1
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
2
|
Yang Y, Gao C, Li Q, Liu Y, Cao J. HMGA2-mediated glutamine metabolism is required for Cd-induced cell growth and cell migration. Toxicology 2024; 507:153899. [PMID: 39032683 DOI: 10.1016/j.tox.2024.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cadmium (Cd) exposure significantly increases the risk of lung cancer. The demand for glutamine is increasing in cancers, including lung cancer. In this study, we investigated the role of glutamine metabolism in Cd-induced cell growth and migration. Firstly, we found that 2 μM Cd-treatment up-regulated the expression of ASCT2 (alanine, serine, cysteine-preferring transporter 2) and ASNS (asparagine synthetase) while downregulating mitochondrial glutaminase GLS1 in A549 cells. The same results were obtained in male BALB/c mice treated with 0.5 and 1 mg Cd/kg body weight. Subsequently, both glutamine deprivation and transfection with siASCT2 revealed that glutamine played a role in Cd-induced cell growth and migration. Furthermore, using 4-PBA (5 mM), an inhibitor of endoplasmic reticulum (ER) stress, Tm (0.1 μg/ml), an inducer of ER stress, siHMGA2, and over-expressing HMGA2 plasmids we demonstrated that ER stress/HMGA2 axis was involved in inducing ASCT2 and ASNS, while inhibiting GLS1. Additionally, the chromatin immunoprecipitation assay using an HMGA2 antibody revealed the direct binding of the HMGA2 to the promoter sequences of the ASCT2, ASNS, and GLS1 genes. Finally, dual luciferase reporter assay determined that HMGA2 increased the transcription of ASCT2 and ASNS while inhibiting the transcription of GLS1. Overall, we found that ER stress-induced HMGA2 controls glutamine metabolism by transcriptional regulation of ASCT2, ASNS and GLS1 to accelerate cell growth and migration during exposure to Cd at low concentrations. This study innovatively revealed the mechanism of Cd-induced cell growth which offers a fresh perspective on preventing Cd toxicity through glutamine metabolism.
Collapse
Affiliation(s)
- Yanqiu Yang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Chunpeng Gao
- Multi-Disciplinary Treatment (MDT) office, Dalian Municipal Central Hospital, Dalian 116003, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
3
|
Yang H, Qiu W, Liu Z. Anoikis-related mRNA-lncRNA and DNA methylation profiles for overall survival prediction in breast cancer patients. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1590-1609. [PMID: 38303479 DOI: 10.3934/mbe.2024069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
As a type of programmed cell death, anoikis resistance plays an essential role in tumor metastasis, allowing cancer cells to survive in the systemic circulation and as a key pathway for regulating critical biological processes. We conducted an exploratory analysis to improve risk stratification and optimize adjuvant treatment choices for patients with breast cancer, and identify multigene features in mRNA and lncRNA transcriptome profiles associated with anoikis. First, the variance selection method filters low information content genes in RNA sequence and then extracts the mRNA and lncRNA expression data base on annotation files. Then, the top ten key mRNAs are screened out through the PPI network. Pearson analysis has been employed to identify lncRNAs related to anoikis, and the prognosis-related lncRNAs are selected using Univariate Cox regression and machine learning. Finally, we identified a group of RNAs (including ten mRNAs and six lncRNAs) and integrated the expression data of 16 genes to construct a risk-scoring system for BRCA prognosis and drug sensitivity analysis. The risk score's validity has been evaluated with the ROC curve, Kaplan-Meier survival curve analysis and decision curve analysis (DCA). For the methylation data, we have obtained 169 anoikis-related prognostic methylation sites, integrated these sites with 16 RNA features and further used the deep learning model to evaluate and predict the survival risk of patients. The developed anoikis feature is demonstrated a consistency index (C-index) of 0.778, indicating its potential to predict the survival probability of breast cancer patients using deep learning methods.
Collapse
Affiliation(s)
- Huili Yang
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Wangren Qiu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Zi Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
4
|
Ma Y, Feng H, Wang Y, Hu L, Su X, Li N, Li X. COTE-1 promotes the proliferation and invasion of small cell lung cancer by regulating autophagy activity via the AMPK/mTOR signaling pathway. Mol Cell Probes 2023; 71:101918. [PMID: 37454876 DOI: 10.1016/j.mcp.2023.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND COTE-1 has been found to promote the proliferation and invasion of non-small cell lung cancer. However, the mechanism of COTE-1 in SCLC is still unclear. Exploring the role of COTE-1 in SCLC is expected to provide a potential target for the prognosis and treatment of SCLC. METHODS The expression of COTE-1 and ki-67 was detected by immunohistochemical staining. PCR detected COTE-1 expression level. Cell proliferation activity was detected by CCK8 assay. A wound healing test detected cell migrative ability. Transwell invasion assay detected cell invasive ability. The numbers of autophagosomes were observed by transmission electron microscopy. WB detected the expression levels of autophagy-related proteins and AMPK/mTOR pathway-related proteins. The effect of COTE-1 expression level on the proliferation of SCLC tumor tissues was investigated by establishing a mouse SCLC xenograft tumor model. RESULTS The expression of COTE-1 in SCLC tissues and cells was higher than that in normal tissues and cells. In SCLC cells with high COTE-1 expression, the expression level of autophagy proteins was notably increased, the number of intracellular autophagosomes increased, and the proliferative activity, migration and invasion abilities were enhanced. COTE-1 promotes autophagy, proliferation, and invasion of SCLC cells under nutrient deprivation by activating the AMPK/mTOR signaling pathway. Activation of autophagy by COTE-1 promotes the proliferation and development of xenograft tumors in a mouse model of SCLC. CONCLUSION COTE-1 promotes the proliferation, migration and invasion of small cell lung cancer by mediating autophagy based on the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, China
| | - Lina Hu
- Department of Pathology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xuan Su
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Nan Li
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xu Li
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, China.
| |
Collapse
|
5
|
Emond R, Griffiths JI, Grolmusz VK, Nath A, Chen J, Medina EF, Sousa RS, Synold T, Adler FR, Bild AH. Cell facilitation promotes growth and survival under drug pressure in breast cancer. Nat Commun 2023; 14:3851. [PMID: 37386030 PMCID: PMC10310817 DOI: 10.1038/s41467-023-39242-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The interplay of positive and negative interactions between drug-sensitive and resistant cells influences the effectiveness of treatment in heterogeneous cancer cell populations. Here, we study interactions between estrogen receptor-positive breast cancer cell lineages that are sensitive and resistant to ribociclib-induced cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition. In mono- and coculture, we find that sensitive cells grow and compete more effectively in the absence of treatment. During treatment with ribociclib, sensitive cells survive and proliferate better when grown together with resistant cells than when grown in monoculture, termed facilitation in ecology. Molecular, protein, and genomic analyses show that resistant cells increase metabolism and production of estradiol, a highly active estrogen metabolite, and increase estrogen signaling in sensitive cells to promote facilitation in coculture. Adding estradiol in monoculture provides sensitive cells with increased resistance to therapy and cancels facilitation in coculture. Under partial inhibition of estrogen signaling through low-dose endocrine therapy, estradiol supplied by resistant cells facilitates sensitive cell growth. However, a more complete blockade of estrogen signaling, through higher-dose endocrine therapy, diminished the facilitative growth of sensitive cells. Mathematical modeling quantifies the strength of competition and facilitation during CDK4/6 inhibition and predicts that blocking facilitation has the potential to control both resistant and sensitive cancer cell populations and inhibit the emergence of a refractory population during cell cycle therapy.
Collapse
Affiliation(s)
- Rena Emond
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Jason I Griffiths
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Vince Kornél Grolmusz
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Jinfeng Chen
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Eric F Medina
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Rachel S Sousa
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Timothy Synold
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute, City of Hope National Medical Center, Monrovia, CA, 91016, USA.
| |
Collapse
|
6
|
Wu Q, Sharma D. Autophagy and Breast Cancer: Connected in Growth, Progression, and Therapy. Cells 2023; 12:1156. [PMID: 37190065 PMCID: PMC10136604 DOI: 10.3390/cells12081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Despite an increase in the incidence of breast cancer worldwide, overall prognosis has been consistently improving owing to the development of multiple targeted therapies and novel combination regimens including endocrine therapies, aromatase inhibitors, Her2-targeted therapies, and cdk4/6 inhibitors. Immunotherapy is also being actively examined for some breast cancer subtypes. This overall positive outlook is marred by the development of resistance or reduced efficacy of the drug combinations, but the underlying mechanisms are somewhat unclear. It is interesting to note that cancer cells quickly adapt and evade most therapies by activating autophagy, a catabolic process designed to recycle damaged cellular components and provide energy. In this review, we discuss the role of autophagy and autophagy-associated proteins in breast cancer growth, drug sensitivity, tumor dormancy, stemness, and recurrence. We further explore how autophagy intersects and reduces the efficacy of endocrine therapies, targeted therapies, radiotherapy, chemotherapies as well as immunotherapy via modulating various intermediate proteins, miRs, and lncRNAs. Lastly, the potential application of autophagy inhibitors and bioactive molecules to improve the anticancer effects of drugs by circumventing the cytoprotective autophagy is discussed.
Collapse
Affiliation(s)
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287-0013, USA
| |
Collapse
|
7
|
Li S, Zeng H, Fan J, Wang F, Xu C, Li Y, Tu J, Nephew KP, Long X. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol 2023; 210:115464. [PMID: 36849062 DOI: 10.1016/j.bcp.2023.115464] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Cancer is characterized by metabolic reprogramming, which is a hot topic in tumor treatment research. Cancer cells alter metabolic pathways to promote their growth, and the common purpose of these altered metabolic pathways is to adapt the metabolic state to the uncontrolled proliferation of cancer cells. Most cancer cells in a state of nonhypoxia will increase the uptake of glucose and produce lactate, called the Warburg effect. Increased glucose consumption is used as a carbon source to support cell proliferation, including nucleotide, lipid and protein synthesis. In the Warburg effect, pyruvate dehydrogenase activity decreases, thereby disrupting the TCA cycle. In addition to glucose, glutamine is also an important nutrient for the growth and proliferation of cancer cells, an important carbon bank and nitrogen bank for the growth and proliferation of cancer cells, providing ribose, nonessential amino acids, citrate, and glycerin necessary for cancer cell growth and proliferation and compensating for the reduction in oxidative phosphorylation pathways in cancer cells caused by the Warburg effect. In human plasma, glutamine is the most abundant amino acid. Normal cells produce glutamine via glutamine synthase (GLS), but the glutamine synthesized by tumor cells is insufficient to meet their high growth needs, resulting in a "glutamine-dependent phenomenon." Most cancers have an increased glutamine demand, including breast cancer. Metabolic reprogramming not only enables tumor cells to maintain the reduction-oxidation (redox) balance and commit resources to biosynthesis but also establishes heterogeneous metabolic phenotypes of tumor cells that are distinct from those of nontumor cells. Thus, targeting the metabolic differences between tumor and nontumor cells may be a promising and novel anticancer strategy. Glutamine metabolic compartments have emerged as promising candidates, especially in TNBC and drug-resistant breast cancer. In this review, the latest discoveries of breast cancer and glutamine metabolism are discussed, novel treatment methods based on amino acid transporters and glutaminase are discussed, and the relationship between glutamine metabolism and breast cancer metastasis, drug resistance, tumor immunity and ferroptosis are explained, which provides new ideas for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Junli Fan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University, Bloomington, IN, USA.
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Andrade de Oliveira K, Sengupta S, Yadav AK, Clarke R. The complex nature of heterogeneity and its roles in breast cancer biology and therapeutic responsiveness. Front Endocrinol (Lausanne) 2023; 14:1083048. [PMID: 36909339 PMCID: PMC9997040 DOI: 10.3389/fendo.2023.1083048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Heterogeneity is a complex feature of cells and tissues with many interacting components. Depending on the nature of the research context, interacting features of cellular, drug response, genetic, molecular, spatial, temporal, and vascular heterogeneity may be present. We describe the various forms of heterogeneity with examples of their interactions and how they play a role in affecting cellular phenotype and drug responses in breast cancer. While cellular heterogeneity may be the most widely described and invoked, many forms of heterogeneity are evident within the tumor microenvironment and affect responses to the endocrine and cytotoxic drugs widely used in standard clinical care. Drug response heterogeneity is a critical determinant of clinical response and curative potential and also is multifaceted when encountered. The interactive nature of some forms of heterogeneity is readily apparent. For example, the process of metastasis has the properties of both temporal and spatial heterogeneity within the host, whereas each individual metastatic deposit may exhibit cellular, genetic, molecular, and vascular heterogeneity. This review describes the many forms of heterogeneity, their integrated activities, and offers some insights into how heterogeneity may be understood and studied in the future.
Collapse
Affiliation(s)
- Karla Andrade de Oliveira
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Department of Biochemistry and Pharmacology, Universidade Federal do Piaui, Piauí, Brazil
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- *Correspondence: Robert Clarke,
| |
Collapse
|
9
|
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol 2022; 12:942064. [PMID: 36059650 PMCID: PMC9434120 DOI: 10.3389/fonc.2022.942064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.
Collapse
Affiliation(s)
- Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, Ellies LG, Wu X, Zhao Q, Zhou C, Wang Y, Sun H. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol 2022; 12:887257. [PMID: 35785192 PMCID: PMC9243538 DOI: 10.3389/fonc.2022.887257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are the three essential amino acids including leucine, isoleucine, and valine. BCAA metabolism has been linked with the development of a variety of tumors. However, the impact of dietary BCAA intake on breast tumor progression and metastasis remains to be fully explored. Here, we unexpectedly find that the elevated BCAA, either in the genetic model or via increasing dietary intake in mice, suppresses the tumor growth and lung metastasis of breast cancer. The survival analysis shows that BCAA catabolic gene expression is strongly associated with long-term oncological outcomes in patients with breast cancer. In Pp2cm knockout mice in which BCAAs accumulate due to the genetic defect of BCAA catabolism, the breast tumor growth is suppressed. Interestingly, while the cell proliferation and tumor vasculature remain unaffected, more cell death occurs in the tumor in Pp2cm knockout mice, accompanied with increased natural killer (NK) cells. Importantly, increasing BCAA dietary intake suppresses breast tumor growth in mice. On the other hand, there are fewer lung metastases from primary breast tumor in Pp2cm knockout mice and the high BCAA diet-fed mice, suggesting high BCAA also suppresses the lung metastasis of breast cancer. Furthermore, low BCAA diet promotes lung colonization of breast cancer cells in tail vein model. The migration and invasion abilities of breast cancer cells are impaired by high concentration of BCAA in culture medium. The suppressed tumor metastasis and cell migration/invasion abilities by elevated BCAA are accompanied with reduced N-cadherin expression. Together, these data show high BCAA suppresses both tumor growth and metastasis of breast cancer, demonstrating the potential benefits of increasing BCAA dietary intake in the treatment of breast cancer.
Collapse
Affiliation(s)
- Rui Chi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Yao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqi He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lesley G. Ellies
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cixiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Cixiang Zhou, ; Ying Wang, ; Haipeng Sun,
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Cixiang Zhou, ; Ying Wang, ; Haipeng Sun,
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Hormones and Development, Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Cixiang Zhou, ; Ying Wang, ; Haipeng Sun,
| |
Collapse
|
11
|
Araújo R, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Front Oncol 2022; 12:786931. [PMID: 35299741 PMCID: PMC8921989 DOI: 10.3389/fonc.2022.786931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone receptor activation is the primary treatment strategy, however, about half of the patients, develop resistance in time. This involves the development of hormone independent tumors that initially are ET-responsive (HI), which may subsequently become resistant (HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and not completely understood. The aim of this work was to characterize the metabolic adaptations accompanying this conversion through the analysis of the polar metabolomes of tumor tissue and non-compromised mammary gland from mice implanted subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate (MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance (NMR) spectroscopy of tissue polar extracts and data mining through multivariate and univariate statistical analysis. Initial results unveiled marked changes between global tumor profiles and non-compromised mammary gland tissues, as expected. More importantly, specific metabolic signatures were found to accompany progression from HD, through HI and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and metabolites related to oxidative stress protection mechanisms. For each transition, sets of polar metabolites are advanced as potential markers of progression, including acquisition of resistance to ET. Putative biochemical interpretation of such signatures are proposed and discussed.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Victoria Fabris
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Luisa A Helguero
- Institute of Biomedicine (iBIMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
12
|
Fan P, Jordan VC. Estrogen Receptor and the Unfolded Protein Response: Double-Edged Swords in Therapy for Estrogen Receptor-Positive Breast Cancer. Target Oncol 2022; 17:111-124. [PMID: 35290592 PMCID: PMC9007905 DOI: 10.1007/s11523-022-00870-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Estrogen receptor α (ERα) is a target for the treatment of ER-positive breast cancer patients. Paradoxically, it is also the initial site for estrogen (E2) to induce apoptosis in endocrine-resistant breast cancer. How ERα exhibits distinct functions, in different contexts, is the focus of numerous investigations. Compelling evidence demonstrated that unfolded protein response (UPR) is closely correlated with ER-positive breast cancer. Treatment with antiestrogens initially induces mild UPR through ERα with activation of three sensors of UPR-PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6)-in the endoplasmic reticulum. Subsequently, these sensors interact with stress-associated transcription factors such as c-MYC, nuclear factor-κB (NF-κB), and hypoxia-inducible factor 1α (HIF1α), leading to acquired endocrine resistance. Paradoxically, E2 further activates sustained secondary UPR via ERα to induce apoptosis in endocrine-resistant breast cancer. Specifically, PERK plays a key role in inducing apoptosis, whereas IRE1α and ATF6 are involved in endoplasmic reticulum stress-associated degradation after E2 treatment. Furthermore, persistent activation of PERK deteriorates stress responses in mitochondria and triggers of NF-κB/tumor necrosis factor α (TNFα) axis, ultimately determining cell fate to apoptosis. The discovery of E2-induced apoptosis has clinical relevance for treatment of endocrine-resistant breast cancer. All of these findings demonstrate that ERα and associated UPR are double-edged swords in therapy for ER-positive breast cancer, depending on the duration and intensity of UPR stress. Herein, we address the mechanistic progress on how UPR leads to endocrine resistance and commits E2 to inducing apoptosis in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, Unit 1354, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, TX 77030, USA.
| |
Collapse
|
13
|
Tsoi H, You CP, Leung MH, Man EPS, Khoo US. Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer. Cancers (Basel) 2022; 14:1251. [PMID: 35267559 PMCID: PMC8909264 DOI: 10.3390/cancers14051251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
Collapse
Affiliation(s)
| | | | | | | | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (C.-P.Y.); (M.-H.L.); (E.P.S.M.)
| |
Collapse
|
14
|
Fan K, Liu Z, Gao M, Tu K, Xu Q, Zhang Y. Targeting Nutrient Dependency in Cancer Treatment. Front Oncol 2022; 12:820173. [PMID: 35178349 PMCID: PMC8846368 DOI: 10.3389/fonc.2022.820173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumor. Growing evidence suggests metabolic changes that support oncogenic progression may cause selective vulnerabilities that can be exploited for cancer treatment. Increasing demands for certain nutrients under genetic determination or environmental challenge enhance dependency of tumor cells on specific nutrient, which could be therapeutically developed through targeting such nutrient dependency. Various nutrients including several amino acids and glucose have been found to induce dependency in genetic alteration- or context-dependent manners. In this review, we discuss the extensively studied nutrient dependency and the biological mechanisms behind such vulnerabilities. Besides, existing applications and strategies to target nutrient dependency in different cancer types, accompanied with remaining challenges to further exploit these metabolic vulnerabilities to improve cancer therapies, are reviewed.
Collapse
Affiliation(s)
- Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, China
| | - Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
15
|
Wan L, Zhang W, Liu Z, Yang Z, Tu C, Li Z. A Novel Glutamine Metabolism-Related Gene Signature in Prognostic Prediction of Osteosarcoma. Int J Gen Med 2022; 15:997-1011. [PMID: 35136353 PMCID: PMC8817953 DOI: 10.2147/ijgm.s352859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lu Wan
- Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Wenchao Zhang
- Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhongyue Liu
- Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhimin Yang
- Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Chao Tu
- Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Correspondence: Chao Tu; Zhihong Li, Tel +86 15974290117; +86 13975112458, Email ;
| | - Zhihong Li
- Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
16
|
Song X, Wang M, Jiao H, Zhao J, Wang X, Lin H. Ghrelin is a signal to facilitate the utilization of fatty acids and save glucose by the liver, skeletal muscle, and adipose tissues in chicks. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159081. [PMID: 34856413 DOI: 10.1016/j.bbalip.2021.159081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Ghrelin, classically known as a central appetite-stimulating hormone, has recently been recognized to play an important role in peripheral tissue energy metabolism. In chicken, contrary to mammal, ghrelin acts as an anorexia signal, increased by fasting and further elevated after refed. In the present study, the effect of ghrelin on glucose/lipid utilization by peripheral tissues was investigated. Injection of exogenous acyl ghrelin reduced plasma triglyceride and glucose levels of chickens at both fasting and fed status. In the in vitro cultured chicken primary hepatocytes, adipocytes, and myoblasts, ghrelin suppressed glucose uptake, stimulated fatty acids uptake and oxidation, and decreased TG content. In hepatocyte, ghrelin increased the activities of LPL and HL, and upregulated the expression levels of gene ACC, CPT1, and PPARα. Ghrelin treatment markedly increased the protein level of p-ACC, PPARγ, PGC1α, and CPT1 in hepatocytes, adipocytes and myoblasts. Inhibition of AMPK activity by Compound C had no influence on glucose uptake by hepatocyte, adipocyte, and myoblast, but further amplified the stimulated fatty acid uptake of adipocyte by ghrelin. The present result demonstrates that ghrelin facilitates the uptake and oxidation of fatty acid and cut down the utilization of glucose by the liver, muscle, and adipose tissues. The result suggests that ghrelin functions as a signal of fatty acid oxidation. The study provides a vital framework for understanding the intrinsic role of ghrelin as a crucial factor in the concerted regulation of metabolic substrate of hepatocytes, adipocytes, and myoblasts.
Collapse
Affiliation(s)
- Xixi Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China; School of Sport Social Science, Shandong Sport University, No. 10600 Shiji Street, Jinan 250100, China
| | - Minghui Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Hongchao Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China.
| |
Collapse
|
17
|
Saatci O, Huynh-Dam KT, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med (Berl) 2021; 99:1691-1710. [PMID: 34623477 PMCID: PMC8611518 DOI: 10.1007/s00109-021-02136-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715, Sumter Street, CLS609D, Columbia, SC, 29208, USA.
| |
Collapse
|
18
|
Petri BJ, Piell KM, South Whitt GC, Wilt AE, Poulton CC, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M, Klinge CM. HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett 2021; 518:152-168. [PMID: 34273466 PMCID: PMC8358706 DOI: 10.1016/j.canlet.2021.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Despite new combination therapies improving survival of breast cancer patients with estrogen receptor α (ER+) tumors, the molecular mechanisms for endocrine-resistant disease remain unresolved. Previously we demonstrated that expression of the RNA binding protein and N6-methyladenosine (m6A) reader HNRNPA2B1 (A2B1) is higher in LCC9 and LY2 tamoxifen (TAM)-resistant ERα breast cancer cells relative to parental TAM-sensitive MCF-7 cells. Here we report that A2B1 protein expression is higher in breast tumors than paired normal breast tissue. Modest stable overexpression of A2B1 in MCF-7 cells (MCF-7-A2B1 cells) resulted in TAM- and fulvestrant- resistance whereas knockdown of A2B1 in LCC9 and LY2 cells restored TAM and fulvestrant, endocrine-sensitivity. MCF-7-A2B1 cells gained hallmarks of TAM-resistant metastatic behavior: increased migration and invasion, clonogenicity, and soft agar colony size, which were attenuated by A2B1 knockdown in MCF-7-A2B1 and the TAM-resistant LCC9 and LY2 cells. MCF-7-A2B1, LCC9, and LY2 cells have a higher proportion of CD44+/CD24-/low cancer stem cells (CSC) compared to MCF-7 cells. MCF-7-A2B1 cells have increased ERα and reduced miR-222-3p that targets ERα. Like LCC9 cells, MCF-7-A2B1 have activated AKT and MAPK that depend on A2B1 expression and are growth inhibited by inhibitors of these pathways. These data support that targeting A2B1 could provide a complimentary therapeutic approach to reduce acquired endocrine resistance.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Gordon C South Whitt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Ali E Wilt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Claire C Poulton
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Matthew A Nystoriak
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Marcin Wysoczynski
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
19
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
21
|
Mishra A, Srivastava A, Pateriya A, Tomar MS, Mishra AK, Shrivastava A. Metabolic reprograming confers tamoxifen resistance in breast cancer. Chem Biol Interact 2021; 347:109602. [PMID: 34331906 DOI: 10.1016/j.cbi.2021.109602] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer among females and the leading cause of cancer-related deaths. Approximately 70 % of breast cancers are estrogen receptor (ER) positive. An ER antagonist such as tamoxifen is used as adjuvant therapy in ER-positive patients. The major problem with endocrine therapy is the emergence of acquired resistance in approximately 40 % of patients receiving tamoxifen. Metabolic alteration is one of the hallmarks of cancer cells. Rapidly proliferating cancer cells require increased nutritional support to fuel various functions such as proliferation, cell migration, and metastasis. Recent studies have established that the metabolic state of cancer cells influences their susceptibility to chemotherapeutic drugs and that cancer cells reprogram their metabolism to develop into resistant phenotypes. In this review, we discuss the major findings on metabolic pathway alterations in tamoxifen-resistant (TAMR) breast cancer and the molecular mechanisms known to regulate the expression and function of metabolic enzymes and the respective metabolite levels upon tamoxifen treatment. It is anticipated that this in-depth analysis of specific metabolic pathways in TAMR cancer might be exploited therapeutically.
Collapse
Affiliation(s)
- Alok Mishra
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anshuman Srivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ankit Pateriya
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anand Kumar Mishra
- Department of Endocrine Surgery, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
22
|
Downregulation of RPS14 inhibits the proliferation and metastasis of estrogen receptor-positive breast cancer cells. Anticancer Drugs 2021; 32:1019-1028. [PMID: 34261921 DOI: 10.1097/cad.0000000000001112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Ribosomal protein S14 (RPS14) is a component of the 40S ribosomal subunit and is considered to be indispensable for ribosomal biogenesis. Previously, we found that RPS14 was significantly downregulated in estrogen receptor-positive (ER+) breast cancer cells following treatment with 4-hydroxytamoxifen (4-OH-TAM). However, its role in breast cancer remains poorly understood. In the present study, we sought to demonstrate, for the first time, that RPS14 is highly expressed in ER+ breast cancer tissues and its downregulation can significantly inhibit the proliferation, cycle, and metastasis of ER+ breast cancer cells, as well as induce cell apoptosis. METHODS Quantitative RT-PCR and western blotting were used to determine the expression of target genes. Herein, lentivirus-mediated small hairpin RNA (shRNA) targeting RPS14 was designed to determine the impact of RPS14 knockdown on ER+ breast cancer cells. Further, bioinformatics analysis was used to reveal the significance of differentially expressed genes in RPS14 knockdown breast cancer cells. RESULTS RPS14 was highly expressed in ER+ breast cancer tissues compared to ER- tissues. The downregulation of RPS14 in two ER+ breast cancer cell lines suppressed cell proliferation, cell cycle and metastasis, and induced apoptosis. Based on bioinformatics analysis, the expression level of several significant genes, such as ASNS, Ret, and S100A4, was altered in breast cancer cells after RPS14 downregulation. Furthermore, the BAG2 and interferon signaling pathways were identified to be significantly activated. CONCLUSIONS The downregulation of RPS14 in ER+ breast cancer cells can inhibit their proliferation and metastasis.
Collapse
|
23
|
Liu Y, Zhu C, Tang L, Chen Q, Guan N, Xu K, Guan X. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci 2021; 17:178-187. [PMID: 33390842 PMCID: PMC7757029 DOI: 10.7150/ijbs.51458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/12/2020] [Indexed: 12/28/2022] Open
Abstract
As a transcription factor and proto-oncogene, MYC is known to be deregulated in a variety of tumors, including breast cancer. However, no consistent conclusion on the role and mechanism of MYC deregulation during breast cancer carcinogenesis has been formed. Here, we used the UALCAN, bc-GenExMiner, TCGA, cBioportal, STRING and Kaplan-Meier Plotter databases to explore the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring and interaction with the cancer stem cells of MYC in breast cancer. We found that the expression of MYC varies in different subtypes of breast cancer, with relatively high frequency in TNBC. As a transcription factor, MYC not only participates in the rewiring of cancer signaling pathways, such as estrogen, WNT, NOTCH and other pathways, but also interacts with cancer stem cells. MYC is significantly positively correlated with breast cancer stem cell markers such as CD44, CD24, and ALDH1. Collectively, our results highlight that MYC plays an important regulatory role in the occurrence of breast cancer, and its amplification can be used as a predictor of diagnosis and prognosis. The interaction between MYC and cancer stem cells may play a crucial role in regulating the initiation and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yiqiu Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lin Tang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qin Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Nan Guan
- College of Letters and Science, University of California, Los Angeles, 405 Hilgard Avenue, California, 90095, USA
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
24
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
25
|
Diaz JE, Ahsen ME, Schaffter T, Chen X, Realubit RB, Karan C, Califano A, Losic B, Stolovitzky G. The transcriptomic response of cells to a drug combination is more than the sum of the responses to the monotherapies. eLife 2020; 9:52707. [PMID: 32945258 PMCID: PMC7546737 DOI: 10.7554/elife.52707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Our ability to discover effective drug combinations is limited, in part by insufficient understanding of how the transcriptional response of two monotherapies results in that of their combination. We analyzed matched time course RNAseq profiling of cells treated with single drugs and their combinations and found that the transcriptional signature of the synergistic combination was unique relative to that of either constituent monotherapy. The sequential activation of transcription factors in time in the gene regulatory network was implicated. The nature of this transcriptional cascade suggests that drug synergy may ensue when the transcriptional responses elicited by two unrelated individual drugs are correlated. We used these results as the basis of a simple prediction algorithm attaining an AUROC of 0.77 in the prediction of synergistic drug combinations in an independent dataset.
Collapse
Affiliation(s)
- Jennifer El Diaz
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,IBM Computational Biology Center, IBM Research, Yorktown Heights, United States
| | - Mehmet Eren Ahsen
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,IBM Computational Biology Center, IBM Research, Yorktown Heights, United States.,Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Thomas Schaffter
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,IBM Computational Biology Center, IBM Research, Yorktown Heights, United States
| | - Xintong Chen
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ronald B Realubit
- Department of Systems Biology, Columbia University, New York, United States.,Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, United States
| | - Charles Karan
- Department of Systems Biology, Columbia University, New York, United States.,Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, United States
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, United States.,Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Medicine, Columbia University, New York, United States
| | - Bojan Losic
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Cancer Immunology, Icahn School of Medicine at Mount Sinai, New York, United States.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,IBM Computational Biology Center, IBM Research, Yorktown Heights, United States.,Department of Systems Biology, Columbia University, New York, United States.,Department of Biomedical Informatics, Columbia University, New York, United States
| |
Collapse
|
26
|
Inhibition of DNA Repair Pathways and Induction of ROS Are Potential Mechanisms of Action of the Small Molecule Inhibitor BOLD-100 in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092647. [PMID: 32947941 PMCID: PMC7563761 DOI: 10.3390/cancers12092647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
BOLD-100, a ruthenium-based complex, sodium trans-[tetrachloridobis (1H-indazole) ruthenate (III)] (also known as IT-139, NKP1339 or KP1339), is a novel small molecule drug that demonstrated a manageable safety profile at the maximum tolerated dose and modest antitumor activity in a phase I clinical trial. BOLD-100 has been reported to inhibit the upregulation of the endoplasmic reticulum stress sensing protein GRP78. However, response to BOLD-100 varies in different cancer models and the precise mechanism of action in high-response versus low-response cancer cells remains unclear. In vitro studies have indicated that BOLD-100 induces cytostatic rather than cytotoxic effects as a monotherapy. To understand BOLD-100-mediated signaling mechanism in breast cancer cells, we used estrogen receptor positive (ER+) MCF7 breast cancer cells to obtain gene-metabolite integrated models. At 100 μM, BOLD-100 significantly reduced cell proliferation and expression of genes involved in the DNA repair pathway. BOLD-100 also induced reactive oxygen species (ROS) and phosphorylation of histone H2AX, gamma-H2AX (Ser139), suggesting disruption of proper DNA surveillance. In estrogen receptor negative (ER-) breast cancer cells, combination of BOLD-100 with a PARP inhibitor, olaparib, induced significant inhibition of cell growth and xenografts and increased gamma-H2AX. Thus, BOLD-100 is a novel DNA repair pathway targeting agent and can be used with other chemotherapies in ER- breast cancer.
Collapse
|
27
|
Alfarsi LH, El Ansari R, Masisi BK, Parks R, Mohammed OJ, Ellis IO, Rakha EA, Green AR. Integrated Analysis of Key Differentially Expressed Genes Identifies DBN1 as a Predictive Marker of Response to Endocrine Therapy in Luminal Breast Cancer. Cancers (Basel) 2020; 12:cancers12061549. [PMID: 32545448 PMCID: PMC7352383 DOI: 10.3390/cancers12061549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
Endocrine therapy is the mainstay of adjuvant treatment for patients with luminal breast cancer. Despite ongoing advances in endocrine therapy to date, a proportion of patients ultimately develop endocrine resistance, resulting in failure of therapy and poor prognosis. Therefore, as part of the growing concept of personalised medicine, the need for identification of predictive markers of endocrine therapy response at an early stage, is recognised. The METABRIC series was used to identify differentially expressed genes (DEGs) in term of response to adjuvant endocrine therapy. Drebrin 1 (DBN1) was identified as a key DEG associated with response to hormone treatment. Next, large, well-characterised cohorts of primary luminal breast cancer with long-term follow-up were assessed at the mRNA and protein levels for the value of DBN1 as a prognostic marker in luminal breast cancer, as well as its potential for predicting the benefit of endocrine therapy. DBN1 positivity was associated with aggressive clinicopathological variables and poor patient outcomes. Importantly, high DBN1 expression predicted relapse patients who were subject to adjuvant endocrine treatment. Our results further demonstrate that DBN1 is an independent prognostic marker in luminal breast cancer. Its association with the response to endocrine therapy and outcome provides evidence for DBN1 as a potential biomarker in luminal breast cancer, particularly for the benefit of endocrine treatment. Further functional investigations into the mechanisms underlying sensitivity to endocrine therapy is required.
Collapse
Affiliation(s)
- Lutfi H. Alfarsi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Brendah K. Masisi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Ruth Parks
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Ian O. Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
- Correspondence: ; Tel.: +44-115-8231407
| |
Collapse
|
28
|
Tsujimura T, Takase O, Yoshikawa M, Sano E, Hayashi M, Hoshi K, Takato T, Toyoda A, Okano H, Hishikawa K. Controlling gene activation by enhancers through a drug-inducible topological insulator. eLife 2020; 9:47980. [PMID: 32369019 PMCID: PMC7200164 DOI: 10.7554/elife.47980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
While regulation of gene-enhancer interaction is intensively studied, its application remains limited. Here, we reconstituted arrays of CTCF-binding sites and devised a synthetic topological insulator with tetO for chromatin-engineering (STITCH). By coupling STITCH with tetR linked to the KRAB domain to induce heterochromatin and disable the insulation, we developed a drug-inducible system to control gene activation by enhancers. In human induced pluripotent stem cells, STITCH inserted between MYC and the enhancer down-regulated MYC. Progressive mutagenesis of STITCH led to a preferential escalation of the gene-enhancer interaction, corroborating the strong insulation ability of STITCH. STITCH also altered epigenetic states around MYC. Time-course analysis by drug induction uncovered deposition and removal of H3K27me3 repressive marks follows and reflects, but does not precede and determine, the expression change. Finally, STITCH inserted near NEUROG2 impaired the gene activation in differentiating neural progenitor cells. Thus, STITCH should be broadly useful for functional genetic studies.
Collapse
Affiliation(s)
- Taro Tsujimura
- Department of iPS Cell Research & Epigenetic Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Takase
- Department of iPS Cell Research & Epigenetic Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Yoshikawa
- Department of iPS Cell Research & Epigenetic Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Etsuko Sano
- Department of iPS Cell Research & Epigenetic Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Matsuhiko Hayashi
- Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Kazuto Hoshi
- Division of Tissue Engineering, University of Tokyo Hospital, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, University of Tokyo Hospital, Tokyo, Japan
| | - Tsuyoshi Takato
- Division of Tissue Engineering, University of Tokyo Hospital, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, University of Tokyo Hospital, Tokyo, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Hishikawa
- Department of iPS Cell Research & Epigenetic Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Zhang T, Li N, Sun C, Jin Y, Sheng X. MYC and the unfolded protein response in cancer: synthetic lethal partners in crime? EMBO Mol Med 2020; 12:e11845. [PMID: 32310340 PMCID: PMC7207169 DOI: 10.15252/emmm.201911845] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factors of the MYC family play pivotal roles in the initiation and progression of human cancers. High oncogenic level of MYC invades low‐affinity sites and enhancer sequences, which subsequently alters the transcriptome, causes metabolic imbalance, and induces stress response. The endoplasmic reticulum (ER) not only plays a central role in maintaining proteostasis, but also contributes to other key biological processes, including Ca2+ metabolism and the synthesis of lipids and glucose. Stress conditions, such as shortage in glucose or oxygen and disruption of Ca2+ homeostasis, may perturb proteostasis and induce the unfolded protein response (UPR), which either restores homeostasis or triggers cell death. Crucial roles of ER stress and UPR signaling have been implicated in various cancers, from oncogenesis to treatment response. Here, we summarize the current knowledge on the interaction between MYC and UPR signaling, and its contribution to cancer development. We also discuss the potential of targeting key UPR signaling nodes as novel synthetic lethal strategies in MYC‐driven cancers.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Xia Sheng
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Qian JX, Yu M, Sun Z, Jiang AM, Long B. A 17-gene expression-based prognostic signature associated with the prognosis of patients with breast cancer: A STROBE-compliant study. Medicine (Baltimore) 2020; 99:e19255. [PMID: 32282693 PMCID: PMC7220332 DOI: 10.1097/md.0000000000019255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of reliable predictive biomarkers for patients with breast cancer (BC).Univariate Cox proportional hazards regression model was conducted to identify genes correlated with the overall survival (OS) of patients in the TCGA-BRCA cohort. Functional enrichment analysis was conducted to investigate the biological meaning of these survival related genes. Then, patients in TCGA-BCRA were randomly divided into training set and test. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression model was performed and the risk score of BC patients in this model was used to build a prognostic signature. The prognostic performance of the signature was evaluated in the training set, test set, and an independent validation set GSE7390.2519 genes were demonstrated to be significantly associated with the OS of BC patients. Functional annotation of the 2519 genes suggested that these genes were associated with immune response and protein synthesis related gene ontology terms and pathways. 17 genes were identified in the LASSO Cox regression model and used to construct a 17-gene signature. Patients in the 17-gene signature low risk group have better OS and event-free survival compared with those in the 17-gene signature high risk group in the TCGA-BRCA cohort. The prognostic role of the 17-gene signature has been confirmed in the validation cohort. Multivariable Cox proportional hazards regression model suggested the 17-gene signature was an independent prognostic factor in BC.The 17-gene signature we developed could successfully classify patients into high- and low-risk groups, indicating that it might serve as candidate biomarker in BC.
Collapse
Affiliation(s)
- Jin-Xian Qian
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Min Yu
- Yangtze University, Jingzhou Central Hospital, Galactophore Department, The Second Clinical Medical College, Jingzhou, People's Republic of China
| | - Zhe Sun
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Ai-Mei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Bo Long
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
31
|
Ramirez MU, Hernandez SR, Soto-Pantoja DR, Cook KL. Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Microenvironment to Impact Tumor Progression and Therapeutic Response. Int J Mol Sci 2019; 21:ijms21010169. [PMID: 31881743 PMCID: PMC6981480 DOI: 10.3390/ijms21010169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.
Collapse
Affiliation(s)
- Manuel U. Ramirez
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - David R. Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
- Correspondence: ; Tel.: +01-336-716-2234
| |
Collapse
|
32
|
Direito I, Fardilha M, Helguero LA. Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 2019; 40:203-215. [PMID: 30596981 DOI: 10.1093/carcin/bgy182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022] Open
Abstract
Resistant breast and prostate cancers remain a major clinical problem, new therapeutic approaches and better predictors of therapeutic response are clearly needed. Because of the involvement of the unfolded protein response (UPR) in cell proliferation and apoptosis evasion, an increasing number of publications support the hypothesis that impairments in this network trigger and/or exacerbate cancer. Moreover, UPR activation could contribute to the development of drug resistance phenotypes in both breast and prostate cancers. Therefore, targeting this pathway has recently emerged as a promising strategy in anticancer therapy. This review addresses the contribution of UPR to breast and prostate tissues homeostasis and its significance to cancer endocrine response with focus on the current progress on UPR research related to cancer biology, detection, prognosis and treatment.
Collapse
Affiliation(s)
| | - Margarida Fardilha
- Signal Transduction Laboratory, Department of Medical Sciences, Institute for Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | | |
Collapse
|
33
|
Demas DM, Demo S, Fallah Y, Clarke R, Nephew KP, Althouse S, Sandusky G, He W, Shajahan-Haq AN. Glutamine Metabolism Drives Growth in Advanced Hormone Receptor Positive Breast Cancer. Front Oncol 2019; 9:686. [PMID: 31428575 PMCID: PMC6688514 DOI: 10.3389/fonc.2019.00686] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023] Open
Abstract
Dependence on the glutamine pathway is increased in advanced breast cancer cell models and tumors regardless of hormone receptor status or function. While 70% of breast cancers are estrogen receptor positive (ER+) and depend on estrogen signaling for growth, advanced ER+ breast cancers grow independent of estrogen. Cellular changes in amino acids such as glutamine are sensed by the mammalian target of rapamycin (mTOR) complex, mTORC1, which is often deregulated in ER+ advanced breast cancer. Inhibitor of mTOR, such as everolimus, has shown modest clinical activity in ER+ breast cancers when given with an antiestrogen. Here we show that breast cancer cell models that are estrogen independent and antiestrogen resistant are more dependent on glutamine for growth compared with their sensitive parental cell lines. Co-treatment of CB-839, an inhibitor of GLS, an enzyme that converts glutamine to glutamate, and everolimus interrupts the growth of these endocrine resistant xenografts. Using human tumor microarrays, we show that GLS is significantly higher in human breast cancer tumors with increased tumor grade, stage, ER-negative and progesterone receptor (PR) negative status. Moreover, GLS levels were significantly higher in breast tumors from African-American women compared with Caucasian women regardless of ER or PR status. Among patients treated with endocrine therapy, high GLS expression was associated with decreased disease free survival (DFS) from a multivariable model with GLS expression treated as dichotomous. Collectively, these findings suggest a complex biology for glutamine metabolism in driving breast cancer growth. Moreover, targeting GLS and mTOR in advanced breast cancer may be a novel therapeutic approach in advanced ER+ breast cancer.
Collapse
Affiliation(s)
- Diane M Demas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Susan Demo
- Calithera Biosciences, South San Francisco, CA, United States
| | - Yassi Fallah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology, Medical Sciences, Indiana University School of Medicine, Bloomington, IN, United States
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wei He
- Program in Genetics, Bioinformatics, and Computational Biology, VT BIOTRANS, Virginia Tech, Blacksburg, VA, United States
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
34
|
Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, Parri M, Bianchini F, Cappellesso F, Virga F, Gao Q, Simões BM, Marangoni E, Martin LA, Comito G, Ferracin M, Giannoni E, Mazzone M, Chiarugi P, Morandi A. Reprogramming of Amino Acid Transporters to Support Aspartate and Glutamate Dependency Sustains Endocrine Resistance in Breast Cancer. Cell Rep 2019; 28:104-118.e8. [PMID: 31269432 PMCID: PMC6616584 DOI: 10.1016/j.celrep.2019.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Endocrine therapy (ET) is the standard of care for estrogen receptor-positive (ER+) breast cancers. Despite its efficacy, ∼40% of women relapse with ET-resistant (ETR) disease. A global transcription analysis in ETR cells reveals a downregulation of the neutral and basic amino acid transporter SLC6A14 governed by enhanced miR-23b-3p expression, resulting in impaired amino acid metabolism. This altered amino acid metabolism in ETR cells is supported by the activation of autophagy and the enhanced import of acidic amino acids (aspartate and glutamate) mediated by the SLC1A2 transporter. The clinical significance of these findings is validated by multiple orthogonal approaches in a large cohort of ET-treated patients, in patient-derived xenografts, and in in vivo experiments. Targeting these amino acid metabolic dependencies resensitizes ETR cells to therapy and impairs the aggressive features of ETR cells, offering predictive biomarkers and potential targetable pathways to be exploited to combat or delay ETR in ER+ breast cancers.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Simone Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Federica Cappellesso
- VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Federico Virga
- VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven 3000, Belgium; Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Bruno M Simões
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Elisabetta Marangoni
- Institut Curie, PSL Research University, Translational Research Department, Paris 75248, France
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna 40126, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Massimiliano Mazzone
- VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven 3000, Belgium
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| |
Collapse
|
35
|
Morotti M, Bridges E, Valli A, Choudhry H, Sheldon H, Wigfield S, Gray N, Zois CE, Grimm F, Jones D, Teoh EJ, Cheng WC, Lord S, Anastasiou D, Haider S, McIntyre A, Goberdhan DCI, Buffa F, Harris AL. Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer. Proc Natl Acad Sci U S A 2019; 116:12452-12461. [PMID: 31152137 PMCID: PMC6589752 DOI: 10.1073/pnas.1818521116] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor hypoxia is associated with poor patient outcomes in estrogen receptor-α-positive (ERα+) breast cancer. Hypoxia is known to affect tumor growth by reprogramming metabolism and regulating amino acid (AA) uptake. Here, we show that the glutamine transporter, SNAT2, is the AA transporter most frequently induced by hypoxia in breast cancer, and is regulated by hypoxia both in vitro and in vivo in xenografts. SNAT2 induction in MCF7 cells was also regulated by ERα, but it became predominantly a hypoxia-inducible factor 1α (HIF-1α)-dependent gene under hypoxia. Relevant to this, binding sites for both HIF-1α and ERα overlap in SNAT2's cis-regulatory elements. In addition, the down-regulation of SNAT2 by the ER antagonist fulvestrant was reverted in hypoxia. Overexpression of SNAT2 in vitro to recapitulate the levels induced by hypoxia caused enhanced growth, particularly after ERα inhibition, in hypoxia, or when glutamine levels were low. SNAT2 up-regulation in vivo caused complete resistance to antiestrogen and, partially, anti-VEGF therapies. Finally, high SNAT2 expression levels correlated with hypoxia profiles and worse outcome in patients given antiestrogen therapies. Our findings show a switch in the regulation of SNAT2 between ERα and HIF-1α, leading to endocrine resistance in hypoxia. Development of drugs targeting SNAT2 may be of value for a subset of hormone-resistant breast cancer.
Collapse
Affiliation(s)
- Matteo Morotti
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Esther Bridges
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Alessandro Valli
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah F6VM+J2, Saudi Arabia
| | - Helen Sheldon
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Simon Wigfield
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christos E Zois
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Fiona Grimm
- Cancer Metabolism Laboratory, Francis Crick Institute, London NW1 1ST, United Kingdom
| | - Dylan Jones
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Eugene J Teoh
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Wei-Chen Cheng
- Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Simon Lord
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Dimitrios Anastasiou
- Cancer Metabolism Laboratory, Francis Crick Institute, London NW1 1ST, United Kingdom
| | - Syed Haider
- Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan McIntyre
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
- Cancer Biology, Division of Cancer and Stem Cells, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Francesca Buffa
- Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Adrian L Harris
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom;
| |
Collapse
|
36
|
Belur Nagaraj A, Joseph P, Kovalenko O, Wang Q, Xu R, DiFeo A. Evaluating class III antiarrhythmic agents as novel MYC targeting drugs in ovarian cancer. Gynecol Oncol 2018; 151:525-532. [PMID: 30301560 PMCID: PMC6526024 DOI: 10.1016/j.ygyno.2018.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the utility of amiodarone and its derivative dronedarone as novel drug repositioning candidates in EOC and to determine the potential pathways targeted by these drugs. METHODS Drug-predict bioinformatics platform was used to assess the utility of amiodarone as a novel drug-repurposing candidate in EOC. EOC cells were treated with amiodarone and dronedarone. Cell death was assessed by Annexin V staining. Cell viability and cell survival were assessed by MTT and clonogenics assays respectively. c-MYC and mTOR/Akt axis were evaluated as potential targets. Effect on autophagy was determined by autophagy flux flow cytometry. RESULTS "DrugPredict" bioinformatics platform ranked Class III antiarrhythmic drug amiodarone within the top 3.9% of potential EOC drug repositioning candidates which was comparable to carboplatin ranking in the top 3.7%. Amiodarone and dronedarone were the only Class III antiarrhythmic drugs that decreased the cellular survival of both cisplatin-sensitive and cisplatin-resistant primary EOC cells. Interestingly, both drugs induced degradation of c-MYC protein and decreased the expression of known transcriptional targets of c-MYC. Furthermore, stable overexpression of non-degradable c-MYC partially rescued the effects of amiodarone and dronedarone induced cell death. Dronedarone induced higher autophagy flux in EOC cells as compared to amiodarone with decreased phospho-AKT and phospho-4EBP1 protein expression, suggesting autophagy induction due to inhibition of AKT/mTOR axis with these drugs. Lastly, both drugs also inhibited the survival of EOC tumor-initiating cells (TICs). CONCLUSIONS We provide the first evidence of class III antiarrhythmic agents as novel c-MYC targeting drugs and autophagy inducers in EOC. Since c-MYC is amplified in >40% ovarian tumors, our results provide the basis for repositioning amiodarone and dronedarone as novel c-MYC targeting drugs in EOC with potential extension to other cancers.
Collapse
Affiliation(s)
- Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Cleveland, OH, USA; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55904, USA
| | | | - Olga Kovalenko
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - QuanQiu Wang
- Dept. of Population and Quantitative Health Sciences, Case Western Reserve University, USA
| | - Rong Xu
- Dept. of Population and Quantitative Health Sciences, Case Western Reserve University, USA
| | - Analisa DiFeo
- Case Comprehensive Cancer Center, Cleveland, OH, USA; Department of Pathology and Department of Obstetrics and Gynecology, University of Michigan, USA.
| |
Collapse
|
37
|
Estrogen-independent Myc overexpression confers endocrine therapy resistance on breast cancer cells expressing ERαY537S and ERαD538G mutations. Cancer Lett 2018; 442:373-382. [PMID: 30419347 DOI: 10.1016/j.canlet.2018.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
Approximately 30% of metastatic breast cancers harbor estrogen receptor α (ERα) mutations associated with resistance to endocrine therapy and reduced survival. Consistent with their constitutive proliferation, T47D and MCF7 cells in which wild-type ERα is replaced by the most common mutations, ERαY537S and ERαD538G, exhibit partially estrogen-independent gene expression. A novel invasion/dissociation/rebinding assay demonstrated that the mutant cells have a higher tendency to dissociate from invasion sites and rebind to a second site. Compared to ERαD538G breast tumors, ERαY537S tumors exhibited a dramatic increase in lung metastasis. Transcriptome analysis showed that the ERαY537S and ERαD538G mutations each elicit a unique gene expression profile. Gene set enrichment analysis showed Myc target pathways are highly induced in mutant cells. Moreover, chromatin immunoprecipitation showed constitutive, fulvestrant-resistant, recruitment of ERα mutants to the Myc enhancer region, resulting in estrogen-independent Myc overexpression in mutant cells and tumors. Knockdown and virus transduction showed Myc is necessary and sufficient for ligand-independent proliferation of the mutant cells but had no effect on metastasis-related phenotypes. Thus, Myc plays a key role in aggressive proliferation-related phenotypes exhibited by breast cancer cells expressing ERα mutations.
Collapse
|
38
|
Liu F, Xu X, Zhu H, Zhang Y, Yang J, Zhang L, Li N, Zhu L, Kung HF, Yang Z. PET Imaging of 18F-(2 S,4 R)4-Fluoroglutamine Accumulation in Breast Cancer: From Xenografts to Patients. Mol Pharm 2018; 15:3448-3455. [PMID: 29985631 DOI: 10.1021/acs.molpharmaceut.8b00430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sustaining the growth of tumor cells requires extra energy and metabolic building blocks. In addition to consuming glucose, glutamine may play the role as an alternative source of nutrient for growth and survival. We aim to characterize a glutamine analog, 18F-(2 S,4 R)4-fluoroglutamine (18F-(2 S,4 R)4-FGln), as an imaging agent for interrogating the role of glutamine from the in vitro study of tumor cells to clinical manifestation in breast cancer patients. Purity was measured by radio-high-performance liquid chromatography (radio-HPLC), and the stability after production was evaluated in phosphate buffer saline (PBS), saline, and mouse and human serum buffers. The presence of Myc expression in MCF-7 and U87 cells was conducted using qPCR. In vitro cell uptake of 18F-(2 S,4 R)4-FGln in MCF-7 and U87 cells was directly compared with 18F-fluorodeoxyglucose (18F-FDG). In vivo biodistribution and micro-PET imaging of 18F-(2 S,4 R)4-FGln in MCF-7 bearing BALB/c nude mice were performed. PET/CT imaging of 18F-(2 S,4 R)4-FGln was compared with 18F-FDG in the same group of breast cancer patients ( n = 10). We successfully synthesized 18F-(2 S,4 R)4-FGln with a high radiochemical purity (>98%), and the radiochemical purity was unchanged in PBS and saline buffers during a 2 h incubation. In vitro cell uptake studies of 18F-(2 S,4 R)4-FGln displayed a rapid and higher uptake in MCF-7 and U87 cells as compared with 18F-FDG. Biodistribution and micro-PET images showed excellent tumor accumulation of 18F-(2 S,4 R)4-FGln in the MCF-7-implanted mice tumor model. In a preliminary clinical study, 18F-(2 S,4 R)4-FGln/PET detected more lesions in breast cancer patients than 18F-FDG/PET (90% vs 80%). Additionally, in one patient with breast lobular carcinoma, there was a lesion mean standardized uptake value (SUVmean) and maximum standardized uptake value (SUVmax) for 18F-(2 S,4 R)4-FGln higher than those obtained by 18F-FDG, as determined by PET imaging. 18F-(2 S,4 R)4-FGln may be a useful glutamine-targeting metabolic probe for noninvasive imaging of breast cancer.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jianhua Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Lifang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Hank F Kung
- Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.,Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| |
Collapse
|
39
|
Huiting LN, Samaha Y, Zhang GL, Roderick JE, Li B, Anderson NM, Wang YW, Wang L, Laroche F, Choi JW, Liu CT, Kelliher MA, Feng H. UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia 2018; 32:2339-2351. [PMID: 29743725 PMCID: PMC6202254 DOI: 10.1038/s41375-018-0141-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Despite the pivotal role of MYC in tumorigenesis, the mechanisms by which it promotes cancer aggressiveness remain incompletely understood. Here we show that MYC transcriptionally upregulates the ubiquitin fusion degradation 1 (UFD1) gene in T-cell acute lymphoblastic leukemia (T-ALL). Allelic loss of ufd1 in zebrafish induces tumor-cell apoptosis and impairs MYC-driven T-ALL progression but does not affect general health. As the E2 component of an endoplasmic reticulum (ER)-associated degradation (ERAD) complex, UFD1 facilitates the elimination of misfolded/unfolded proteins from the ER. We found that UFD1 inactivation in human T-ALL cells impairs ERAD, exacerbates ER stress, and induces apoptosis. Moreover, we show that UFD1 inactivation promotes the proapoptotic unfolded protein response (UPR) mediated by protein kinase RNA-like ER kinase (PERK). This effect is demonstrated by an upregulation of PERK and its downstream effector C/EBP homologous protein (CHOP), as well as a downregulation of BCL2 and BCLxL. Indeed, CHOP inactivation or BCL2 overexpression is sufficient to rescue tumor-cell apoptosis induced by UFD1 knockdown. Together, our studies identify UFD1 as a critical regulator of the ER stress response and a novel contributor to MYC-mediated leukemia aggressiveness, with implications for targeted therapy in T-ALL and likely other MYC-driven cancers.
Collapse
Affiliation(s)
- L N Huiting
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Y Samaha
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - G L Zhang
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - B Li
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - N M Anderson
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Y W Wang
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA.,Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, P. R. China
| | - L Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Fjf Laroche
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - J W Choi
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - C T Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - M A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - H Feng
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
40
|
Li C, Fan Q, Quan H, Nie M, Luo Y, Wang L. The three branches of the unfolded protein response exhibit differential significance in breast cancer growth and stemness. Exp Cell Res 2018; 367:170-185. [PMID: 29601799 DOI: 10.1016/j.yexcr.2018.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 01/28/2023]
Abstract
The unfolded protein response (UPR) is widely activated in cancers. The mammalian UPR encompasses three signaling branches, namely inositol-requiring enzyme-1α (IRE1α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6α (ATF6α). The functional significance of each branch in tumorigenesis is incompletely understood, especially in cancer stem cells (CSCs). Here, we report that inhibition and silencing of the three UPR sensors has differential effects on breast cancer growth and the CSC population. The levels of PERK and ATF6α strongly correlate with the expression of sex determining region Y (SRY)-box 2 (SOX2), a pluripotency regulator, in human breast cancer tissues. UPR activation is also elevated in the CSC-enriched mammospheres. Inhibition of the UPR sensors or excess ER stress markedly reduces the formation and maintenance of mammospheres, suggesting that an appropriate level of UPR activation is critical for the CSC survival. Mechanistically, transcription factors from UPR and pluripotency pathways interact and reciprocally influence each other. A transcription modulator, CCAAT-enhancer-binding protein delta (C/EBPδ), interacts with pluripotency regulator, SOX2, and UPR transcription factors, thus likely serving as a link to coordinate UPR and pluripotency maintenance in CSCs. Our findings demonstrate that UPR is critical for both cancer growth and pluripotency, and highlight the differential role and complexity of the three UPR branches in tumorigenesis.
Collapse
Affiliation(s)
- Chuang Li
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Qianqian Fan
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hongyang Quan
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Meng Nie
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Wang
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China.
| |
Collapse
|
41
|
Li J, Chen J, Xue L, Zhan Q. Transcriptional activation of Nlp by estrogen-ERα in breast cancer. Sci Bull (Beijing) 2017; 62:1445-1454. [PMID: 36659394 DOI: 10.1016/j.scib.2017.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Estrogen Receptor-α (ERα) is the key transcription factor that regulates cell proliferation and homeostasis. In this pathway, estrogen plays an important role in genomic instability and cell cycle regulation processes and the mechanisms of its action are multifaceted. In this study, we showed that estrogen regulates genomic instability through promoting the expression of Nlp, a BRCA1-associated centrosomal protein which is involved in microtubule nucleation, spindle formation, chromosomal missegregation and abnormal cytokinesis. We demonstrated that the expression of Nlp is strongly associated with ERα and FOXA1 level in clinical breast cancer samples with poor clinical outcomes to breast cancer patients. Addition of estrogen in the ER-positive breast cancer cells resulted in elevation of NLP mRNA. Significantly, we identified that estrogen-ERα is capable of regulating Nlp expression through specifically binding ERα to the proximal region and the Estrogen Responsive Elements (ERE) enhancer in the distal region of NLP gene. Reporter assays demonstrated that estrogen directly activated Nlp promoter. ChIP assay results showed that E2-ERα directly bound to the EREs of Nlp. Therefore, overexpression of Nlp in breast cancer exhibits a hormone-dependent pattern, and estrogen participates in the regulation of genome instability and cell cycle in breast cancer cells partially through transcriptional activation of NLP gene. Overexpression of Nlp enhances the malignant progression of ERα-positive breast cancer cells in vitro, whereas knockdown of Nlp suppresses this biological effects in ERα-positive breast cancer cells. ERα/Nlp axis may serve as a promising target against breast cancer.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Liyan Xue
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China.
| |
Collapse
|
42
|
Wang Y, Guo A, Liang X, Li M, Shi M, Li Y, Jenkins G, Lin X, Wei X, Jia Z, Feng X, Su D, Guo W. HRD1 sensitizes breast cancer cells to Tamoxifen by promoting S100A8 degradation. Oncotarget 2017; 8:23564-23574. [PMID: 28423597 PMCID: PMC5410327 DOI: 10.18632/oncotarget.15797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor alpha positive (ER+) of breast cancer could develop resistance to antiestrogens including Tamoxifen. Our previous study showed that the E3 ubiquitin ligase HRD1 played an important role in anti-breast cancer. However, its role in chemotherapy resistance hasn't been reported. In this study, we found that HRD1 expression was downregulated in Tamoxifen-resistant breast cancer cell line MCF7/Tam compared to the Tamoxifen sensitive cell line MCF7. Moreover, S100A8 is the direct target of HRD1 by proteome analysis. Our data showed that HRD1 decreased the protein level of S100A8 through ubiquitination while HRD1 was regulated by acetylation of histone. More importantly, HRD1 knockdown significantly increased the cell survival of MCF7 cells to the Tamoxifen treatment. HRD1 overexpression sensitized MCF7/Tam cells to the Tamoxifen treatment in vitro and in vivo. In conclusion, the decrease of HRD1 expression contributed to Tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- YanYang Wang
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - AiBin Guo
- Department of Geriatric Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - XiuBin Liang
- Department of Surgical Oncology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Surgical Oncology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Shi
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Yan Li
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Gareth Jenkins
- Institute of Advanced Materials, Nanjing University of Post and Telecommunication, Nanjing, China
| | - XiaWen Lin
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - XueFei Wei
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - ZhiJun Jia
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - XueFeng Feng
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - DongMing Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - WanHua Guo
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Yim CY, Bikorimana E, Khan E, Warzecha JM, Shin L, Rodriguez J, Dmitrovsky E, Freemantle SJ, Spinella MJ. G0S2 represses PI3K/mTOR signaling and increases sensitivity to PI3K/mTOR pathway inhibitors in breast cancer. Cell Cycle 2017; 16:2146-2155. [PMID: 28910567 DOI: 10.1080/15384101.2017.1371884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response.
Collapse
Affiliation(s)
- Christina Y Yim
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Emmanuel Bikorimana
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Ema Khan
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Joshua M Warzecha
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Leah Shin
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Jennifer Rodriguez
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Ethan Dmitrovsky
- b Departments of Cancer Biology and The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,c Thoracic/Head and Neck Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sarah J Freemantle
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Michael J Spinella
- a Department of Comparative Biosciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
44
|
Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for the endocrine resistant breast cancer: Current options and future perspectives. J Steroid Biochem Mol Biol 2017; 172:166-175. [PMID: 28684381 DOI: 10.1016/j.jsbmb.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/31/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Endocrine resistance remains a challenge and an unmet need for managing hormone receptor-positive breast cancer. The mechanisms of endocrine resistance are multifaceted and are likely to evolve over time following various single or combination therapies. The purpose of this review article is to provide general understanding of molecular basis of endocrine resistance of breast cancer and to offer comprehensive review on current treatment options and potential new treatment strategies for endocrine resistant breast cancers. Last but not the least, we discuss current challenges and future directions for management of endocrine resistant breast cancers.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yun Wu
- Division of Medical Oncology, Department of Oncology, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, United States
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, United States.
| |
Collapse
|
45
|
Broecker-Preuss M, Becher-Boveleth N, Bockisch A, Dührsen U, Müller S. Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. J Transl Med 2017; 15:158. [PMID: 28724379 PMCID: PMC5517804 DOI: 10.1186/s12967-017-1258-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Changes in glucose and energy metabolism contribute to the altered phenotype of cancer cells and are the basis for positron emission tomography with 18F-fluoro-2-deoxy-D-glucose (FDG) to visualize tumors in vivo. The molecular background of the enhanced glucose uptake and its regulation in lymphoma cells is not fully clarified and may provide new possibilities to reverse the altered metabolism. Thus in this study we investigated regulation of glucose uptake by different signaling pathways. Furthermore, the effect of the glucose analog 2-deoxy-D-glucose (2-DG) alone and in combination with other inhibitors on cell survival was studied. METHODS An FDG uptake assay was established and uptake of FDG by lymphoma cells was determined after incubation with inhibitors of the c-MYC and the PI3K signalling pathways that are known to be activated in lymphoma cells and able to regulate glucose metabolism. Inhibitors of MAPK signalling pathways whose role in altered metabolism is still unclear were also investigated. Expression of mRNAs of the glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glucose-6-phosphatase (G6Pase) and lactate dehydrogenase A (LDHA) and of the glucose metabolism-regulating micro RNAs (miRNA) miR21, -23a, -133a, -133b, -138-1 and -143 was determined by RT-PCR. Cell viability was analysed by MTT assay. RESULTS Treatment with the c-MYC inhibitor 10058-F4 and inhibitors of the PI3K/mTOR pathway diminished uptake of FDG in all three cell lines, while inhibition of MAPK pathways had no effect on glucose uptake. Expression of glycolysis-related genes and miRNAs were diminished, although to a variable degree in the three cell lines. The c-MYC inhibitor, the PI3K inhibitor LY294002, the mTOR inhibitor Rapamycin and 2-DG all diminished the number of viable cells. Interestingly, in combination with 2-DG, the c-MYC inhibitor, LY294002 and the p38 MAPK inhibitor SB203580 had synergistic effects on cell viability in all three cell lines. CONCLUSIONS c-MYC- and PI3K/mTOR-inhibitors decreased viability of the lymphoma cells and led to decreased glucose uptake, expression of glycolysis-associated genes, and glucose metabolism-regulating miRNAs. Inhibition of HK by 2-DG reduced cell numbers as a single agent and synergistically with inhibitors of other intracellular pathways. Thus, targeted inhibition of the pathways investigated here could be a strategy to suppress the glycolytic phenotype of lymphoma cells and reduce proliferation.
Collapse
Affiliation(s)
- Martina Broecker-Preuss
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany. .,Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Nina Becher-Boveleth
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.,Department of Hematology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.,Institute of Pathology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Andreas Bockisch
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Stefan Müller
- Department of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| |
Collapse
|
46
|
Fallah Y, Brundage J, Allegakoen P, Shajahan-Haq AN. MYC-Driven Pathways in Breast Cancer Subtypes. Biomolecules 2017; 7:biom7030053. [PMID: 28696357 PMCID: PMC5618234 DOI: 10.3390/biom7030053] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022] Open
Abstract
The transcription factor MYC (MYC proto-oncogene, bHLH transcription factor) is an essential signaling hub in multiple cellular processes that sustain growth of many types of cancers. MYC regulates expression of RNA, both protein and non-coding, that control central metabolic pathways, cell death, proliferation, differentiation, stress pathways, and mechanisms of drug resistance. Activation of MYC has been widely reported in breast cancer progression. Breast cancer is a complex heterogeneous disease and treatment options are primarily guided by histological and biochemical evaluations of the tumors. Based on biochemical markers, three main breast cancer categories are ER+ (estrogen receptor alpha positive), HER2+ (human epidermal growth factor receptor 2 positive), and TNBC (triple-negative breast cancer; estrogen receptor negative, progesterone receptor negative, HER2 negative). MYC is elevated in TNBC compared with other cancer subtypes. Interestingly, MYC-driven pathways are further elevated in aggressive breast cancer cells and tumors that display drug resistant phenotype. Identification of MYC target genes is essential in isolating signaling pathways that drive tumor development. In this review, we address the role of MYC in the three major breast cancer subtypes and highlight the most promising leads to target MYC functions.
Collapse
Affiliation(s)
- Yassi Fallah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Janetta Brundage
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Paul Allegakoen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
47
|
Shajahan-Haq AN, Boca SM, Jin L, Bhuvaneshwar K, Gusev Y, Cheema AK, Demas DD, Raghavan KS, Michalek R, Madhavan S, Clarke R. EGR1 regulates cellular metabolism and survival in endocrine resistant breast cancer. Oncotarget 2017; 8:96865-96884. [PMID: 29228577 PMCID: PMC5722529 DOI: 10.18632/oncotarget.18292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
About 70% of all breast cancers are estrogen receptor alpha positive (ER+; ESR1). Many are treated with antiestrogens. Unfortunately, de novo and acquired resistance to antiestrogens is common but the underlying mechanisms remain unclear. Since growth of cancer cells is dependent on adequate energy and metabolites, the metabolomic profile of endocrine resistant breast cancers likely contains features that are deterministic of cell fate. Thus, we integrated data from metabolomic and transcriptomic analyses of ER+ MCF7-derived breast cancer cells that are antiestrogen sensitive (LCC1) or resistant (LCC9) that resulted in a gene-metabolite network associated with EGR1 (early growth response 1). In human ER+ breast tumors treated with endocrine therapy, higher EGR1 expression was associated with a more favorable prognosis. Mechanistic studies showed that knockdown of EGR1 inhibited cell growth in both cells and EGR1 overexpression did not affect antiestrogen sensitivity. Comparing metabolite profiles in LCC9 cells following perturbation of EGR1 showed interruption of lipid metabolism. Tolfenamic acid, an anti-inflammatory drug, decreased EGR1 protein levels and synergized with antiestrogens in inhibiting cell proliferation in LCC9 cells. Collectively, these findings indicate that EGR1 is an important regulator of breast cancer cell metabolism and is a promising target to prevent or reverse endocrine resistance.
Collapse
Affiliation(s)
- Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Simina M Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, USA.,Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Krithika Bhuvaneshwar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Diane D Demas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kristopher S Raghavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, USA
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
48
|
The Stearoyl-CoA Desaturase-1 (Desat1) in Drosophila cooperated with Myc to Induce Autophagy and Growth, a Potential New Link to Tumor Survival. Genes (Basel) 2017; 8:genes8050131. [PMID: 28452935 PMCID: PMC5448005 DOI: 10.3390/genes8050131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/19/2023] Open
Abstract
Lipids are an important energy supply in our cells and can be stored or used to produce macromolecules during lipogenesis when cells experience nutrient starvation. Our proteomic analysis reveals that the Drosophila homologue of human Stearoyl-CoA desaturase-1 (Desat1) is an indirect target of Myc in fat cells. Stearoyl-CoA desaturases are key enzymes in the synthesis of monounsaturated fatty acids critical for the formation of complex lipids such as triglycerides and phospholipids. Their function is fundamental for cellular physiology, however in tumors, overexpression of SCD-1 and SCD-5 has been found frequently associated with a poor prognosis. Another gene that is often upregulated in tumors is the proto-oncogene c-myc, where its overexpression or increased protein stability, favor cellular growth. Here, we report a potential link between Myc and Desat1 to control autophagy and growth. Using Drosophila, we found that expression of Desat1, in metabolic tissues like the fat body, in the gut and in epithelial cells, is necessary for Myc function to induce autophagy a cell eating mechanism important for energy production. In addition, we observed that reduction of Desat1 affects Myc ability to induce growth in epithelial cells. Our data also identify, in prostatic tumor cells, a significant correlation between the expression of Myc and SCD-1 proteins, suggesting the existence of a potential functional relationship between the activities of these proteins in sustaining tumor progression.
Collapse
|
49
|
Thewes V, Simon R, Hlevnjak M, Schlotter M, Schroeter P, Schmidt K, Wu Y, Anzeneder T, Wang W, Windisch P, Kirchgäßner M, Melling N, Kneisel N, Büttner R, Deuschle U, Sinn HP, Schneeweiss A, Heck S, Kaulfuss S, Hess-Stumpp H, Okun JG, Sauter G, Lykkesfeldt AE, Zapatka M, Radlwimmer B, Lichter P, Tönjes M. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene 2017; 36:4124-4134. [PMID: 28319069 DOI: 10.1038/onc.2017.32] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.
Collapse
Affiliation(s)
- V Thewes
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Hlevnjak
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schlotter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schroeter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Y Wu
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Anzeneder
- PATH Foundation Biobank-Patients' Tumor Bank of Hope, Munich, Germany
| | - W Wang
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Windisch
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kirchgäßner
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N Kneisel
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - U Deuschle
- Phenex Pharmaceuticals AG, Heidelberg, Germany
| | - H P Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - A Schneeweiss
- Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - S Heck
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - J G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - G Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A E Lykkesfeldt
- Breast Cancer Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - M Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - B Radlwimmer
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Tönjes
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Hilakivi-Clarke L, Wärri A, Bouker KB, Zhang X, Cook KL, Jin L, Zwart A, Nguyen N, Hu R, Cruz MI, de Assis S, Wang X, Xuan J, Wang Y, Wehrenberg B, Clarke R. Effects of In Utero Exposure to Ethinyl Estradiol on Tamoxifen Resistance and Breast Cancer Recurrence in a Preclinical Model. J Natl Cancer Inst 2016; 109:2905688. [PMID: 27609189 DOI: 10.1093/jnci/djw188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background Responses to endocrine therapies vary among patients with estrogen receptor (ER+) breast cancer. We studied whether in utero exposure to endocrine-disrupting compounds might explain these variations. Methods We describe a novel ER+ breast cancer model to study de novo and acquired tamoxifen (TAM) resistance. Pregnant Sprague Dawley rats were exposed to 0 or 0.1 ppm ethinyl estradiol (EE2), and the response of 9,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors to 15 mg/kg TAM, with (n = 17 tumors in the controls and n = 20 tumors in EE2 offspring) or without 1.2 g/kg valproic acid and 5 mg/kg hydralazine (n = 24 tumors in the controls and n = 32 tumors in EE2 offspring) in the female offspring, was assessed. One-sided Chi2 tests were used to calculate P values. Comparisons of differentially expressed genes between mammary tumors in in utero EE2-exposed and control rats, and between anti-estrogen-resistant LCC9 and -sensitive LCC1 human breast cancer cells, were also performed. Results In our preclinical model, 54.2% of mammary tumors in the control rats exhibited a complete response to TAM, of which 23.1% acquired resistance with continued anti-estrogen treatment and recurred. Mammary tumors in the EE2 offspring were statistically significantly less likely to respond to TAM (P = .047) and recur (P = .007). In the EE2 offspring, but not in controls, adding valproic acid and hydralazine to TAM prevented recurrence (P < .001). Three downregulated and hypermethylated genes (KLF4, LGALS3, MICB) and one upregulated gene (ETV4) were identified in EE2 tumors and LCC9 breast cancer cells, and valproic acid and hydralazine normalized the altered expression of all four genes. Conclusions Resistance to TAM may be preprogrammed by in utero exposure to high estrogen levels and mediated through reversible epigenetic alterations in genes associated with epithelial-mesenchymal transition and tumor immune responses.
Collapse
Affiliation(s)
| | - Anni Wärri
- Department of Oncology, Georgetown University, Washington, DC.,Institute of Biomedicine, University of Turku Medical Faculty, Turku, Finland
| | - Kerrie B Bouker
- Department of Oncology, Georgetown University, Washington, DC
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, DC
| | - Katherine L Cook
- Department of Oncology, Georgetown University, Washington, DC.,Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - Lu Jin
- Department of Oncology, Georgetown University, Washington, DC
| | - Alan Zwart
- Department of Oncology, Georgetown University, Washington, DC
| | - Nguyen Nguyen
- Department of Oncology, Georgetown University, Washington, DC
| | - Rong Hu
- Department of Oncology, Georgetown University, Washington, DC
| | - M Idalia Cruz
- Department of Oncology, Georgetown University, Washington, DC
| | - Sonia de Assis
- Department of Oncology, Georgetown University, Washington, DC
| | - Xiao Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | - Jason Xuan
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | | | - Robert Clarke
- Department of Oncology, Georgetown University, Washington, DC
| |
Collapse
|