1
|
Liu S, Garcia-Marques FJ, Shen M, Bermudez A, Pitteri SJ, Stoyanova T. Ubiquitin C-terminal hydrolase L1 is a regulator of tumor growth and metastasis in double-negative prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:306-322. [PMID: 39584005 PMCID: PMC11578776 DOI: 10.62347/jnbr1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths among men worldwide. With heavy androgen deprivation therapies, prostate cancer may shift to androgen receptor negative and neuroendocrine negative subtype of castration resistant prostate cancer, defined as double-negative prostate cancer. Double-negative prostate cancer is associated with poor prognosis and disease mortality. The molecular mechanisms underlying the emergence of double-negative prostate cancer remain poorly understood. Here, we demonstrate that Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), is negatively correlated with androgen receptor levels in prostate cancer patients. UCH-L1 plays a functional role in tumorigenesis and metastasis in double-negative prostate cancer. Knock-down of UCH-L1 decreases double-negative prostate cancer colony formation in vitro and tumor growth in vivo. Moreover, decrease of UCH-L1 significantly delays cell migration in vitro and spontaneous metastasis and metastatic colonization in vivo. Proteomic analysis revealed that mTORC1 signaling, androgen response signaling and MYC targets are the top three decreased pathways upon UCH-L1 decrease. Further, treatment with LDN-57444, a UCH-L1 small molecule inhibitor, impairs double-negative prostate cancer cell colony formation, migration in vitro, and metastatic colonization in vivo. Our study reveals that UCH-L1 is an important regulator of double-negative prostate cancer tumor growth and progression, providing a promising therapeutic target for this subtype of metastatic prostate cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | | | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
- Department of Urology, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
2
|
Kasperczak M, Bromiński G, Kołodziejczak-Guglas I, Antczak A, Wiznerowicz M. Prognostic Significance of Elevated UCHL1, SNRNP200, and PAK4 Expression in High-Grade Clear Cell Renal Cell Carcinoma: Insights from LC-MS/MS Analysis and Immunohistochemical Validation. Cancers (Basel) 2024; 16:2844. [PMID: 39199615 PMCID: PMC11352290 DOI: 10.3390/cancers16162844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in proteomics have enhanced our understanding of clear cell renal cell carcinoma (CCRCC). Utilizing a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by immunohistochemical validation, we investigated the expression levels of UCHL1, PAK4, and SNRNP200 in high-grade CCRCC samples. Our analysis also integrated Reactome pathway enrichment to elucidate the roles of these proteins in cancer-related pathways. Our results revealed significant upregulation of UCHL1 and SNRNP200 and downregulation of PAK4 in high-grade CCRCC tissues compared to non-cancerous tissues. UCHL1, a member of the ubiquitin carboxy-terminal hydrolase family, showed variable expression across different tissues and was notably involved in the Akt signaling pathway, which plays a critical role in cellular survival in various cancers. SNRNP200, a key component of the RNA splicing machinery, was found to be essential for proper cell cycle progression and possibly linked to autosomal dominant retinitis pigmentosa. PAK4's role was noted as critical in RCC cell proliferation and invasion and its expression correlated significantly with poor progression-free survival in CCRCC. Additionally, the expression patterns of these proteins suggested potential as prognostic markers for aggressive disease phenotypes. This study confirms the upregulation of UCHL1, SNRNP200, and PAK4 as significant factors in the progression of high-grade CCRCC, linking their enhanced expression to poor clinical outcomes. These findings propose these proteins as potential prognostic markers and therapeutic targets in CCRCC, offering novel insights into the molecular landscape of this malignancy and highlighting the importance of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Michał Kasperczak
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Gabriel Bromiński
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | | | - Andrzej Antczak
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Maciej Wiznerowicz
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
- University Hospital of Lord’s Transfiguration, 61-848 Poznań, Poland
| |
Collapse
|
3
|
Huang Y, Yang G, Yao X, Fang Y, Lin Q, Zhou M, Yang Y, Meng Q, Zhang Q, Wang S. Proteomic profiling of prostate cancer reveals molecular signatures under antiandrogen treatment. Clin Proteomics 2024; 21:44. [PMID: 38918720 PMCID: PMC11202386 DOI: 10.1186/s12014-024-09490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Tumorigenesis and progression of prostate cancer (PCa) are indispensably dependent on androgen receptor (AR). Antiandrogen treatment is the principal preference for patients with advanced PCa. However, the molecular characteristics of PCa with antiandrogen intervention have not yet been fully uncovered. METHODS We first performed proteome analysis with 32 PCa tumor samples and 10 adjacent tissues using data-independent acquisition (DIA)- parallel accumulation serial fragmentation (PASEF) proteomics. Then label-free quantification (LFQ) mass spectrometry was employed to analyze protein profiles in LNCaP and PC3 cells. RESULTS M-type creatine kinase CKM and cartilage oligomeric matrix protein COMP were demonstrated to have the potential to be diagnostic biomarkers for PCa at both mRNA and protein levels. Several E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) were significantly altered in PCa and PCa cells under enzalutamide treatment, and these proteins might reprogram proteostasis at protein levels in PCa. Finally, we discovered 127 significantly varied proteins in PCa samples with antiandrogen therapy and further uncovered 4 proteins in LNCaP cells upon enzalutamide treatment. CONCLUSIONS Our research reveals new potential diagnostic biomarkers for prostate cancer and might help resensitize resistance to antiandrogen therapy.
Collapse
Affiliation(s)
- Yurun Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xinpeng Yao
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Fang
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiliang Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Menghan Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res 2024; 14:2666-2694. [PMID: 39005671 PMCID: PMC11236784 DOI: 10.62347/oege2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) are a large group of proteases that reverse ubiquitination process and maintain protein homeostasis. The DUBs have been classified into seven subfamilies according to their primary sequence and structural similarity. As a small subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCHs) subfamily only contains four members including UCHL1, UCHL3, UCHL5, and BRCA1-associated protein-1 (BAP1). Despite sharing the deubiquitinase activity with a similar catalysis mechanism, the UCHs exhibit distinctive biological functions which are mainly determined by their specific subcellular localization and partner substrates. Besides, growing evidence indicates that the UCH enzymes are involved in human malignancies. In this review, the structural information and biological functions of the UCHs are briefly described. Meanwhile, the roles of these enzymes in tumorigenesis and the discovered inhibitors against them are also summarized to give an insight into the cancer therapy with the potential alternative strategy.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
5
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
6
|
Ma T, Wang J. GraphPath: a graph attention model for molecular stratification with interpretability based on the pathway-pathway interaction network. Bioinformatics 2024; 40:btae165. [PMID: 38530778 PMCID: PMC11007237 DOI: 10.1093/bioinformatics/btae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
MOTIVATION Studying the molecular heterogeneity of cancer is essential for achieving personalized therapy. At the same time, understanding the biological processes that drive cancer development can lead to the identification of valuable therapeutic targets. Therefore, achieving accurate and interpretable clinical predictions requires paramount attention to thoroughly characterizing patients at both the molecular and biological pathway levels. RESULTS Here, we present GraphPath, a biological knowledge-driven graph neural network with multi-head self-attention mechanism that implements the pathway-pathway interaction network. We train GraphPath to classify the cancer status of patients with prostate cancer based on their multi-omics profiling. Experiment results show that our method outperforms P-NET and other baseline methods. Besides, two external cohorts are used to validate that the model can be generalized to unseen samples with adequate predictive performance. We reduce the dimensionality of latent pathway embeddings and visualize corresponding classes to further demonstrate the optimal performance of the model. Additionally, since GraphPath's predictions are interpretable, we identify target cancer-associated pathways that significantly contribute to the model's predictions. Such a robust and interpretable model has the potential to greatly enhance our understanding of cancer's biological mechanisms and accelerate the development of targeted therapies. AVAILABILITY AND IMPLEMENTATION https://github.com/amazingma/GraphPath.
Collapse
Affiliation(s)
- Teng Ma
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 41083, Hunan, China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 41083, Hunan, China
| |
Collapse
|
7
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Yang D, Zhang M, Chen W, Lu Q, Wan S, Du X, Li Y, Li B, Wu W, Wang C, Li N, Peng S, Tang H, Hua J. UCHL1 maintains microenvironmental homeostasis in goat germline stem cells. FASEB J 2023; 37:e23306. [PMID: 37934018 DOI: 10.1096/fj.202301674rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenbo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shicheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, China
| | - Yunxiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Congliang Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Zheng Y, Shi D, Chen L, Yang Y, Yao M. UCHL1-PKM2 axis dysregulation is associated with promoted proliferation and invasiveness of urothelial bladder cancer cells. Aging (Albany NY) 2023; 15:10593-10606. [PMID: 37815895 PMCID: PMC10599732 DOI: 10.18632/aging.205097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Bladder cancer is one of the most common type of cancers globally, and the majority of cases belong to urothelial bladder carcinoma (UBC) type. Current researches have demonstrated that multiple genomic abnormalities are related to the sensitivity of cisplatin-based chemotherapy in bladder cancer patients. Previous findings have indicated a controversial role of Ubiquitin Carboxy-Terminal Hydrolase L1 (UCHL1) in malignancy, so we aimed to further explore the role of UCHL1 in UBC. METHODS UBC cell lines and The Cancer Genome Atlas (TCGA) in-silico datasets were utilized to investigate UCHL1 expression pattern and functional as well as prognostic impacts in UBC cancer cell line models and patients. UCHL1 overexpression and silencing vectors and subsequent immunoprecipitation/ubiquitination experiments in combination of cellular functional assays were conducted to explore UCHL1-PKM2 interaction axis and its significance in UBC malignancy. RESULTS UCHL1 was significantly up-regulated in UBC cancer cells and UCHL1 high-expression was associated with higher pathology/clinical grade and significantly inferior overall prognosis of UBC patients. UCHL1 interacted with PKM2 and enhanced PKM2 protein level through inhibition of PKM2 protein degradation via ubiquitination process. UCHL1-PKM2 interaction significantly promoted UBC cellular proliferation, metastasis and invasion activities. CONCLUSION UCHL1-PKM2 interaction played an interesting role in UBC tumor cell proliferation, migration and metastasis. Our study suggests PKM2-targeted treatment might have a potential value in metastatic malignancy therapy development in the future.
Collapse
Affiliation(s)
- Yuhui Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Linlin Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
10
|
Epshtein Y, Mathew B, Chen W, Jacobson JR. UCHL1 Regulates Radiation Lung Injury via Sphingosine Kinase-1. Cells 2023; 12:2405. [PMID: 37830619 PMCID: PMC10572187 DOI: 10.3390/cells12192405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
GADD45a is a gene we previously reported as a mediator of responses to acute lung injury. GADD45a-/- mice express decreased Akt and increased Akt ubiquitination due to the reduced expression of UCHL1 (ubiquitin c-terminal hydrolase L1), a deubiquitinating enzyme, while GADD45a-/- mice have increased their susceptibility to radiation-induced lung injury (RILI). Separately, we have reported a role for sphingolipids in RILI, evidenced by the increased RILI susceptibility of SphK1-/- (sphingosine kinase 1) mice. A mechanistic link between UCHL1 and sphingolipid signaling in RILI is suggested by the known polyubiquitination of SphK1. Thus, we hypothesized that the regulation of SphK1 ubiquitination by UCHL1 mediates RILI. Initially, human lung endothelial cells (EC) subjected to radiation demonstrated a significant upregulation of UCHL1 and SphK1. The ubiquitination of EC SphK1 after radiation was confirmed via the immunoprecipitation of SphK1 and Western blotting for ubiquitin. Further, EC transfected with siRNA specifically for UCHL1 or pretreated with LDN-5744, as a UCHL1 inhibitor, prior to radiation were noted to have decreased ubiquitinated SphK1 in both conditions. Further, the inhibition of UCHL1 attenuated sphingolipid-mediated EC barrier enhancement was measured by transendothelial electrical resistance. Finally, LDN pretreatment significantly augmented murine RILI severity. Our data support the fact that the regulation of SphK1 expression after radiation is mediated by UCHL1. The modulation of UCHL1 affecting sphingolipid signaling may represent a novel RILI therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.E.); (W.C.)
| |
Collapse
|
11
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Zhao T, Zhu G, Dubey HV, Flaherty P. Identification of significant gene expression changes in multiple perturbation experiments using knockoffs. Brief Bioinform 2023; 24:bbad084. [PMID: 36892174 PMCID: PMC10025447 DOI: 10.1093/bib/bbad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Large-scale multiple perturbation experiments have the potential to reveal a more detailed understanding of the molecular pathways that respond to genetic and environmental changes. A key question in these studies is which gene expression changes are important for the response to the perturbation. This problem is challenging because (i) the functional form of the nonlinear relationship between gene expression and the perturbation is unknown and (ii) identification of the most important genes is a high-dimensional variable selection problem. To deal with these challenges, we present here a method based on the model-X knockoffs framework and Deep Neural Networks to identify significant gene expression changes in multiple perturbation experiments. This approach makes no assumptions on the functional form of the dependence between the responses and the perturbations and it enjoys finite sample false discovery rate control for the selected set of important gene expression responses. We apply this approach to the Library of Integrated Network-Based Cellular Signature data sets which is a National Institutes of Health Common Fund program that catalogs how human cells globally respond to chemical, genetic and disease perturbations. We identified important genes whose expression is directly modulated in response to perturbation with anthracycline, vorinostat, trichostatin-a, geldanamycin and sirolimus. We compare the set of important genes that respond to these small molecules to identify co-responsive pathways. Identification of which genes respond to specific perturbation stressors can provide better understanding of the underlying mechanisms of disease and advance the identification of new drug targets.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Information Systems and Analytics, College of Business, Bryant University, Smithfield, 02917, RI, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, 02917, RI, USA
| | - Guangyu Zhu
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, 02881, RI, USA
| | - Harsh Vardhan Dubey
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| | - Patrick Flaherty
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| |
Collapse
|
14
|
Yang D, Lu Q, Peng S, Hua J. Ubiquitin C-terminal hydrolase L1 (UCHL1), a double-edged sword in mammalian oocyte maturation and spermatogenesis. Cell Prolif 2023; 56:e13347. [PMID: 36218038 PMCID: PMC9890544 DOI: 10.1111/cpr.13347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown that ubiquitin-mediated cell apoptosis can modulate protein interaction and involve in the progress of oocyte maturation and spermatogenesis. As one of the key regulators involved in ubiquitin signal, ubiquitin C-terminal hydrolase L1 (UCHL1) is considered a molecular marker associated with spermatogonia stem cells. However, the function of UCHL1 was wildly reported to regulate various bioecological processes, such as Parkinson's disease, lung cancer, breast cancer and colon cancer, how UCHL1 affects the mammalian reproductive system remains an open question. METHODS We identified papers through electronic searches of PubMed database from inception to July 2022. RESULTS Here, we summarize the important function of UCHL1 in controlling mammalian oocyte development, regulating spermatogenesis and inhibiting polyspermy, and we posit the balance of UCHL1 was essential to maintaining reproductive cellular and tissue homeostasis. CONCLUSION This study considers the 'double-edged sword' role of UCHL1 during gametogenesis and presents new insights into UCHL1 in germ cells.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Collaborative Innovation Center of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
15
|
Zhang D, Lu W, Cui S, Mei H, Wu X, Zhuo Z. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq. J Ovarian Res 2022; 15:123. [PMID: 36424614 PMCID: PMC9686070 DOI: 10.1186/s13048-022-01059-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Ovarian cancer has the highest mortality rate among gynecological malignant tumors, and it preferentially metastasizes to omental tissue, leading to intestinal obstruction and death. scRNA-seq is a powerful technique to reveal tumor heterogeneity. Analyzing omentum metastasis of ovarian cancer at the single-cell level may be more conducive to exploring and understanding omentum metastasis and prognosis of ovarian cancer at the cellular function and genetic levels. METHODS The omentum metastasis site scRNA-seq data of GSE147082 were acquired from the GEO (Gene Expression Omnibus) database, and single cells were clustered by the Seruat package and annotated by the SingleR package. Cell differentiation trajectories were reconstructed through the monocle package. The ovarian cancer microarray data of GSE132342 were downloaded from GEO and were clustered by using the ConsensusClusterPlus package into omentum metastasis-associated clusters according to the marker genes gained from single-cell differentiation trajectory analysis. The tumor microenvironment (TME) and immune infiltration differences between clusters were analyzed by the estimate and CIBERSORT packages. The expression matrix of genes used to cluster GSE132342 patients was extracted from bulk RNA-seq data of TCGA-OV (The Cancer Genome Atlas ovarian cancer), and least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were performed to establish an omentum metastasis-associated gene (OMAG) signature. The signature was then tested by GSE132342 data. Finally, the clinicopathological characteristics of TCGA-OV were screened by univariate and multivariate Cox regression analysis to draw the nomogram. RESULTS A total of 9885 cells from 6 patients were clustered into 18 cell clusters and annotated into 14 cell types. Reconstruction of differentiation trajectories divided the cells into 5 branches, and a total of 781 cell trajectory-related characteristic genes were obtained. A total of 3769 patients in GSE132342 were subtyped into 3 clusters by 74 cell trajectory-related characteristic genes. Kaplan-Meier (K-M) survival analysis showed that the prognosis of cluster 2 was the worst, P < 0.001. The TME analysis showed that the ESTIMATE score and stromal score in cluster 2 were significantly higher than those in the other two clusters, P < 0.001. The immune infiltration analysis showed differences in the fraction of 8 immune cells among the 3 clusters, P < 0.05. The expression data of 74 genes used for GEO clustering were extracted from 379 patients in TCGA-OV, and combined with survival information, 10 candidates for OMAGs were filtered by LASSO. By using multivariate Cox regression, the 6-OMAGs signature was established as RiskScore = 0.307*TIMP3 + 3.516*FBN1-0.109*IGKC + 0.209*RPL21 + 0.870*UCHL1 + 0.365*RARRES1. Taking TCGA-OV as the training set and GSE132342 as the test set, receiver operating characteristic (ROC) curves were drawn to verify the prognostic value of 6-OMAGs. Screened by univariate and multivariate Cox regression analysis, 3 (age, cancer status, primary therapy outcome) of 5 clinicopathological characteristics were used to construct the nomogram combined with risk score. CONCLUSION We constructed an ovarian cancer prognostic model related to omentum metastasis composed of 6-OMAGs and 3 clinicopathological features and analyzed the potential mechanism of these 6-OMAGs in ovarian cancer omental metastasis.
Collapse
Affiliation(s)
- Dongni Zhang
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenping Lu
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Shasha Cui
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Heting Mei
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xiaoqing Wu
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Zhili Zhuo
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
16
|
Tian C, Liu Y, Liu Y, Hu P, Xie S, Guo Y, Wang H, Zhang Z, Du L, Lei B, Wang Y, Xue L, Zhang D, Su J, Zhang X, Zhang R, Chen J, Zhang X, Chen L, Li M, Jia Q, Song J, Liu J. UCHL1 promotes cancer stemness in triple-negative breast cancer. Pathol Res Pract 2022; 240:154235. [DOI: 10.1016/j.prp.2022.154235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
17
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
18
|
Mondal M, Conole D, Nautiyal J, Tate EW. UCHL1 as a novel target in breast cancer: emerging insights from cell and chemical biology. Br J Cancer 2022; 126:24-33. [PMID: 34497382 PMCID: PMC8727673 DOI: 10.1038/s41416-021-01516-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer has the highest incidence and death rate among cancers in women worldwide. In particular, metastatic estrogen receptor negative (ER-) breast cancer and triple-negative breast cancer (TNBC) subtypes have very limited treatment options, with low survival rates. Ubiquitin carboxyl terminal hydrolase L1 (UCHL1), a ubiquitin C-terminal hydrolase belonging to the deubiquitinase (DUB) family of enzymes, is highly expressed in these cancer types, and several key reports have revealed emerging and important roles for UCHL1 in breast cancer. However, selective and potent small-molecule UCHL1 inhibitors have been disclosed only very recently, alongside chemical biology approaches to detect regulated UHCL1 activity in cancer cells. These tools will enable novel insights into oncogenic mechanisms driven by UCHL1, and identification of substrate proteins deubiquitinated by UCHL1, with the ultimate goal of realising the potential of UCHL1 as a drug target in breast cancer.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Chemistry, Imperial College London, London, UK
| | - Daniel Conole
- Department of Chemistry, Imperial College London, London, UK
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
| |
Collapse
|
19
|
de Santi F, Beltrame FL, Rodrigues BM, Scaramele NF, Lopes FL, Cerri PS, Sasso-Cerri E. Venlafaxine-induced adrenergic signaling stimulates Leydig cells steroidogenesis via Nur77 overexpression: a possible role of EGF. Life Sci 2021; 289:120069. [PMID: 34688693 DOI: 10.1016/j.lfs.2021.120069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Venlafaxine, a norepinephrine and serotonin reuptake inhibitor, impairs rat sperm parameters, spermatogenesis and causes high intratesticular estrogen and testosterone levels, indicating that Leydig cells (LCs) may be a venlafaxine target. We evaluated the effect of venlafaxine treatment on LCs in vivo, focusing on adrenergic signaling, EGF immunoexpression and steroidogenesis. Germ cells mitotic/meiotic activity and UCHL1 levels were also evaluated in the seminiferous epithelium. Adult male rats received venlafaxine (30 mg/kg) or distilled water. In testicular sections, the seminiferous tubules, epithelium and the LCs nuclear areas were measured, and the immunoexpression of Ki-67, UCHL1, StAR, EGF, c-Kit and 17β-HSD was evaluated. UCHL1, StAR and EGF protein levels and Adra1a, Nur77 and Ndrg2 expression were analyzed. MDA and nitrite testicular levels, and serum estrogen and testosterone levels were measured. Venlafaxine induced LCs hypertrophy and Ndrg2 upregulation, in parallel to increased number of Ki-67, c-Kit- and 17β-HSD-positive interstitial cells, indicating that this antidepressant stimulates LCs lineage proliferation and differentiation. Upregulation of Adra1a and Nur77 could explain the high levels of StAR and testosterone levels, as well as aromatization. Enhanced EGF immunoexpresion in LCs suggests that this growth fact is involved in adrenergically-induced steroidogenesis, likely via upregulation of Nur77. Slight tubular atrophy and weak Ki-67 immunoexpression in germ cells, in association with high UCHL1 levels, indicate that spermatogenesis is likely impaired by this enzyme under supraphysiological estrogen levels. These data corroborate the unchanged MDA and nitrite levels. Therefore, venlafaxine stimulates LCs steroidogenesis via adrenergic signaling, and EGF may be involved in this process.
Collapse
Affiliation(s)
- Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Flávia L Beltrame
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Beatriz M Rodrigues
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Natália F Scaramele
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, Brazil
| | - Flávia L Lopes
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, Brazil
| | - Paulo S Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil.
| |
Collapse
|
20
|
Wu DD, Xu YM, Chen DJ, Liang ZL, Chen XL, Hylkema MN, Rots MG, Li SQ, Lau ATY. Ubiquitin carboxyl-terminal hydrolase isozyme L1/UCHL1 suppresses epithelial-mesenchymal transition and is under-expressed in cadmium-transformed human bronchial epithelial cells. Cell Biol Toxicol 2021; 37:497-513. [PMID: 33040242 DOI: 10.1007/s10565-020-09560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
Abstract
Cadmium (Cd), a highly toxic heavy metal, is widespreadly distributed in the environment. Chronic exposure to Cd is associated with the development of several diseases including cancers. Over the decade, many researches have been carried on various models to examine the acute effects of Cd; yet, limited knowledge is known about the long-term Cd exposure, especially in the human lung cells. Previously, we showed that chronic Cd-exposed human bronchial epithelial BEAS-2B cells exhibited transformed cell properties, such as anchorage-independent growth, augmented cell migration, and epithelial-mesenchymal transition (EMT). To study these Cd-transformed cells more comprehensively, here, we further characterized their subproteomes. Overall, a total of 63 differentially expressed proteins between Cd-transformed and passage-matched control cells among the five subcellular fractions (cytoplasmic, membrane, nuclear-soluble, chromatin-bound, and cytoskeletal) were identified by mass spectrometric analysis and database searching. Interestingly, we found that the thiol protease ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) is one of the severely downregulated proteins in the Cd-transformed cells. Notably, the EMT phenotype of Cd-transformed cells can be suppressed by forced ectopic expression of UCHL1, suggesting UCHL1 as a crucial modulator in the maintenance of the proper differentiation status in lung epithelial cells. Since EMT is considered as a critical step during malignant cell transformation, finding novel cellular targets that can antagonize this transition may lead to more efficient strategies to inhibit cancer development. Our data report for the first time that UCHL1 may play a function in the suppression of EMT in Cd-transformed human lung epithelial cells, indicating that UCHL1 might be a new therapeutic target for chronic Cd-induced carcinogenesis. Graphical abstract.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - De-Ju Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Zhan-Ling Liang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xu-Li Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Sheng-Qing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep 2021; 11:14579. [PMID: 34272424 PMCID: PMC8285512 DOI: 10.1038/s41598-021-93780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
The interplay between T cells, dendritic cells and keratinocytes is crucial for the development and maintenance of inflammation in psoriasis. GADD45 proteins mediate DNA repair in different cells including keratinocytes. In the immune system, GADD45a and GADD45b regulate the function and activation of both T lymphocytes and dendritic cells and GADD45a links DNA repair and epigenetic regulation through its demethylase activity. Here, we analyzed the expression of GADD45a and GADD45b in the skin, dendritic cells and circulating T cells in a cohort of psoriasis patients and their regulation by inflammatory signals. Thirty patients (17 male/13 female) with plaque psoriasis and 15 controls subjects (7 male/8 female), were enrolled. Psoriasis patients exhibited a lower expression of GADD45a at the epidermis but a higher expression in dermal infiltrating T cells in lesional skin. The expression of GADD45a and GADD45b was also higher in peripheral T cells from psoriasis patients, although no differences were observed in p38 activation. The expression and methylation state of the GADD45a target UCHL1 were evaluated, revealing a hypermethylation of its promoter in lesional skin compared to controls. Furthermore, reduced levels of GADD45a correlated with a lower expression UCHL1 in lesional skin. We propose that the demethylase function of GADD45a may account for its pleiotropic effects, and the complex and heterogeneous pattern of expression observed in psoriatic disease.
Collapse
|
22
|
Tangri A, Lighty K, Loganathan J, Mesmar F, Podicheti R, Zhang C, Iwanicki M, Drapkin R, Nakshatri H, Mitra S. Deubiquitinase UCHL1 Maintains Protein Homeostasis through the PSMA7-APEH-Proteasome Axis in High-grade Serous Ovarian Carcinoma. Mol Cancer Res 2021; 19:1168-1181. [PMID: 33753553 DOI: 10.1158/1541-7786.mcr-20-0883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand that exacerbate misfolded, unfolded, and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. This study reports that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion, as well as significantly decreased the in vivo metastatic growth of ovarian cancer xenografts. Transcriptional profiling of UCHL1-silenced HGSOC cells revealed downregulation of genes implicated with proteasome activity along with upregulation of endoplasmic reticulum stress-induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH), upon silencing of UCHL1, resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1-silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7-APEH-proteasome axis. IMPLICATIONS: This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC and recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress in solid tumors.
Collapse
Affiliation(s)
- Apoorva Tangri
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kinzie Lighty
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jagadish Loganathan
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fahmi Mesmar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey
| | - Ronny Drapkin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Sumegha Mitra
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana.
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| |
Collapse
|
23
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Ariya S, James AR, Joseph B. Identification of lung cancer master genes triggered by smoking and their key pathways based on gene expression profiling. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Deubiquitination of CD36 by UCHL1 promotes foam cell formation. Cell Death Dis 2020; 11:636. [PMID: 32801299 PMCID: PMC7429868 DOI: 10.1038/s41419-020-02888-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis-associated cardiovascular diseases are main causes leading to high mortality worldwide. Macrophage-derived foam cell formation via uptaking modified lipoproteins is the initial and core step in the process of atherosclerosis. Meanwhile, scavenger receptor is indispensable for the formation of foam cells. UCHL1, a deubiquitinase, has been widely studied in multiple cancers. UCHL1 could be an oncogene or a tumor suppressor in dependent of tumor types. It remains unknown whether UCHL1 influences cellular oxLDL uptake. Herein we show that UCHL1 deletion significantly inhibits lipid accumulation and foam cell formation. Subsequently, we found that UCHL1 inhibitor or siRNA downregulates the expression of CD36 protein whereas SR-A, ABCA1, ABCG1, Lox-1, and SR-B1 have no significant change. Furthermore, the treatment of UCHL1 inhibition increases the abundance of K48-polyubiquitin on CD36 and the suppression of lipid uptake induced by UCHL1 deficiency is attenuated by blocking CD36 activation. Our study concluded that UCHL1 deletion decreases foam cell formation by promoting the degradation of CD36 protein, indicating UCHL1 may be a potential target for atherosclerosis treatment.
Collapse
|
26
|
Gutkin DW, Shurin MR, El Azher MA, Shurin GV, Velikokhatnaya L, Prosser D, Shin N, Modugno F, Stemmer P, Elishaev E, Lokshin A. Novel protein and immune response markers of human serous tubal intraepithelial carcinoma of the ovary. Cancer Biomark 2020; 26:471-479. [PMID: 31658047 DOI: 10.3233/cbm-190528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecologic diseases in the USA and Europe. High-grade serous carcinoma (HGSC) of the ovary, the most aggressive type of ovarian cancer, is typically diagnosed at advanced stages when the 5-year survival is dismal. Since the cure rate for stage I HGSC is high, early detection of localized initial disease may improve patient outcomes. Serous tubal intraepithelial carcinoma (STIC) is considered to be a precursor lesion of HGSC. Discovery of biomarkers associated with STIC could aid in the development of an HGSC screening algorithm. Using immunohistochemical staining, we have demonstrated overexpression of UCHL1, ADAMTS13, and GAPDH in patients' STIC lesions, but not in cancer-free fallopian tubes. We additionally demonstrated a marked increase of T cells in perineoplastic stroma surrounding STIC lesions (largely CD4 + cells), but not in normal fallopian tubes and HGSC. FOXP3 + T regulatory cells are absent in STIC lesions but are present in HGSC. These observations indicate the microenvironment surrounding a STIC lesion may be immune promoting in contrast to the immune suppressive microenvironment of invasive carcinoma. In summary, we have identified UCHL1, ADAMTS13, and GAPDH as novel potentially useful markers associated with early stages of HGSC tumorigenesis and possibly contribute to STIC immunogenicity. The lack of immune suppression in the STIC microenvironment indicates that the immune system can still recognize and keep STIC controlled at this stage of the tumor development.
Collapse
Affiliation(s)
- Dmitriy W Gutkin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Michael R Shurin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mounia Alaoui El Azher
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Galina V Shurin
- Departments of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Liudmila Velikokhatnaya
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Denise Prosser
- Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Namhee Shin
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Francesmary Modugno
- Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Esther Elishaev
- Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Anna Lokshin
- Departments of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Hao L, Song D, Zhuang M, Shi Y, Yu L, He Y, Wang J, Zhang T, Sun Z. Gene UCHL1 expresses specifically in mouse uterine decidual cells in response to estrogen. Histochem Cell Biol 2020; 154:275-286. [PMID: 32451617 DOI: 10.1007/s00418-020-01880-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
Abstract
UCHL1 is expressed specifically in the brain and gonads of almost all studied model organisms including Drosophila, zebrafish, amphibians, and mammals, suggesting a high degree of evolutionary conservation in its structure and function. Although UCHL1 has been involved in spermatogenesis in mice, its specific expression in mammal placenta remains elusive. Our previous work has revealed that UCHL1 is highly expressed in oocytes, and has been involved in mouse ovarian follicular development. Here, we further examined UCHL1 expression change in endometria during early natural pregnancy, with different stages of the estrous cycle and pseudopregnancy as control. The UCHL1 gene deletion model showed that UCHL1 protein is associated with endometrial development, and its deletion leads to infertility. Notably, we demonstrate evidence showing the distinct expression pattern of UCHL1: weak expression over the uterine endometria, strong expression in decidualized stromal cells at the implantation site with a peak at pregnancy D6, and a shift with primary decidualization to secondary decidualized zones. Using the delayed implantation, the delayed implantation activation, and the artificial decidualization models, we have demonstrated that strong expression of UCHL1 occurred in response to decidualization and estrogen stimulation. These observations suggest that during the early proliferation and differentiation of mouse uterine decidua, UCHL1 expression is up-regulated, and formed an unique intracellular distribution mode. Therefore, we proposed that UCHL1 is involved in decidualization, and possibly in response to estrogen regulation.
Collapse
Affiliation(s)
- Lishuang Hao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.,Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, 200082, China
| | - Di Song
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mengfei Zhuang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Yan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lin Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yaping He
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tingting Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Medical School, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Catana CS, Crișan CA, Opre D, Berindan-Neagoe I. Implications of Long Non-Coding RNAs in Age-Altered Proteostasis. Aging Dis 2020; 11:692-704. [PMID: 32489713 PMCID: PMC7220293 DOI: 10.14336/ad.2019.0814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
This review aims to summarize the current knowledge on how lncRNAs are influencing aging and cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (lncRNAs), transcripts longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead to recognition of senescence-associated lncRNAs, current methodologies, potential challenges that arise from studying these molecules, and their crucial implications in clinical practice.
Collapse
Affiliation(s)
- Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Catalina-Angela Crișan
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Opre
- Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
29
|
Matuszczak E, Tylicka M, Komarowska MD, Debek W, Hermanowicz A. Ubiquitin carboxy-terminal hydrolase L1 - physiology and pathology. Cell Biochem Funct 2020; 38:533-540. [PMID: 32207552 DOI: 10.1002/cbf.3527] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin C-terminal hydrolase 1 (UCHL1) is an enzyme unique for its multiple activity - both ligase and hydrolase. UCHL1 was first identified as an abundant protein found in the brain and testes, however its expression is not limited to the neuronal compartment. UCHL1 is also highly expressed in carcinomas of various tissue origins, including those from brain, lung, breast, kidney, colon, prostate, pancreas and mesenchymal tissues. Loss-of-function studies and an inhibitor for UCHL1 confirmed the importance of UCHL1 for cancer therapy. So far biological significance of UCHL1 was described in the following processes: spermatogenesis, oncogenesis, angiogenesis, cell proliferation and differentiation in skeletal muscle, inflammation, tissue injury, neuronal injury and neurodegeneration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
30
|
Wu Y, Chang YM, Polton G, Stell AJ, Szladovits B, Macfarlane M, Peters LM, Priestnall SL, Bacon NJ, Kow K, Stewart S, Sharma E, Goulart MR, Gribben J, Xia D, Garden OA. Gene Expression Profiling of B Cell Lymphoma in Dogs Reveals Dichotomous Metabolic Signatures Distinguished by Oxidative Phosphorylation. Front Oncol 2020; 10:307. [PMID: 32211332 PMCID: PMC7069556 DOI: 10.3389/fonc.2020.00307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Gene expression profiling has revealed molecular heterogeneity of diffuse large B cell lymphoma (DLBCL) in both humans and dogs. Two DLBCL subtypes based on cell of origin are generally recognized, germinal center B (GCB)-like and activated B cell (ABC)-like. A pilot study to characterize the transcriptomic phenotype of 11 dogs with multicentric BCL yielded two molecular subtypes distinguished on the basis of genes important in oxidative phosphorylation. We propose a metabolic classification of canine BCL that transcends cell of origin and shows parallels to a similar molecular phenotype in human DLBCL. We thus confirm the validity of this classification scheme across widely divergent mammalian taxa and add to the growing body of literature suggesting cellular and molecular similarities between human and canine non-Hodgkin lymphoma. Our data support a One Health approach to the study of DLBCL, including the advancement of novel therapies of relevance to both canine and human health.
Collapse
Affiliation(s)
- Ying Wu
- Royal Veterinary College, London, United Kingdom
| | - Yu-Mei Chang
- Royal Veterinary College, London, United Kingdom
| | - Gerry Polton
- North Downs Specialist Referrals, Bletchingley, United Kingdom
| | | | | | | | | | | | | | - Kelvin Kow
- Fitzpatrick Referrals, Guildford, United Kingdom
| | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Dong Xia
- Royal Veterinary College, London, United Kingdom
| | - Oliver A. Garden
- Royal Veterinary College, London, United Kingdom
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
31
|
Zhao Y, Lei Y, He SW, Li YQ, Wang YQ, Hong XH, Liang YL, Li JY, Chen Y, Luo WJ, Zhang PP, Yang XJ, He QM, Ma J, Liu N, Tang LL. Hypermethylation of UCHL1 Promotes Metastasis of Nasopharyngeal Carcinoma by Suppressing Degradation of Cortactin (CTTN). Cells 2020; 9:E559. [PMID: 32120844 PMCID: PMC7140450 DOI: 10.3390/cells9030559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Epigenetic regulation plays an important role in the development and progression of nasopharyngeal carcinoma (NPC), but the epigenetic mechanisms underlying NPC metastasis remain poorly understood. Here, we demonstrate that hypermethylation of the UCHL1 promoter leads to its downregulation in NPC. Restoration of UCHL1 inhibited the migration and invasion of NPC cells in vitro and in vivo, and knockdown of UCHL1 promoted NPC cell migration and invasion in vitro and in vivo. Importantly, we found that UCHL1 interacts with CTTN, and may function as a ligase promoting CTTN degradation by increasing K48-linked ubiquitination of CTTN. Additionally, restoration of CTTN in NPC cells that overexpressed UCHL1 rescued UCHL1 suppressive effects on NPC cell migration and invasion, which indicated that CTTN is a functional target of UCHL1 in NPC. Our findings revealed that UCHL1 acts as a tumor suppressor gene in NPC and thus provided a novel therapeutic target for NPC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ling-Long Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (Y.Z.); (Y.L.); (S.-W.H.); (Y.-Q.L.); (Y.-Q.W.); (X.-H.H.); (Y.-L.L.); (J.-Y.L.); (Y.C.); (W.-J.L.); (P.-P.Z.); (X.-J.Y.); (Q.-M.H.); (J.M.); (N.L.)
| |
Collapse
|
32
|
Proteomic sift through serum and endometrium profiles unraveled signature proteins associated with subdued fertility and dampened endometrial receptivity in women with polycystic ovary syndrome. Cell Tissue Res 2020; 380:593-614. [PMID: 32052139 DOI: 10.1007/s00441-020-03171-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/10/2020] [Indexed: 01/20/2023]
Abstract
The objective of this study is to discern the proteomic differences responsible for hampering the receptivity of endometrium and subduing the fertility of females with polycystic ovary syndrome in analogy to healthy fertile females. This study was designed in collaboration with Hakeem Abdul Hameed Centenary Hospital affiliated to Jamia Hamdard, New Delhi, India. Serum samples were taken from infertile PCOS subjects (n = 6) and fertile control subjects (n = 6) whereas endometrial tissue samples were recruited from ovulatory PCOS (n = 4), anovulatory PCOS (n = 4) and normal healthy fertile control subjects (n = 4) for proteomic studies. Additionally, endometrial biopsies from healthy fertile control (n = 8), PCOS with infertility (n = 6), unexplained infertility (n = 3) and endometrial hyperplasia (n = 3) were taken for validation studies. Anthropometric, biochemical and hormonal evaluation was done for all the subjects enrolled in this study. Protein profiles were generated through 2D-PAGE and differential proteins analyzed with PD-QUEST software followed by identification with MALDI-TOF MS protein mass fingerprinting. Validation of identified proteins was done through RT-PCR relative expression analysis. Protein profiling of serum revealed differential expression of proteins involved in transcriptional regulation, embryogenesis, DNA repair, decidual cell ploidy, immunomodulation, intracellular trafficking and degradation processes. Proteins involved in cell cycle regulation, cellular transport and signaling, DNA repair, apoptotic processes and mitochondrial metabolism were found to be differentially expressed in endometrium. The findings of this study revealed proteins that hold strong candidature as potential drug targets to regulate the cellular processes implicating infertility and reduced receptivity of endometrium in women with polycystic ovary syndrome.
Collapse
|
33
|
Shimada Y, Kudo Y, Maehara S, Matsubayashi J, Otaki Y, Kajiwara N, Ohira T, Minna JD, Ikeda N. Ubiquitin C-terminal hydrolase-L1 has prognostic relevance and is a therapeutic target for high-grade neuroendocrine lung cancers. Cancer Sci 2020; 111:610-620. [PMID: 31845438 PMCID: PMC7004527 DOI: 10.1111/cas.14284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
High-grade neuroendocrine lung cancer (HGNEC), which includes small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung is a rapidly proliferating, aggressive form of lung cancer. The initial standard chemotherapeutic regimens of platinum doublets are recommended for SCLC and have been frequently used for LCNEC. However, there are currently no molecularly targeted agents with proven clinical benefit for this disease. The deubiquitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCHL1) is a neuroendocrine cell-specific product that is known as a potential oncogene in several types of cancer, but little is known about the biological function of UCHL1 and its therapeutic potential in HGNEC. In this study, we found that preclinical efficacy evoked by targeting UCHL1 was relevant to prognosis in HGNEC. UCHL1 was found to be expressed in HGNEC, particularly in cell lines and patient samples of SCLC, and the combined use of platinum doublets with selective UCHL1 inhibitors improved its therapeutic response in vitro. Immunohistochemical expression of UCHL1 was significantly associated with postoperative survival in patients with HGNEC and contributed towards distinguishing SCLC from LCNEC. Circulating extracellular vesicles (EV), including exosomes isolated from lung cancer cell lines and serum from early-stage HGNEC, were verified by electron microscopy and nanoparticle tracking analysis. Higher levels of UCHL1 mRNA in EV were found in the samples of patients with early-stage HGNEC than those with early-stage NSCLC and healthy donors' EV. Taken together, UCHL1 may be a potential prognostic marker and a promising druggable target for HGNEC.
Collapse
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Kudo
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Sachio Maehara
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Jun Matsubayashi
- Department of Anatomical Pathology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yoichi Otaki
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Naohiro Kajiwara
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Tatsuo Ohira
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| |
Collapse
|
34
|
Kwan SY, Au-Yeung CL, Yeung TL, Rynne-Vidal A, Wong KK, Risinger JI, Lin HK, Schmandt RE, Yates MS, Mok SC, Lu KH. Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Promotes Uterine Serous Cancer Cell Proliferation and Cell Cycle Progression. Cancers (Basel) 2020; 12:cancers12010118. [PMID: 31906456 PMCID: PMC7016780 DOI: 10.3390/cancers12010118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022] Open
Abstract
Uterine serous carcinoma (USC) is the most aggressive form of endometrial cancer, with poor survival rates and high recurrence risk. Therefore, the purpose of this study was to identify therapeutic targets that could aid in the management of USC. By analyzing endometrial cancer samples from The Cancer Genome Atlas (TCGA), we found Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) to be highly expressed in USC and to correlate with poorer overall survival. UCHL1 silencing reduced cell proliferation in vitro and in vivo, cyclin B1 protein levels and cell cycle progression. Further studies showed that UCHL1 interacts with cyclin B1 and increases cyclin B1 protein stability by deubiquitination. Treatment of USC-bearing mice with the UCHL1-specific inhibitor reduced tumor growth and improved overall survival. Our findings suggest that cyclin B1 is a novel target of UCHL1 and targeting UCHL1 is a potential therapeutic strategy for USC.
Collapse
Affiliation(s)
- Suet-Ying Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chi-Lam Au-Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Angela Rynne-Vidal
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - John I. Risinger
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Rosemarie E. Schmandt
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Melinda S. Yates
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-1442
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
35
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
36
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
37
|
Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, Wu Z, Gao H, Cai X, Ruan G, Zhu T, Xu C, Lou S, Yu X, Gillet L, Blattmann P, Saba K, Fankhauser CD, Schmid MB, Rutishauser D, Ljubicic J, Christiansen A, Fritz C, Rupp NJ, Poyet C, Rushing E, Weller M, Roth P, Haralambieva E, Hofer S, Chen C, Jochum W, Gao X, Teng X, Chen L, Zhong Q, Wild PJ, Aebersold R, Guo T. High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol Oncol 2019; 13:2305-2328. [PMID: 31495056 PMCID: PMC6822243 DOI: 10.1002/1878-0261.12570] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 11/06/2022] Open
Abstract
Formalin‐fixed, paraffin‐embedded (FFPE), biobanked tissue samples offer an invaluable resource for clinical and biomarker research. Here, we developed a pressure cycling technology (PCT)‐SWATH mass spectrometry workflow to analyze FFPE tissue proteomes and applied it to the stratification of prostate cancer (PCa) and diffuse large B‐cell lymphoma (DLBCL) samples. We show that the proteome patterns of FFPE PCa tissue samples and their analogous fresh‐frozen (FF) counterparts have a high degree of similarity and we confirmed multiple proteins consistently regulated in PCa tissues in an independent sample cohort. We further demonstrate temporal stability of proteome patterns from FFPE samples that were stored between 1 and 15 years in a biobank and show a high degree of the proteome pattern similarity between two types of histological regions in small FFPE samples, that is, punched tissue biopsies and thin tissue sections of micrometer thickness, despite the existence of a certain degree of biological variations. Applying the method to two independent DLBCL cohorts, we identified myeloperoxidase, a peroxidase enzyme, as a novel prognostic marker. In summary, this study presents a robust proteomic method to analyze bulk and biopsy FFPE tissues and reports the first systematic comparison of proteome maps generated from FFPE and FF samples. Our data demonstrate the practicality and superiority of FFPE over FF samples for proteome in biomarker discovery. Promising biomarker candidates for PCa and DLBCL have been discovered.
Collapse
Affiliation(s)
- Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Qiushi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Yi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhicheng Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huanhuan Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xue Cai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Guan Ruan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tiansheng Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chao Xu
- College of Mathematics and Informatics, Digital Fujian Institute of Big Data Security Technology, Fujian Normal University, Fuzhou, China
| | - Sai Lou
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiaoyan Yu
- Department of Pathology, The Second Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Ludovic Gillet
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Karim Saba
- Department of Urology, University Hospital Zurich, University of Zurich, Switzerland
| | | | - Michael B Schmid
- Department of Urology, University Hospital Zurich, University of Zurich, Switzerland
| | - Dorothea Rutishauser
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Jelena Ljubicic
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Ailsa Christiansen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Christine Fritz
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, Switzerland
| | - Elisabeth Rushing
- Department of Neuropathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Eugenia Haralambieva
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Silvia Hofer
- Division of Medical Oncology, Lucerne Cantonal Hospital and Cancer Center, Switzerland
| | | | - Wolfram Jochum
- Institute of Pathology, Cantonal Hospital St. Gallen, Switzerland
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Lirong Chen
- Department of Pathology, The Second Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zhong
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland.,Children's Medical Research Institute, University of Sydney, Australia
| | - Peter J Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland.,Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Faculty of Science, University of Zurich, Switzerland
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| |
Collapse
|
38
|
Inhibition of UCH-L1 Deubiquitinating Activity with Two Forms of LDN-57444 Has Anti-Invasive Effects in Metastatic Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20153733. [PMID: 31370144 PMCID: PMC6696221 DOI: 10.3390/ijms20153733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/28/2023] Open
Abstract
Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein–Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.
Collapse
|
39
|
LncRNAs Regulatory Networks in Cellular Senescence. Int J Mol Sci 2019; 20:ijms20112615. [PMID: 31141943 PMCID: PMC6600251 DOI: 10.3390/ijms20112615] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of transcripts longer than 200 nucleotides with no open reading frame. They play a key role in the regulation of cellular processes such as genome integrity, chromatin organization, gene expression, translation regulation, and signal transduction. Recent studies indicated that lncRNAs are not only dysregulated in different types of diseases but also function as direct effectors or mediators for many pathological symptoms. This review focuses on the current findings of the lncRNAs and their dysregulated signaling pathways in senescence. Different functional mechanisms of lncRNAs and their downstream signaling pathways are integrated to provide a bird’s-eye view of lncRNA networks in senescence. This review not only highlights the role of lncRNAs in cell fate decision but also discusses how several feedback loops are interconnected to execute persistent senescence response. Finally, the significance of lncRNAs in senescence-associated diseases and their therapeutic and diagnostic potentials are highlighted.
Collapse
|
40
|
Kim YJ, Kim K, Lee YY, Choo OS, Jang JH, Choung YH. Downregulated UCHL1 Accelerates Gentamicin-Induced Auditory Cell Death via Autophagy. Mol Neurobiol 2019; 56:7433-7447. [PMID: 31041655 DOI: 10.1007/s12035-019-1598-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/02/2019] [Indexed: 01/02/2023]
Abstract
The clinical use of aminoglycoside antibiotics is partly limited by their ototoxicity. The pathogenesis of aminoglycoside-induced ototoxicity still remains unknown. Here, RNA-sequencing was conducted to identify differentially expressed genes in rat cochlear organotypic cultures treated with gentamicin (GM), and 232 and 43 genes were commonly up- and downregulated, respectively, at day 1 and 2 after exposure. Ubiquitin carboxyl-terminal hydrolase isozyme L1 (Uchl1) was one of the downregulated genes whose expression was prominent in spiral ganglion cells (SGCs), lateral walls, as well as efferent nerve terminal and nerve fibers. We further investigated if a deficit of Uchl1 in organotypic cochlea and the House Ear Institute-Organ of Corti 1 (HEI-OC1) cells accelerates ototoxicity. We found that a deficit in Uchl1 accelerated GM-induced ototoxicity by showing a decreased number of SGCs and nerve fibers in organotypic cochlear cultures and HEI-OC1 cells. Furthermore, Uchl1-depleted HEI-OC1 cells revealed an increased number of autophagosomes accompanied by decreased lysosomal fusion. These data indicate that the downregulation of Uchl1 following GM treatment is deleterious to auditory cell survival, which results from the impaired autophagic flux. Our results provide evidence that UCHL1-dependent autophagic flux may have a potential as an otoprotective target for the treatment of GM-induced auditory cell death.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea. .,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea. .,BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.
| |
Collapse
|
41
|
Finnerty BM, Moore MD, Verma A, Aronova A, Huang S, Edwards DP, Chen Z, Seandel M, Scognamiglio T, Du YCN, Elemento O, Zarnegar R, Min IM, Fahey TJ. UCHL1 loss alters the cell-cycle in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:411-423. [PMID: 30689542 DOI: 10.1530/erc-18-0507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 01/04/2023]
Abstract
Loss of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) expression by CpG promoter hypermethylation is associated with metastasis in gastroenteropancreatic neuroendocrine tumors; however, the mechanism of how UCHL1 loss contributes to metastatic potential remains unclear. In this study, we first confirmed that loss of UCHL1 expression on immunohistochemistry was significantly associated with metastatic tumors in a translational pancreatic neuroendocrine tumor (PNET) cohort, with a sensitivity and specificity of 78% and 89%, respectively. To study the mechanism driving this aggressive phenotype, BON and QGP-1 metastatic PNET cell lines, which do not produce UCHL1, were stably transfected to re-express UCHL1. In vitro assays, RNA-sequencing, and reverse-phase protein array (RPPA) analyses were performed comparing empty-vector negative controls and UCHL1-expressing cell lines. UCHL1 re-expression is associated with lower anchorage-independent colony growth in BON cells, lower colony formation in QGP cells, and a higher percentage of cells in the G0/G1 cell-cycle phase in BON and QGP cells. On RPPA proteomic analysis, there was an upregulation of cell-cycle regulatory proteins CHK2 (1.2 fold change, p=0.004) and P21 (1.2 fold change, p=0.023) in BON cells expressing UCHL1; western blot confirmed upregulation of phosphorylated CHK2 and P21. There were no transcriptomic differences detected on RNA-Sequencing between empty-vector negative controls and UCHL1-expressing cell lines. In conclusion, UCHL1 loss correlates with metastatic potential in PNETs and its re-expression induces a less aggressive phenotype in vitro, in part by inducing cell-cycle arrest through post-translational regulation of phosphorylated CHK2. UCHL1 re-expression should be considered as a functional biomarker in detecting PNETs capable of metastasis.
Collapse
Affiliation(s)
| | - Maureen D Moore
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Anna Aronova
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Dean P Edwards
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Zhengming Chen
- Department of Healthcare Policy & Research, Weill Cornell Medicine, New York, New York, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Theresa Scognamiglio
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Rasa Zarnegar
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Irene M Min
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
42
|
Câmara ML, Almeida TB, de Santi F, Rodrigues BM, Cerri PS, Beltrame FL, Sasso-Cerri E. Fluoxetine-induced androgenic failure impairs the seminiferous tubules integrity and increases ubiquitin carboxyl-terminal hydrolase L1 (UCHL1): Possible androgenic control of UCHL1 in germ cell death? Biomed Pharmacother 2018; 109:1126-1139. [PMID: 30551363 DOI: 10.1016/j.biopha.2018.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
The selective serotonin reuptake inhibitor fluoxetine has been used for the treatment of depression. Although sexual disorders have been reported in male patients, few studies have demonstrated the fluoxetine effect on the reproductive histophysiology, and the target of this antidepressant in testes is unknown. We evaluated the impact of short-term treatment with fluoxetine on the adult rat testes, focusing on steroidogenesis by Leydig cells (LC) and androgen-dependent testicular parameters, including Sertoli cells (SC) and peritubular myoid cells (PMC). Since UCHL1 (ubiquitincarboxyl-terminal hydrolase L1) seems to control spermatogenesis, the immunoexpression of this hydrolase was also analyzed. Adult male rats received 20 mg/kg BW of fluoxetine (FG) or saline (CG) for eleven days. In historesin-embedded testis sections, the seminiferous tubule (ST) and epithelial (Ep) areas, and the LC nuclear diameter (LCnu) were measured. The number of abnormal ST, androgen-dependent ST, SC and PMC was quantified. Testicular β-tubulin levels and peritubular actin immunofluorescence were evaluated. Serum testosterone levels (STL) and steroidogenesis by 17β-HSD6 immunofluorescence were analyzed, and either UCHL1-immunolabeled or TUNEL-positive germ cells were quantified. In FG, abnormal ST frequency increased whereas ST and Ep areas, androgen-dependent ST number, LCnu, 17β-HSD6 activity and STL reduced significantly. TUNEL-positive PMC and SC was related to decreased number of these cells and reduction in peritubular actin and β-tubulin levels. In FG, uncommon UCHL1-immunoexpression was found in spermatocytes and spermatids, and the number of UCHL1-immunolabeled and TUNEL-positive germ cells increased in this group. These findings indicate that LC may be a fluoxetine target in testes, impairing PMC-SC integrity and disturbing spermatogenesis. The increase of UCHL1 in the damaged tubules associated with high incidence of cell death confirms that this hydrolase regulates germ cell death and may be controlled by androgens. The fertility in association with the androgenic status of patients treated with fluoxetine should be carefully evaluated.
Collapse
Affiliation(s)
- Marina L Câmara
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Talita B Almeida
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Beatriz M Rodrigues
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Paulo S Cerri
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil
| | - Flávia L Beltrame
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Estela Sasso-Cerri
- Dental School of São Paulo State University, Department of Morphology, Araraquara, Brazil.
| |
Collapse
|
43
|
Gu Y, Lv F, Xue M, Chen K, Cheng C, Ding X, Jin M, Xu G, Zhang Y, Wu Z, Zheng L, Wu Y. The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:258. [PMID: 30359286 PMCID: PMC6203192 DOI: 10.1186/s13046-018-0931-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022]
Abstract
Background Neuroblastoma (NB) is the most common pediatric solid tumor that originates from neural crest-derived sympathoadrenal precursor cells that are committed to development of sympathetic nervous system. The well differentiated histological phenotype of NB tumor cells has been reportedly associated with favorable patient outcome. Retinoic acid (RA) can effectively induce NB cell differentiation, thereby being used in the clinic as a treatment agent for inducing the differentiation of high-risk NB. However, the underlying molecular mechanisms of regulating differentiation remain elusive. Methods The correlation between clinical characteristics, survival and the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) expression were assessed using a neuroblastic tumor tissue microarray, and then validated in three independent patient datasets. The different expression of UCHL1 in ganglioneuroblastoma, ganglioneuroma and NB was detected by immunohistochemistry, mass spectra and immunoblotting analysis, and the correlation between UCHL1 expression and the differentiated histology was analyzed, which was also validated in three independent patient datasets. Furthermore, the roles of UCHL1 in NB cell differentiation and proliferation and the underlying mechanisms were studied by using short hairpin RNA and its inhibitor LDN57444 in vitro. Results Based on our neuroblastic tumor tissue microarrays and three independent validation datasets (Oberthuer, Versteeg and Seeger), we identified that UCHL1 served as a prognostic marker for better clinical outcome in NB. We further demonstrated that high UCHL1 expression was associated with NB differentiation, indicated by higher UCHL1 expression in ganglioneuroblastomas/ganglioneuromas and well-differentiated NB than poorly differentiated NB, and the positive correlation between UCHL1 and differentiation markers. As expected, inhibiting UCHL1 by knockdown or LDN57444 could significantly inhibit RA-induced neural differentiation of NB tumor cells, characterized by decreased neurite outgrowth and neural differentiation markers. This effect of UCHL1 was associated with positively regulating RA-induced AKT and ERK1/2 signaling activation. What’s more, knockdown of UCHL1 conferred resistance to RA-induced growth arrest. Conclusion Our findings identify a pivotal role of UCHL1 in NB cell differentiation and as a prognostic marker for survival in patients with NB, potentially providing a novel therapeutic target for NB. Electronic supplementary material The online version of this article (10.1186/s13046-018-0931-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Gu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Stomatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Lv
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Mingxing Xue
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xinyuan Ding
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Min Jin
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, China
| | - Guofeng Xu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yanyun Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China. .,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China. .,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Duscharla D, Reddy Kami Reddy K, Dasari C, Bhukya S, Ummanni R. Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol 2018; 233:7148-7164. [PMID: 29693262 DOI: 10.1002/jcp.26639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Though Androgen deprivation therapy (ADT) is effective initially, numerous patients become resistant to it and develop castration resistant PCa (CRPC). Cytokines promotes ligand independent activation of AR. Interleukin-6 (IL-6) levels are elevated in CRPC patients and regulate AR activity. However, progression to CRPC is not fully understood. In this study, we analyzed differential protein expression in LNCaP cells treated with IL-6 using proteomics. Results revealed altered expression of 27 proteins and Valosin-containing protein (VCP)/p97 plays a predominant role in co-regulation of altered proteins. Interestingly, IL-6 induced VCP expression through Pim-1 via STAT3 is AR independent there by suggesting a role for VCP in CRPC. Transfection of LNCaP cells for VCP overexpression showed an increased cell proliferation, migration, and invasion where as its inhibition by NMS-873 showed the reverse effect causing cell death. Mechanistic studies demonstrate that cell death occurs due to apoptosis by endoplasmic reticulum (ER) stress, elevated cell cycle inhibitors p21, p27kip1, and active PARP and reduced Bcl-2. VCP promotes cell invasion and migration by altering E-cadherin and Vimentin levels inversely triggering EMT of PCa cells. VCP immunostaining revealed no staining in BPH but strong staining in PCa. This study determines VCP may play an important role in progression to CRPC and it can be a favorable target with to develop new therapies to treat ADT resistant prostate cancer.
Collapse
Affiliation(s)
- Divya Duscharla
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Supriya Bhukya
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ramesh Ummanni
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Center for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
45
|
Yang G, Fan G, Zhang T, Ma K, Huang J, Liu M, Teng X, Xu K, Fan P, Cheng D. Upregulation of Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Mediates the Reversal Effect of Verapamil on Chemo-Resistance to Adriamycin of Hepatocellular Carcinoma. Med Sci Monit 2018; 24:2072-2082. [PMID: 29627846 PMCID: PMC5909418 DOI: 10.12659/msm.908925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in the reversal effect of verapamil (VER) on chemo-resistance to Adriamycin (ADM) in treatment of hepatocellular carcinoma (HCC). MATERIAL AND METHODS HCC cell lines SMMC-7721 and BEL-7402 were used as model cell lines. High-throughput transcriptome sequencing based on Illumina technology was used to screen whether UCHL1 mediated the reversal effect of VER on chemo-resistance. Quantitative real-time PCR (qRT-PCR) was performed to determine the expression level of UCHL1 mRNA in HCC cells, and western blot analysis was performed to examine the protein expression of UCHL1 protein in HCC cells. Immunohistochemistry assay was performed to determine the protein expression of UCHL1 in tissue samples from patients presenting with either positive or negative responses to the reversal therapeutic regimen of VER. Moreover, cell models with UCHL1 knockdown and overexpression were established to examine the reversal effect of VER on chemo-resistance to ADM in HCC cells. Cell apoptosis was determined by flow cytometry following Annexin V-PI staining. RESULTS The expression levels of UCHL1 genes correlated with the level of apoptosis induced by ADM+VER. Overexpression of UCHL1 genes promoted apoptosis in cells treated with VER+ADM. UCHL1 knockdown using siRNA weakened the effect of ADM+VER, indicating that ADM+VER promotes HCC cell apoptosis and that UCHL1 genes participate in VER-mediated promotion in tumor cell apoptosis. CONCLUSIONS Upregulation of UCHL1 enhanced the reversal effect of VER on chemo-resistance to ADM and promoted cell apoptosis. The underlying mechanism of the function of UCHL1 and the signaling pathway involved in its effect are to be investigated in our future research.
Collapse
Affiliation(s)
- Guangshan Yang
- School of Clinical Medicine, Shan Dong University, Jinan, Shandong, China (mainland).,The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland).,Anhui Provincial Hospital, Hefei, Anhui, China (mainland)
| | - Gaofei Fan
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Tengyue Zhang
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Kelong Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Jin Huang
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Miao Liu
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Xiaolu Teng
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Kun Xu
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Pingsheng Fan
- School of Clinical Medicine, Shan Dong University, Jinan, Shandong, China (mainland).,The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Dongmiao Cheng
- Department of Radiotherapy, The First People's Hospital of Huainan City, Huainan, Anhui, China (mainland)
| |
Collapse
|
46
|
Siva B, Devi A, Venkanna A, Poornima B, Sukumar G, Reddy SD, Vijaya M, Ummanni R, Babu KS. “Click” reaction based synthesis of nimbolide derivatives and study of their insect antifeedant activity against Spodoptera litura Larvae. Fitoterapia 2017; 123:1-8. [DOI: 10.1016/j.fitote.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
47
|
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM, Zhu H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 2017. [PMID: 28636190 DOI: 10.1002/jcb.26232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a de-ubiquitin enzyme, ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to be overexpressed in several human cancers. However, the function of UCH-L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH-L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH-L1 expression failed to alter cell proliferation in MCF-7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH-L1 led to suppression of invasion in UCH-L1 overexpressing MCF-7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity-dependent biotin identification method was developed by fusing UCH-L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH-L1 can interact with Akt in MCF-7 cells. Pulldown assay with His tagged recombinant UCH-L1 protein and cell lysate from MCF-7 cells further demonstrated that UCH-L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH-L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH-L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.
Collapse
Affiliation(s)
- Yanhong Luo
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Jianfeng He
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, Connecticut
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Nick Blair
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
48
|
Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 2017; 16:634-648. [PMID: 28166483 PMCID: PMC5397262 DOI: 10.1080/15384101.2017.1288326] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis.
Collapse
Affiliation(s)
- L. H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - J. Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - D. J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
|
50
|
Chen Y, Cha Z, Fang W, Qian B, Yu W, Li W, Yu G, Gao Y. The prognostic potential and oncogenic effects of PRR11 expression in hilar cholangiocarcinoma. Oncotarget 2016; 6:20419-33. [PMID: 25971332 PMCID: PMC4653015 DOI: 10.18632/oncotarget.3983] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
PRR11 is a newly identified oncogene in lung cancer, yet its role in others tumors remains unclear. Gastrointestinal tissue microarrays were used to evaluate PRR11 expression and its association with clinical outcome was analyzed in patients with hilar cholangiocarcinoma. Overexpression of PRR11 was observed in esophageal, gastric, pancreatic, colorectal, and hilar cholangiocarcinoma. Expression of PRR11 correlated with lymph node metastasis and CA199 level in two HC patient cohorts. After an R0 resection, a high level of PRR11 expression was found to be an independent indicator of recurrence (P = 0.001). In cell culture, PRR11 silencing resulted in decreased cellular proliferation, cell migration, tumor growth of QBC939 cells. Microarray analysis revealed that several genes involved in cell proliferation, cell adhesion, and cell migration were altered in PRR11-knockout cells, including: vimentin (VIM), Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1), early growth response protein (EGR1), and System A amino acid transporter1 (SNAT1). Silencing PRR11 inhibited the expression of UCHL1, EGR1, and SNAT1 proteins, with immunoassays revealing a significant correlation among the levels of these four proteins. These results indicate that PRR11 is an independent prognostic indicator for patients with HC.
Collapse
Affiliation(s)
- Ying Chen
- Department of Pathology, Changhai Hospital, Shanghai, China
| | - Zhanshan Cha
- Department of Transfusion, Changhai Hospital, Shanghai, China
| | - Wenzheng Fang
- Department of Oncology, Fuzhou General Hospital, Fuzhou, Fujian Province, China
| | - Baohua Qian
- Department of Transfusion, Changhai Hospital, Shanghai, China
| | - Wenlong Yu
- Department of Surgery, Eastern Hepatobiliary Hospital, Shanghai, China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Guanzhen Yu
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China.,Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|