1
|
Wang L, He H, Li Y, Wang X, Yu J, Huang Y, Yu K, He J, Zhao M, Xie T, Li D. BCL11A expression worsens the prognosis of DLBCL and its co-expression with C-MYC predicts poor survival. Pathol Res Pract 2024; 264:155717. [PMID: 39546996 DOI: 10.1016/j.prp.2024.155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Non-Hodgkin's lymphoma (NHL) is a significant global malignancy, with diffuse large B cell lymphoma (DLBCL) being the most prevalent subtype, accounting for 25-50 % of newly diagnosed cases in China. Despite a 60 % survival rate achieved with R-CHOP regiment for DLBCL, approximately 40 % of patients experience relapse or develop resistance to treatment. While the oncogenic transcription factor B-cell chronic lymphocytic leukaemia/lymphoma 11 A (BCL11A) has been implicated in various tumors, its specific role in DLBCL remains unclear. In this study, we conducted retrospective histomorphological and immunophenotypic analyses on paraffin sample tissues and collected fresh tissue samples for protein and mRNA analyses to investigate the relationship between BCL11A and DLBCL. Additionally, we classified DLBCL into subtypes based on cells of origin (COO) and examined the expressions of BCL11A, C-MYC, P53 and other protein expressions to better understand the factors contributing to poor clinical outcomes in DLBCL. Our findings revealed elevated BCL11A expression in DLBCL, with increased expression associated with worse prognosis and higher C-MYC expression. Patients exhibiting co-expression of C-MYC and BCL11A had significantly lower survival rates compared to those with singular expression. Furthermore, BCL11A protein expression levels demonstrated significant associations with P53 and C-MYC protein expression levels in the Germinal Center B-cell-like (GCB) subtype. These findings suggest that BCL11A may serve as a potential prognostic marker and therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong He
- Department of Internal Medicine, the First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanxin Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jieyang Yu
- Laboratory of Neuropsycholinguistics, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Clinical Molecular Medical Detection Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhao
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xie
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Liu Y, Yi J, Wu P, Zhang J, Li X, Li J, Zhou L, Liu Y, Xu H, Chen E, Zhang H, Liang M, Liu P, Pan X, Lu Y. Wemics: A Single-Base Resolution Methylation Quantification Method for Enhanced Prediction of Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308884. [PMID: 38544480 PMCID: PMC11151077 DOI: 10.1002/advs.202308884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation, an epigenetic mechanism that alters gene expression without changing DNA sequence, is essential for organism development and key biological processes like genomic imprinting and X-chromosome inactivation. Despite tremendous efforts in DNA methylation research, accurate quantification of cytosine methylation remains a challenge. Here, a single-base methylation quantification approach is introduced by weighting methylation of consecutive CpG sites (Wemics) in genomic regions. Wemics quantification of DNA methylation better predicts its regulatory impact on gene transcription and identifies differentially methylated regions (DMRs) with more biological relevance. Most Wemics-quantified DMRs in lung cancer are epigenetically conserved and recurrently occurred in other primary cancers from The Cancer Genome Atlas (TCGA), and their aberrant alterations can serve as promising pan-cancer diagnostic markers. It is further revealed that these detected DMRs are enriched in transcription factor (TF) binding motifs, and methylation of these TF binding motifs and TF expression synergistically regulate target gene expression. Using Wemics on epigenomic-transcriptomic data from the large lung cancer cohort, a dozen novel genes with oncogenic potential are discovered that are upregulated by hypomethylation but overlooked by other quantification methods. These findings increase the understanding of the epigenetic mechanism by which DNA methylation regulates gene expression.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Jiani Yi
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Pin Wu
- Department of Thoracic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhou310009China
| | - Jun Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jia Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Liyuan Zhou
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Yong Liu
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
| | - Haiming Xu
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Enguo Chen
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Honghe Zhang
- Department of PathologyResearch Unit of Intelligence Classification of Tumor Pathology and Precision TherapyChinese Academy of Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Mingyu Liang
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
- Cancer centerZhejiang UniversityHangzhou310058China
| | - Xiaoqing Pan
- Department of MathematicsShanghai Normal UniversityShanghai200233China
| | - Yan Lu
- Cancer centerZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological DiseasesDepartment of Gynecologic OncologyWomen's Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310029China
| |
Collapse
|
3
|
Kątnik E, Gomułkiewicz A, Piotrowska A, Grzegrzółka J, Kmiecik A, Ratajczak-Wielgomas K, Urbaniak A, Glatzel-Plucińska N, Błasiak P, Dzięgiel P. BCL11A Expression in Non-Small Cell Lung Cancers. Int J Mol Sci 2023; 24:9848. [PMID: 37372998 DOI: 10.3390/ijms24129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
B-cell leukemia/lymphoma 11A (BCL11A) may be one of the potential biomarkers of non-small cell lung cancer (NSCLC). However, its role in the development of this cancer has not yet been precisely established. The aim of this study was to investigate the expression of BCL11A at the mRNA and protein levels in NSCLC cases and non-malignant lung tissue (NMLT) and to determine the relationship between BCL11A expression and the clinicopathological factors and Ki-67, Slug, Snail and Twist. The localization and the level of BCL11A protein were examined using immunohistochemistry (IHC) on 259 cases of NSCLC, and 116 NMLT samples were prepared as tissue microarrays and using immunofluorescence (IF) in the following cell lines: NCI-H1703, A549 and IMR-90. The mRNA expression of BCL11A was determined using real-time PCR in 33 NSCLC cases, 10 NMLT samples and the cell lines. BCL11A protein expression was significantly higher in NSCLC cases compared to NMLT. Nuclear expression was found in lung squamous cell carcinoma (SCC) cells, while cytoplasmic expression was demonstrated in adenocarcinoma (AC) cells. Nuclear expression of BCL11A decreased with increasing malignancy grade and correlated positively with Ki-67 and Slug and Twist expression. The opposite relationships were found for the cytoplasmic expression of BCL11A. Nuclear expression of BCL11A in NSCLC cells may affect tumor cell proliferation and change their phenotype, thus promoting tumor progression.
Collapse
Affiliation(s)
- Ewa Kątnik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Urbaniak
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Błasiak
- Department and Clinic of Thoracic Surgery, Wroclaw Medical University, 53-439 Wroclaw, Poland
- Lower Silesian Center of Oncology, Pulmonology and Hematology, 53-439 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
4
|
Kątnik E, Gomułkiewicz A, Piotrowska A, Grzegrzółka J, Rusak A, Kmiecik A, Ratajczak-Wielgomas K, Dzięgiel P. BCL11A Expression in Breast Cancer. Curr Issues Mol Biol 2023; 45:2681-2698. [PMID: 37185699 PMCID: PMC10137054 DOI: 10.3390/cimb45040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
B-cell leukemia/lymphoma 11A (BCL11A) is a transcription factor that regulates the expression of genes involved in cell division or apoptosis. A link between high BCL11A expression and a worse prognosis has been demonstrated in patients with various cancers. The aim of this study was to investigate the expression pattern of BCL11A in breast cancer (BC) cases and mastopathy samples and to correlate the results with the clinicopathological data. The expression of the BCL11A protein was investigated using immunohistochemistry (IHC) on 200 cases of BC and 13 mastopathy samples. The level of BCL11A mRNA was determined using real-time PCR in 22 cases of BC and 6 mastopathy samples. The expression of BCL11A was also examined at the protein and mRNA levels in BC cell lines. A higher expression level of BCL11A in BC cases was shown compared to mastopathy samples. The expression level of BCL11A in BC cases and in the studied cell lines decreased with the increasing grade of histological malignancy (G). It was also negatively correlated with the primary tumor size. A significantly lower expression of BCL11A was found in BC that did not express estrogen or progesterone receptors and in triple-negative cases. The results of our research suggest that BCL11A may be relevant in the development of BC.
Collapse
Affiliation(s)
- Ewa Kątnik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
5
|
Ma Y, Lin H, Wang P, Yang H, Yu J, Tian H, Li T, Ge S, Wang Y, Jia R, Leong KW, Ruan J. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater 2023; 155:538-553. [PMID: 36400349 DOI: 10.1016/j.actbio.2022.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA)-based gene therapy is a robust approach to treating human cancers. However, the low target specificity and safety issues associated with viral vectors have limited the clinical use of miRNA therapeutics. In the present study, we aimed to develop a biocompatible nanocarrier to deliver the tumor suppressor miR-30a-5p for gene therapy of ocular melanoma. The quasi-mesoporous magnetic nanospheres (MMNs) were prepared by polyelectrolytes-mediated self-assembling Fe3O4 nanocrystals; the cationic polymer capped quasi-mesoporous inner tunnels of the MMNs facilitate high miRNA loading and protect from nuclease degradation. Then, the outer layer of the MMNs was modified with a disulfide bond bridged very low molecular weight polyethyleneimine (PEI) network to form redox-responsive nanospheres (rMMNs) that enhance the miRNA payload and enable miRNA release under glutathione-dominant tumor microenvironment. The miR-30a-5p loaded rMMNs nanodrug (miR-30a-5p@rMMNs) upregulated miR-30a-5p level and inhibited malignant phenotypes of ocular melanoma by targeting the transcription factor E2F7 both in vitro and in vivo. Additionally, rMMNs act as an enhancer to increase cancer cell apoptosis by modulating M1-like macrophage polarization and activating Fenton reaction. Thus, the rMMNs is a promising miRNA carrier for gene therapy and could enhance pro-inflammatory immunity in melanoma and other cancers. STATEMENT OF SIGNIFICANCE: • miR-30a-5p@rMMNs inhibited malignant phenotypes of ocular melanoma both in vitro and in vivo. • The rMMNs promoted M1 macrophage polarization thus synergistically enhancing pro-inflammatory anti-tumor immunity against melanoma. • The rMMNs showed no obvious toxicity under the injection dose.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peng Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haocheng Yang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yilong Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Vickridge E, Faraco CCF, Tehrani PS, Ramdzan ZM, Djerir B, Rahimian H, Leduy L, Maréchal A, Gingras AC, Nepveu A. The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 2022; 4:zcac028. [PMID: 36186110 PMCID: PMC9516615 DOI: 10.1093/narcan/zcac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro, DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A160-520 protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes. BCL11A is highly expressed in triple-negative breast cancers (TNBC) where its knockdown was reported to reduce clonogenicity and cause tumour regression. We show that BCL11A knockdown in TNBC cells delays repair of oxidative DNA damage, increases the number of oxidized bases and abasic sites in genomic DNA, slows down proliferation and induces cellular senescence. These phenotypes are rescued by ectopic expression of the short BCL11A160-520 protein. We further show that the BCL11A160-520 protein accelerates the repair of oxidative DNA damage and cooperates with RAS in cell transformation assays, thereby enabling cells to avoid senescence and continue to proliferate in the presence of high ROS levels.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Hedyeh Rahimian
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alain Nepveu
- To whom correspondence should be addressed. Tel: +1 514 398 5839; Fax: +1 514 398 6769;
| |
Collapse
|
7
|
Angius A, Pira G, Cossu-Rocca P, Sotgiu G, Saderi L, Muroni MR, Virdis P, Piras D, Vincenzo R, Carru C, Coradduzza D, Uras MG, Cottu P, Fancellu A, Orrù S, Uva P, De Miglio MR. Deciphering clinical significance of BCL11A isoforms and protein expression roles in triple-negative breast cancer subtype. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04301-w. [DOI: 10.1007/s00432-022-04301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
Triple negative breast cancer (TNBC) is an aggressive clinical tumor, accounting for about 25% of breast cancer (BC) related deaths. Chemotherapy is the only therapeutic option to treat TNBC, hence a detailed understanding of the biology and its categorization is required. To investigate the clinical relevance of BCL11A in TNBC subtype, we focused on gene and protein expression and its mutational status in a large cohort of this molecular subtype.
Methods
Gene expression profiling of BCL11A and its isoforms (BCL11A-XL, BCL11A-L and BCL11A-S) has been determined in Luminal A, Luminal B, HER2-enriched and TNBC subtypes. BCL11A protein expression has been analyzed by immunohistochemistry (IHC) and its mutational status by Sanger sequencing.
Results
In our study, BCL11A was significantly overexpressed in TNBC both at transcriptional and translational levels compared to other BC molecular subtypes. A total of 404 TNBCs were selected and examined showing a high prevalence of BCL11A-XL (37.3%) and BCL11A-L (31.4%) isoform expression in TNBC, associated with a 26% of BCL11A protein expression levels. BCL11A protein expression predicts scarce LIV (HR = 0.52; 95% CI, 0.29–0.92, P = 0.03) and AR downregulation (HR = 0.37; 95% CI, 0.16–0.88; P = 0.02), as well as a higher proliferative index in TNBC cells. BCL11A-L expression is associated with more aggressive TNBC histological types, such as medullary and metaplastic carcinoma.
Conclusion
Our finding showed that BCL11A protein expression acts as an unfavorable prognostic factor in TNBC patients, especially in non luminal TNBCs subgroups. These results may yield a better treatment strategy by providing a new parameter for TNBC classification.
Collapse
|
8
|
Thalor A, Kumar Joon H, Singh G, Roy S, Gupta D. Machine learning assisted analysis of breast cancer gene expression profiles reveals novel potential prognostic biomarkers for triple-negative breast cancer. Comput Struct Biotechnol J 2022; 20:1618-1631. [PMID: 35465161 PMCID: PMC9014315 DOI: 10.1016/j.csbj.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor heterogeneity and the unclear metastasis mechanisms are the leading cause for the unavailability of effective targeted therapy for Triple-negative breast cancer (TNBC), a breast cancer (BrCa) subtype characterized by high mortality and high frequency of distant metastasis cases. The identification of prognostic biomarker can improve prognosis and personalized treatment regimes. Herein, we collected gene expression datasets representing TNBC and Non-TNBC BrCa. From the complete dataset, a subset reflecting solely known cancer driver genes was also constructed. Recursive Feature Elimination (RFE) was employed to identify top 20, 25, 30, 35, 40, 45, and 50 gene signatures that differentiate TNBC from the other BrCa subtypes. Five machine learning algorithms were employed on these selected features and on the basis of model performance evaluation, it was found that for the complete and driver dataset, XGBoost performs the best for a subset of 25 and 20 genes, respectively. Out of these 45 genes from the two datasets, 34 genes were found to be differentially regulated. The Kaplan-Meier (KM) analysis for Distant Metastasis Free Survival (DMFS) of these 34 differentially regulated genes revealed four genes, out of which two are novel that could be potential prognostic genes (POU2AF1 and S100B). Finally, interactome and pathway enrichment analyses were carried out to investigate the functional role of the identified potential prognostic genes in TNBC. These genes are associated with MAPK, PI3-AkT, Wnt, TGF-β, and other signal transduction pathways, pivotal in metastasis cascade. These gene signatures can provide novel molecular-level insights into metastasis.
Collapse
Affiliation(s)
- Anamika Thalor
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Hemant Kumar Joon
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Gagandeep Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shikha Roy
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Corresponding author at: Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, India.
| |
Collapse
|
9
|
Le DH. A network-based method for predicting disease-associated enhancers. PLoS One 2021; 16:e0260432. [PMID: 34879086 PMCID: PMC8654176 DOI: 10.1371/journal.pone.0260432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background Enhancers regulate transcription of target genes, causing a change in expression level. Thus, the aberrant activity of enhancers can lead to diseases. To date, a large number of enhancers have been identified, yet a small portion of them have been found to be associated with diseases. This raises a pressing need to develop computational methods to predict associations between diseases and enhancers. Results In this study, we assumed that enhancers sharing target genes could be associated with similar diseases to predict the association. Thus, we built an enhancer functional interaction network by connecting enhancers significantly sharing target genes, then developed a network diffusion method RWDisEnh, based on a random walk with restart algorithm, on networks of diseases and enhancers to globally measure the degree of the association between diseases and enhancers. RWDisEnh performed best when the disease similarities are integrated with the enhancer functional interaction network by known disease-enhancer associations in the form of a heterogeneous network of diseases and enhancers. It was also superior to another network diffusion method, i.e., PageRank with Priors, and a neighborhood-based one, i.e., MaxLink, which simply chooses the closest neighbors of known disease-associated enhancers. Finally, we showed that RWDisEnh could predict novel enhancers, which are either directly or indirectly associated with diseases. Conclusions Taken together, RWDisEnh could be a potential method for predicting disease-enhancer associations.
Collapse
Affiliation(s)
- Duc-Hau Le
- School of Computer Science and Engineering, Thuyloi University, Hanoi, Vietnam
- * E-mail:
| |
Collapse
|
10
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Ebrahimzadeh K. A Review on the Carcinogenic Roles of DSCAM-AS1. Front Cell Dev Biol 2021; 9:758513. [PMID: 34708048 PMCID: PMC8542687 DOI: 10.3389/fcell.2021.758513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts with fundamental roles in the carcinogenesis. DSCAM Antisense RNA 1 (DSCAM−AS1) is an example of this group of transcripts which has been firstly identified in an attempt to find differentially expressed transcripts between breast tumor cells and benign breast samples. The pathogenic roles of DSCAM-AS1 have been vastly assessed in breast cancer, yet its roles are not restricted to this type of cancer. Independent studies in non-small cell lung cancer, colorectal cancer, osteosarcoma, hepatocellular carcinoma, melanoma and cervical cancer have validated participation of DSCAM-AS1 in the carcinogenic processes. miR-577, miR-122-5p, miR-204-5p, miR-136, miR−137, miR−382, miR−183, miR−99, miR-3173-5p, miR-874-3p, miR-874-3p, miR-150-5p, miR-2467-3p, miR-216b, miR-384, miR-186-5p, miR-338-3p, miR-877-5p and miR-101 are among miRNAs which interact with DSCAM-AS1. Moreover, this lncRNA has interactions with Wnt/β-catenin pathway. The current study aims at summarization of the results of studies which focused on the assessment of oncogenic role of DSCAM-AS1.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3351-3368. [PMID: 34430372 PMCID: PMC8350108 DOI: 10.21037/tlcr-21-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Objective The objectives of this review are to discuss: the definition, clinical and biologic features of oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in oligometastatic NSCLC. Background A substantial proportion of patients diagnosed with lung cancer present with metastatic disease, and a large portion of patients who present with localized disease later develop metastases. Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic disease, where there may be a role for curative localized therapy approach by treating the primary tumor and all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients with lung cancer, the identification of patients who might benefit from this approach is yet to be well characterized. Methods After a systematic review of the literature, a PubMed search was performed using the English language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to oligometastatic NSCLC were reviewed and included in the discussion of this paper. Conclusions Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic NSCLC accurately using a combination of clinical and biologic features and treating them with localized consolidative approach appropriately results in improvement of outcome. Further understanding of the molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for future studies.
Collapse
Affiliation(s)
- Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Wessels MW, Cnossen MH, van Dijk TB, Gillemans N, Schmidt KLJ, van Lom K, Vinjamur DS, Coyne S, Kurita R, Nakamura Y, de Man SA, Pfundt R, Azmani Z, Brouwer RWW, Bauer DE, van den Hout MCGN, van IJcken WFJ, Philipsen S. Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency. Blood Adv 2021; 5:2339-2349. [PMID: 33938942 PMCID: PMC8114548 DOI: 10.1182/bloodadvances.2020003753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
The BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo. We describe a patient with a de novo heterozygous variant, c.1453G>T, in the BCL11A gene, resulting in truncation of the BCL11A-XL protein (p.Glu485X). The truncated protein lacks the 3 C-terminal DNA-binding zinc fingers and the nuclear localization signal, rendering it inactive. The patient displayed high fetal hemoglobin (HbF) levels (12.1-18.7% of total hemoglobin), in contrast to the parents who had HbF levels of 0.3%. We used cultures of patient-derived erythroid progenitors to determine changes in gene expression and chromatin accessibility. In addition, we investigated DNA methylation of the promoters of the γ-globin genes HBG1 and HBG2. HUDEP1 and HUDEP2 cells were used as models for fetal and adult human erythropoiesis, respectively. Similar to HUDEP1 cells, the patient's cells displayed Assay for Transposase-Accessible Chromatin (ATAC) peaks at the HBG1/2 promoters and significant expression of HBG1/2 genes. In contrast, HBG1/2 promoter methylation and genome-wide gene expression profiling were consistent with normal adult erythropoiesis. We conclude that HPFH is the major erythroid phenotype of constitutive BCL11A haploinsufficiency. Given the essential functions of BCL11A in other hematopoietic lineages and the neuronal system, erythroid-specific targeting of the BCL11A gene has been proposed for reactivation of γ-globin expression in β-hemoglobinopathy patients. Our data strongly support this approach.
Collapse
Affiliation(s)
| | - Marjon H Cnossen
- Department of Pediatric Hematology
- Academic Center for Hemoglobinopathies and Rare Anemias
| | - Thamar B van Dijk
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| | - Nynke Gillemans
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| | - K L Juliëtte Schmidt
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| | - Kirsten van Lom
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Broad Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Steven Coyne
- Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Broad Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN, BioResource Center, Tsukuba, Japan
| | - Stella A de Man
- Department of Pediatrics, Amphia Hospital, Breda, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Zakia Azmani
- Department of Cell Biology, and
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - Rutger W W Brouwer
- Department of Cell Biology, and
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - Daniel E Bauer
- Division of Hematology/Oncology, Department of Pediatric Oncology, Boston Children's Hospital, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Broad Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | - Wilfred F J van IJcken
- Department of Cell Biology, and
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Academic Center for Hemoglobinopathies and Rare Anemias
- Department of Cell Biology, and
| |
Collapse
|
13
|
Sheikhpour M, Abolfathi H, Karimipoor M, Movafagh A, Shahsavani M. The Common miRNAs between Tuberculosis and Non-Small Cell Lung Cancer: A Critical Review. TANAFFOS 2021; 20:197-208. [PMID: 35382078 PMCID: PMC8978040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/05/2021] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) and non-small cell lung cancer (NSCLC) are two major contributors to mortality and morbidity worldwide. In this regard, TB and NSCLC have similar symptoms, and TB has symptoms that are identical to malignancy; therefore, sometimes it is mistakenly diagnosed as lung cancer. Moreover, patients with active pulmonary TB are at a higher risk of dying due to lung cancer. In addition, several signaling pathways involved in TB and NSCLC have been identified. Also, the miRNAs are biological molecules shown to play essential roles in the above-mentioned diseases through targeting the signaling pathways' genes. Most of the pathways affected by miRNAs are immune responses such as autophagy and apoptosis in TB and NSCLC, respectively. Several studies have separately investigated the expression of miRNAs profile in patients with NSCLC and infectious TB. In this critical review, we attempted to gather common miRNAs between TB and NSCLC and to explain the involved-pathways, which are affected by miRNAs in both TB and NSCLC. Results of this critical review show that the expressions of miR-155, miR-146a, miR-125b, miR-30a, miR-29a, and miR-Let7 have significantly changed in TB and NSCLC. The data suggest that miRNAs expression may provide a new method for screening or differential diagnosis of NSCLC and TB.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Cancer Research Center, Shohada Hospital, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahbubeh Shahsavani
- Department of Genetics & Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
14
|
Yu T, Gong L, Li W, Zuo Q, Cai D, Mao H, Wang L, Lin J, Xiao B. MiR-30a suppresses metastasis of gastric adenocarcinoma via targeting FAPα. Cancer Biomark 2020; 27:471-484. [PMID: 32116236 DOI: 10.3233/cbm-190314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is one of the leading causes of death worldwide. MicroRNA-30a (miR-30a) has been demonstrated to be involved in several types of cancer development. OBJECTIVE We aimed to identify the molecular mechanism of miR-30a in gastric cancer. METHODS We investigated the expression of miR-30a in gastric cancer tissues by qRT-PCR. The role of miR-30a on the metastasis and proliferation of gastric cancer was evaluated by cell migration assay, CCK-8 assay and tumor peritoneal dissemination model. The target of miR-30a in gastric cancer was identified. RESULTS We discovered that miR-30a was significantly downregulated in gastric cancer tissues compared with adjacent nonmalignant tissues. The expression of miR-30a was inversely correlated with progression of gastric cancer. Gain- and loss-of function revealed that miR-30a acted as a potent tumor suppressor in gastric cancer. Re-expressed miR-30a inhibited gastric cancer cells migration, knock down miR-30a have the opposite effects. Furthermore, overexpression of miR-30a suppressed tumor peritoneal dissemination in vivo. We identified that fibroblast activation protein α (FAPα) was a direct target of miR-30a. The relative expression of FAPα was significantly higher in gastric cancer tissues compared with adjacent nonmalignant tissues. Inhibition of FAPα could recapitulate the effects of miR-30a, and overexpression of FAPα could abrogate the effect of miR-30a. CONCLUSION MiR-30a inhibited gastric cancer metastasis by targeting FAPα, suggesting that miR-30a may function as a novel tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Ting Yu
- Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, Shandong, China.,National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, Shandong, China
| | - Li Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, Shandong, China
| | - Wei Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, Shandong, China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Dongping Cai
- Department of Clinical Laboratory, The 904th Hospital of The People's Liberation Army, Wuxi, Jiangsu, China
| | - Hui Mao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lina Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jie Lin
- Department of Clinical Laboratory, The 904th Hospital of The People's Liberation Army, Wuxi, Jiangsu, China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
BCL11A: a potential diagnostic biomarker and therapeutic target in human diseases. Biosci Rep 2020; 39:220893. [PMID: 31654056 PMCID: PMC6851505 DOI: 10.1042/bsr20190604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Transcription factor B-cell lymphoma/leukemia 11A (BCL11A) gene encodes a zinc-finger protein that is predominantly expressed in brain and hematopoietic tissue. BCL11A functions mainly as a transcriptional repressor that is crucial in brain, hematopoietic system development, as well as fetal-to-adult hemoglobin switching. The expression of this gene is regulated by microRNAs, transcription factors and genetic variations. A number of studies have recently shown that BCL11A is involved in β-hemoglobinopathies, hematological malignancies, malignant solid tumors, 2p15-p16.1 microdeletion syndrome, and Type II diabetes. It has been suggested that BCL11A may be a potential prognostic biomarker and therapeutic target for some diseases. In this review, we summarize the current research state of BCL11A, including its biochemistry, expression, regulation, function, and its possible clinical application in human diseases.
Collapse
|
16
|
Shi H, Li C, Feng W, Yue J, Song J, Peng A, Wang H. BCL11A Is Oncogenic and Predicts Poor Outcomes in Natural Killer/T-Cell Lymphoma. Front Pharmacol 2020; 11:820. [PMID: 32625084 PMCID: PMC7311857 DOI: 10.3389/fphar.2020.00820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The current treatment for natural killer/T-cell lymphoma (NKTL) among advanced/relapsed patients is unsatisfying, thereby highlighting the need for novel therapeutic targets. B‐cell chronic lymphocytic leukemia/lymphoma 11 A (BCL11A), as a transcription factor, is oncogenic in several neoplasms. However, its function in NKTL remains unclear. Quantitative real-time polymerase chain reaction and Western blot analysis were used to measure the BCL11A expression levels among NKTL patients and in NKTL cell lines. Natural killer (NK) cells from healthy subjects were used as negative control. Transient transfection with small interfering RNA was used to knockdown the expression in NKTL cell lines. Samples and clinical histories were collected from 343 NKTL patients (divided into test and validation groups) to evaluate the clinical value of BCL11A expression level. The BCL11A expression was upregu\lated among NKTL patients and in NKTL cell lines. Reduced cell proliferation and increased apoptosis were observed after silencing BCL11A in NKTL cell lines. BCL11A expression level was correlated with RUNX3, c-MYC, and P53 in NKTL. Notably, a high BCL11A expression was correlated with unfavorable clinical characteristics and predicted poor outcomes in NKTL. In conclusion, BCL11A was overexpressed in NKTL, while its upregulation promoted tumor development. Therefore, BCL11A expression level may be a promising prognostic biomarker for NKTL.
Collapse
Affiliation(s)
- Hongyun Shi
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Chun Li
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Feng
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jianjun Yue
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jingfang Song
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Aizhi Peng
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
17
|
Kit OI, Trifanov VS, Petrusenko NA, Gvaldin DY, Kutilin DS, Timoshkina NN. Identification of new candidate genes and signalling pathways associated with the development of neuroendocrine pancreatic tumours based on next generation sequencing data. Mol Biol Rep 2020; 47:4233-4243. [PMID: 32451928 DOI: 10.1007/s11033-020-05534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Despite advances in classification, treatment, and imaging, neuroendocrine tumours remain a clinically complex subject. In this work, we studied the genetic profile of well-differentiated pancreatic neuroendocrine tumours (PanNETs) in a cohort of Caucasian patients and analysed the signalling pathways and candidate genes potentially associated with the development of this oncological disease. Twenty-four formalin-fixed paraffin-embedded (FFPE) samples of well-differentiated PanNETs were subjected to massive parallel sequencing using the targeted gene panel (409 genes) of the Illumina NextSeq 550 platform (San Diego, USA). In 24 patients, 119 variants were identified in 54 genes. The median mutation rate per patient was 5 (2.8-7). The detected genetic changes were dominated by missense mutations (67%) and nonsense mutations (29%). 18% of the mutations were activating, 35% of the variants led to a loss of function of the encoded protein, and 52% were not classified. Twenty-six variants were described as new. Functionally significant changes in the tertiary structure and activity of the protein molecules in an in silico assay were predicted for 5 new genetic variants. The 5 highest priority candidate genes were selected: CREB1, TCF12, PRKAR1A, BCL11A, and BUB1B. Genes carrying the identified mutations participate in signalling pathways known to be involved in PanNETs; in addition, 38% of the cases showed genetic changes in the regulation of the SMAD2/3 signalling pathway. Well-differentiated PanNETs in a Russian cohort demonstrate various molecular genetic features, including new genetic variations and potential driver genes. The highlighted molecular genetic changes in the SMAD2/3 signalling pathway suggest new prospects for targeted therapy.
Collapse
Affiliation(s)
- Oleg I Kit
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Vladimir S Trifanov
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Nataliya A Petrusenko
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Dmitry Y Gvaldin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037.
| | - Denis S Kutilin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Nataliya N Timoshkina
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| |
Collapse
|
18
|
Gholampour MA, Asadi M, Naderi M, Azarkeivan A, Soleimani M, Atashi A. miR-30a regulates γ-globin expression in erythoid precursors of intermedia thalassemia through targeting BCL11A. Mol Biol Rep 2020; 47:3909-3918. [PMID: 32406020 DOI: 10.1007/s11033-020-05483-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 01/19/2023]
Abstract
Patients with β-thalassemia suffer from a lack or absence of the beta-globin chain of normal hemoglobin (Hb). Therefore, an increase in fetal Hb (HbF) levels could improve the clinical status of these patients. Downregulation of BCL11A, a key regulatory transcription factor, could ameliorate the clinical status of thalassemic patients by increasing HbF levels. miR-30a expression and its relationship with the BCL11A gene in erythroid precursors was explored in patients with β-thalassemia. The relevance of miR-30a to clinical parameters was also investigated. We evaluated the expressions of miR-30a, BCL11A, and γ-globin genes by quantitative real-time PCR (qRT-PCR) on isolated erythroid precursors from peripheral blood samples of β-thalassemia intermedia (TI) patients and in bone marrow samples from healthy individuals as controls. The correlation between miR-30a expression and clinical indices that included HbF levels, ferritin, and the frequency of blood transfusions were assessed. We observed increased expression of miR-30a in conjunction with decreased BCL11A expression and elevated γ-globin and HbF levels. Patients with elevated miR-30a expression had a higher percentage of HbF and a lower level of ferritin. In addition, we observed that overexpression of miR-30a in erythroid precursor cells led to reduced BCL11A expression and was associated with elevated γ-globin expression. Our findings showed the importance of miR-30a in BCL11A and HbF regulation, and in the clinical status of patients with β-thalassemia.
Collapse
Affiliation(s)
- Mohammad Ali Gholampour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Asadi
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Naderi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azita Azarkeivan
- Pediatric Hematology-Oncology, Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Thalassemia Clinic, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
19
|
Zhou J, Zhou L, Zhang D, Tang WJ, Tang D, Shi XL, Yang Y, Zhou L, Liu F, Yu Y, Liu P, Tao L, Lu LM. BCL11A Promotes the Progression of Laryngeal Squamous Cell Carcinoma. Front Oncol 2020; 10:375. [PMID: 32266150 PMCID: PMC7098986 DOI: 10.3389/fonc.2020.00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/03/2020] [Indexed: 01/21/2023] Open
Abstract
Background: We report functional and clinical data uncovering the significance of B-cell lymphoma/leukemia 11A (BCL11A) in laryngeal squamous cell carcinoma (LSCC). Methods: We examined BCL11A expression in a cohort of LSCC patients and evaluated the association between BCL11A expression and clinicopathological features. We investigated the consequences of overexpressing BCL11A in the LSCC cell line on proliferation, migration, invasion, cell cycle, chemosensitivity, and growth in vivo. We explored the relationship between BCL11A and MDM2 in LSCC and tumorigenesis pathways by using the Human Cancer PathwayFinder Array. Results: High levels of BCL11A were found in LSCC tissues and were more frequently associated with advanced lymphatic metastasis stages with poor prognoses. BCL11A overexpression enhanced LSCC proliferation in vitro and vivo. A positive correlation between MDM2 and BCL11A expression was identified. Conclusions: These data uncover important functions of BCL11A in LSCC and identify BCL11A as a prognostic biomarker and potential therapeutic target in LSCC.
Collapse
Affiliation(s)
- Jian Zhou
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Liang Zhou
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Duo Zhang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Wei-Jing Tang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Di Tang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Xiao-Ling Shi
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Yue Yang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Lin Zhou
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Liu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Yu
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Lei Tao
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Wang X, Xu Y, Xu K, Chen Y, Xiao X, Guan X. BCL11A confers cell invasion and migration in androgen receptor-positive triple-negative breast cancer. Oncol Lett 2020; 19:2916-2924. [PMID: 32218847 PMCID: PMC7068233 DOI: 10.3892/ol.2020.11383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor clinical prognosis due to a lack of effective therapeutic options. The expression of B-cell lymphoma/leukemia 11A (BCL11A) has been indicated to correlate with TNBC carcinogenesis, though the precise mechanisms of BCL11A-induced tumorigenesis in TNBC remain unclear. Using data retrieved from The Cancer Genome Atlas (TCGA) database, the present study demonstrated that BCL11A expression was upregulated in TNBC, compared with other types of breast cancer. Furthermore, in a tissue microarray of 140 patients with breast cancer, an elevated BCL11A level was correlated with unfavorable overall survival (OS), and exogenous BCL11A-knockdown was subsequently verified to inhibit tumor growth and metastasis in TNBC. Notably, the same tissue microarray revealed that a favorable patient outcome was associated with high expression levels of BCL11A and androgen receptor (AR). Moreover, BCL11A-knockdown significantly inhibited the expression level of AR and further had an influence on proliferation, migration and invasion in TNBC cell lines. Collectively, the results of the current study indicate the function of BCL11A in TNBC progression, and provide new insights into the unique mechanism of BCL11A in AR regulation, emphasizing the significance of more research on BCL11A and AR regulation in TNBC molecular treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yumei Xu
- Department of Gynaecology and Obstetrics, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yajuan Chen
- Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiudi Xiao
- Department of Breast Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
21
|
Lei JJ, Li HQ, Mo ZH, Liu KJ, Zhu LJ, Li CY, Chen WL, Zhang L. Long noncoding RNA CDKN2B-AS1 interacts with transcription factor BCL11A to regulate progression of cerebral infarction through mediating MAP4K1 transcription. FASEB J 2019; 33:7037-7048. [PMID: 30870006 DOI: 10.1096/fj.201802252r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The effective therapeutic approach of cerebral infarction is limited because of its underlying complexity. Recently, multiple long noncoding RNAs (lncRNAs) have been identified in the pathogenesis of cerebral infarction. Here, the current study aims to explore the interaction among lncRNA cyclin-dependent kinase inhibitor-2B-antisense RNA 1 (CDKN2B-AS1), transcription factor B-cell lymphoma/leukemia 11A (BCL11A), and MAPKK kinase kinase 1 (MAP4K1) and further investigate whether they affect cerebral infarction progression. The expression of CDKN2B-AS1, BCL11A, and MAP4K1 was altered in lymphocytes extracted from patients with cerebral infarction. In order to identify their roles in regulatory T (Treg) cells, the proliferation and apoptosis of the CD4+CD25+ Treg cells were examined, and levels of IL-4, IL-10, and TGF-β were determined. Also, the RNA crosstalk among CDKN2B-AS1, BCL11A, and MAP4K1 was validated. Finally, we established a rat model of middle cerebral arterial occlusion to evaluate the neurologic impairment and cerebral infarction volume. The results revealed that lymphocytes in patients with cerebral infarction presented with the up-regulated expression of CDKN2B-AS1. Moreover, BCL11A could specifically bind to CDKN2B-AS1 and MAP4K1 promoter so as to inhibit MAP4K1. Moreover, it was observed that down-regulated CDKN2B-AS1 inhibited CD4+CD25+ Treg-cell proliferation, reduced levels of IL-4, IL-10, and TGF-β and cerebral infarction volume, and elevated MAP4K1 expression. Collectively, our study provides evidence that CDKN2B-AS1 silencing could increase MAP4K1 expression to inhibit the CD4+CD25+ Treg-cell proliferation by reducing enrichment of transcription factor BCL11A, thereby protecting against cerebral infarction progression, highlighting a promising therapeutic strategy for treating cerebral infarction.-Lei, J.-J., Li, H.-Q., Mo, Z.-H., Liu, K.-J., Zhu, L.-J., Li, C.-Y., Chen, W.-L., Zhang, L. Long noncoding RNA CDKN2B-AS1 interacts with transcription factor BCL11A to regulate progression of cerebral infarction through mediating MAP4K1 transcription.
Collapse
Affiliation(s)
- Jun-Jie Lei
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| | - Hui-Qing Li
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| | - Zhi-Huai Mo
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| | - Ke-Jia Liu
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| | - Ling-Juan Zhu
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| | - Chun-Yi Li
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| | - Wen-Li Chen
- Department of Pharmacology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lei Zhang
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; and
| |
Collapse
|
22
|
Gasparello J, Lamberti N, Papi C, Lampronti I, Cosenza LC, Fabbri E, Bianchi N, Zambon C, Dalla Corte F, Govoni M, Reverberi R, Manfredini F, Gambari R, Finotti A. Altered erythroid-related miRNA levels as a possible novel biomarker for detection of autologous blood transfusion misuse in sport. Transfusion 2019; 59:2709-2721. [PMID: 31148196 DOI: 10.1111/trf.15383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Autologous blood transfusion (ABT) is a performance-enhancing method prohibited in sport; its detection is a key issue in the field of anti-doping. Among novel markers enabling ABT detection, microRNAs (miRNAs) might be considered a promising analytical tool. STUDY DESIGN AND METHODS We studied the changes of erythroid-related microRNAs following ABT, to identify novel biomarkers. Fifteen healthy trained males were studied from a population of 24 subjects, enrolled and randomized into a Transfusion (T) and a Control (C) group. Seriated blood samples were obtained in the T group before and after the two ABT procedures (withdrawal, with blood refrigerated or cryopreserved, and reinfusion), and in the C group at the same time points. Traditional hematological parameters were assessed. Samples were tested by microarray analysis of a pre-identified set of erythroid-related miRNAs. RESULTS Hematological parameters showed moderate changes only in the T group, particularly following blood withdrawal. Among erythroid-related miRNAs tested, following ABT a pool of 7 miRNAs associated with fetal hemoglobin and regulating transcriptional repressors of gamma-globin gene was found stable in C and differently expressed in three out of six T subjects in the completed phase of ABT, independently from blood conservation. Particularly, two or more erythropoiesis-related miRNAs within the shortlist constituted of miR-126-3p, miR-144-3p, miR-191-3p, miR-197-3p, miR-486-3p, miR-486-5p, and miR-92a-3p were significantly upregulated in T subjects after reinfusion, with a person-to-person variability but with congruent changes. CONCLUSIONS This study describes a signature of potential interest for ABT detection in sports, based on the analysis of miRNAs associated with erythroid features.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Nicola Lamberti
- Department of Biomedical and Surgical Specialties Sciences, Section of Sport Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Christel Zambon
- Department of Biomedical and Surgical Specialties Sciences, Section of Sport Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Dalla Corte
- Immunohematological and Transfusional Service, University Hospital of Ferrara, Ferrara, Italy
| | - Maurizio Govoni
- Immunohematological and Transfusional Service, University Hospital of Ferrara, Ferrara, Italy
| | - Roberto Reverberi
- Immunohematological and Transfusional Service, University Hospital of Ferrara, Ferrara, Italy
| | - Fabio Manfredini
- Department of Biomedical and Surgical Specialties Sciences, Section of Sport Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnologies, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Fan Y, Bian X, Qian P, Wen J, Yan P, Luo Y, Wu J, Zhang Q. miRNA‑30a‑3p inhibits metastasis and enhances radiosensitivity in esophageal carcinoma by targeting insulin‑like growth factor 1 receptor. Mol Med Rep 2019; 20:81-94. [PMID: 31115568 PMCID: PMC6580000 DOI: 10.3892/mmr.2019.10222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/29/2019] [Indexed: 01/17/2023] Open
Abstract
It has been demonstrated that microRNAs (miRNAs) serve important roles in various biological processes, such as tumorigenesis. In the present study, the role of miR‑30a‑3p in the pathogenesis of esophageal carcinoma (EC) was investigated. Reverse transcription‑quantitative polymerase chain reaction was performed to determine the levels of miR‑30a‑3p expression in EC tissues and cell lines. Then, the effects of miR‑30a‑3p on the migration, invasion and radiosensitivity of EC cells were investigated using scratch‑wound, Transwell and radiosensitivity assays, respectively. A dual‑luciferase reporter assay was performed to determine potential interactions between miR‑30a‑3p and the 3'‑untranslated region (3'‑UTR) of insulin‑like growth factor 1 receptor (IGF‑1R). The results demonstrated that the levels of miR‑30a‑3p expression in EC tissues and cell lines were significantly decreased compared with those in paired healthy tissues and a human esophageal epithelial cell line. Upregulation of miR‑30a‑3p expression significantly suppressed migration, invasion and epithelial‑mesenchymal transition (EMT), and enhanced radiosensitivity in EC cells. Analysis of luciferase activity demonstrated that miR‑30a‑3p interacted with the 3'‑UTR of IGF‑1R, and knockdown of IGF‑1R induced similar effects on the migration, invasion, EMT and radiosensitivity of EC cells. The results indicated that miR‑30a‑3p suppressed metastasis and enhanced the radiosensitivity of EC cells via downregulation IGF‑1R, suggesting that miR‑30a‑3p may be a potential therapeutic target in the treatment of EC.
Collapse
Affiliation(s)
- Yanxin Fan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiuhua Bian
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Pudong Qian
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jing Wen
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Pengwei Yan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yanhong Luo
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jing Wu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Qian Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
24
|
Zhu L, Pan R, Zhou D, Ye G, Tan W. BCL11A enhances stemness and promotes progression by activating Wnt/β-catenin signaling in breast cancer. Cancer Manag Res 2019; 11:2997-3007. [PMID: 31114347 PMCID: PMC6489585 DOI: 10.2147/cmar.s199368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Breast cancer has become the most common malignant disease threatening women’s health. The cancer stem cell (CSC) has been recognized as a small subpopulation of cancer cells possesses stem cell properties, which is crucial in tumorigenicity, tumor invasion, drug resistance, and metastasis. The BCL11A plays a crucial role in breast cancer progression. To investigate the effect of BCL11A, a functional oncogene, we focused on its maintenance ability of stemness in breast cancer stem cells. Methods: We assessed the BCL11A expression level in tumor and non-tumor tissues using RT-qPCR and IHC. We subsequently established BCL11A-modulating breast cancer cell lines MDA-MB-231 and MCF-7. CCK8, colony formation assays, and xenograft model were used to determine the effect of BCL11A on tumorigenicity. Transwell assay and lung metastasis model in vivo were conducted to validate its function in metastasis. Its effect on stemness was assessed by flow cytometry and mammosphere formation. Western blot further characterized the importance of Wnt/β-catenin signaling in BCL11A-regulated cancer cell stemness. Results: A higher level of BCL11A was detected in clinical breast cancer samples. BCL11A promoted tumor formation, cancer cell mobility, spheroid forming, and epithelial-mesenchymal transition by activating the Wnt/β-catenin signaling. In addition, BCL11A was associated with lung metastasis and increased the breast cancer cells stemness. BCL11A high expression (BCL11Ahigh) cancer cells exhibited stem cell-like properties compared with BCL11Alow cells, including a higher percentage of CD24low/CD44high subpopulation, self-renewal spheroids formation, and higher tumorigenicity. Our studies demonstrated that the Wnt/β-catenin signaling activated by BCL11A plays a potential role in the initiation of the renewal of breast cancer stem cells. Conclusions: BCL11A not only functions in breast cancer carcinogenesis but also enhanced the stemness of breast cancer through activating Wnt/β-catenin signaling, and may become a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Lewei Zhu
- Department of Breast Surgery, The First People's Hospital, Foshan, Guangdong, People's Republic of China
| | - Ruilin Pan
- Department of Breast Surgery, The First People's Hospital, Foshan, Guangdong, People's Republic of China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital, Foshan, Guangdong, People's Republic of China
| | - Guolin Ye
- Department of Breast Surgery, The First People's Hospital, Foshan, Guangdong, People's Republic of China
| | - Weige Tan
- Breast Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
26
|
Zhu S, Jiang L, Wang L, Wang L, Zhang C, Ma Y, Huang T. Identification of key genes and specific pathways potentially involved in androgen-independent, mitoxantrone-resistant prostate cancer. Cancer Manag Res 2019; 11:419-430. [PMID: 30655694 PMCID: PMC6322516 DOI: 10.2147/cmar.s179467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Resistance to mitoxantrone (MTX), an anthracenedione antineoplastic agent used in advanced and metastatic androgen-refractory prostate cancer (PCa), seriously limits therapeutic success. Methods Xenografts from two human PCa cell lines (VCaP and CWR22) were established in male severe combined immunodeficiency mice, and MTX was administered, with or without concurrent castration, three times a week until tumors relapsed. Microarray technology was used to screen for differentially expressed genes (DEGs) in androgen-independent, MTX-resistant PCa xenografts. Gene expression profiles of MTX-treatment xenografts and their respective parental cell lines were performed using an Agilent whole human genome oligonucleotide microarray and analyzed using Ingenuity Pathway Analysis software. Results A total of 636 genes were differentially expressed (fold change ≥1.5; P<0.05) in MTX-resistant castration-resistant prostate cancer (CRPC) xenografts. Of these, 18 were selected to be validated and showed that most of these genes exhibited a transcriptional profile similar to that seen in the microarray (Pearson’s r=0.87). Western blotting conducted with a subset of genes deregulated in MTX-resistant CRPC tumors was shown through network analysis to be involved in androgen synthesis, drug efflux, ATP synthesis, and vascularization. Conclusion The present data provide insight into the genetic alterations underlying MTX resistance in androgen-independent PCa and highlight potential targets to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Lili Jiang
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China, .,Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan, China
| | - Liuyan Wang
- Department of Medicine, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Lingli Wang
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Cong Zhang
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Yu Ma
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Tao Huang
- Oncological Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China,
| |
Collapse
|
27
|
Hassan FM, Al-Zahrani FM. BCL11A rs1427407 Genotypes in Sickle Cell Anemia Patients Undergo to Stroke Problems in Sudan. Korean J Fam Med 2018; 40:53-57. [PMID: 30563311 PMCID: PMC6351796 DOI: 10.4082/kjfm.17.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Background Sickle cell disease is an autosomal recessive condition that results from the presence of a mutated form of hemoglobin. Some genetic variants of BCL11A are amenable to therapeutic manipulation. The present study investigated the relationship of a BCL11A variant (rs1427407) and its plasma levels with vaso-occlusive crises and stroke complications among patients in Sudan with sickle cell disease. Methods This cross-sectional study was performed between June 2014 and October 2016. The subjects included 166 patients who were diagnosed with sickle cell disease and 35 healthy control subjects, who were grouped according to sex and age (<15 years, 15–25 years, and >25 years). All patients and/or their guardians provided informed consent. Blood samples were collected from the patients and controls under aseptic conditions. Results Plasma BCL11A levels were elevated in cases with vaso-occlusive crises that lasted for >3 years. In addition, plasma BCL11A levels were high in cases with the GG genotype (vs. GT and TT) at rs1427407. Furthermore, the BCL11A rs1427407 GG/GT genotypes increased the risk of vaso-occlusive crisis and stroke in the patients with sickle cell disease. Conclusion The BCL11A variant (rs1427407) and its plasma levels were associated with vaso-occlusive crisis and stroke in patients with sickle cell disease.
Collapse
Affiliation(s)
- Fathelrahman Mahdi Hassan
- Department of Clinical Laboratory Science, College of Applied Medical Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Mousa Al-Zahrani
- Department of Clinical Laboratory Science, College of Applied Medical Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
28
|
Świtlik W, Karbownik MS, Suwalski M, Kozak J, Szemraj J. miR-30a-5p together with miR-210-3p as a promising biomarker for non-small cell lung cancer: A preliminary study. Cancer Biomark 2018; 21:479-488. [PMID: 29103030 DOI: 10.3233/cbm-170767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although an immense effort has been made to develop novel diagnostic methods and treatment strategies for non-small cell lung cancer (NSCLC), the survival rate of this disease has remained virtually unchanged. Small non-coding RNAs called microRNAs (miRNAs) have appeared to be very promising biomarkers of cancer including NSCLC. OBJECTIVE We investigated the expression level of six miRNAs, and subsequently we evaluated their diagnostic ability and their clinical significance. METHODS We performed an analysis in 50 paired cancer and non-cancerous lung tissue samples collected from NSCLC patients. The RT-qPCR technique was used to investigate the expression profile. RESULTS Obtained results indicate that miR-30a-5p, miR-126-3p and miR-486-5p are downregulated, while miR-205-5p and miR-210-3p are upregulated in NSCLC tissue. Moreover, performed stepwise discriminant analysis determined the model including miR-30a-5p and miR-210-3p which tested on the test set (n= 30) revealed an AUC of 0.969 and provided 100% sensitivity and 80% specificity in discriminating NSCLC tissue from non-cancerous lung tissue. CONCLUSIONS The present preliminary study demonstrated that five tested miRNAs were deregulated in cancer tissue. Moreover, miR-30a-5p together with miR-210-3p with excellent sensitivity and acceptable specificity may distinguish cancer tissue form non-cancerous tissue and thus may become a potential diagnostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Weronika Świtlik
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| | | | - Michał Suwalski
- Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn, Tuszyn, Poland
| | - Józef Kozak
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Meng X, Jin-Cheng G, Jue Z, Quan-Fu M, Bin Y, Xu-Feng W. Protein-coding genes, long non-coding RNAs combined with microRNAs as a novel clinical multi-dimension transcriptome signature to predict prognosis in ovarian cancer. Oncotarget 2017; 8:72847-72859. [PMID: 29069830 PMCID: PMC5641173 DOI: 10.18632/oncotarget.20457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is prevalent in women which is usually diagnosed at an advanced stage with a high mortality rate. The aim of this study is to investigate protein-coding gene, long non-coding RNA, and microRNA associated with the prognosis of patients with ovarian serous carcinoma by mining data from TCGA (The Cancer Genome Atlas) public database. The clinical data of ovarian serous carcinoma patients was downloaded from TCGA database in September, 2016. The mean age and survival time of 407 patients with ovarian serous carcinoma were 59.71 ± 11.54 years and 32.98 ± 26.66 months. Cox's proportional hazards regression analysis was conducted to analyze genes that were significantly associated with the survival of ovarian serous carcinoma patients in the training group. Using the random survival forest algorithm, Kaplan-Meier and ROC analysis, we kept prognostic genes to construct the multi-dimensional transcriptome signature with max area under ROC curve (AUC) (0.69 in the training group and 0.62 in the test group). The selected signature composed by VAT1L, CALR, LINC01456, RP11-484L8.1, MIR196A1 and MIR148A, separated the training group patients into high-risk or low-risk subgroup with significantly different survival time (median survival: 35.3 months vs. 64.9 months, P < 0.001). The signature was validated in the test group showing similar prognostic values (median survival: 41.6 months in high-risk vs. 57.4 months in low-risk group, P=0.018). Chi-square test and multivariable Cox regression analysis showed that the signature was an independent prognostic factor for patients with ovarian serous carcinoma. Finally, we validated the expression of the genes experimentally.
Collapse
Affiliation(s)
- Xu Meng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guo Jin-Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Zhang Jue
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ma Quan-Fu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yan Bin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Wu Xu-Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
30
|
A systems medicine approach for finding target proteins affecting treatment outcomes in patients with non-Hodgkin lymphoma. PLoS One 2017; 12:e0183969. [PMID: 28892521 PMCID: PMC5593188 DOI: 10.1371/journal.pone.0183969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Autoantibody profiling with a systems medicine approach can help identify critical dysregulated signaling pathways (SPs) in cancers. In this way, immunoglobulins G (IgG) purified from the serum samples of 92 healthy controls, 10 pre-treated (PR) non-Hodgkin lymphoma (NHL) patients, and 20 NHL patients who underwent chemotherapy (PS) were screened with a phage-displayed random peptide library. Protein-protein interaction networks of the PR and PS groups were analyzed and visualized by Gephi. The results indicated AXIN2, SENP2, TOP2A, FZD6, NLK, HDAC2, HDAC1, and EHMT2, in addition to CAMK2A, PLCG1, PLCG2, GRM5, GRIN2B, GRIN2D, CACNA2D3, and SPTAN1 as hubs in 11 and 7 modules of PR and PS networks, respectively. PR- and PS-specific hubs were evaluated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. The PR-specific hubs were involved in Wnt SP, signaling by Notch1 in cancer, telomere maintenance, and transcriptional misregulation. In contrast, glutamate receptor SP, Fc receptor-related pathways, growth factors-related SPs, and Wnt SP were statistically significant enriched pathways, based on the pathway analysis of PS hubs. The results revealed that the most PR-specific proteins were associated with events involved in tumor development, while chemotherapy in the PS group was associated with side effects of drugs and/or cancer recurrence. As the findings demonstrated, PR- and PS-specific proteins in this study can be promising therapeutic targets in future studies.
Collapse
|
31
|
Xu L, Wu H, Wu X, Li Y, He D. The expression pattern of Bcl11a, Mdm2
and Pten
genes in B-cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2017; 14:e124-e128. [DOI: 10.1111/ajco.12690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ling Xu
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| | - Hong Wu
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| | - Xiuli Wu
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| | - Yangqiu Li
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou PR China
| | - Dongmei He
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| |
Collapse
|
32
|
Genetic polymorphisms and plasma levels of BCL11A contribute to the development of laryngeal squamous cell carcinoma. PLoS One 2017; 12:e0171116. [PMID: 28225775 PMCID: PMC5321498 DOI: 10.1371/journal.pone.0171116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/31/2016] [Indexed: 11/19/2022] Open
Abstract
Objective We investigated the association between B-cell lymphoma/leukaemia 11A (BCL11A) rs11886868 and rs4671393 polymorphism, plasma BCL11A concentration, and the hazard of developing laryngeal squamous cell carcinoma (LSCC). Participants and method In this research, 330 LSCC patients, 310 healthy controls, and 155 vocal leukoplakia patients were genotyped for the BCL11A (rs11886868 C/T and rs4671393 A/G) genotypes by pyrosequencing; the BCL11A concentration was measured using ELISA. Results LSCC Patients had a notably higher occurrence of CT at rs11886868 (OR = 2.64, P = 0.025) than the control group; they also had higher GG at rs4671393 (OR = 2.53, P = 0.018). Advanced (III and IV) stage LSCC patients had a notably greater frequency of CT at rs11886868 than those with initial (I and II) stage LSCC (OR = 2.71, P = 0.044 vs. OR = 2.58, P = 0.051). Additionally, there was a 1.59 fold increase in susceptibility for initial stage LSCC related to the G allele (AG/GG) at rs4671393 (P = 0.005); while for patients of advanced stage LSCC the OR was 1.73 (P = 0.002). Moreover, the OR of lymph node metastasis patients at rs4671393 G alleles was 2.41 (P < 0.01); it was 1.38 (P = 0.035) in patients without lymph metastasis. Patients with high incidences of the rs4671393 variation genotype had high plasma BCL11A levels. Conclusions BCL11A rs11886868 and rs4671393 genotype variations and correspondingly high BCL11A plasma levels are related to LSCC, besides, differences in plasma levels and genotype distribution may be related to lymph node metastasis status and the stage of LSCC.
Collapse
|
33
|
Jiang M, Zeng Q, Dai S, Liang H, Dai F, Xie X, Lu K, Gao C. Comparative analysis of hepatocellular carcinoma and cirrhosis gene expression profiles. Mol Med Rep 2016; 15:380-386. [PMID: 27959423 PMCID: PMC5355740 DOI: 10.3892/mmr.2016.6021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
Gene expression data of hepatocellular carcinoma (HCC) was compared with that of cirrhosis (C) to identify critical genes in HCC. A total of five gene expression data sets were downloaded from Gene Expression Omnibus. HCC and healthy samples were combined as dataset HCC, whereas cirrhosis samples were included in dataset C. A network was constructed for dataset HCC with the package R for performing Weighted Gene Co-expression Network Analysis. Modules were identified by cluster analysis with the packages flashClust and dynamicTreeCut. Hub genes were screened out by calculating connectivity. Functional annotations were assigned to the hub genes using the Database for Annotation, Visualization and Integration Discovery, and functional annotation networks were visualized with Cytoscape. Following the exclusion of outlier samples, 394 HCC samples and 47 healthy samples were included in dataset HCC and 233 cirrhosis samples were included in dataset C. A total of 6 modules were identified in the weighted gene co-expression network of dataset HCC (blue, brown, turquoise, green, red and yellow). Modules blue, brown and turquoise had high preservation whereas module yellow exhibited the lowest preservation. These modules were associated with transcription, mitosis, cation transportation, cation homeostasis, secretion and regulation of cyclase activity. Various hub genes of module yellow were cytokines, including chemokine (C-C motif) ligand 22 and interleukin-19, which may be important in the development of HCC. Gene expression profiles of HCC were compared with those of cirrhosis and numerous critical genes were identified, which may contribute to the progression of HCC. Further studies on these genes may improve the understanding of HCC pathogenesis.
Collapse
Affiliation(s)
- Mingming Jiang
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Qingfang Zeng
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Suiping Dai
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Huixia Liang
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Fengying Dai
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Xueling Xie
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Kunlin Lu
- Department of Obstetrics and Gynecology, The 180th Hospital of Chinese People's Liberation Army, Quanzhou, Fujian 362000, P.R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
34
|
Zhang X, Wang L, Wang Y, Shi S, Zhu H, Xiao F, Yang J, Yang A, Hao X. Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression. Oncol Rep 2016; 36:2349-56. [DOI: 10.3892/or.2016.5018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
|
35
|
Yin J, Zhang F, Tao H, Ma X, Su G, Xie X, Xu Z, Zheng Y, Liu H, He C, Mao ZJ, Wang Z, Chang W, Gale RP, Wu D, Yin B. BCL11A expression in acute phase chronic myeloid leukemia. Leuk Res 2016; 47:88-92. [PMID: 27285855 DOI: 10.1016/j.leukres.2016.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/08/2023]
Abstract
Chronic myeloid leukemia (CML) has chronic and acute phases. In chronic phase myeloid differentiation is preserved whereas in acute phase myeloid differentiation is blocked. Acute phase CML resembles acute myeloid leukemia (AML). Chronic phase CML is caused by BCR-ABL1. What additional mutation(s) cause transition to acute phase is unknown and may differ in different persons with CML. BCL11A encodes a transcription factor and is aberrantly-expressed in several haematological and solid neoplasms. We analyzed BCL11A mRNA levels in subjects with chronic and acute phase CML. BCL11A transcript levels were increased in subjects with CML in acute phase compared with those in normals and in subjects in chronic phase including some subjects studied in both phases. BCL11A mRNA levels were correlated with percent bone marrow blasts and significantly higher in lymphoid versus myeloid blast crisis. Differentiation of K562 with butyric acid, a CML cell line, decreased BCL11A mRNA levels. Cytology and flow cytometry analyses showed that ectopic expression of BCL11A in K562 cells blocked differentiation. These data suggest BCL11A may operate in transformation of CML from chronic to acute phase in some persons.
Collapse
Affiliation(s)
- Jiawei Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Fan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Huiquan Tao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao Ma
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu Province, China
| | - Guangsong Su
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaoli Xie
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhongjuan Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu Province, China
| | - Chao He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengwei Jenny Mao
- Seattle Cancer Center Alliance, University of Washington Medical Center, Seattle, WA, USA
| | - Zhiwei Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China
| | - Weirong Chang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu Province, China
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu Province, China.
| | - Bin Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu Province, China; Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
36
|
Identification of More Feasible MicroRNA-mRNA Interactions within Multiple Cancers Using Principal Component Analysis Based Unsupervised Feature Extraction. Int J Mol Sci 2016; 17:ijms17050696. [PMID: 27171078 PMCID: PMC4881522 DOI: 10.3390/ijms17050696] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 12/28/2022] Open
Abstract
MicroRNA(miRNA)–mRNA interactions are important for understanding many biological processes, including development, differentiation and disease progression, but their identification is highly context-dependent. When computationally derived from sequence information alone, the identification should be verified by integrated analyses of mRNA and miRNA expression. The drawback of this strategy is the vast number of identified interactions, which prevents an experimental or detailed investigation of each pair. In this paper, we overcome this difficulty by the recently proposed principal component analysis (PCA)-based unsupervised feature extraction (FE), which reduces the number of identified miRNA–mRNA interactions that properly discriminate between patients and healthy controls without losing biological feasibility. The approach is applied to six cancers: hepatocellular carcinoma, non-small cell lung cancer, esophageal squamous cell carcinoma, prostate cancer, colorectal/colon cancer and breast cancer. In PCA-based unsupervised FE, the significance does not depend on the number of samples (as in the standard case) but on the number of features, which approximates the number of miRNAs/mRNAs. To our knowledge, we have newly identified miRNA–mRNA interactions in multiple cancers based on a single common (universal) criterion. Moreover, the number of identified interactions was sufficiently small to be sequentially curated by literature searches.
Collapse
|
37
|
Gupta S, Ross KE, Tudor CO, Wu CH, Schmidt CJ, Vijay-Shanker K. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases. J Biomed Semantics 2016; 7:9. [PMID: 27216254 PMCID: PMC4877743 DOI: 10.1186/s13326-015-0044-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs are increasingly being appreciated as critical players in human diseases, and questions concerning the role of microRNAs arise in many areas of biomedical research. There are several manually curated databases of microRNA-disease associations gathered from the biomedical literature; however, it is difficult for curators of these databases to keep up with the explosion of publications in the microRNA-disease field. Moreover, automated literature mining tools that assist manual curation of microRNA-disease associations currently capture only one microRNA property (expression) in the context of one disease (cancer). Thus, there is a clear need to develop more sophisticated automated literature mining tools that capture a variety of microRNA properties and relations in the context of multiple diseases to provide researchers with fast access to the most recent published information and to streamline and accelerate manual curation. Methods We have developed miRiaD (microRNAs in association with Disease), a text-mining tool that automatically extracts associations between microRNAs and diseases from the literature. These associations are often not directly linked, and the intermediate relations are often highly informative for the biomedical researcher. Thus, miRiaD extracts the miR-disease pairs together with an explanation for their association. We also developed a procedure that assigns scores to sentences, marking their informativeness, based on the microRNA-disease relation observed within the sentence. Results miRiaD was applied to the entire Medline corpus, identifying 8301 PMIDs with miR-disease associations. These abstracts and the miR-disease associations are available for browsing at http://biotm.cis.udel.edu/miRiaD. We evaluated the recall and precision of miRiaD with respect to information of high interest to public microRNA-disease database curators (expression and target gene associations), obtaining a recall of 88.46–90.78. When we expanded the evaluation to include sentences with a wide range of microRNA-disease information that may be of interest to biomedical researchers, miRiaD also performed very well with a F-score of 89.4. The informativeness ranking of sentences was evaluated in terms of nDCG (0.977) and correlation metrics (0.678-0.727) when compared to an annotator’s ranked list. Conclusions miRiaD, a high performance system that can capture a wide variety of microRNA-disease related information, extends beyond the scope of existing microRNA-disease resources. It can be incorporated into manual curation pipelines and serve as a resource for biomedical researchers interested in the role of microRNAs in disease. In our ongoing work we are developing an improved miRiaD web interface that will facilitate complex queries about microRNA-disease relationships, such as “In what diseases does microRNA regulation of apoptosis play a role?” or “Is there overlap in the sets of genes targeted by microRNAs in different types of dementia?”.” Electronic supplementary material The online version of this article (doi:10.1186/s13326-015-0044-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samir Gupta
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19711, USA.
| | - Karen E Ross
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Catalina O Tudor
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19711, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Cathy H Wu
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19711, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Carl J Schmidt
- Department of Food and Animal Sciences, University of Delaware, Newark, DE, 19711, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19711, USA
| |
Collapse
|
38
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
39
|
Tao H, Ma X, Su G, Yin J, Xie X, Hu C, Chen Z, Tan D, Xu Z, Zheng Y, Liu H, He C, Mao ZJ, Yin H, Wang Z, Chang W, Gale RP, Chen Z, Wu D, Yin B. BCL11A expression in acute myeloid leukemia. Leuk Res 2015; 41:71-5. [PMID: 26707798 DOI: 10.1016/j.leukres.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND BCL11A encodes a C2H2 type zinc-finger protein. During normal haematopoietic cell differentiation BCL11A expression is down-regulated. Data in mice suggest up-regulation of BCL11A is involved in the pathogenesis of myeloid leukaemias. BCL11A expression in persons with acute myeloid leukaemia (AML) is not systematically studied. OBJECTIVE Interrogate associations between BCL11A expression at diagnosis and clinical and laboratory valuables and outcomes in newly-diagnosed persons with AML. METHODS We determined BCL11A mRNA levels in bone marrow and blood mononuclear cells in 292 consecutive newly-diagnosed subjects with AML by reverse transcript and real-time polymerase chain reaction. Data were compared to mRNA levels in bone marrow cells of normals. RESULTS Subjects with BCL11A transcript levels at diagnosis exceeding the median value of 2.434 (±3.423 SD; 25th-75th inter-quartile range, 1.33-4.29) had higher WBC levels, a greater proportion of bone marrow myeloblasts, were more likely to be FAB M0 subtype, less likely to be FAB M3 subtype, more likely to be in the intermediate cytogenetic risk cohort, less likely to have a complex karyotype and more likely to have DNMT3A(R882) and FLT3-ITD mutations than subjects with transcript levels below the median value. In 89 subjects receiving conventional induction chemotherapy the complete remission rate was 54% (95% confidence interval [CI]; 33, 75%) in the lower BCL11A cohort and 65% (45, 85%; P=0.26) in the higher BCL11A cohort. 3 year survival was 33% (2, 65%) in the lower BCL11A cohort and 15% (0, 39%; P=0.35) in the high BCL11A cohort. CONCLUSION BCL11A transcript levels at diagnosis was significantly associated with several clinical and laboratory variables. There were also non-significant associations with complete remission rate and survival. These data suggest a possible role for BCL11A expression in AML biology.
Collapse
Affiliation(s)
- Huiquan Tao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Xiao Ma
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Guangsong Su
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Jiawei Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Xiaoli Xie
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Chenxi Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Zheng Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Dongming Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Zhongjuan Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Chao He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Zhengwei Jenny Mao
- Seattle Cancer Center Alliance, University of Washington Medical Center, Seattle, WA, USA
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Zhiwei Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Weirong Chang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Zixing Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Bin Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China; Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, Jiangsu province, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu province, China.
| |
Collapse
|
40
|
Zhang N, Jiang BY, Zhang XC, Xie Z, Su J, Zhang Q, Han JF, Tu HY, Wu YL. The BCL11A-XL expression predicts relapse in squamous cell carcinoma and large cell carcinoma. J Thorac Dis 2015; 7:1630-6. [PMID: 26543611 DOI: 10.3978/j.issn.2072-1439.2015.09.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND The B cell leukemia 11A (BCL11A) gene was identified as a proto-oncogene in hematopoietic cell malignancies and breast cancer. Alternative RNA splicing generates three main transcripts designated as Extra-long (XL; 5.9 kb/125 kD), Long (L; 3.8 kb/100 kD) and Short (S; 2.4 kb/35 kD). Our previous study results demonstrated that BCL11A expression levels were specifically upregulated in non-small cell lung cancer (NSCLC) tissues, especially in squamous cell carcinoma (SCC) and large cell carcinoma (LCC). METHODS In this study, we detected the BCL11A protein isoforms with immunohistochemistry (IHC) method in NSCLC with in a cohort (n=40) of BCL11A overexpression NSCLC patients. All 40 cases were BCL11A overexpression including 27 SCCs, 8 LCCs and 5 adenocarcinomas (ACs). Relationship between BCL11A isoforms and the clinicopathological parameters were also analyzed. RESULTS Compare to the BCL11A-L and S isoforms, the BCL11A-XL isoform was specifically expressed in SCC and LCC (P=0.006). There were 19 (19/40, 47.5%) cases positive for BCL11A-XL expression, SCC accounted for 63.2% (12/19) and LCC accounted for 36.8% (7/19). The survival analysis indicated that BCL11A-XL expression was an independent prognostic factor for disease-free survival (DFS) [hazards ratio (HR) 0.246; 95% confidence interval (CI), 0.065-0.939, P=0.040] but not for overall survival (OS) in patients with SCC and LCC. CONCLUSIONS Our results demonstrated that the BCL11A-XL isoform might be a potential prognostic biomarker of SCC and LCC.
Collapse
Affiliation(s)
- Na Zhang
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ben-Yuan Jiang
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi Xie
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Su
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qi Zhang
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Fei Han
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yan Tu
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- 1 Southern Medical University, Graduate School, Guangzhou, China ; 2 Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
41
|
Tang R, Liang L, Luo D, Feng Z, Huang Q, He R, Gan T, Yang L, Chen G. Downregulation of MiR-30a is Associated with Poor Prognosis in Lung Cancer. Med Sci Monit 2015; 21:2514-20. [PMID: 26305739 PMCID: PMC4554363 DOI: 10.12659/msm.894372] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recent reports have suggested that miR-30a plays a tumor-suppressive role in various cancers. However, miR-30a has not been completely studied in non-small lung cancer (NSCLC). Thus, the aim of the present study was to clarify the association between the expression of miR-30a and the clinicopathological features in NSCLC patients. MATERIAL AND METHODS Total RNA of miR-30a was extracted from 125 pairs of NSCLC patients (male 75, female 50) and their matching normal tissues. The miR-30a level was detected by using quantitative real-time polymerase chain reaction (qRT-PCR). Simultaneously, the 2-ΔCq method was used to calculate the correlation between miR-30a expression and the clinicopathological parameters and prognosis of NSCLC patients. RESULTS MiR-30a expression was significantly down-regulated in NSCLC tissues (4.0696±2.4178) compared to their non-tumor lung tissues (7.4530±3.0561, P<0.001). Level of miR-30a was negatively correlated to tumor size (r=-0.197, P=0.028), lymphatic metastasis (r=-0.312, P<0.001), clinical TNM stage (r=-0.299, P=0.001), pathological grading (I/II vs. III, r=-0.224, P=0.001), and histological classification (r=-0.299, P=0.001). Survival time was 3.23±2.18 months in the low miR-30a expression group, remarkably shorter than that of the high expression group (20.72±11.63 months, P<0.001). CONCLUSIONS MiR-30a may be regarded as a tumor suppressor in NSCLC, and it could become a prognostic marker and potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ruixue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Lu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Dianzhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Zhenbo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Qiuxia Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Tingqing Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Lihua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China (mainland)
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Nanning, Guangxi Zhuang, China (mainland)
| |
Collapse
|
42
|
Khaled WT, Choon Lee S, Stingl J, Chen X, Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF, Stratton M, Futreal A, Jenkins NA, Aparicio S, Copeland NG, Watson CJ, Caldas C, Liu P. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun 2015; 6:5987. [PMID: 25574598 PMCID: PMC4338552 DOI: 10.1038/ncomms6987] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here, we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation, whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model, Bcl11a deletion substantially decreases tumour formation, even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level, Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus, BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies.
Collapse
Affiliation(s)
- Walid T. Khaled
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
- These authors contributed equally to this work
| | - Song Choon Lee
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
- These authors contributed equally to this work
| | - John Stingl
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Xiongfeng Chen
- SAIC-Frederic, National Cancer Institute-Frederick, Frederick, Maryland 21701, USA
| | - H. Raza Ali
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fazal Hadi
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Juexuan Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Yong Yu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mike Stratton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Andy Futreal
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Nancy A. Jenkins
- The Methodist Hospital Research Institute, 6670 Bertner Street, Houston, Texas 77030, USA
| | - Sam Aparicio
- Molecular Oncology Department, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Neal G. Copeland
- The Methodist Hospital Research Institute, 6670 Bertner Street, Houston, Texas 77030, USA
| | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK
- Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| |
Collapse
|
43
|
Involvement of p29/SYF2/fSAP29/NTC31 in the progression of NSCLC via modulating cell proliferation. Pathol Res Pract 2015; 211:36-42. [DOI: 10.1016/j.prp.2014.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 06/28/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022]
|
44
|
Wang T, Li F, Tang S. MiR-30a upregulates BCL2A1, IER3 and cyclin D2 expression by targeting FOXL2. Oncol Lett 2014; 9:967-971. [PMID: 25621074 PMCID: PMC4301489 DOI: 10.3892/ol.2014.2723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023] Open
Abstract
FOXL2 is a transcription factor that is essential for ovarian development. Somatic mutations of FOXL2 are associated with ovarian granulosa cell tumorigenesis. In the present study, the expression of FOXL2 was suppressed by microRNAs using the Ago2 knockdown method in COV434 cells. Online bioinformatics tools were utilized to predict that FOXL2 expression may be repressed by miR-30 family members, and dual luciferase assay and western blotting were performed to demonstrate that FOXL2 is a target gene of miR-30a, which is relatively abundant in COV434 cells. Furthermore, miR-30a overexpression upregulates BCL2A1, IER3 and cyclin D2 expression by inhibiting FOXL2. miR-30a is known to function as a tumor suppressor in breast cancer, small cell lung cancer and colorectal carcinoma; however, the present study revealed an opposing function of miR-30a as an oncogene.
Collapse
Affiliation(s)
- Tairen Wang
- Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong 261041, P.R. China
| | - Fei Li
- Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong 261041, P.R. China
| | - Shengjian Tang
- Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
45
|
Biegel JA, Busse TM, Weissman BE. SWI/SNF chromatin remodeling complexes and cancer. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:350-66. [PMID: 25169151 DOI: 10.1002/ajmg.c.31410] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than 20% of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types.
Collapse
|
46
|
Drak Alsibai K. Cancer Metabolic and Immune Reprogramming: The Intimate Interaction Between Cancer Cells and Microenvironment. ACTA ACUST UNITED AC 2014. [DOI: 10.15406/jcpcr.2014.01.00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Zhou H, Chen JH, Hu J, Luo YZ, Li F, Xiao L, Zhong MZ. High expression of Toll-like receptor 5 correlates with better prognosis in non-small-cell lung cancer: an anti-tumor effect of TLR5 signaling in non-small cell lung cancer. J Cancer Res Clin Oncol 2014; 140:633-43. [DOI: 10.1007/s00432-014-1616-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/08/2014] [Indexed: 01/22/2023]
|