1
|
Li Z, Cai H, Zheng J, Chen X, Liu G, Lv Y, Ye H, Cai G. Mitochondrial-related genes markers that predict survival in patients with head and neck squamous cell carcinoma affect immunomodulation through hypoxia, glycolysis, and angiogenesis pathways. Aging (Albany NY) 2023; 15:10347-10369. [PMID: 37796226 PMCID: PMC10599748 DOI: 10.18632/aging.205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria play a crucial role in the occurrence and development of tumors. We used mitochondria-related genes for consistent clustering to identify three stable molecular subtypes of head and neck squamous cell carcinoma (HNSCC) with different prognoses, mutations, and immune characteristics. Significant differences were observed in clinical characteristics, immune microenvironment, immune cell infiltration, and immune cell scores. TP53 was the most significantly mutated; cell cycle-related pathways and tumorigenesis-related pathways were activated in different subtypes. Risk modeling was conducted using a multifactor stepwise regression method, and nine genes were identified as mitochondria-related genes affecting prognosis (DKK1, EFNB2, ITGA5, AREG, EPHX3, CHGB, P4HA1, CCND1, and JCHAIN). Risk score calculations revealed significant differences in prognosis, immune cell scores, immune cell infiltration, and responses to conventional chemotherapy drugs. Glycolysis, angiogenesis, hypoxia, and tumor-related pathways were positively correlated with the RiskScore. Clinical samples were subjected to qPCR to validate the results. In this work, we constructed a prognostic model based on the mitochondrial correlation score, which well reflects the risk and positive factors for the prognosis of patients with HNSCC. This model can be used to guide individualized adjuvant and immunotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Otolaryngology Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Haoxi Cai
- School of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyang Zheng
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Xun Chen
- Department of Oral Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, The Hospital Affiliated of Guilin Medical College, Guilin 541000, China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital to Nanchang University, Nanchang 330006, China
| | - Hui Ye
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
| | - Gengming Cai
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 361026, China
- The Graduate School of Fujian Medical University, Fuzhou 361026, China
| |
Collapse
|
2
|
Abstract
The pathogenesis of breast cancer is driven by multiple hormones and growth factors. One of these, prolactin (PRL), contributes to both mammary differentiation and oncogenesis, and yet the basis for these disparate effects has remained unclear. The focus of this review is to examine and place into context 2 recent studies that have provided insight into the roles of PRL receptors and PRL in tumorigenesis and tumor progression. One study provides novel evidence for opposing actions of PRL in the breast being mediated in part by differential PRL receptor (PRLr) isoform utilization. Briefly, homomeric complexes of the long isoform of the PRLr (PRLrL-PRLrL) promotes mammary differentiation, while heteromeric complexes of the intermediate and long PRLr (PRLrI-PRLrL) isoforms trigger mammary oncogenesis. Another study describes an immunodeficient, prolactin-humanized mouse model, NSG-Pro, that facilitates growth of PRL receptor-expressing patient-derived breast cancer xenografts. Evidence obtained with this model supports the interactions of physiological levels of PRL with estrogen and ERBB2 gene networks, the modulatory effects of PRL on drug responsiveness, and the pro-metastatic effects of PRL on breast cancer. This recent progress provides novel concepts, mechanisms and experimental models expected to renew interest in harnessing/exploiting PRLr signaling for therapeutic effects in breast cancer.
Collapse
Affiliation(s)
- Charles V Clevenger
- Correspondence: Charles V. Clevenger, Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA.
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Jafarinejad-Farsangi S, Moazzam-Jazi M, Naderi Ghale-Noie Z, Askari N, Miri Karam Z, Mollazadeh S, Hadizadeh M. Investigation of genes and pathways involved in breast cancer subtypes through gene expression meta-analysis. Gene X 2022; 821:146328. [PMID: 35181505 DOI: 10.1016/j.gene.2022.146328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Molecular-based studies have revealed heterogeneity in Breast cancer BC while also improving classification and treatment. However, efforts are underway to distinguish between distinct subtypes of breast cancer. In this study, the results of several microarray studies were combined to identify genes and pathways specific to each BC subtype. METHODS Meta-analysis of multiple gene expression profile datasets was screened to find differentially expressed genes (DEGs) across subtypes of BC and normal breast tissue samples. Protein-protein interaction network and gene set enrichment analysis were used to identify critical genes and pathways associated with BC subtypes. The differentially expressed genes from meta-analysis was validated using an independent comprehensive breast cancer RNA-sequencing dataset obtained from the Cancer Genome Atlas (TCGA). RESULTS We identified 110 DEGs (13 DEGs in all and 97 DEGs in each subtype) across subtypes of BC. All subtypes had a small set of shared DEGs enriched in the Chemokine receptor bind chemokine pathway. Luminal A specific were enriched in the translational elongation process in mitochondria, and the enhanced process in luminal B subtypes was interferon-alpha/beta signaling. Cell cycle and mitotic DEGs were enriched in the basal-like group. All subtype-specific DEG genes (100%) were successfully validated for Luminal A, Luminal B, ERBB2, and Normal-like. However, the validation percentage for Basal-like group was 77.8%. CONCLUSION Integrating researches such as a meta-analysis of gene expression might be more effective in uncovering subtype-specific DEGs and pathways than a single-study analysis. It would be more beneficial to increase the number of studies that use matched BC subtypes along with GEO profiling approaches to reach a better result regarding DEGs and reduce probable biases. However, achieving 77.8% overlap in basal-specific genes and complete concordance in specific genes related to other subtypes can implicate the strength of our analysis for discovering the subtype-specific genes.
Collapse
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Zahra Miri Karam
- Student Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Morteza Hadizadeh
- Student Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Maisel BA, Yi M, Peck AR, Sun Y, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Nevalainen MT, Tanaka T, Simone N, Wang LL, Rui H, Chervoneva I. Spatial Metrics of Interaction between CD163-Positive Macrophages and Cancer Cells and Progression-Free Survival in Chemo-Treated Breast Cancer. Cancers (Basel) 2022; 14:308. [PMID: 35053472 PMCID: PMC8773496 DOI: 10.3390/cancers14020308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote progression of breast cancer and other solid malignancies via immunosuppressive, pro-angiogenic and pro-metastatic effects. Tumor-promoting TAMs tend to express M2-like macrophage markers, including CD163. Histopathological assessments suggest that the density of CD163-positive TAMs within the tumor microenvironment is associated with reduced efficacy of chemotherapy and unfavorable prognosis. However, previous analyses have required research-oriented pathologists to visually enumerate CD163+ TAMs, which is both laborious and subjective and hampers clinical implementation. Objective, operator-independent image analysis methods to quantify TAM-associated information are needed. In addition, since M2-like TAMs exert local effects on cancer cells through direct juxtacrine cell-to-cell interactions, paracrine signaling, and metabolic factors, we hypothesized that spatial metrics of adjacency of M2-like TAMs to breast cancer cells will have further information value. Immunofluorescence histo-cytometry of CD163+ TAMs was performed retrospectively on tumor microarrays of 443 cases of invasive breast cancer from patients who subsequently received adjuvant chemotherapy. An objective and automated algorithm was developed to phenotype CD163+ TAMs and calculate their density within the tumor stroma and derive several spatial metrics of interaction with cancer cells. Shorter progression-free survival was associated with a high density of CD163+ TAMs, shorter median cancer-to-CD163+ nearest neighbor distance, and a high number of either directly adjacent CD163+ TAMs (within juxtacrine proximity <12 μm to cancer cells) or communicating CD163+ TAMs (within paracrine communication distance <250 μm to cancer cells) after multivariable adjustment for clinical and pathological risk factors and correction for optimistic bias due to dichotomization.
Collapse
Affiliation(s)
- Brenton A. Maisel
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA; (B.A.M.); (M.Y.)
| | - Misung Yi
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA; (B.A.M.); (M.Y.)
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.R.P.); (Y.S.); (M.T.N.)
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.R.P.); (Y.S.); (M.T.N.)
| | - Jeffrey A. Hooke
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA; (J.A.H.); (A.J.K.); (C.D.S.)
| | - Albert J. Kovatich
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA; (J.A.H.); (A.J.K.); (C.D.S.)
| | - Craig D. Shriver
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA; (J.A.H.); (A.J.K.); (C.D.S.)
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963, USA;
| | - Marja T. Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.R.P.); (Y.S.); (M.T.N.)
| | - Takemi Tanaka
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| | - Nicole Simone
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.R.P.); (Y.S.); (M.T.N.)
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA; (B.A.M.); (M.Y.)
| |
Collapse
|
5
|
Ali S, Hamam D, Liu X, Lebrun JJ. Terminal differentiation and anti-tumorigenic effects of prolactin in breast cancer. Front Endocrinol (Lausanne) 2022; 13:993570. [PMID: 36157462 PMCID: PMC9499354 DOI: 10.3389/fendo.2022.993570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a major disease affecting women worldwide. A woman has 1 in 8 lifetime risk of developing breast cancer, and morbidity and mortality due to this disease are expected to continue to rise globally. Breast cancer remains a challenging disease due to its heterogeneity, propensity for recurrence and metastasis to distant vital organs including bones, lungs, liver and brain ultimately leading to patient death. Despite the development of various therapeutic strategies to treat breast cancer, still there are no effective treatments once metastasis has occurred. Loss of differentiation and increased cellular plasticity and stemness are being recognized molecularly and clinically as major derivers of heterogeneity, tumor evolution, relapse, metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the leading cancer types in which tumor differentiation state has long been known to influence cancer behavior. Reprograming and/or restoring differentiation of cancer cells has been proposed to provide a viable approach to reverse the cancer through differentiation and terminal maturation. The hormone prolactin (PRL) is known to play a critical role in mammary gland lobuloalveolar development/remodeling and the terminal differentiation of the mammary epithelial cells promoting milk proteins gene expression and lactation. Here, we will highlight recent discoveries supporting an anti-tumorigenic role for PRL in breast cancer as a "pro/forward-differentiation" pathway restricting plasticity, stemness and tumorigenesis.
Collapse
|
6
|
Holloran SM, Nosirov B, Walter KR, Trinca GM, Lai Z, Jin VX, Hagan CR. Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells. Mol Cell Endocrinol 2020; 511:110859. [PMID: 32407979 PMCID: PMC8941988 DOI: 10.1016/j.mce.2020.110859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Progesterone and prolactin are two key hormones involved in development and remodeling of the mammary gland. As such, both hormones have been linked to breast cancer. Despite the overlap between biological processes ascribed to these two hormones, little is known about how co-expression of both hormones affects their individual actions. Progesterone and prolactin exert many of their effects on the mammary gland through activation of gene expression, either directly (progesterone, binding to the progesterone receptor [PR]) or indirectly (multiple transcription factors being activated downstream of prolactin, most notably STAT5). Using RNA-seq in T47D breast cancer cells, we characterized the gene expression programs regulated by progestin and prolactin, either alone or in combination. We found significant crosstalk and fine-tuning between the transcriptional programs executed by each hormone independently and in combination. We divided and characterized the transcriptional programs into four broad categories. All crosstalk/fine-tuning shown to be modulated by progesterone was dependent upon the expression of PR. Moreover, PR was recruited to enhancer regions of all regulated genes. Interestingly, despite the canonical role for STAT5 in transducing prolactin-signaling in the normal and lactating mammary gland, very few of the prolactin-regulated transcriptional programs fine-tuned by progesterone in this breast cancer cell line model system were in fact dependent upon STAT5. Cumulatively, these data suggest that the interplay of progesterone and prolactin in breast cancer impacts gene expression in a more complex and nuanced manner than previously thought, and likely through different transcriptional regulators than those observed in the normal mammary gland. Studying gene regulation when both hormones are present is most clinically relevant, particularly in the context of breast cancer.
Collapse
Affiliation(s)
- Sean M Holloran
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bakhtiyor Nosirov
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Katherine R Walter
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development. Int J Mol Sci 2019; 20:ijms20184438. [PMID: 31505876 PMCID: PMC6769951 DOI: 10.3390/ijms20184438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable degree of heterogeneity, which is attributed to developmental origin or to local environmental niches, resulting in distinct CAF subsets within individual tumors. While CAF heterogeneity is frequently investigated in late-stage tumors, data on longitudinal CAF development in tumors are lacking. To this end, we used the transgenic polyoma middle T oncogene-induced mouse mammary carcinoma model and performed whole transcriptome analysis in FACS-sorted fibroblasts from early- and late-stage tumors. We observed a shift in fibroblast populations over time towards a subset previously shown to negatively correlate with patient survival, which was confirmed by multispectral immunofluorescence analysis. Moreover, we identified a transcriptomic signature distinguishing CAFs from early- and late-stage tumors. Importantly, the signature of early-stage CAFs correlated well with tumor stage and survival in human mammary carcinoma patients. A random forest analysis suggested predictive value of the complete set of differentially expressed genes between early- and late-stage CAFs on bulk tumor patient samples, supporting the clinical relevance of our findings. In conclusion, our data show transcriptome alterations in CAFs during tumorigenesis in the mammary gland, which suggest that CAFs are educated by the tumor over time to promote tumor development. Moreover, we show that murine CAF gene signatures can harbor predictive value for human cancer.
Collapse
|
8
|
Plasterer C, Tsaih SW, Peck AR, Chervoneva I, O’Meara C, Sun Y, Lemke A, Murphy D, Smith J, Ran S, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Mitchell EP, Bergom C, Joshi A, Auer P, Prokop J, Rui H, Flister MJ. Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome. Breast Cancer Res Treat 2019; 177:77-91. [DOI: 10.1007/s10549-019-05307-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
9
|
Cham KL, Soga T, Parhar IS. Expression of RING Finger Protein 38 in Serotonergic Neurons in the Brain of Nile Tilapia, Oreochromis niloticus. Front Neuroanat 2018; 12:109. [PMID: 30574074 PMCID: PMC6292424 DOI: 10.3389/fnana.2018.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is one of the major neurotransmitters, modulating diverse behaviours and physiological functions. Really interesting new gene (RING) finger protein 38 (RNF38) is an E3 ubiquitin ligase whose function remains unclear. A recent study has shown a possible regulatory relationship between RNF38 and the 5-HT system. Therefore, to gain insight into the role of RNF38 in the central 5-HT system, we identified the neuroanatomical location of 5-HT positive cells and investigated the relationship between RNF38 and the 5-HT system in the brain of the Nile tilapia, Oreochromis niloticus. Immunocytochemistry revealed three neuronal populations of 5-HT in the brain of tilapia; the paraventricular organ (PVO), the dorsal and ventral periventricular pretectal nuclei (PPd and PPv), and, the superior and inferior raphe (SR and IR). The 5-HT neuronal number was highest in the raphe (90.4 in SR, 284.6 in IR), followed by the pretectal area (22.3 in PPd, 209.8 in PPv). Double-label immunocytochemistry showed that the majority of 5-HT neurons express RNF38 nuclear proteins (66.5% in PPd; 77.9% in PPv; 35.7% in SR; 49.1% in IR). These findings suggest that RNF38 could be involved in E3 ubiquitination in the central 5-HT system.
Collapse
Affiliation(s)
- Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
10
|
Tran TH, Utama FE, Sato T, Peck AR, Langenheim JF, Udhane SS, Sun Y, Liu C, Girondo MA, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Palazzo JP, Bibbo M, Auer PW, Flister MJ, Hyslop T, Mitchell EP, Chervoneva I, Rui H. Loss of Nuclear Localized Parathyroid Hormone-Related Protein in Primary Breast Cancer Predicts Poor Clinical Outcome and Correlates with Suppressed Stat5 Signaling. Clin Cancer Res 2018; 24:6355-6366. [PMID: 30097435 DOI: 10.1158/1078-0432.ccr-17-3280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Parathyroid hormone-related protein (PTHrP) is required for normal mammary gland development and biology. A PTHLH gene polymorphism is associated with breast cancer risk, and PTHrP promotes growth of osteolytic breast cancer bone metastases. Accordingly, current dogma holds that PTHrP is upregulated in malignant primary breast tumors, but solid evidence for this assumption is missing. EXPERIMENTAL DESIGN We used quantitative IHC to measure PTHrP in normal and malignant breast epithelia, and correlated PTHrP levels in primary breast cancer with clinical outcome. RESULTS PTHrP levels were markedly downregulated in malignant compared with normal breast epithelia. Moreover, low levels of nuclear localized PTHrP in cancer cells correlated with unfavorable clinical outcome in a test and a validation cohort of breast cancer treated at different institutions totaling nearly 800 cases. PTHrP mRNA levels in tumors of a third cohort of 737 patients corroborated this association, also after multivariable adjustment for standard clinicopathologic parameters. Breast cancer PTHrP levels correlated strongly with transcription factors Stat5a/b, which are established markers of favorable prognosis and key mediators of prolactin signaling. Prolactin stimulated PTHrP transcript and protein in breast cancer cell lines in vitro and in vivo, effects mediated by Stat5 through the P2 gene promoter, producing transcript AT6 encoding the PTHrP 1-173 isoform. Low levels of AT6, but not two alternative transcripts, correlated with poor clinical outcome. CONCLUSIONS This study overturns the prevailing view that PTHrP is upregulated in primary breast cancers and identifies a direct prolactin-Stat5-PTHrP axis that is progressively lost in more aggressive tumors.
Collapse
Affiliation(s)
- Thai H Tran
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Fransiscus E Utama
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takahiro Sato
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John F Langenheim
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sameer S Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chengbao Liu
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Melanie A Girondo
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Albert J Kovatich
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jeffrey A Hooke
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Craig D Shriver
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, Pennsylvania
| | - Juan P Palazzo
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marluce Bibbo
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul W Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Terry Hyslop
- Duke Cancer Institute, Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina
| | - Edith P Mitchell
- Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
11
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, Schuler LA. 17 β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes. J Endocr Soc 2018; 2:293-309. [PMID: 29594259 PMCID: PMC5842396 DOI: 10.1210/js.2017-00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fatou Jallow
- Endocrinology/Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
13
|
Mapes J, Anandan L, Li Q, Neff A, Clevenger CV, Bagchi IC, Bagchi MK. Aberrantly high expression of the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) in mammary epithelium leads to breast tumorigenesis. J Biol Chem 2018; 293:2850-2864. [PMID: 29321207 DOI: 10.1074/jbc.ra117.000162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family play central roles in mammary gland development and physiology, and their dysregulation has been implicated in mammary tumorigenesis. Our recent studies have revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of the transcription factor STAT5 in mouse mammary epithelium. Of note, CUZD1 controls production of a specific subset of the EGF family growth factors and consequent activation of their receptors. Here, we found that consistent with this finding, CUZD1 overexpression in non-transformed mammary epithelial HC11 cells increases their proliferation and induces tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these cells formed adenocarcinomas, exhibiting elevated levels of STAT5 phosphorylation and activation of the EGF signaling pathway. Selective blockade of STAT5 phosphorylation by pimozide, a small-molecule inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-induced tumor cell proliferation in vitro Pimozide administration to mice also suppressed CUZD1-driven mammary tumorigenesis in vivo Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the production of the same subset of EGF family members in these cells as in the mouse. Moreover, pimozide treatment reduced the proliferation of these cancer cells. Collectively, these findings indicate that overexpression of CUZD1, a regulator of growth factor pathways controlled by PRL and STAT5, promotes mammary tumorigenesis. Blockade of the STAT5 signaling pathway downstream of CUZD1 may offer a therapeutic strategy for managing these breast tumors.
Collapse
Affiliation(s)
| | | | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Alison Neff
- Department of Molecular and Integrative Physiology
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | | |
Collapse
|
14
|
O'Leary KA, Shea MP, Salituro S, Blohm CE, Schuler LA. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action. Stem Cell Reports 2017; 9:1167-1179. [PMID: 28919264 PMCID: PMC5639259 DOI: 10.1016/j.stemcr.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael P Shea
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie Salituro
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Courtney E Blohm
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Cham KL, Soga T, Parhar IS. RING Finger Protein 38 Is a Neuronal Protein in the Brain of Nile Tilapia, Oreochromis niloticus. Front Neuroanat 2017; 11:72. [PMID: 28912690 PMCID: PMC5583157 DOI: 10.3389/fnana.2017.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/02/2022] Open
Abstract
Really interesting new gene (RING) finger protein is a type of zinc-binding motif found in a large family of functionally distinct proteins. RING finger proteins are involved in diverse cellular processes including apoptosis, DNA repair, cell cycle, signal transduction, tumour suppressor, vesicular transport, and peroxisomal biogenesis. RING finger protein 38 (RNF38) is a member of the family whose functions remain unknown. To gain insight into the putative effects of RNF38 in the central nervous system, we localised its expression. The aim of this study was to identify the neuroanatomical location(s) of rnf38 mRNA and its peptide, determine the type of RNF38-expressing cells, and measure rnf38 gene expression in the brain of male tilapia. The distributions of rnf38 mRNA and its peptide were visualised using in situ hybridisation with digoxigenin-labelled RNA antisense and immunocytochemistry, respectively. Both were identically distributed throughout the brain, including the telencephalon, preoptic area, optic tectum, hypothalamus, cerebellum, and the hindbrain. Double-labelling immunocytochemistry for RNF38 and the neuronal marker HuC/D showed that most but not all RNF38 protein was expressed in neuronal nuclei. Quantitative real-time polymerase chain reaction showed the highest level of rnf38 mRNA in the midbrain, followed by the preoptic area, cerebellum, optic tectum, telencephalon, hindbrain and hypothalamus. These findings reveal a differential spatial pattern of RNF38 in the tilapia brain, suggesting that it has potentially diverse functions related to neuronal activity.
Collapse
Affiliation(s)
- Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| |
Collapse
|
16
|
Mapes J, Li Q, Kannan A, Anandan L, Laws M, Lydon JP, Bagchi IC, Bagchi MK. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLoS Genet 2017; 13:e1006654. [PMID: 28278176 PMCID: PMC5363987 DOI: 10.1371/journal.pgen.1006654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/23/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023] Open
Abstract
In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 signaling that controls the expression of key STAT5 target genes involved in mammary epithelial proliferation and differentiation during alveolar development. In the mammary gland, genetic circuits controlled by the hormones, estrogen, progesterone and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. We have identified CUZD1 as a novel mediator of prolactin signaling in the steroid hormone-primed mouse mammary gland during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Administration of prolactin failed to induce proliferation of the mammary epithelium in Cuzd1-null mice. Protein binding studies revealed that CUZD1 interacts with downstream transducers of prolactin signaling, JAK1/JAK2 and STAT5. Additionally, elevated expression of Cuzd1 in mammary epithelial cells stimulated phosphorylation and nuclear translocation of STAT5. CUZD1, therefore, is a critical mediator of prolactin that controls mammary alveolar development.
Collapse
Affiliation(s)
- Janelle Mapes
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Lavanya Anandan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| |
Collapse
|
17
|
Zheng Y, Mo W, Yu Y, Zou D, He X, Xia X, Hu J. Breast carcinoma associated with prolactinoma: A case report. Cancer Biol Ther 2017; 18:132-136. [PMID: 28278079 DOI: 10.1080/15384047.2017.1294284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We report a 28-year-old woman who presented with a 6-year history of milk-like discharge from both of her nipples and was diagnosed with prolactinoma based on computed tomography (CT) findings and serum prolactin level. Further breast examination revealed a mass located in the upper outer region of the left breast. She underwent subtotal pituitary tumor resection. Thereafter, modified radical mastectomy was performed for left breast cancer. Twelve years after treatment, prolactinoma recurrence was detected, and bromocriptine therapy was administered. No recurrence of breast cancer was discovered. Based on this case report, we stress the importance of prolactin levels due to their possible biologic effects on breast cancer induction or growth.
Collapse
Affiliation(s)
- Yurong Zheng
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Wenju Mo
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Yang Yu
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Dehong Zou
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Xiangming He
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Xianghou Xia
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Jiejie Hu
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| |
Collapse
|
18
|
Schauwecker SM, Kim JJ, Licht JD, Clevenger CV. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem 2016; 292:2237-2254. [PMID: 28035005 DOI: 10.1074/jbc.m116.764233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Indexed: 01/10/2023] Open
Abstract
The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling.
Collapse
Affiliation(s)
| | - J Julie Kim
- the Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jonathan D Licht
- the Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida 32610, and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
19
|
What Is Breast in the Bone? Int J Mol Sci 2016; 17:ijms17101764. [PMID: 27782069 PMCID: PMC5085788 DOI: 10.3390/ijms17101764] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022] Open
Abstract
The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%–50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural “recycling” of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.
Collapse
|
20
|
Yan H, Zhao M, Huang S, Chen P, Wu WY, Huang J, Wu ZS, Wu Q. Prolactin Inhibits BCL6 Expression in Breast Cancer Cells through a MicroRNA-339-5p-Dependent Pathway. J Breast Cancer 2016; 19:26-33. [PMID: 27066093 PMCID: PMC4822104 DOI: 10.4048/jbc.2016.19.1.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Prolactin (PRL) plays a critical role in breast cancer progression by activating its cognate receptor and promotes the growth and differentiation of breast cancer cells. Studies have shown that B-cell lymphoma 6 (BCL6) is the target gene of microRNA-339-5p (miR-339-5p) and that BCL6 expression contributes to breast cancer progression. Herein, we identified PRL as a potent suppressor of BCL6 expression in human breast cancer cells. METHODS Western blotting and quantitative reverse transcription-polymerase chain reaction were used to investigate molecular mechanisms underlying miR-339-5p expression and BCL6 manipulation in MCF-7, T47D, and SKBR3 breast cancer cells. Phenotypic changes in these breast cancer cell lines were assessed by performing cell viability (MTT), colony formation, migration, and invasion assays. RESULTS PRL suppressed BCL6 protein and mRNA expression and upregulated miR-339-5p expression in MCF-7 and T47D breast cancer cells. Selective downregulation of miR-339-5p expression significantly reversed PRL-induced suppression of BCL6 mRNA and protein expression. Exogenous PRL stimulation significantly decreased the proliferation, colony formation, migration, and invasion of breast cancer cells, and suppression of miR-339-5p expression reversed these processes in vitro. CONCLUSION These results indicated that PRL inhibited BCL6 expression and regulated breast cancer progression through a miR-339-5p-dependent pathway.
Collapse
Affiliation(s)
- Hong Yan
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Shan Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.; Department of Pathology, Anhui Medical University, Hefei, China
| | - Ping Chen
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Wen-Yong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.; Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Oladimeji P, Skerl R, Rusch C, Diakonova M. Synergistic Activation of ERα by Estrogen and Prolactin in Breast Cancer Cells Requires Tyrosyl Phosphorylation of PAK1. Cancer Res 2016; 76:2600-11. [PMID: 26944939 DOI: 10.1158/0008-5472.can-15-1758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/06/2016] [Indexed: 01/11/2023]
Abstract
Serine/threonine kinase PAK1 is activated by estrogen and plays an important role in breast cancer. However, the integration of PAK1 into the estrogen response is not fully understood. In this study, we investigated the mechanisms underlying the hormone-induced activation of estrogen receptor (ERα, ESR1). We show that estrogen activated PAK1 through both the ERα and GPER1 membrane receptors. Estrogen-dependent activation of PAK1 required the phosphorylation of tyrosine residues by Etk/Bmx and protein kinase A (PKA) within an assembled signaling complex comprising pTyr-PAK1, Etk/Bmx, the heterotrimer G-protein subunits Gβ1, Gγ2, and/or Gγ5, PAK-associated guanine nucleotide exchange factor (βPIX, ARHGEF7), and PKA. Moreover, the PKA RIIβ subunit is a direct target of PAK1, and thus in response to estrogen, the activated pTyr-PAK1 complex reciprocally potentiated PKA activity, suggesting a positive feedback mechanism. We also demonstrate that PKA phosphorylated Ser305-ERα in response to estrogen, but pTyr-PAK1 phosphorylated Ser305-ERα in response to prolactin (PRL), implying that maximal ERα phosphorylation is achieved when cells are exposed to both PRL and estrogen. Furthermore, S305-ERα activation led to enhanced phosphorylation of Ser118-ERα and promoted cell proliferation and tumor growth. Together, these data strongly support a critical interplay between PRL and estrogen via PAK1 and suggest that ligand-independent activation of ERα through PRL/PAK1 may impart resistance to anti-estrogen therapies. Cancer Res; 76(9); 2600-11. ©2016 AACR.
Collapse
Affiliation(s)
- Peter Oladimeji
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio
| | - Rebekah Skerl
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio
| | - Courtney Rusch
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio
| | - Maria Diakonova
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio.
| |
Collapse
|
22
|
Goodman CR, Sato T, Peck AR, Girondo MA, Yang N, Liu C, Yanac AF, Kovatich AJ, Hooke JA, Shriver CD, Mitchell EP, Hyslop T, Rui H. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene 2015; 35:1373-85. [PMID: 26096934 PMCID: PMC4800289 DOI: 10.1038/onc.2015.193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/08/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022]
Abstract
Therapy resistance remains a major problem in estrogen receptor-α (ERα)-positive breast cancer. A subgroup of ERα-positive breast cancer is characterized by mosaic presence of a minor population of ERα-negative cancer cells expressing the basal cytokeratin-5 (CK5). These CK5-positive cells are therapy resistant and have increased tumor-initiating potential. Although a series of reports document induction of the CK5-positive cells by progestins, it is unknown if other 3-ketosteroids share this ability. We now report that glucocorticoids and mineralocorticoids effectively expand the CK5-positive cell population. CK5-positive cells induced by 3-ketosteroids lacked ERα and progesterone receptors, expressed stem cell marker, CD44, and displayed increased clonogenicity in soft agar and broad drug-resistance in vitro and in vivo. Upregulation of CK5-positive cells by 3-ketosteroids required induction of the transcriptional repressor BCL6 based on suppression of BCL6 by two independent BCL6 small hairpin RNAs or by prolactin. Prolactin also suppressed 3-ketosteroid induction of CK5+ cells in T47D xenografts in vivo. Survival analysis with recursive partitioning in node-negative ERα-positive breast cancer using quantitative CK5 and BCL6 mRNA or protein expression data identified patients at high or low risk for tumor recurrence in two independent patient cohorts. The data provide a mechanism by which common pathophysiological or pharmacologic elevations in glucocorticoids or other 3-ketosteroids may adversely affect patients with mixed ERα+/CK5+ breast cancer. The observations further suggest a cooperative diagnostic utility of CK5 and BCL6 expression levels and justify exploring efficacy of inhibitors of BCL6 and 3-ketosteroid receptors for a subset of ERα-positive breast cancers.
Collapse
Affiliation(s)
- C R Goodman
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - T Sato
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A R Peck
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - M A Girondo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - N Yang
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - C Liu
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A F Yanac
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A J Kovatich
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - J A Hooke
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - C D Shriver
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - E P Mitchell
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - T Hyslop
- Department of Biostatistics & Bioinformatics, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - H Rui
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Pathology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015; 10:e0116891. [PMID: 25607819 PMCID: PMC4301649 DOI: 10.1371/journal.pone.0116891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth C Holt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
O'Leary KA, Shea MP, Schuler LA. Modeling prolactin actions in breast cancer in vivo: insights from the NRL-PRL mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:201-20. [PMID: 25472540 DOI: 10.1007/978-3-319-12114-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated exposure to prolactin (PRL) is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to PRL without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA,
| | | | | |
Collapse
|
25
|
Prolactin receptor expression and breast cancer: relationships with tumor characteristics among pre- and post-menopausal women in a population-based case-control study from Poland. Discov Oncol 2013; 5:42-50. [PMID: 24249584 DOI: 10.1007/s12672-013-0165-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/01/2013] [Indexed: 12/25/2022] Open
Abstract
Previous studies have found an association between elevated circulating prolactin levels and increased risk of breast cancer. Prolactin stimulates breast cancer cell proliferation, migration, and survival via binding to the cell-surface prolactin receptor. The association of prolactin receptor expression with breast tumorigenesis remains unclear as studies that have focused on this association have had limited sample size and/or information about tumor characteristics. Here, we examined the association of prolactin expression with tumor characteristics among 736 cases, from a large population-based case-control study of breast cancer conducted in Poland (2000-2003), with detailed risk factor and pathology data. Tumors were centrally reviewed and prepared as tissue microarrays for immunohistochemical analysis of prolactin receptor expression. Association of prolactin receptor expression across strata of tumor characteristics was evaluated using χ (2) analysis and logistic regression. Prolactin receptor expression did not vary by menopausal status; therefore, data from pre- and post-menopausal women were combined in the analyses. Approximately 83 % of breast cancers were categorized as strong prolactin receptor staining. Negative/low prolactin receptor expression was independently associated with poorly differentiated (p = 1.2 × 10(-08)) and larger tumors (p = 0.0005). These associations were independent of estrogen receptor expression. This is the largest study to date in which the association of prolactin receptor expression with tumor characteristics has been evaluated. These data provide new avenues from which to explore the associations of the prolactin/prolactin receptor signaling network with breast tumorigenesis.
Collapse
|