1
|
Bahman A, Abaza MS, Khoushaish S, Al-Attiyah RJ. Therapeutic efficacy of sorafenib and plant-derived phytochemicals in human colorectal cancer cells. BMC Complement Med Ther 2023; 23:210. [PMID: 37365571 DOI: 10.1186/s12906-023-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the sequence-dependent anticancer effects of combined treatment with sorafenib (Sora), a Food and Drug Administration-approved multikinase inhibitor drug, and plant-derived phytochemicals (PPCs) on human colorectal cancer (CRC) cell growth, and proteins associated with the control of cell cycle and apoptosis. METHODS The cytotoxic effects of 14 PPCs on CRL1554 fibroblast cells were determined using an MTT assay. Moreover, the cytotoxicity of Sora, PPCs, and a combination of both on CRC cells were also investigated. Cell cycle analysis was performed using flow cytometry, and cell apoptosis was investigated using DNA fragmentation, Annexin V/propidium iodide double staining, and mitochondrial membrane potential analyses. The cell cycle- and apoptosis-associated protein expression levels were analysed using western blotting. RESULTS Based on their low levels of cytotoxicity in CRL1554 cells at ≤ 20%, curcumin, quercetin, kaempferol, and resveratrol were selected for use in subsequent experiments. The combined treatment of sora and PPCs caused levels of CRC cytotoxicity in a dose-, cell type-, and schedule-dependent manner. Moreover, the combined treatment of CRC cells arrested cell growth at the S and G2/M phases, induced apoptotic cell death, caused extensive mitochondrial membrane damage, and altered the expression of the cell cycle and apoptotic proteins. CONCLUSIONS Results of the present study highlighted a difference in the level of sora efficacy in CRC cells when combined with PPCs. Further in vivo and clinical studies using the combined treatment of sora and PPCs are required to determine their potential as a novel therapeutic strategy for CRCs.
Collapse
Affiliation(s)
- Abdulmajeed Bahman
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Mohamed-Salah Abaza
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait.
| | - Sarah Khoushaish
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Rajaa J Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
2
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Li Y, Zhang MZ, Zhang SJ, Sun X, Zhou C, Li J, Liu J, Feng J, Lu SY, Pei-Jun L, Wang JC. HIF-1α inhibitor YC-1 suppresses triple-negative breast cancer growth and angiogenesis by targeting PlGF/VEGFR1-induced macrophage polarization. Biomed Pharmacother 2023; 161:114423. [PMID: 36822023 DOI: 10.1016/j.biopha.2023.114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an invasive and metastatic phenotype of breast cancer with limited treatment options. Published studies have demonstrated an inhibitory effect of HIF-α inhibition by its inhibitor YC-1 (lificiguat) on growth and angiogenesis of TNBC. However, the underlying mechanism remains poorly understood. In the current paper, our results show that HIF-1α inhibitor significantly inhibited TNBC growth by increasing cellular apoptosis and decreasing MVD, independent of a cell-autonomous mechanism in both endothelial and tumor cells. Genetic screening and in vivo experiments showed that a large number of M2-polarized TAMs accumulated in the hypoxic peri-necrotic region (PNR), where placental growth factor (PlGF) and its ligand, vascular endothelial growth factor receptor-1 (VEGFR-1) were upregulated. Furthermore, YC-1 skewed the polarization of TAMs away from M2 to M1 phenotype, therefore inhibiting TNBC angiogenesis and growth. This effect was further abrogated by VEGFR-1 neutralization and TAM depletion following clodronate liposome injection. These findings provide preclinical evidence for an indirect mechanism underlying YC-1-induced suppression of TNBC growth and angiogenesis, thereby offering a treatment option for TNBC.
Collapse
Affiliation(s)
- Yan Li
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Meng-Zhao Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shu-Jing Zhang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xin Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Can Zhou
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Juan Li
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China
| | - Jie Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shao-Ying Lu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Liu Pei-Jun
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China.
| | - Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
4
|
Wang Y, Huo J, Li S, Huang R, Fan D, Cheng H, Wan B, Du Y, He H, Zhang G. Self-Rectifiable and Hypoxia-Assisted Chemo-Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10092-10101. [PMID: 35170301 DOI: 10.1021/acsami.1c23121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) can eradicate cancer cells under light irradiation, mainly because of reactive singlet oxygen (1O2) being transformed from intratumoral oxygen. Nonetheless, the consumption of oxygen during PDT results in serious hypoxic conditions and an elevated hypoxia-inducing factor-1α (HIF-1α) level that hamper further photodynamic efficacy and induce tumor metastasis. To address this problem, we developed hypoxia-assisted NP-co-encapsulating Ce6 (photosensitizer) and YC-1 (HIF-1α inhibitor) as a self-rectifiable nanoinhibitor for synergistic antitumor treatment. PDT-aggravated intracellular hypoxic stress facilitated NP dissociation to release the drug (YC-1), which achieved tumor killing and HIF-1α inhibition to further enhance the therapeutic effect of PDT and prevent tumor metastasis. Besides, in vivo studies revealed that the HC/PI@YC-1 NPs afforded synergistic anticancer efficacy with minimal toxicity. Therefore, this study provides a prospective approach against PDT drawbacks and combination cancer therapy.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuang Li
- Department of Pathology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou 450003, China
| | - Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo Wan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Zhou X, Huang JQ, Liu LS, Deng FA, Liu YB, Li YM, Chen AL, Yu XY, Li SY, Cheng H. Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy. ACS APPLIED BIO MATERIALS 2021; 4:8023-8032. [PMID: 35006783 DOI: 10.1021/acsabm.1c00938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxygen-dependent photodynamic therapy (PDT) could exacerbate tumor hypoxia to induce the upregulation of hypoxia-inducible factor-1α (HIF-1α), which would promote tumor growth and metastasis. In this paper, a self-remedied nanomedicine is developed based on a photosensitizer and a HIF-1α inhibitor to surmount the Achilles' heel of PDT for enhanced antitumor efficacy. Specifically, the nanomedicine (designated as CYC-1) is prepared by the self-assembly of chlorine e6 (Ce6) and 3-(5'-hydroxy-methyl-2'-furyl)-1-benzylindazole (YC-1) through π-π stacking and hydrophobic interactions. Of special note, carrier-free CYC-1 holds an extremely high drug loading rate and avoids excipient-triggered adverse reactions. Intravenously administered CYC-1 prefers to accumulate in the tumor tissue for effective cellular uptake. More importantly, it is verified that CYC-1 is capable of inhibiting the HIF-1α activity, thereby improving its PDT efficacy on tumor suppression. Besides, CYC-1 has the overwhelming superiority in restraining tumor proliferation over the combined administration of Ce6 and YC-1, which highlights the advantage of this self-remedied strategy in drug delivery and tumor therapy. This study sheds light on the development of self-delivery nanomedicine for efficient PDT against malignancies.
Collapse
Affiliation(s)
- Xiang Zhou
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ling-Shan Liu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Fu-An Deng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yi-Bin Liu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - A-Li Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xi-Yong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
6
|
Zhang B, Miao T, Shen X, Bao L, Zhang C, Yan C, Wei W, Chen J, Xiao L, Sun C, Du J, Li Y. EB virus-induced ATR activation accelerates nasopharyngeal carcinoma growth via M2-type macrophages polarization. Cell Death Dis 2020; 11:742. [PMID: 32917854 PMCID: PMC7486933 DOI: 10.1038/s41419-020-02925-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
Chronic inflammation induced by persistent viruses infection plays an essential role in tumor progression, which influenced on the interaction between the tumor cells and the tumor microenvironment. Our earlier study showed that ATR, a key kinase participant in single-stranded DNA damage response (DDR), was obviously activated by Epstein-Barr virus (EBV) in nasopharyngeal carcinoma (NPC). However, how EBV-induced ATR activation promotes NPC by influencing inflammatory microenvironment, such as tumor-associated macrophages (TAMs), remains elusive. In this study, we showed that EBV could promote the expression of p-ATR and M2-type TAMs transformation in clinical NPC specimens. The expression of p-ATR and M2-type TAMs were closely correlated each other and involved in TNM stage, lymph node metastasis and poor prognosis of the patients. In addition, the expression levels of CD68+CD206+, Arg1, VEGF, and CCL22 were increased in EB+ CNE1 cells, and decreased when ATR was inhibited. In the nude mice, EBV-induced ATR activation promoted subcutaneous transplanted tumor growth, higher expression of Ki67 and lung metastasis via M2-type TAMs recruitment. Experimental data also showed that the polarization of M2, the declined tumor necrosis factor-α (TNF-α) and increased transforming growth factor-β (TGF-β) were associated with ATR. Meanwhile, ATR activation could promote PPAR-δ and inhibited c-Jun and p-JNK expression, then downregulate JNK pathway. Collectively, our current study demonstrated the EBV infection could activate the ATR pathway to accelerate the transition of TAMs to M2, suggesting ATR knockdown could be a potential effective treatment strategy for EBV-positive NPC.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Stomatology, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Tianyu Miao
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lirong Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Caixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liying Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jintao Du
- Otorhinolaryngology-Head and Neck Surgery of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Carnosic acid increases sorafenib-induced inhibition of ERK1/2 and STAT3 signaling which contributes to reduced cell proliferation and survival of hepatocellular carcinoma cells. Oncotarget 2020; 11:3129-3143. [PMID: 32913557 PMCID: PMC7443370 DOI: 10.18632/oncotarget.27687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has increasing worldwide incidence but when unresectable lacks curative options. Treatment with a kinase inhibitor Sorafenib (Sf), while initially effective, results in only short increases in patient survival, thus there is a need for improved treatment regimens. Numerous treatment regimens have been explored wherein Sf is combined with other agents, such as non-toxic botanicals like Curcumin or Silibinin. Recently, we have shown that carnosic acid (CA), a component of the food preservative Rosemary Extract, can markedly enhance the cytotoxic actions of Sf in several cell lines derived from HCC, but not in the cell line Hu1545 derived from normal hepatocytes. CA has been shown to enhance Sf-induced cell death in the neoplastic cell lines, principally due to the composite of increased apoptosis and cytotoxic autophagy. In the present study we focused on the mechanisms that underlie the reduced proliferation and survival of HCC cells when CA is added to Sf and how this relates to the increase in Sf-induced DNA damage as well as to the elevation of cytoplasmic levels of reactive oxygen species (ROS). Importantly, the elevation of ROS levels induced by Sf was increased by adding CA. We found that CA enhanced Sf-induced prolongation of cell cycle, and the overall decrease in cell growth was associated with reduced activation of both STAT3 transcription factor (TF) and extracellular signal-regulated protein kinase (Erk)1/2. Our data suggest that a regimen incorporating CA, an inexpensive and non-toxic food additive, in the treatment of advanced HCC merits clinical evaluation.
Collapse
|
8
|
Kong J, Yao C, Ding X, Dong S, Wu S, Sun W, Zheng L. ATPase Inhibitory Factor 1 Promotes Hepatocellular Carcinoma Progression After Insufficient Radiofrequency Ablation, and Attenuates Cell Sensitivity to Sorafenib Therapy. Front Oncol 2020; 10:1080. [PMID: 32670888 PMCID: PMC7330926 DOI: 10.3389/fonc.2020.01080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and angiogenesis is involved in tumor progression after radiofrequency ablation (RFA). ATPase inhibitory factor 1 (IF1) is a bad predictor of prognosis. Sorafenib inhibited EMT of hepatocellular carcinoma (HCC) after RFA. Whether IF1 promotes the EMT and angiogenesis of HCC and attenuates the effect of sorafenib after insufficient RFA is investigated. In this study, higher expression of IF1 was found in residual tumor after insufficient RFA. Hep3B or Huh7 cells after insufficient RFA were designated as Hep3B-H or Huh7-H cells in vitro. Hep3B-H or Huh7-H cells exhibited enhanced capacities of colony formation, migration, and increased expression of EMT associated markers and IF1 compared with Hep3B or Huh7 cells. IF1 knockdown in Hep3B-H or Huh7-H cells decreased the colony formation and migratory capacity, and IF1 overexpression in Hep3B or Huh7 cells increased these capacities. IF1 in HCC cells directly and indirectly affected angiogenesis of TAECs after insufficient RFA. IF1 promoted HCC cells growth and metastasis after insufficient RFA. IF1 increased HCC cells resistance after insufficient RFA to sorafenib. Higher IF1 expression indicated poor disease survival in HCC patients after sorafenib therapy. NF-κB activation induced by IF1 attenuated the effect of sorafenib on HCC cells after insufficient RFA. Our results demonstrated that IF1 promotes the EMT and angiogenesis, and attenuates HCC cell sensitivity to sorafenib after insufficient RFA through NF-κB signal pathway.
Collapse
Affiliation(s)
- Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuemei Ding
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lemin Zheng
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Palmieri A. Synthesis of Heterocyclic Systems Starting from Carbonyl and Carboxyl Functionalized Nitro Compounds by One-Pot Processes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Alessandro Palmieri
- Green Chemistry Group; School of Science and Technology; Chemistry Division; University of Camerino; Via S. Agostino n. 1 62032 Camerino Italy
| |
Collapse
|
10
|
Hu H, Miao XK, Li JY, Zhang XW, Xu JJ, Zhang JY, Zhou TX, Hu MN, Yang WL, Mou LY. YC-1 potentiates the antitumor activity of gefitinib by inhibiting HIF-1α and promoting the endocytic trafficking and degradation of EGFR in gefitinib-resistant non-small-cell lung cancer cells. Eur J Pharmacol 2020; 874:172961. [PMID: 32044322 DOI: 10.1016/j.ejphar.2020.172961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/04/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
The tyrosine kinase inhibitor (TKI) gefitinib exerts good therapeutic effect on NSCLC patients with sensitive EGFR-activating mutations. However, most patients ultimately relapse due to the development of drug resistance after 6-12 months of treatment. Here, we showed that a HIF-1α inhibitor, YC-1, potentiated the antitumor efficacy of gefitinib by promoting EGFR degradation in a panel of human NSCLC cells with wild-type or mutant EGFRs. YC-1 alone had little effect on NSCLC cell survival but significantly enhanced the antigrowth and proapoptotic effects of gefitinib. In insensitive NSCLC cell lines, gefitinib efficiently inhibited the phosphorylation of EGFR but not the downstream signaling of ERK, AKT and STAT3; however, when combined with YC-1 treatment, these signaling pathways were strongly impaired. Gefitinib treatment induced EGFR arrest in the early endosome, and YC-1 treatment promoted delayed EGFR transport into the late endosome as well as receptor degradation. Moreover, the YC-1-induced reduction of HIF-1α protein was associated with the enhancement of EGFR degradation. HIF-1α knockdown promoted EGFR degradation, showing synergistic antigrowth and proapoptotic effects similar to those of the gefitinib and YC-1 combination treatment in NSCLC cells. Our findings provide a novel combination treatment strategy with gefitinib and YC-1 to extend the usage of gefitinib and overcome gefitinib resistance in NSCLC patients.
Collapse
Affiliation(s)
- Hui Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Kang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Jing-Yi Li
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Wei Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Jing-Jie Xu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Jing-Ying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Tian-Xiong Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Ming-Ning Hu
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Wen-Le Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Ling-Yun Mou
- Institute of Biochemistry and Molecular Biology, School of Life Science Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
11
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
12
|
Li R, Wei X, Jiang DS. Protein methylation functions as the posttranslational modification switch to regulate autophagy. Cell Mol Life Sci 2019; 76:3711-3722. [PMID: 31222372 PMCID: PMC11105718 DOI: 10.1007/s00018-019-03161-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Studies over the past decades have elucidated the critical role of autophagy in human health and diseases. Although the processes of autophagy in the cytoplasm have been well studied, the posttranscriptional and epigenetic regulation mechanisms of autophagy are still poorly understood. Protein methylation, including histone methylation and non-histone protein methylation, is the most important type of posttranscriptional and epigenetic modification. Recent studies have shown that protein methylation is associated with effects on autophagosome formation, autophagy-related protein expression, and signaling pathway activation, but the details are still unclear. Thus, it is important to summarize the current status and discuss the future directions of research on protein methylation in the context of autophagy.
Collapse
Affiliation(s)
- Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
13
|
Longo JF, Brosius SN, Black L, Worley SH, Wilson RC, Roth KA, Carroll SL. ErbB4 promotes malignant peripheral nerve sheath tumor pathogenesis via Ras-independent mechanisms. Cell Commun Signal 2019; 17:74. [PMID: 31291965 PMCID: PMC6621970 DOI: 10.1186/s12964-019-0388-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have found that erbB receptor tyrosine kinases drive Ras hyperactivation and growth in NF1-null malignant peripheral nerve sheath tumors (MPNSTs). However, MPNSTs variably express multiple erbB receptors with distinct functional characteristics and it is not clear which of these receptors drive MPNST pathogenesis. Here, we test the hypothesis that altered erbB4 expression promotes MPNST pathogenesis by uniquely activating key cytoplasmic signaling cascades. METHODS ErbB4 expression was assessed using immunohistochemistry, immunocytochemistry, immunoblotting and real-time PCR. To define erbB4 functions, we generated mice that develop MPNSTs with floxed Erbb4 alleles (P0-GGFβ3;Trp53+/-;Erbb4flox/flox mice) and ablated Erbb4 in these tumors. MPNST cell proliferation and survival was assessed using 3H-thymidine incorporation, MTT assays, Real-Time Glo and cell count assays. Control and Erbb4-null MPNST cells were orthotopically xenografted in immunodeficient mice and the growth, proliferation (Ki67 labeling), apoptosis (TUNEL labeling) and angiogenesis of these grafts was analyzed. Antibody arrays querying cytoplasmic kinases were used to identify erbB4-responsive kinases. Pharmacologic or genetic inhibition was used to identify erbB4-responsive kinases that drive proliferation. RESULTS Aberrant erbB4 expression was evident in 25/30 surgically resected human MPNSTs and in MPNSTs from genetically engineered mouse models (P0-GGFβ3 and P0-GGFβ3;Trp53+/- mice); multiple erbB4 splice variants that differ in their ability to activate PI3 kinase and nuclear signaling were present in MPNST-derived cell lines. Erbb4-null MPNST cells demonstrated decreased proliferation and survival and altered morphology relative to non-ablated controls. Orthotopic allografts of Erbb4-null cells were significantly smaller than controls, with reduced proliferation, survival and vascularization. ERBB4 knockdown in human MPNST cells similarly inhibited DNA synthesis and viability. Although we have previously shown that broad-spectrum erbB inhibitors inhibit Ras activation, Erbb4 ablation did not affect Ras activation, suggesting that erbB4 drives neoplasia via non-Ras dependent pathways. An analysis of 43 candidate kinases identified multiple NRG1β-responsive and erbB4-dependent signaling cascades including the PI3K, WNK1, STAT3, STAT5 and phospholipase-Cγ pathways. Although WNK1 inhibition did not alter proliferation, inhibition of STAT3, STAT5 and phospholipase-Cγ markedly reduced proliferation. CONCLUSIONS ErbB4 promotes MPNST growth by activating key non-Ras dependent signaling cascades including the STAT3, STAT5 and phospholipase-Cγ pathways. ErbB4 and its effector pathways are thus potentially useful therapeutic targets in MPNSTs.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Stephanie N. Brosius
- Department of Pathology (SNB, KAR) and the Medical Scientist Training Program (SNB), University of Alabama at Birmingham, Birmingham, AL 35294-0017 USA
- Present address: Department of Pediatrics at The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurel Black
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Stuart H. Worley
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Robert C. Wilson
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Kevin A. Roth
- Department of Pathology (SNB, KAR) and the Medical Scientist Training Program (SNB), University of Alabama at Birmingham, Birmingham, AL 35294-0017 USA
- Present address: Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY USA
| | - Steven L. Carroll
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| |
Collapse
|
14
|
Sasaki H, Furusho H, Rider DB, Dobeck JM, Kuo WP, Fujimura A, Yoganathan S, Hirai K, Xu S, Sasaki K, Stashenko P. Endodontic Infection-induced Inflammation Resembling Osteomyelitis of the Jaws in Toll-like Receptor 2/Interleukin 10 Double-knockout Mice. J Endod 2019; 45:181-188. [PMID: 30711175 DOI: 10.1016/j.joen.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION In general, mice develop chronic and nonhealing periapical lesions after endodontic infection. Surprisingly, we recently found that toll-like receptor 2 (TLR2)/interleukin 10 (IL-10) double-knockout (dKO) mice exhibited acute but resolving osteomyelitislike inflammation. In this study, we examined the kinetics of endodontic infection-induced inflammation in TLR2/IL-10 dKO mice and explored a potential mechanism of periapical wound healing mediated by the hypoxia-inducible factor 1 alpha (HIF-1α) subunit and arginase 1. METHODS TLR2/IL-10 dKO and wild-type C57BL/6J mice were subjected to endodontic infection in the mandibular first molars. Mice were sacrificed on days 0 (noninfected), 10, and 21 postinfection. The extent of bone destruction, inflammation, bone deposition, and gene expression were determined by micro-computed tomographic imaging, histology, bone polychrome labeling, and microarray analysis. In addition, the effect of blocking endogenous HIF-1α was tested in infected TLR2/IL-10 dKO mice using the specific inhibitor YC-1. RESULTS Infected TLR2/IL-10 dKO mice exhibited extensive bone destruction and inflammation on day 10 followed by spontaneous periapical wound healing including bone formation and resolution of inflammation by day 21 postinfection. In contrast, WT mice developed increasing chronic periapical inflammation over the 21-day observation period. Gene expression analyses and immunohistochemistry revealed that HIF-1α and arginase 1 were up-regulated in spontaneous wound healing in TLR2/IL-10 dKO mice. Blocking of HIF-1α in TLR2/IL-10 dKO mice using YC-1 resulted in significant inhibition of regenerative bone formation. CONCLUSIONS The TLR2/IL-10 dKO mouse is a novel model resembling osteomyelitis of the jaws in which HIF-1α and arginase 1 appear to be crucial factors in spontaneous wound healing and bone repair.
Collapse
Affiliation(s)
- Hajime Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts.
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University, Hiroshima, Japan
| | - Daniel B Rider
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts
| | - Justine M Dobeck
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, Massachusetts
| | - Winston Patrick Kuo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Akira Fujimura
- Division of Functional Morphology, Department of Anatomy, Iwate Medical University, Morioka, Iwate, Japan
| | - Subbiah Yoganathan
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Kimito Hirai
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts
| | - Shuang Xu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kei Sasaki
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts
| | - Philip Stashenko
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; Department of Endodontics, Boston University Goldman School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
15
|
Wu JY, Shih YL, Lin SP, Hsieh TY, Lin YW. YC-1 Antagonizes Wnt/β-Catenin Signaling Through the EBP1 p42 Isoform in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11050661. [PMID: 31086087 PMCID: PMC6562864 DOI: 10.3390/cancers11050661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Novel drugs targeting Wnt signaling are gradually being developed for hepatocellular carcinoma (HCC) treatment. In this study, we used a Wnt-responsive Super-TOPflash (STF) luciferase reporter assay to screen a new compound targeting Wnt signaling. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) was identified as a small molecule inhibitor of the Wnt/β-catenin pathway. Our coimmunoprecipitation (co-IP) data showed that YC-1 did not affect the β-catenin/TCF interaction. Then, by mass spectrometry, we identified the ErbB3 receptor-binding protein 1 (EBP1) interaction with the β-catenin/TCF complex upon YC-1 treatment. EBP1 encodes two splice isoforms, p42 and p48. We further demonstrated that YC-1 enhances p42 isoform binding to the β-catenin/TCF complex and reduces the transcriptional activity of the complex. The suppression of colony formation by YC-1 was significantly reversed after knockdown of both isoforms (p48 and p42); however, the inhibition of colony formation was maintained when only EBP1 p48 was silenced. Taken together, these results suggest that YC-1 treatment results in a reduction in Wnt-regulated transcription through EBP1 p42 and leads to the inhibition of tumor cell proliferation. These data imply that YC-1 is a drug that antagonizes Wnt/β-catenin signaling in HCC.
Collapse
Affiliation(s)
- Ju-Yun Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Yu-Lueng Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Shih-Ping Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ya-Wen Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
16
|
Ashizawa Y, Kuboki S, Nojima H, Yoshitomi H, Furukawa K, Takayashiki T, Takano S, Miyazaki M, Ohtsuka M. OLFM4 Enhances STAT3 Activation and Promotes Tumor Progression by Inhibiting GRIM19 Expression in Human Hepatocellular Carcinoma. Hepatol Commun 2019; 3:954-970. [PMID: 31304451 PMCID: PMC6601327 DOI: 10.1002/hep4.1361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Olfactomedin 4 (OLFM4) induces signal transducer and activator of transcription 3 (STAT3) activation by inhibiting gene associated with retinoid‐interferon‐induced mortality 19 (GRIM19), a strong STAT3 suppressor gene; however, the mechanisms of OLFM4 for regulating GRIM19‐STAT3 cascade in hepatocellular carcinoma (HCC) remain unclear. The functions and regulations of OLFM4, GRIM19, and STAT3 activation in HCC progression were evaluated using surgical specimens collected from 111 HCC patients or 2 HCC cell lines in vitro. Moreover, the cancer stem cell–like property of OLFM4 mediated by leucine‐rich repeat‐containing G protein‐coupled receptor 5 (LGR5), known as an intestinal stem cell marker, was investigated. OLFM4 was increased in HCC compared with adjacent liver tissue. The multivariate analysis revealed that high OLFM4 expression was an independent factor for poor prognosis. OLFM4 expression was negatively correlated with GRIM19 expression and positively correlated with STAT3 activation in HCC, thereby increasing cell cycle progression. OLFM4 knockdown in HCC cells increased GRIM19 expression and inhibited STAT3 activation; however, after double knockdown of GRIM19 and OLFM4, STAT3 activation decreased by OLFM4 knockdown was increased again. OLFM4 knockdown increased cell apoptosis, inhibited cell proliferation, and suppressed cancer stem cell–like property in HCC cells. The incidence of hematogenous recurrence was higher in HCC patients with high OLFM4 expression, suggesting that anoikis resistance of HCC was enhanced by OLFM4. In clinical cases, LGR5 expression and CD133 expression was correlated with OLFM4 expression in HCC, leading to poor patient prognosis. In vitro, LGR5 enhanced cancer stem cell–like property by up‐regulating OLFM4 through the Wnt signaling pathway. Conclusion: OLFM4 is induced by the LGR5‐Wnt signaling pathway and is strongly associated with aggressive tumor progression and poor prognosis in HCC by regulating STAT3‐induced tumor cell proliferation and cancer stem cell–like property. Therefore, OLFM4 is a novel prognostic predictor and a potential therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yosuke Ashizawa
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Hiroyuki Nojima
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine Chiba University Chiba Japan
| |
Collapse
|
17
|
Guney Eskiler G, Deveci AO, Bilir C, Kaleli S. Synergistic Effects of Nobiletin and Sorafenib Combination on Metastatic Prostate Cancer Cells. Nutr Cancer 2019; 71:1299-1312. [PMID: 31037974 DOI: 10.1080/01635581.2019.1601237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: Herein we, for the first time, investigated a potential synergistic effect of nobiletin (NOB) and sorafenib (SOR) on PC-3 prostate cancer and HUVEC control cell lines. Methods: In order to determine the cytotoxic and apoptotic effects of the combination of NOB and SOR, WST-1, Annexin V, and cell cycle analysis were performed. The potential molecular mechanism of apoptotic cell death was assessed by Bax, Bcl-2, CCDN1, Rb1, and CDKN1A gene expression and acridine orange (AO) and DAPI staining. Results: Our results indicated that NOB and SOR combination had a significant inhibitory effect on the viability of PC-3 cells with less toxicity on HUVEC cells than SOR alone (P < 0.01). NOB and SOR combination significantly caused much more apoptotic cell death and cell cycle arrest at G0/G1 phase by up-regulation of Bax, Rb1, and CDKN1A levels in PC-3 cells (P < 0.01). Therefore, strong synergistic effects between NOB and SOR were analyzed (CI < 1). Conclusion: NOB and SOR combination was more effective than SOR and NOB alone and reduced the exposure time for SOR and NOB in PC-3 cells. Combination strategy is a therapeutic potential to improve efficacy and reduce side-effect of SOR for the treatment of metastatic prostate cancer cells.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology Faculty of Medicine, Sakarya University , Sakarya , Turkey
| | - Asuman Ozkan Deveci
- Department of Medical Biology Faculty of Medicine, Sakarya University , Sakarya , Turkey
| | - Cemil Bilir
- Department of Medical Oncology Faculty of Medicine, Sakarya University , Sakarya , Turkey
| | - Suleyman Kaleli
- Department of Medical Biology Faculty of Medicine, Sakarya University , Sakarya , Turkey
| |
Collapse
|
18
|
Ding X, Kong J, Xu W, Dong S, Du Y, Yao C, Gao J, Ke S, Wang S, Sun W. ATPase inhibitory factor 1 inhibition improves the antitumor of YC-1 against hepatocellular carcinoma. Oncol Lett 2018; 16:5230-5236. [PMID: 30250592 DOI: 10.3892/ol.2018.9266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
YC-1 is a synthetic compound, which serves as a hypoxia-inducible factor 1-α inhibitor or sensitizer to enhance the effect of chemotherapy. Previous studies have revealed the anti-cancer effects of YC-1 in various types of cancer, including hepatocellular carcinoma (HCC). ATPase inhibitory factor 1 (IF1) is upregulated in a number of human carcinomas and regulates mitochondrial bioenergetics and structure. However, whether IF1 is involved in the antitumor effects of YC-1 against HCC remains unclear. The present study examined the function of IF1 in HCC and its potential role in YC-1 effects within HCC cells. MTT, colony formation and Transwell assays revealed that IF1 overexpression promoted proliferation, colony formation and invasion of HCC cells, while IF1 downregulation had the opposite effects. Overexpression of IF1 reversed the inhibitory effects of YC-1 on Huh7 cell growth and invasion activities, while downregulation of IF1 increased the sensitivity of HCCLM3 cells to YC-1. YC-1 treatment of HCCLM3 and Huh7 cells reduced the levels of phosphorylated (p-) signal transducer and activator of transcription 3 (STAT3) and IF1, and increased the expression of E-cadherin. IF1 knockdown resulted in decreased p-STAT3 levels and increased E-cadherin expression, while IF1 overexpression increased p-STAT3 levels and reduced the expression of E-cadherin. The present study demonstrated that the inhibition of IF1 improves the antitumor effects of YC-1 in HCC cells. These findings support the clinical strategy of combining YC-1 and an IF1 inhibitor for the treatment of HCC.
Collapse
Affiliation(s)
- Xuemei Ding
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Wenlei Xu
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shuying Dong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Yingrui Du
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jun Gao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shan Ke
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Shaohong Wang
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
19
|
Zhao J, Li W, Gou S, Li S, Lin S, Wei Q, Xu G. Hypoxia-Targeting Organometallic Ru(II)–Arene Complexes with Enhanced Anticancer Activity in Hypoxic Cancer Cells. Inorg Chem 2018; 57:8396-8403. [DOI: 10.1021/acs.inorgchem.8b01070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Wanchun Li
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shuang Li
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shengqiu Lin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qianhui Wei
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Gang Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
20
|
Bahman AA, Abaza MSI, Khoushiash SI, Al-Attiyah RJ. Sequence‑dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action. Int J Mol Med 2018; 42:1695-1715. [PMID: 29901131 PMCID: PMC6089756 DOI: 10.3892/ijmm.2018.3725] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Sorafenib (Nexavar, BAY43-9006 or Sora) is the first molecular targeted agent that has exhibited significant therapeutic benefits in advanced hepatocellular carcinoma (HCC). However, not all HCC patients respond well to Sora and novel therapeutic strategies to optimize the efficacy of Sora are urgently required. Plant-based drugs have received increasing attention owing to their excellent chemotherapeutic and chemopreventive activities; they are also well tolerated, non-toxic, easily available and inexpensive. It is well known that certain biologically active natural products act synergistically with synthetic drugs used in clinical applications. The present study aimed to investigate whether a combination therapy with natural phenolic compounds (NPCs), including curcumin (Cur), quercetin (Que), kaempherol (Kmf) and resveratrol (Rsv), would allow a dose reduction of Sora without concomitant loss of its effectiveness. Furthermore, the possible molecular mechanisms of this synergy were assessed. The hepatic cancer cell lines Hep3b and HepG2 were treated with Sora alone or in combination with NPCs in concomitant, sequential, and inverted sequential regimens. Cell proliferation, cell cycle, apoptosis and expression of proteins associated with the cell cycle and apoptosis were investigated. NPCs markedly potentiated the therapeutic efficacy of Sora in a sequence-, type-, NPC dose- and cell line-dependent manner. Concomitant treatment with Sora and Cur [sensitization ratio (SR)=28], Kmf (SR=18) or Que (SR=8) was associated with the highest SRs in Hep3b cells. Rsv markedly potentiated the effect of Sora (SR=17) on Hep3b cells when administered in a reverse sequential manner. By contrast, Rsv and Que did not improve the efficacy of Sora against HepG2 cells, while concomitant treatment with Cur (SR=10) or Kmf (SR=4.01) potentiated the cytotoxicity of Sora. Concomitant treatment with Sora and Cur or Kmf caused S-phase and G2/M phase arrest of liver cancer cells and markedly induced apoptosis compared with mono-treatment with Sora, Cur or Kmf. Concomitant treatment with Sora and Cur reduced the protein levels of cyclins A, B2 and D1, phosphorylated retinoblastoma and B-cell lymphoma (Bcl) extra-large protein. By contrast, Sora and Cur co-treatment increased the protein levels of Bcl-2-associated X protein, cleaved caspase-3 and cleaved caspase-9 in a dose-dependent manner. In conclusion, concomitant treatment with Sora and Cur or Kmf appears to be a potent and promising therapeutic approach that may control hepatic cancer by triggering cell cycle arrest and apoptosis. Additional studies are required to examine the potential of combined treatment with Sora and NPCs in human hepatic cancer and other solid tumor types in vivo.
Collapse
Affiliation(s)
- Abdulmajeed A Bahman
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, 13060 Safat, State of Kuwait
| | - Mohamed Salah I Abaza
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, 13060 Safat, State of Kuwait
| | - Sarah I Khoushiash
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, 13060 Safat, State of Kuwait
| | - Rajaa J Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, 13060 Safat, State of Kuwait
| |
Collapse
|
21
|
Yang Q, Li XP, Zhong YB, Xiang TX, Zhang LL. Interferon-α inhibits cell migration and invasion and induces the expression of antiviral proteins in Huh-7 cells transfected with hepatitis B virus X gene-expressing lentivirus. Exp Ther Med 2017; 14:5924-5930. [PMID: 29285141 PMCID: PMC5740601 DOI: 10.3892/etm.2017.5288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) serves an important role in HBV infection and the development of HBV-related liver cancer. Interferon-α (IFN-α) is used to treat patients with HBV; however, the role of IFN-α in the development of HBV-related liver cancer remains unclear. The present study established a new HBV-related liver cancer model (Huh-7-HBx) by transfecting the hepatoma cell line Huh-7, with HBx-expressing lentivirus. Following IFN-α treatment, cell viability, migration and invasion, as well as the expression of antiviral proteins in Huh-7-HBx, were subsequently determined. The results demonstrated that HBx-expressing lentivirus had no significant effect on cell viability but promoted the migration and invasion of Huh-7 cells. The expression of the antiviral genes IFN α and β receptor subunit 1 (IFNAR1), IFNAR2, IFN-stimulated gene factor 3, double-stranded RNA-activated protein kinase and ribonuclease L, was also increased. Following treatment of Huh-7-HBx cells with IFN-α, the expression of antiviral genes was increased at the level of transcription and translation, whereas cell migration and invasion was decreased. The present study suggests that IFN-α may attenuate the development of HBV-related liver cancer by reducing cell migration and invasion and promoting the expression of antiviral proteins.
Collapse
Affiliation(s)
- Qian Yang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Peng Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan-Bin Zhong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tian-Xin Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lun-Li Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Lee MR, Lin C, Lu CC, Kuo SC, Tsao JW, Juan YN, Chiu HY, Lee FY, Yang JS, Tsai FJ. YC-1 induces G 0/G 1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. Biomedicine (Taipei) 2017; 7:12. [PMID: 28612710 PMCID: PMC5479426 DOI: 10.1051/bmdcn/2017070205] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
Oral cancer is a serious and fatal disease. Cisplatin is the first line of chemotherapeutic agent for oral cancer therapy. However, the development of drug resistance and severe side effects cause tremendous problems clinically. In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant human oral cancer cell line, CAR. Our results indicated that YC-1 induced a concentration-dependent and time-dependent decrease in viability of CAR cells analyzed by MTT assay. Real-time image analysis of CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell proliferation and reduced cell confluence in a time-dependent manner. Results from flow cytometric analysis revealed that YC-1 promoted G0/G1 phase arrest and provoked apoptosis in CAR cells. The effects of cell cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, E and CDK2 protein levels. TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage feature of apoptosis. In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the mitochondrial membrane potential (AYm) and stimulated ROS production in CAR cells. The protein levels of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated CAR cells. In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting cell proliferation, arresting cell cycle at G0/G1 phase and triggering mitochondria-mediated apoptosis. Our results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug resistant oral cancer in the future.
Collapse
Affiliation(s)
- Miau-Rong Lee
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan
| | - Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, China Medical University, Taichung 404, Taiwan - School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Fang-Yu Lee
- Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung 437, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
23
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
24
|
Nakamoto Y. Promising new strategies for hepatocellular carcinoma. Hepatol Res 2017; 47:251-265. [PMID: 27558453 DOI: 10.1111/hepr.12795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
25
|
Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with Sorafenib on hepatoma growth. Toxicol Appl Pharmacol 2017; 315:90-101. [DOI: 10.1016/j.taap.2016.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/20/2022]
|
26
|
Xu Z, Yang F, Wei D, Liu B, Chen C, Bao Y, Wu Z, Wu D, Tan H, Li J, Wang J, Liu J, Sun S, Qu L, Wang L. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 2016; 36:1965-1977. [DOI: 10.1038/onc.2016.356] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
|
27
|
Xu J, Lin H, Li G, Sun Y, Shi L, Ma WL, Chen J, Cai X, Chang C. Sorafenib with ASC-J9 ® synergistically suppresses the HCC progression via altering the pSTAT3-CCL2/Bcl2 signals. Int J Cancer 2016; 140:705-717. [PMID: 27668844 PMCID: PMC5215679 DOI: 10.1002/ijc.30446] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
Abstract
Sorafenib is currently used as a standard treatment to suppress the progression of hepatocellular carcinoma (HCC), especially in advanced stages. However, patients who receive Sorafenib treatment eventually develop resistance without clear mechanisms. There is a great need for better efficacy of Sorafenib treatment in combination with other therapies. Here, we demonstrated that the treatment combining Sorafenib with ASC‐J9® could synergistically suppress HCC progression via altering cell‐cycle regulation, apoptosis and invasion. Mechanism dissection suggests that while Sorafenib impacts little or even slightly increases the activated/phosphorylated STAT3 (p‐STAT3), a key stimulator to promote the HCC progression, adding ASC‐J9® significantly suppresses the p‐STAT3 expression and its downstream genes including CCL2 and Bcl2. Interrupting these signals via constitutively active STAT3 partially reverses the synergistic suppression of Sorafenib‐ASC‐J9® combination on HCC progression. In vivo studies further confirmed the synergistic effect of Sorafenib‐ASC‐J9® combination. Together, these results suggest the newly developed Sorafenib‐ASC‐J9® combination is a novel therapy to better suppress HCC progression. What's new? Sorafenib is currently a standard treatment to suppress the progression of hepatocellular carcinoma (HCC). STAT3 activation may however play a role in the development of Sorafenib resistance. Following earlier studies suggesting that ASC‐J9® may alter activated p‐STAT3 signals to suppress prostate cancer metastasis, here the authors found that combining Sorafenib with ASC‐J9® may synergistically suppress HCC progression. Sorafenib had little impact on p‐STAT3, whereas ASC‐J9® significantly suppressed p‐STAT3 expression and its downstream genes, including CCL2 and Bcl2. Clinical studies using human HCC samples also demonstrated that higher expression of p‐STAT3 might be linked to the lower response to Sorafenib treatment.
Collapse
Affiliation(s)
- Junjie Xu
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Wen-Lung Ma
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| | - Jiang Chen
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Departments of General Surgery and Urology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
Indole-3- carbinol enhances sorafenib cytotoxicity in hepatocellular carcinoma cells: A mechanistic study. Sci Rep 2016; 6:32733. [PMID: 27612096 PMCID: PMC5017213 DOI: 10.1038/srep32733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is the only chemotherapeutic agent currently approved for unresectable hepatocellular carcinoma (HCC). However, poor response rates have been widely reported. Indole-3-carbinol (I3C) is a potential chemopreventive phytochemical. The present study aimed to explore the potential chemomodulatory effects of I3C on sorafenib in HCC cells as well as the possible underlying mechanisms. I3C exhibited a greater cytotoxicity in HepG2 cells compared to Huh-7 cells (p < 0.0001). Moreover, the co-treatment of HepG2 cells with I3C and sorafenib was more effective (p = 0.002). Accordingly, subsequent mechanistic studies were carried on HepG2 cells. The results show that the ability of I3C to enhance sorafenib cytotoxicity in HCC cells could be partially attributed to increasing the apoptotic activity and decreasing the angiogenic potentials. The combination had a negative effect on epithelial-mesenchymal transition (EMT). Increased NOX-1 expression was also observed which may indicate the involvement of NOX-1 in I3C chemomodulatory effects. Additionally, the combination induced cell cycle arrest at the G0/G1 phase. In conclusion, these findings provide evidence that I3C enhances sorafenib anti-cancer activity in HCC cells.
Collapse
|
29
|
Wang WJ, Sui H, Qi C, Li Q, Zhang J, Wu SF, Mei MZ, Lu YY, Wan YT, Chang H, Guo PT. Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1α in vitro. Oncol Rep 2016; 36:428-40. [PMID: 27221674 DOI: 10.3892/or.2016.4813] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia in tumors is closely related to drug resistance. It has not been verified whether hypoxia-inducible factor-1α (HIF-1α) or ABCG2 is related to hypoxia-induced resistance. Ursolic acid (UA), when used in combination with cisplatin can significantly increase the sensitivity of ovarian cancer stem cells (CSCs) to cisplatin, but the exact mechanism is unknown. The cell growth inhibitory rate of cisplatin under different conditions was evaluated using Cell Counting Kit-8 (CCK-8) in adherence and sphere cells (SKOV3, A2780, and HEY). The expression of HIF-1α and ABCG2 was tested using quantitative PCR, western blotting, and immuno-fluorescence under different culture conditions and treated with UA. Knockdown of HIF-1α by shRNA and LY294002 was used to inhibit the activity of PI3K/Akt pathway. Ovarian CSCs express stemness-related genes and drug resistance significantly higher than normal adherent cells. Under hypoxic conditions, the ovarian CSCs grew faster and were more drug resistant than under normoxia. UA could inhibit proliferation and reverse the drug resistance of ovarian CSC by suppressing ABCG2 and HIF-1α under different culture conditions. HIF-1α inhibitor YC-1 combined with UA suppressed the stemness genes and ABCG2 under hypoxic condition. The PI3K/Akt signaling pathway activation plays an important functional role in UA-induced downregulation of HIF-1α and reduction of ABCG2. UA inhibits the proliferation and reversal of drug resistance in ovarian CSCs by suppressing the expression of downregulation of HIF-1α and ABCG2.
Collapse
Affiliation(s)
- Wen-Jing Wang
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Zhang
- Department of Science and Technology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Shao-Fei Wu
- Department of Hepatopathy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ming-Zhu Mei
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ying-Yu Lu
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yi-Ting Wan
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hannah Chang
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Piao-Ting Guo
- Department of Medical Oncology, Shanghai General Hospital, Shanghai 201203, P.R. China
| |
Collapse
|
30
|
Sharma Y, Ahmad A, Bashir S, Elahi A, Khan F. Implication of protein tyrosine phosphatase SHP-1 in cancer-related signaling pathways. Future Oncol 2016; 12:1287-98. [PMID: 26987952 DOI: 10.2217/fon-2015-0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The altered expression of SHP-1 (SH2 domain-containing protein tyrosine phosphatase) as a consequence of promoter hypermethylation or mutations has evidently been linked to cancer development. The notion of being a cancer drug target is conceivable as SHP-1 negatively regulates cell cycle and inflammatory pathways which are an inevitable part of oncogenic transformation. In the present review, we try to critically analyze the role of SHP-1 in cancer progression via regulating the above mentioned pathways with the major emphasis on cell cycle components and JAK/STAT pathway, commencing with the SHP-1 biology in immune cell signaling. Lastly, we have provided the future directions for researchers to encourage SHP-1 as a prognostic marker and curative target for this debilitating disease called as cancer.
Collapse
Affiliation(s)
- Yadhu Sharma
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Samina Bashir
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| | - Asif Elahi
- Centre for Cellular & Molecular Biology (Council for Scientific & Industrial Research), Uppal Road, Hyderabad, Telangana-500007, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
31
|
Dong S, Kong J, Kong F, Kong J, Gao J, Ji L, Pan B, Chen L, Zheng L, Sun W. Sorafenib suppresses the epithelial-mesenchymal transition of hepatocellular carcinoma cells after insufficient radiofrequency ablation. BMC Cancer 2015; 15:939. [PMID: 26620566 PMCID: PMC4663721 DOI: 10.1186/s12885-015-1949-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/20/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) played an important role in the progression of hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). However, whether sorafenib could be used to suppress the EMT of HCC after insufficient RFA and further prevent the progression of residual HCC remains poorly unknown. METHODS Insufficient RFA was simulated using a water bath (47 °C 5, 10, 15, 20 and 25 min gradually). MTT assay and transwell assay were used to evaluate the effects of sorafenib on viability, migration and invasion of HepG2 and SMMC7721 cells after insufficient RFA in vitro. After insufficient RFA, the molecular changes in HCC cells with the treatment of sorafeinb were evaluated using western blot and ELISAs. An ectopic nude mice model was used to evaluate the effect of sorafenib on the growth of HepG2 cells in vivo after insufficient RFA. RESULTS HepG2 and SMMC7721 cells after insufficient RFA (named as HepG2-H and SMMC7721-H) exhibited enhanced viability, migration and invasion in vitro. Sorafenib inhibited the enhanced viability, migration and invasion of HepG2 and SMMC7721 cells after insufficient RFA. Molecular changes of EMT were observed in HepG2-H and SMMC7721-H cells. Sorafenib inhibited the EMT of HepG2-H and SMMC7721-H cells. HepG2-H cells also exhibited larger tumor size in vivo. Higher expression of PCNA, Ki67, N-cadherin, MMP-2 and MMP-9, was also observed in HepG2-H tumors. Sorafenib blocked the enhanced growth of HepG2 cells in vivo after insufficient RFA. CONCLUSIONS Sorafenib inhibited the EMT of HCC cells after insufficient RFA, and may be used to prevent the progression of HCC after RFA.
Collapse
Affiliation(s)
- Shuying Dong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100043, China.
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100043, China.
| | - Fandong Kong
- Department of Neurobiology, School of Basic Medical Sciences, The Neuroscience Research Institute, Peking University, Beijing, 100191, China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China.
| | - Jinge Kong
- Department of Neurobiology, School of Basic Medical Sciences, The Neuroscience Research Institute, Peking University, Beijing, 100191, China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China.
| | - Jun Gao
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100043, China.
| | - Liang Ji
- School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China.
| | - Bing Pan
- School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China.
| | - Lian Chen
- The 8th Department of Orthopaedics, Affiliated Mindong Hospital of Fujian Medical University, Fujian, 355000, China.
| | - Lemin Zheng
- School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China.
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100043, China.
| |
Collapse
|
32
|
Zhang J, Du J, Liu Q, Zhang Y. Down-regulation of STAT3 expression using vector-based RNA interference promotes apoptosis in Hepatocarcinoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1201-5. [PMID: 26134753 DOI: 10.3109/21691401.2015.1029628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we followed a DNA vector-based RNAi approach to silence the signal transducer and activator of transcription 3 (STAT3) expression in Bel-7402 cells, to explore how the Janus kinase (JAK)/STAT3 signaling pathway influences the apoptosis of hepatocarcinoma cells. According to GenBank's STAT3 cDNA, the plasmid pGCsi.U6/neoRFP STAT3, which was designed for expression of STAT3 small interfering RNA (siRNA), was constructed and synthesized, and then transfected into Bel-7402 cells using Lipofectamine 2000. Cells with or without siRNA transfection were treated in wells. The apoptotic rate was detected by flow cytometry (FCM) and by staining with the Annexin V/propidium iodide (PI) apoptosis detection kit. Simultaneously, the mitochondrial membrane potential (ΔΨm) was visualized by JC-1 fluorescence staining and observed using the inverted fluorescence microscope. Furthermore, the expression of caspase-3 protein was analyzed by Western blotting. The results showed that treatment with STAT3 siRNA displayed effects in the Bel-7402 cells, causing a significantly increased apoptotic ratio (P < 0.05). The mitochondrial membrane potential of the STAT3 siRNA group, observed by the JC-1 fluorescence staining, decreased significantly. The protein expression of active caspase-3 increased with STAT3 siRNA treatment, and was significantly higher than that of the control group (P < 0.05). STAT3 gene-silencing significantly improves the apoptotic effect against Bel-7402 cells.
Collapse
Affiliation(s)
- Junwei Zhang
- a Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong University , Jinan , P.R. China.,b Department of Oncology , The Central Hospital of Panjin , Panjin , P.R. China
| | - Jiajun Du
- c Department of thoracic surgery , Provincial Hospital Affiliated to Shandong University, Shandong University , Jinan , P.R. China
| | - Qi Liu
- a Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong University , Jinan , P.R. China
| | - Yi Zhang
- d Department of General Surgery , The Central Hospital of Panjin , Panjin , P.R. China
| |
Collapse
|
33
|
Zhong J, Kang J, Wang X, Jiang W, Liao H, Yuan J. TAT-OSBP-1-MKK6(E), a novel TAT-fusion protein with high selectivity for human ovarian cancer, exhibits anti-tumor activity. Med Oncol 2015; 32:118. [PMID: 25782870 DOI: 10.1007/s12032-015-0495-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
To improve the selectivity of TAT-fusion proteins for targeted cancer therapy, we developed a novel TAT-based target-specific fusion protein, TAT-OSBP-1-MKK6(E), and evaluated its selectivity and anti-tumor activity in vitro and in vivo. The fusion protein containing TAT-OSBP-1-MKK6(E) has three functional domains: (1) the protein transduction domain of TAT, (2) the human ovarian cancer HO8910 cell-specific binding peptide (OSBP-1) and (3) the potential anti-tumor effector domain of MKK6(E). The transduction efficiency, selectivity, cytotoxicity and apoptotic effect of TAT-OSBP-1-MKK6(E) were examined using immunofluorescence, CCK8 assay and flow cytometry. The in vivo anti-tumor efficacy and target specificity of the fusion protein were evaluated using a nude mouse model with subcutaneous xenografts of human ovarian cancer HO8910 cells. Tumor-bearing mice were divided into three treatment groups that received tail vein injections of TAT-OSBP-1-MKK6(E), TAT-OSBP-1 or normal saline. Tumor growth inhibition was determined by tumor volume, weight and morphology. The distribution and apoptotic effect of TAT-OSBP-1-MKK6(E) were assessed by immunohistochemical staining and TUNEL assays. TAT-OSBP-1-MKK6(E) can be selectively internalized into human ovarian cancer HO8910 cells, rather than normal ovarian OSE cells. In vivo, the fusion protein was mainly expressed in the tumor xenograft, but not in ovary or liver tissues. As a result, TAT-OSBP-1-MKK6(E) significantly induced growth inhibition and apoptosis of tumor cells in vitro and in vivo, with limited effects in normal cells and tissues. TAT-OSBP-1-MKK6(E) treatment can selectively target HO8910 cells in vitro and in vivo, leading to growth inhibition and apoptosis of tumor cells. As such, TAT-OSBP-1-MKK6(E) may be a potential approach for ovarian cancer target therapy.
Collapse
Affiliation(s)
- Jiali Zhong
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
The naturally born fusariotoxin enniatin B and sorafenib exert synergistic activity against cervical cancer in vitro and in vivo. Biochem Pharmacol 2014; 93:318-331. [PMID: 25557295 DOI: 10.1016/j.bcp.2014.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
During the last decades substantial progress has been made in developing systemic cancer therapy. However, tumors are frequently intrinsically resistant against structurally and mechanistically unrelated drugs. Thus, it is of predominant interest to overcome drug resistance and to encourage the research for novel chemotherapeutic approaches. Recently, we have introduced enniatins, naturally occurring cyclohexadepsipeptides produced by filamentous fungi of the genus Fusarium, as potential anticancer drugs. Here, we expend this approach by demonstrating antiangiogenic properties for enniatin B (Enn B) indicated by a strong inhibition of human endothelial cell migration and tube formation. Moreover, combination of Enn B with the clinically approved multi-kinase inhibitor sorafenib (Sora) displayed profound synergistic in vitro and in vivo anticancer effects against cervical cancer. Subsequent studies showed that this strong synergism is accompanied by a marked increase in mitochondrial injury and apoptosis induction reflected by mitochondrial membrane depolarization, caspase-7 activation, and subsequent cleavage of PARP. Additionally, cells were shown to stop DNA synthesis and accumulate in S and G2/M phase of the cell cycle. The multifaceted characteristics underlying this strong synergism were suggested to be based on interference with the p38 MAPK as well as the ERK signaling pathways. Finally, also in vivo studies revealed that the combination treatment is distinctly superior to single drug treatments against the KB-3-1 cervix carcinoma xenograft model. Taken together, our data confirm the anticancer benefits of the naturally occurring fusariotoxin Enn B and further present Enn B/Sora as a novel combination strategy especially for the treatment of cervical cancer.
Collapse
|
35
|
Liu M, Yang S, Zhang D, Shui P, Song S, Yao J, Dai Y, Sun Q. Fructopyrano-(1→4)-glucopyranose inhibits the proliferation of liver cancer cells and angiogenesis in a VEGF/VEGFR dependent manner. Int J Clin Exp Med 2014; 7:3859-3869. [PMID: 25550894 PMCID: PMC4276152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
PURPOSE To investigate whether fructopyrano-(1→4)-glucopyranose (FG) inhibits the proliferation of liver cancer cells and angiogenesis in a vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) dependent manner. METHODS Bel-7402, HepG2 and SMMC-7721 cells with high expression of VEGF and VEGFR were screened. Bel-7402 cells and human microvascular endothelial cells (HMEC) were treated with FG for 48 h. CCK-8 assay was used to detect cell proliferation. Wound healing assay was used to investigate effect of FG on the migration of HMECs. Tube formation assay was done to test influence of FG on the angiogenesis of HMECs, and qRT-PCR and western blot assay were performed to detect mRNA and protein expression of VEGF, Fit-1 and KDR. Nude mice were inoculated with Bel-7402 cells, and influence of FG on tumor growth, microvessel density (MVD) and VEGF expression in tumor was investigated. RESULTS Bel-7402 cells had a significantly higher expression of VEGF and VEGFR when compared with HepG2 cells and SMMC-7721 cells. FG could markedly reduce the mRNA and protein expressions of VEGF, Fit-1 and KDR in Bel-7402 cells and inhibit the proliferation of Bel-7402 cells in a concentration dependent manner. In addition, FG was able to remarkably inhibit the proliferation, migration and angiogenesis of HMECs, exerting anti-angiogenetic effect. In cancer-bearing nude mice, FG was found to inhibit the tumor growth, reduce MVD in tumors and decrease the VEGF in tumors. CONCLUSIONS FG can inhibit proliferation of liver cancer cells and suppression angiogenesis in liver cancer in a VEGF/VEGFR dependent manner.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Pharmacy, Luzhou Medical CollegeLuzhou 646000, China
| | - Sijin Yang
- Affiliated Hospital of Traditional Chinese Medicine, Luzhou Medical CollegeLuzhou 646000, China
| | - Dan Zhang
- Department of Pharmacy, Luzhou Medical CollegeLuzhou 646000, China
| | - Pixian Shui
- Department of Pharmacy, Luzhou Medical CollegeLuzhou 646000, China
| | - Shanshan Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | - Jian Yao
- Department of Hepatobiliary Surgery, People’s Hospital of Luzhou CityLuzhou 646000, China
| | - Yong Dai
- Department of Criminal Science and Technology, Sichuan Police CollegeLuzhou 646000, China
| | - Qin Sun
- Department of Pharmacy, Luzhou Medical CollegeLuzhou 646000, China
| |
Collapse
|
36
|
Sun CK, Luo XB, Gou YP, Hu L, Wang K, Li C, Xiang ZT, Zhang P, Kong XL, Zhang CL, Yang Q, Li J, Xiao LY, Li Y, Chen QM. TCAB1: a potential target for diagnosis and therapy of head and neck carcinomas. Mol Cancer 2014; 13:180. [PMID: 25070141 PMCID: PMC4118648 DOI: 10.1186/1476-4598-13-180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
Background WRAP53, including α, β and γ isoforms, plays an important role not only in the stability of p53 mRNA, but also in the assembly and trafficking of the telomerase holoenzyme. It has been considered an oncogene and is thought to promote the survival of cancer cells. The aim of this study was to detect the role of TCAB1 (except WRAP53α) in the occurrence and development of head and neck carcinomas. Methods Immunohistochemistry was used to detect the TCAB1 expression in clinical specimen sections and performed western blotting to check the TCAB1 expression levels in cell lines. TCAB1 was depleted using shRNA lentivirus and the knockdown efficiency was assessed using q-PCR and Western blotting. We performed CCK-8 assays and flow cytometry to check the cell proliferation potential and used the trans-well assay to test the invasion ability in vitro. Xenografts were used to detect the tumor formation potential in vivo. Moreover, we performed cDNA microarray to investigate the candidate factors involved in this process. Results We observed a notable overexpression of TCAB1 in head and neck carcinoma clinical specimens as well as in carcinoma cell lines. Knockdown of TCAB1 decreased the cellular proliferation potential and invasion ability in vitro. cDNA microarray analysis suggested the possible involvement of several pathways and factors associated with tumorigenesis and carcinoma development in the TCAB1-mediated regulation of cancers. Furthermore, the xenograft assay confirmed that the depletion of TCAB1 would inhibit tumor formation in nude mice. The immunohistochemistry results of the mice tumor tissue sections revealed that the cells in shTCAB1 xenografts showed decreased proliferation potential and increased apoptotic trend, meanwhile, the angiogenesis was inhibited in the smaller tumors form shTCAB1 cells. Conclusions Our study demonstrated that depletion of TCAB1 decreased cellular proliferation and invasion potential both in vitro and in vivo. The data indicated that TCAB1 might facilitate the occurrence and development of head and neck carcinomas. In future, TCAB1 might be useful as a prognostic biomarker or a potential target for the diagnosis and therapy of head and neck carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Li-ying Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | | | | |
Collapse
|
37
|
Yin Y, Huang P, Han Z, Wei G, Zhou C, Wen J, Su B, Wang X, Wang Y. Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway. Biomacromolecules 2014; 15:2449-60. [PMID: 24955924 DOI: 10.1021/bm500321h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neural stem cells (NSCs) are deemed to be a potential cell therapy for brain and spinal cord reconstruction and regeneration following injury. In this study, we investigated the role of nanofibrous scaffolds on NSCs-derived neurons in the formation of neural networks. Miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole-cell patch clamp recording method after the spinal cord-derived NSCs were differentiated into neurons and cultured in vitro for 10-14 days. It was observed that the frequency of mEPSCs in the differentiated neurons cultured on both randomly oriented and aligned collagen nanofibrous scaffolds was higher than that on the collagen-coated control and can be inhibited by an ERK inhibitor (PD98059), indicating that the collagen nanofibers affected the maturation of the synapses from presynaptic sites via the MAPK/ERK1/2 pathway. In addition, both of the collagen nanofibers increased the phosphorylation of Synapsin I and facilitated the interaction of p-ERK1/2 and p-Synapsin I. All these results suggested that the collagen nanofibrous scaffolds contributed to the presynaptic maturation via the ERK1/2-Synapsin I signaling pathway.
Collapse
Affiliation(s)
- Yanling Yin
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University , Beijing 100069, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|