and rpoB genes had the highest identification potential. Only a combination of several molecular methods was sufficient for unambiguous confirmation of species identity. This study will be useful for comparison of several identification methods, both those used as a first choice in routine microbiology and those used for final confirmation.
Collapse
Affiliation(s)
- Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.M.)
- Correspondence: ; Tel.: +48-12-664-6365
| | - Mariola Wolska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.M.)
| | - Dorota Żabicka
- Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Ewa Sadowy
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.M.)
| |
Collapse
|
12
|
Immune status, and not HIV infection or exposure, drives the development of the oral microbiota. Sci Rep 2020; 10:10830. [PMID: 32616727 PMCID: PMC7331591 DOI: 10.1038/s41598-020-67487-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Even with antiretroviral therapy, children born to HIV-infected (HI) mothers are at a higher risk of early-life infections and morbidities including dental disease. The increased risk of dental caries in HI children suggest immune-mediated changes in oral bacterial communities, however, the impact of perinatal HIV exposure on the oral microbiota remains unclear. We hypothesized that the oral microbiota of HI and perinatally HIV-exposed-but-uninfected (HEU) children will significantly differ from HIV-unexposed-and-uninfected (HUU) children. Saliva samples from 286 child-participants in Nigeria, aged ≤ 6 years, were analyzed using 16S rRNA gene sequencing. Perinatal HIV infection was significantly associated with community composition (HI vs. HUU—p = 0.04; HEU vs. HUU—p = 0.11) however, immune status had stronger impacts on bacterial profiles (p < 0.001). We observed age-stratified associations of perinatal HIV exposure on community composition, with HEU children differing from HUU children in early life but HEU children becoming more similar to HUU children with age. Our findings suggest that, regardless of age, HIV infection or exposure, low CD4 levels persistently alter the oral microbiota during this critical developmental period. Data also indicates that, while HIV infection clearly shapes the developing infant oral microbiome, the effect of perinatal exposure (without infection) appears transient.
Collapse
|
13
|
Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S-23S rRNA region. Antimicrob Resist Infect Control 2019; 8:178. [PMID: 31788235 PMCID: PMC6858756 DOI: 10.1186/s13756-019-0622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background Many members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy. Currently, the developed method based on next generation sequencing (NGS) of the 16S-23S rRNA region proved to be a rapid, reliable and precise approach for species identification directly from polymicrobial and challenging clinical samples. The introduction of this new method to routine diagnostics is hindered by a lack of the reference sequences for the 16S-23S rRNA region for many bacterial species. The aim of this study was to develop a careful assignment for streptococcal and enterococcal species based on NGS of the 16S-23S rRNA region. Methods Thirty two strains recovered from clinical samples and 19 reference strains representing 42 streptococcal species and nine enterococcal species were subjected to bacterial identification by four Sanger-based sequencing methods targeting the genes encoding (i) 16S rRNA, (ii) sodA, (iii) tuf and (iv) rpoB; and NGS of the 16S-23S rRNA region. Results This study allowed obtainment and deposition of reference sequences of the 16S-23S rRNA region for 15 streptococcal and 3 enterococcal species followed by enrichment for 27 and 6 species, respectively, for which reference sequences were available in the databases. For Streptococcus, NGS of the 16S-23S rRNA region was as discriminative as Sanger sequencing of the tuf and rpoB genes allowing for an unambiguous identification of 93% of analyzed species. For Enterococcus, sodA, tuf and rpoB genes sequencing allowed for identification of all species, while the NGS-based method did not allow for identification of only one enterococcal species. For both genera, the sequence analysis of the 16S rRNA gene was endowed with a low identification potential and was inferior to that of other tested identification methods. Moreover, in case of phylogenetically related species the sequence analysis of only the intergenic spacer region was not sufficient enough to precisely identify Streptococcus strains at the species level. Conclusions Based on the developed reference dataset, clinically relevant streptococcal and enterococcal species can now be reliably identified by 16S-23S rRNA sequences in samples. This study will be useful for introduction of a novel diagnostic tool, NGS of the 16S-23S rRNA region, which undoubtedly is an improvement for reliable culture-independent species identification directly from polymicrobially constituted clinical samples.
Collapse
|
14
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
15
|
Peker N, Garcia-Croes S, Dijkhuizen B, Wiersma HH, van Zanten E, Wisselink G, Friedrich AW, Kooistra-Smid M, Sinha B, Rossen JWA, Couto N. A Comparison of Three Different Bioinformatics Analyses of the 16S-23S rRNA Encoding Region for Bacterial Identification. Front Microbiol 2019; 10:620. [PMID: 31040829 PMCID: PMC6476902 DOI: 10.3389/fmicb.2019.00620] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/12/2019] [Indexed: 11/25/2022] Open
Abstract
Rapid and reliable identification of bacterial pathogens directly from patient samples is required for optimizing antimicrobial therapy. Although Sanger sequencing of the 16S ribosomal RNA (rRNA) gene is used as a molecular method, species identification and discrimination is not always achievable for bacteria as their 16S rRNA genes have sometimes high sequence homology. Recently, next generation sequencing (NGS) of the 16S–23S rRNA encoding region has been proposed for reliable identification of pathogens directly from patient samples. However, data analysis is laborious and time-consuming and a database for the complete 16S–23S rRNA encoding region is not available. Therefore, a better, faster, and stronger approach is needed for NGS data analysis of the 16S–23S rRNA encoding region. We compared speed and diagnostic accuracy of different data analysis approaches: de novo assembly followed by Basic Local Alignment Search Tool (BLAST), operational taxonomic unit (OTU) clustering, or mapping using an in-house developed 16S–23S rRNA encoding region database for the identification of bacterial species. De novo assembly followed by BLAST using the in-house database was superior to the other methods, resulting in the shortest turnaround time (2 h and 5 min), approximately 2 h less than OTU clustering and 4.5 h less than mapping, and a sensitivity of 80%. Mapping was the slowest and most laborious data analysis approach with a sensitivity of 60%, whereas OTU clustering was the least laborious approach with 70% sensitivity. Although the in-house database requires more sequence entries to improve the sensitivity, the combination of de novo assembly and BLAST currently appears to be the optimal approach for data analysis.
Collapse
Affiliation(s)
- Nilay Peker
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sharron Garcia-Croes
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Brigitte Dijkhuizen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henry H Wiersma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Evert van Zanten
- Department of Medical Microbiology, Certe, Groningen, Netherlands
| | - Guido Wisselink
- Department of Medical Microbiology, Certe, Groningen, Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mirjam Kooistra-Smid
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Medical Microbiology, Certe, Groningen, Netherlands
| | - Bhanu Sinha
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Abstract
ABSTRACT
Of the eight phylogenetic groups comprising the genus
Streptococcus
, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
|
17
|
Bedoya-Correa CM, Rincón Rodríguez RJ, Parada-Sanchez MT. Genomic and phenotypic diversity of Streptococcus mutans. J Oral Biosci 2019; 61:22-31. [DOI: 10.1016/j.job.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
|
18
|
Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL, Palmer JN, Workman AD, Blasetti M, Sen B, Hammond J, Cohen NA, Ehrlich GD, Mell JC. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. MICROBIOME 2018; 6:190. [PMID: 30352611 PMCID: PMC6199724 DOI: 10.1186/s40168-018-0569-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/02/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences' (PacBio's) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus sequencing (CCS) technology to sequence and error correct full-length bacterial 16S rRNA genes, which provides high-fidelity species-level microbiome data. RESULTS Analysis of a mock community with 20 bacterial species demonstrated 100% specificity and sensitivity with regard to taxonomic classification. Examination of a 250-plus species mock community demonstrated correct species-level classification of > 90% of taxa, and relative abundances were accurately captured. The majority of the remaining taxa were demonstrated to be multiply, incorrectly, or incompletely classified. Using this methodology, we examined the microgeographic variation present among the microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal hypophysectomy. We found greater variation among subjects than among sites within a subject, although significant within-individual differences were also observed. Propiniobacterium acnes (recently renamed Cutibacterium acnes) was the predominant species throughout, but was found at distinct relative abundances by site. CONCLUSIONS Our microbial composition analysis pipeline for single-molecule real-time 16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt ) overcomes deficits of standard marker gene-based microbiome analyses by using CCS of entire 16S rRNA genes to provide increased taxonomic and phylogenetic resolution. Extensions of this approach to other marker genes could help refine taxonomic assignments of microbial species and improve reference databases, as well as strengthen the specificity of associations between microbial communities and dysbiotic states.
Collapse
Affiliation(s)
- Joshua P. Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Nithin D. Adappa
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Jaroslaw Krol
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Archana S. Bhat
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Sergey Balashov
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Rachel L. Ehrlich
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - James N. Palmer
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Alan D. Workman
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Mariel Blasetti
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Bhaswati Sen
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Jocelyn Hammond
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Noam A. Cohen
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Garth D. Ehrlich
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Joshua Chang Mell
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| |
Collapse
|
19
|
Salman HA, Kumar RS, Babu NC, Imran K. First Detection and Characterization of Streptococcus dentapri from Caries Active Subject. J Clin Diagn Res 2017; 11:DM01-DM03. [PMID: 28892899 DOI: 10.7860/jcdr/2017/25903.10316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Mutans streptococci (MS) are a group of oral bacteria generally regarded as the principal agents in the pathogenesis of dental caries. AIM The study aimed was characterize S. dentapri based on phylogenetic analysis and phenotypic methods from Caries Active Subject. MATERIALS AND METHODS While sequencing MS species which were isolated from 65 caries active subjects, one strain of S. dentapri was detected. Dental plaque samples were processed and cultured on mitis salivarius bacitracin agar. S. dentapri was characterized using phylogenetic analysis, colony morphology characterization and biotyping. RESULTS Among the study population, one strain designated as H14 was identified as S. dentapri by 16S rDNA sequencing. Morphologically, S. dentapri could not differentiate from other species of MS. S. dentapri H14 demonstrated biotype II biochemical characteristics of MS. The phylogenetic analysis showed S. dentapri is closely related to S. macacae. CONCLUSION The study concludes that S. dentapri can inhabit the human oral cavity and therefore further investigations are warranted to determine its role in caries.
Collapse
Affiliation(s)
- Hamzah Abdulrahman Salman
- Research Scholar, Department of Microbiology, J.J. College of Arts and Science, Affiliated to Bharathidasan University, Pudukkottai, Tamil Nadu, India
| | - R Senthil Kumar
- Associate Professor, Department of Microbiology, J.J. College of Arts and Science, Affiliated to Bharathidasan University, Pudukkottai, Tamil Nadu, India
| | - N Chaitanya Babu
- Professor, Department of Oral Pathology, The Oxford Dental College, Affiliated to Rajiv Gandhi University, Bengaluru, Karnataka, India
| | - Khalid Imran
- Research Associate, Department of Life Sciences, Nucleobase Life Sciences Research Laboratory and Associate Professor, Department of Biotechnology, Krupanidhi Degree College Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: a comparison of breast-fed and formula-fed infants. Sci Rep 2016; 6:38309. [PMID: 27922070 PMCID: PMC5138828 DOI: 10.1038/srep38309] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022] Open
Abstract
In utero and upon delivery, neonates are exposed to a wide array of microorganisms from various sources, including maternal bacteria. Prior studies have proposed that the mode of feeding shapes the gut microbiota and, subsequently the child’s health. However, the effect of the mode of feeding and its influence on the development of the neonatal oral microbiota in early infancy has not yet been reported. The aim of this study was to compare the oral microbiota of healthy infants that were exclusively breast-fed or formula-fed using 16S-rRNA gene sequencing. We demonstrated that the oral bacterial communities were dominated by the phylum Firmicutes, in both groups. There was a higher prevalence of the phylum Bacteroidetes in the mouths of formula-fed infants than in breast-fed infants (p = 0.01), but in contrast Actinobacteria were more prevalent in breast-fed babies; Proteobacteria was more prevalent in saliva of breast-fed babies than in formula-fed neonates (p = 0.04). We also found evidence suggesting that the oral microbiota composition changed over time, particularly Streptococcus species, which had an increasing trend between 4–8 weeks in both groups. This study findings confirmed that the mode of feeding influences the development of oral microbiota, and this may have implications for long-term human health.
Collapse
|
21
|
Puri A, Rai A, Dhanaraj PS, Lal R, Patel DD, Kaicker A, Verma M. An In Silico Approach for Identification of the Pathogenic Species, Helicobacter pylori and Its Relatives. Indian J Microbiol 2016; 56:277-86. [PMID: 27407291 PMCID: PMC4920758 DOI: 10.1007/s12088-016-0575-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022] Open
Abstract
Helicobacter is an economically important genus within the phylum Proteobacteria and include many species which cause many diseases in humans. With the conventional methods, it is difficult to identify them easily due to the high genetic similarity among its species. In the present study, 361 16S rRNA (rrs) gene sequences belonging to 45 species of genus Helicobacter were analyzed. Out of these, 264 sequences of 10 clinically relevant species (including Helicobacter pylori) were used. rrs gene sequences were analyzed to obtain a phylogenetic framework tree, in silico restriction enzyme analysis and species-specific conserved motifs. Protein sequences of another housekeeping gene, hsp60 were also subjected to phylogenetic analysis to supplement the data obtained using rrs sequences. Using these approaches, six out of ten species (including H. pylori) were easily segregated, whereas four species namely H. bilis, H. cinaedi, H. felis and Candidatus H. heilmannii were found to be heterogeneous. The above approaches have also helped in segregating unclassified sequences, thus proving them as an easy diagnostic method for identifying members of genus Helicobacter up to species level.
Collapse
Affiliation(s)
- Ayush Puri
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Arshiya Rai
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - P. S. Dhanaraj
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Rup Lal
- />Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007 India
| | - Dev Dutt Patel
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Anju Kaicker
- />Department of Biochemistry, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Mansi Verma
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
- />Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
22
|
Kalia VC, Kumar R, Kumar P, Koul S. A Genome-Wide Profiling Strategy as an Aid for Searching Unique Identification Biomarkers for Streptococcus. Indian J Microbiol 2015; 56:46-58. [PMID: 26843696 DOI: 10.1007/s12088-015-0561-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022] Open
Abstract
The use of rrs (16S rRNA) gene is widely regarded as the "gold standard" for identifying bacteria and determining their phylogenetic relationships. Nevertheless, multiple copies of this gene in a genome is likely to give an overestimation of the bacterial diversity. In each of the 50 Streptococcus genomes (16 species, 50 strains), 4-7 copies of rrs are present. The nucleotide sequences of these rrs genes show high similarity within and among genomes, which did not allow unambiguous identification. A genome-wide search revealed the presence of 27 gene sequences common to all the Streptococcus species. Digestion of these 27 gene sequences with 10 type II restriction endonucleases (REs) showed that unique RE digestion in purH gene is sufficient for clear cut identification of 30 genomes belonging to 16 species. Additional gene-RE combinations allowed identification of another 15 strains belonging to S. pneumoniae, S. pyogenes, and S. suis. For the rest 5 strains, a combination of 2 genes was required for identifying them. The proposed strategy is likely to prove helpful in proper detection of pathogens like Streptococcus.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Ravi Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| |
Collapse
|
23
|
Kalia VC, Kumar P. Genome Wide Search for Biomarkers to Diagnose Yersinia Infections. Indian J Microbiol 2015; 55:366-74. [PMID: 26543261 DOI: 10.1007/s12088-015-0552-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4-6 base cutters). Yersinia species have 6-7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences-carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
24
|
Kalia VC, Kumar P, Kumar R, Mishra A, Koul S. Genome Wide Analysis for Rapid Identification of Vibrio Species. Indian J Microbiol 2015; 55:375-83. [PMID: 26543262 DOI: 10.1007/s12088-015-0553-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022] Open
Abstract
The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes-dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Ravi Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| |
Collapse
|
25
|
Hassan NA, Maysaa ARD, Abdul KHA. Molecular screening for erythromycin resistance genes in Streptococcus pyogenes isolated from Iraqi patients with tonsilo-pharyngites. AFRICAN JOURNAL OF BIOTECHNOLOGY 2015; 14:2251-2257. [DOI: 10.5897/ajb2014.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains. Indian J Microbiol 2015; 55:250-7. [PMID: 26063934 DOI: 10.1007/s12088-015-0535-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022] Open
Abstract
Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.
Collapse
|
27
|
Diversity of the Intestinal Bacteria of Cattle Fed on Diets with Different Doses of Gelatinized Starch-Urea. Indian J Microbiol 2015; 55:269-77. [PMID: 26063936 DOI: 10.1007/s12088-015-0526-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/03/2015] [Indexed: 10/23/2022] Open
Abstract
Gelatinized starch-urea (Starea, SU) is an effective and economical source of urea for ruminants. Here we assessed the influence of dietary supplementation with gelatinized starch-urea on the diversity of intestinal bacteria in finishing cattle. Fifty steers were randomly allotted to five treatments with diets supplemented with different doses of Starea [0 % (SU0), 8 % (SU8), 16 % (SU16), 24 % (SU24), and 32 % (SU32) of urea-N in total nitrogen]. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes was used to examine the effect of dietary supplementation of Starea on intestinal bacterial flora. Shannon-Weaver and Simpson diversity indices consistently showed the lowest bacterial diversity in the SU0 treatment. Increasing doses of Starea increased the diversity up to SU24 after which, diversity decreased. Cluster analysis of 16S rRNA gene DGGE profiles indicates that the intestinal bacterial communities associated with cattle that were not supplemented with Starea in feed differed in composition and structure from those supplemented with Starea. The amount of Starea supplemented in cattle diets influenced the abundance of several key species affiliated with Lachnospiraceae, Ruminococcaceae, Peptostreptococcaceae, Comamonadaceae and Moraxellaceae. These results suggest that Starea influences the composition and structure of intestinal bacteria which may play a role in promoting ruminant health and production performance.
Collapse
|
28
|
Identification and characterization of alkaline protease producing Bacillus firmus species EMBS023 by 16S rRNA gene sequencing. Interdiscip Sci 2014; 6:271-8. [DOI: 10.1007/s12539-014-0187-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/10/2012] [Accepted: 07/29/2012] [Indexed: 10/24/2022]
|
29
|
Asam D, Spellerberg B. Molecular pathogenicity of Streptococcus anginosus. Mol Oral Microbiol 2014; 29:145-55. [PMID: 24848553 DOI: 10.1111/omi.12056] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 01/21/2023]
Abstract
Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under-recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome-wide comparative analysis suggested the presence of multiple putative virulence factors that are well-known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.
Collapse
Affiliation(s)
- D Asam
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | | |
Collapse
|
30
|
Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC. Development of Genomic Tools for the Identification of Certain Pseudomonas up to Species Level. Indian J Microbiol 2013; 53:253-63. [PMID: 24426119 DOI: 10.1007/s12088-013-0412-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas is a highly versatile bacterium at the species level with great ecological significance. These genetically and metabolically diverse species have undergone repeated taxonomic revisions. We propose a strategy to identify Pseudomonas up to species level, based on the unique features of their 16S rDNA (rrs) gene sequence, such as the frame work of sequences, sequence motifs and restriction endonuclease (RE) digestion patterns. A species specific phylogenetic framework composed of 31 different rrs sequences, allowed us to segregate 1,367 out of 2,985 rrs sequences of this genus, which have been classified at present only up to genus (Pseudomonas) level, as follows: P. aeruginosa (219 sequences), P. fluorescens (463 sequences), P. putida (347 sequences), P. stutzeri (197 sequences), and P. syringae (141 sequences). These segregations were validated by unique 30-50 nucleotide long motifs and RE digestion patterns in their rrs. A single gene thus provides multiple makers for identification and surveillance of Pseudomonas.
Collapse
Affiliation(s)
- Ashish Bhushan
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Jayadev Joshi
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Pratap Shankar
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Jyoti Kushwah
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Sajan C Raju
- Environmental Genomics Unit, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J Purohit
- Environmental Genomics Unit, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
31
|
Prakash O, Jangid K, Shouche YS. Carl woese: from biophysics to evolutionary microbiology. Indian J Microbiol 2013; 53:247-52. [PMID: 24426118 DOI: 10.1007/s12088-013-0401-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022] Open
Abstract
This article is a tribute to Carl R. Woese, a biophysicist turned evolutionary microbiologist who passed away on December 30, 2012. We focus on his life, achievements, the discovery of Archaea and contributions to the development of molecular phylogeny. Further, the authors share their views and the lessons learnt from Woese's life with the microbiologists in India. We also emphasize the need for interdisciplinary collaboration and interaction for the progress and betterment of science.
Collapse
Affiliation(s)
- Om Prakash
- Microbial Culture Collection, National Centre for Cell Science, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Kamlesh Jangid
- Microbial Culture Collection, National Centre for Cell Science, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science, Ganeshkhind, Pune, 411007 Maharashtra India
| |
Collapse
|