1
|
Zhang XY, Hong LL, Ling ZQ. MUC16/CA125 in cancer: new advances. Clin Chim Acta 2024; 565:119981. [PMID: 39368688 DOI: 10.1016/j.cca.2024.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
MUC16/CA125 is a common diagnostic marker for many types of cancer. However, due to the widespread expression of MUC16 in cancer, its specificity and sensitivity as a target are poor, which severely limits its clinical application. In recent years, various studies have shown that the clinical application potential of MUC16/CA125 has been greatly improved. The update of detection technology improves the accuracy and range of detection, and improves the early diagnosis rate of cancer. Targeting MUC16/CA125 is an important strategy for tumor therapy. Targeting residual amino acids, n-glycoylation structures or other targets on the surface of MUC16 cells can greatly improve the accuracy of detection and therapy. The new drug delivery method broke through the original technical shackles, targeted MUC16 positive cells more specifically and improved the drug efficacy. In this paper, the technological advances in detecting and identifying MUC16 targets and the great progress in cancer screening and treatment based on MUC16 as a target are described in detail, revealing the great potential of MUC16 as a target in cancer screening and treatment, and illustrating the potential clinical application value of MUC16.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No. 1 Banshan East Rd., Gongshu District, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
She Y, Liu X, Liu H, Yang H, Zhang W, Han Y, Zhou J. Combination of clinical and spectral-CT iodine concentration for predicting liver metastasis in gastric cancer: a preliminary study. Abdom Radiol (NY) 2024; 49:3438-3449. [PMID: 38744700 DOI: 10.1007/s00261-024-04346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE This study aimed to determine the diagnostic efficacy of various indicators and models for the prediction of gastric cancer with liver metastasis. METHODS Clinical and spectral computed tomography (CT) data from 80 patients with gastric adenocarcinoma who underwent surgical resection were retrospectively analyzed. Patients were divided into metastatic and non-metastatic groups based on whether or not to occur liver metastasis, and the region of interest (ROI) was measured manually on each phase iodine map at the largest level of the tumor. Iodine concentration (IC), normalized iodine concentration (nIC), and clinical data of the primary gastric lesions were analyzed. Logistic regression analysis was used to construct the clinical indicator (CI) and clinical indicator-spectral CT iodine concentration (CI-Spectral CT-IC) Models, which contained all of the parameters with statistically significant differences between the groups. Receiver operating characteristic (ROC) curves were constructed to evaluate the accuracy of the models. RESULTS The metastatic group showed significantly higher levels of Cancer antigen125 (CA125), carcinoembryonic antigen (CEA), IC, and nIC in the arterial phase, venous phase, and delayed phase than the non-metastatic group (all p < 0.05). Normalized iodine concentration Venous Phase (nICVP) exhibited a favorable performance among all IC and nIC parameters for forecasting gastric cancer with liver metastasis (area under the curve (AUC), 0.846). The combination model of clinical data with significant differences and nICVP showed the best diagnostic accuracy for predicting liver metastasis from gastric cancer, with an AUC of 0.897. CONCLUSION nICVP showed the best diagnostic efficacy for predicting gastric cancer with liver metastasis. Clinical Indicators-normalized ICVP model can improve the prediction accuracy for this condition.
Collapse
Affiliation(s)
- Yingxia She
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Xianwang Liu
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Hong Liu
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Haiting Yang
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Wenjuan Zhang
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Yinping Han
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Junlin Zhou
- Radiology of Department, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, People's Republic of China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China.
| |
Collapse
|
3
|
Tahara S, Nojima S, Takashima T, Okuzaki D, Morii E. Mesothelin promotes the migration of endometrioid carcinoma and is associated with the MELF pattern. Pathol Res Pract 2024; 262:155562. [PMID: 39182448 DOI: 10.1016/j.prp.2024.155562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Mesothelin (MSLN) is expressed in the mesothelium in normal tissues but is overexpressed in various malignant tumors. In this study, we searched for genes that were more frequently expressed in cases of endometrioid carcinoma (EC) with the MELF (microcystic, elongated, and fragmented) pattern using laser microdissection and RNA sequencing, and found that MSLN was predominantly expressed in cases with the MELF pattern. The role of MSLN in EC was analyzed by generating MSLN-knockout and -knockdown EC cell lines. MSLN promoted migration and epithelial-mesenchymal transition (EMT). Moreover, we found that cadherin-6 (CDH6) expression was regulated by MSLN. MSLN is known to bind to cancer antigen 125 (CA125), and we found that CA125 can regulate CDH6 expression via MSLN. Immunohistochemical investigations showed that MSLN, CA125, and CDH6 expression levels were considerably elevated in EC with the MELF pattern. The expression of CA125 was similar to that of MSLN not only in terms of immunohistochemical staining intensity but also the blood level of CA125. Our results showed that MSLN contributes to the migration and EMT of EC cells through upstream CA125 and downstream CDH6. Therefore, MSLN has potential as a therapeutic target for EC with the MELF pattern.
Collapse
Affiliation(s)
- Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
4
|
Nabeta R, Kanaya A, Shimada K, Matsuura K, Yoshimura A, Oyamada T, Azakami D, Furuya T, Uchide T. Characterization of mesothelin gene expression in dogs and overexpression in canine mesotheliomas. Front Vet Sci 2024; 11:1436621. [PMID: 39315086 PMCID: PMC11417096 DOI: 10.3389/fvets.2024.1436621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Canine mesotheliomas are uncommon malignant tumors typically detected late. Minimally invasive diagnostic biomarkers would facilitate diagnosis at earlier stages, thereby improving clinical outcomes. We hypothesized that mesothelin could be used as a reliable diagnostic biomarker for canine mesotheliomas since it has been used as a cancer biomarker for human mesothelioma. We aimed to explore and characterize mesothelin gene expression in dogs and assess its use as a diagnostic biomarker for canine mesotheliomas. Materials and methods We quantified expressed canine mesothelin transcripts via reverse transcription polymerase chain reaction (RT-PCR) and sequenced them using ribonucleic acid (RNA) extracted from a canine mesothelioma cell line. After confirming mesothelin expression, we assessed its levels in major organ tissues and compared them with those in the mesothelioma tissues using quantitative PCR (qPCR). Mesothelin overexpression in mesotheliomas was detected, and we further compared its levels using qPCR between mesotheliomas and non-mesotheliomas using tumor tissues and clinical sample effusions, confirming its significance as a diagnostic biomarker for canine mesothelioma. Results Mesothelin complementary deoxyribonucleic acid (cDNA) was amplified via RT-PCR, yielding a single band of expected upon DNA electrophoresis. Sequence analyses confirmed it as a predicted canine mesothelin transcript from the genome sequence database. Comparative sequence analysis of the deduced amino acid sequence of the expressed canine mesothelin demonstrated molecular signature similarities with the human mesothelin. However, the pre-sequence of canine mesothelin lacks the mature megakaryocyte potentiating factor (MPF) portion, which is typically cleaved post-translationally with furin. Mesothelin expression was quantified via qPCR revealing low levels in the mesothelial and lung tissues, with negligible expression in the other major organs. Canine mesothelin exhibited significantly higher expression in the canine mesotheliomas than in the noncancerous tissues. Moreover, analysis of clinical samples using qPCR demonstrated markedly elevated mesothelin expression in canine mesotheliomas compared to non-mesothelioma cases. Discussion and conclusion Canine mesothelin exhibits molecular and biological characteristics akin to human mesothelin. It could serve as a vital biomarker for diagnosing canine mesotheliomas, applicable to both tissue- and effusion-based samples.
Collapse
Affiliation(s)
- Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ami Kanaya
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Small Animal Clinical Science, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Aritada Yoshimura
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomohiro Oyamada
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncoogy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
5
|
Rupert PB, Buerger M, Friend DJ, Strong RK. Structural elucidation of the mesothelin-mucin-16/CA125 interaction. Structure 2024; 32:1049-1054.e2. [PMID: 38703776 PMCID: PMC11316652 DOI: 10.1016/j.str.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/24/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Mesothelin (MSLN) is a cell-surface glycoprotein expressed at low levels on normal mesothelium but overexpressed in many cancers. Mesothelin has been implicated to play role/s in cell adhesion and multiple signaling pathways. Mucin-16/CA125 is an enormous cell-surface glycoprotein, also normally expressed on mesothelium and implicated in the progression and metastasis of several cancers, and directly binds mesothelin. However, the precise biological function/s of mesothelin and mucin-16/CA125 remain mysterious. We report protein engineering and recombinant production, qualitative and quantitative binding studies, and a crystal structure determination elucidating the molecular-level details governing recognition of mesothelin by mucin-16/CA125. The interface is small, consistent with the ∼micromolar binding constant and is free of glycan-mediated interactions. Sequence comparisons and modeling suggest that multiple mucin-16/CA125 modules can interact with mesothelin through comparable interactions, potentially generating a high degree of avidity at the cell surface to overcome the weak affinity, with implications for functioning and therapeutic interventions.
Collapse
Affiliation(s)
- Peter B Rupert
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matthew Buerger
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Della J Friend
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Roland K Strong
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
6
|
Malik S, Sikander M, Bell N, Zubieta D, Bell MC, Yallapu MM, Chauhan SC. Emerging role of mucins in antibody drug conjugates for ovarian cancer therapy. J Ovarian Res 2024; 17:161. [PMID: 39118097 PMCID: PMC11308542 DOI: 10.1186/s13048-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.
Collapse
Affiliation(s)
- Shabnam Malik
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Mohammed Sikander
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Natasha Bell
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Daniel Zubieta
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Maria C Bell
- Sanford Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, SD, 57104, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
| |
Collapse
|
7
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00279-7. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma, is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence has been described to support CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
8
|
Ma MC, Lavi ES, Altwerger G, Lin ZP, Ratner ES. Predictive modeling of gene mutations for the survival outcomes of epithelial ovarian cancer patients. PLoS One 2024; 19:e0305273. [PMID: 38976671 PMCID: PMC11230535 DOI: 10.1371/journal.pone.0305273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has a low overall survival rate, largely due to frequent recurrence and acquiring resistance to platinum-based chemotherapy. EOC with homologous recombination (HR) deficiency has increased sensitivity to platinum-based chemotherapy because platinum-induced DNA damage cannot be repaired. Mutations in genes involved in the HR pathway are thought to be strongly correlated with favorable response to treatment. Patients with these mutations have better prognosis and an improved survival rate. On the other hand, mutations in non-HR genes in EOC are associated with increased chemoresistance and poorer prognosis. For this reason, accurate predictions in response to treatment and overall survival remain challenging. Thus, analyses of 360 EOC cases on NCI's The Cancer Genome Atlas (TCGA) program were conducted to identify novel gene mutation signatures that were strongly correlated with overall survival. We found that a considerable portion of EOC cases exhibited multiple and overlapping mutations in a panel of 31 genes. Using logistical regression modeling on mutational profiles and patient survival data from TCGA, we determined whether specific sets of deleterious gene mutations in EOC patients had impacts on patient survival. Our results showed that six genes that were strongly correlated with an increased survival time are BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2. In addition, our analysis shows that six genes that were strongly correlated with a decreased survival time are FANCE, FOXM1, KRAS, FANCD2, TTN, and CSMD3. Furthermore, Kaplan-Meier survival analysis of 360 patients stratified by these positive and negative gene mutation signatures corroborated that our regression model outperformed the conventional HR genes-based classification and prediction of survival outcomes. Collectively, our findings suggest that EOC exhibits unique mutation signatures beyond HR gene mutations. Our approach can identify a novel panel of gene mutations that helps improve the prediction of treatment outcomes and overall survival for EOC patients.
Collapse
Affiliation(s)
- Mirielle C Ma
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ethan S Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Z Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elena S Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Kaur K, Sanghu J, Memarzadeh S, Jewett A. Exploring the Potential of Natural Killer Cell-Based Immunotherapy in Targeting High-Grade Serous Ovarian Carcinomas. Vaccines (Basel) 2024; 12:677. [PMID: 38932405 PMCID: PMC11209217 DOI: 10.3390/vaccines12060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) likely consist of poorly differentiated stem-like cells (PDSLCs) and differentiated tumor cells. Conventional therapeutics are incapable of completely eradicating PDSLCs, contributing to disease progression and tumor relapse. Primary NK cells are known to effectively lyse PDSLCs, but they exhibit low or minimal cytotoxic potential against well-differentiated tumors. We have introduced and discussed the characteristics of super-charged NK (sNK) cells in this review. sNK cells, in comparison to primary NK cells, exhibit a significantly higher capability for the direct killing of both PDSLCs and well-differentiated tumors. In addition, sNK cells secrete significantly higher levels of cytokines, especially those known to induce the differentiation of tumors. In addition, we propose that a combination of sNK and chemotherapy could be one of the most effective strategies to eliminate the heterogeneous population of ovarian tumors; sNK cells can lyse both PDSLCs and well-differentiated tumors, induce the differentiation of PDSLCs, and could be used in combination with chemotherapy to target both well-differentiated and NK-induced differentiated tumors.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Jashan Sanghu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Bertoli E, De Carlo E, Bortolot M, Stanzione B, Del Conte A, Spina M, Bearz A. Targeted Therapy in Mesotheliomas: Uphill All the Way. Cancers (Basel) 2024; 16:1971. [PMID: 38893092 PMCID: PMC11171080 DOI: 10.3390/cancers16111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mesothelioma (MM) is an aggressive and lethal disease with few therapeutic opportunities. Platinum-pemetrexed chemotherapy is the backbone of first-line treatment for MM. The introduction of immunotherapy (IO) has been the only novelty of the last decades, allowing an increase in survival compared to standard chemotherapy (CT). However, IO is not approved for epithelioid histology in many countries. Therefore, therapy for relapsed MM remains an unmet clinical need, and the prognosis of MM remains poor, with an average survival of only 18 months. Increasing evidence reveals MM complexity and heterogeneity, of which histological classification fails to explain. Thus, scientific focus on possibly new molecular markers or cellular targets is increasing, together with the search for target therapies directed towards them. The molecular landscape of MM is characterized by inactivating tumor suppressor alterations, the most common of which is found in CDKN2A, BAP1, MTAP, and NF2. In addition, cellular targets such as mesothelin or metabolic enzymes such as ASS1 could be potentially amenable to specific therapies. This review examines the major targets and relative attempts of therapeutic approaches to provide an overview of the potential prospects for treating this rare neoplasm.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| |
Collapse
|
11
|
Zhang XY, Hong LL, Ling ZQ. MUC16: clinical targets with great potential. Clin Exp Med 2024; 24:101. [PMID: 38758220 PMCID: PMC11101557 DOI: 10.1007/s10238-024-01365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Mucin 16 (MUC16) is a membrane-bound mucin that is abnormally expressed or mutated in a variety of diseases, especially tumors, while being expressed in normal body epithelium. MUC16 and its extracellular components are often important cancer-related biomarkers. Abnormal expression of MUC16 promotes tumor progression through mesenchymal protein, PI3K/AKT pathway, JAK2/STAT3 pathway, ERK/FBW7/c-Myc, and other mechanisms, and plays an important role in the occurrence and development of tumors. In addition, MUC16 also helps tumor immune escape by inhibiting T cells and NK cells. Many drugs and trials targeting MUC16 have been developed, and MUC16 may be a new direction for future treatments. In this paper, the mechanism of action of MUC16 in the development of cancer, especially in the immune escape of tumor, is introduced in detail, indicating the potential of MUC16 in clinical treatment.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- The Second Clinical Medical College of Zhejiang, Chinese Medicine University, Hangzhou, 310053, China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- The Second Clinical Medical College of Zhejiang, Chinese Medicine University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Guo J, Zeng X, Zhu Y, Yang D, Zhao X. Mesothelin-based CAR-T cells exhibit potent antitumor activity against ovarian cancer. J Transl Med 2024; 22:367. [PMID: 38637885 PMCID: PMC11025286 DOI: 10.1186/s12967-024-05174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is characterized by its rapid growth and spread which, accompanied by a low 5-year survival rate, necessitates the development of improved treatments. In ovarian cancer, the selective overexpression of Mucin-16 (MUC16, CA125) in tumor cells highlights its potential as a promising target for developing anti-tumor therapies. However, the potential effectiveness of CAR-T cell therapy that targets MUC16 in ovarian cancer cells is unknown. METHODS The expression of MUC16 in viable OC cells was detected using immunofluorescence and flow cytometry techniques. A MSLN-CAR construct, comprising the MUC16-binding polypeptide region of mesothelin (MSLN), a CD8 hinge spacer and transmembrane domain, 4-1BB, and CD3ζ endo-domains; was synthesized and introduced into T cells using lentiviral particles. The cytotoxicity of the resultant CAR-T cells was evaluated in vitro using luciferase assays. Cytokine release by CAR-T cells was measured using enzyme-linked immunosorbent assays. The anti-tumor efficacy of the CAR-T cells was subsequently assessed in mice through both systemic and local administration protocols. RESULTS MSLN-CAR T cells exhibited potent cytotoxicity towards OVCAR3 cells and their stem-like cells that express high levels of MUC16. Also, MSLN-CAR T cells were inefficient at killing SKOV3 cells that express low levels of MUC16, but were potently cytotoxic to such cells overexpressing MUC16. Moreover, MSLN-CAR T cells delivered via tail vein or peritoneal injection could shrink OVCAR3 xenograft tumors in vivo, with sustained remission observed following peritoneal delivery of MSLN-CAR T cells. CONCLUSIONS Collectively, these results suggested that MSLN-CAR T cells could potently eliminate MUC16- positive ovarian cancer tumor cells both in vitro and in vivo, thereby providing a promising therapeutic intervention for MUC16-positive patients.
Collapse
Affiliation(s)
- Jing Guo
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaozhu Zeng
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Cutri-French C, Nasioudis D, George E, Tanyi JL. CAR-T Cell Therapy in Ovarian Cancer: Where Are We Now? Diagnostics (Basel) 2024; 14:819. [PMID: 38667465 PMCID: PMC11049291 DOI: 10.3390/diagnostics14080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapies in the treatment of hematologic malignancies has led to the investigation of their potential in the treatment of solid tumors, including ovarian cancer. While the immunosuppressive microenvironment of ovarian cancer has been a barrier in their implementation, several early phase clinical trials are currently evaluating CAR-T cell therapies targeting mesothelin, folate receptor a, HER2, MUC16, and B7H3. Ongoing challenges include cytokine-associated and "on-target, off-tumor" toxicities, while most common adverse events include cytokine release syndrome, hemophagocytic lymphohistiocytosis/macrophage activation-like syndrome (HLH/MAS), and neurotoxicity. In the present review, we summarize the current status of CAR-T therapy in ovarian cancer and discuss future directions.
Collapse
Affiliation(s)
- Clare Cutri-French
- Department of Obstetrics and Gynecology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA;
| | - Dimitrios Nasioudis
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| | - Erin George
- Moffitt Cancer Center, Richard M. Schulze Family Foundation Outpatient Center at McKinley Campus, 10920 McKinley Dr, Tampa, FL 33612, USA
| | - Janos L. Tanyi
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Casey NP, Kleinmanns K, Forcados C, Gelebart PF, Joaquina S, Lode M, Benard E, Kaveh F, Caulier B, Helgestad Gjerde C, García de Jalón E, Warren DJ, Lindemann K, Rokkones E, Davidson B, Myhre MR, Kvalheim G, Bjørge L, McCormack E, Inderberg EM, Wälchli S. Efficient CAR T cell targeting of the CA125 extracellular repeat domain of MUC16. J Immunother Cancer 2024; 12:e008179. [PMID: 38604812 PMCID: PMC11015285 DOI: 10.1136/jitc-2023-008179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies in the Western world. Contributing factors include a high frequency of late-stage diagnosis, the development of chemoresistance, and the evasion of host immune responses. Currently, debulking surgery and platinum-based chemotherapy are the treatment cornerstones, although recurrence is common. As the clinical efficacy of immune checkpoint blockade is low, new immunotherapeutic strategies are needed. Chimeric antigen receptor (CAR) T cell therapy empowers patients' own T cells to fight and eradicate cancer, and has been tested against various targets in OC. A promising candidate is the MUC16 ectodomain. This ectodomain remains on the cell surface after cleavage of cancer antigen 125 (CA125), the domain distal from the membrane, which is currently used as a serum biomarker for OC. CA125 itself has not been tested as a possible CAR target. In this study, we examined the suitability of the CA125 as a target for CAR T cell therapy. METHODS We tested a series of antibodies raised against the CA125 extracellular repeat domain of MUC16 and adapted them to the CAR format. Comparisons between these candidates, and against an existing CAR targeting the MUC16 ectodomain, identified K101 as having high potency and specificity. The K101CAR was subjected to further biochemical and functional tests, including examination of the effect of soluble CA125 on its activity. Finally, we used cell lines and advanced orthotopic patient-derived xenograft (PDX) models to validate, in vivo, the efficiency of our K101CAR construct. RESULTS We observed a high efficacy of K101CAR T cells against cell lines and patient-derived tumors, in vitro and in vivo. We also demonstrated that K101CAR functionality was not impaired by the soluble antigen. Finally, in direct comparisons, K101CAR, which targets the CA125 extracellular repeat domains, was shown to have similar efficacy to the previously validated 4H11CAR, which targets the MUC16 ectodomain. CONCLUSIONS Our in vitro and in vivo results, including PDX studies, demonstrate that the CA125 domain of MUC16 represents an excellent target for treating MUC16-positive malignancies.
Collapse
Affiliation(s)
- Nicholas P Casey
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Katrin Kleinmanns
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christopher Forcados
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal F Gelebart
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sandy Joaquina
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Martine Lode
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emmanuelle Benard
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Fatemeh Kaveh
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Benjamin Caulier
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christiane Helgestad Gjerde
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Elvira García de Jalón
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David J Warren
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kristina Lindemann
- Department of Gynecologic Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erik Rokkones
- Department of Gynecologic Oncology, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Marit Renee Myhre
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Pattalachinti VK, Ito I, Chowdhury S, Yousef A, Gu Y, Gunes BB, Salle ER, Taggart M, Fournier K, Fowlkes NW, Shen JP. Peritoneal Microenvironment Promotes Appendiceal Adenocarcinoma Growth: A Multi-omics Approach Using Patient-Derived Xenografts. Mol Cancer Res 2024; 22:329-336. [PMID: 38226984 PMCID: PMC10987270 DOI: 10.1158/1541-7786.mcr-23-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Appendiceal adenocarcinoma (AA) is unique from other gastrointestinal malignancies in that it almost exclusively metastasizes to the peritoneal cavity. However, few studies have investigated the molecular interaction of the peritoneal microenvironment and AA. Here, we use a multi-omics approach with orthotopic and flank-implanted patient-derived xenografts (PDX) to study the effect of the peritoneal microenvironment on AA. AA tumors implanted in the peritoneal microenvironment tended to grow faster and displayed greater nuclear expression of Ki-67 relative to the same tumors implanted in the flank. Comparing the tumor-specific transcriptome (excluding stromal transcription), the peritoneal microenvironment relatively upregulated genes related to proliferation, including MKI67 and EXO1. Peritoneal tumors were also enriched for proliferative gene sets, including E2F and Myc Targets. Proteomic studies found a 2.5-fold increased ratio of active-to-inactive phosphoforms of the YAP oncoprotein in peritoneal tumors, indicating downregulation of Hippo signaling. IMPLICATIONS The peritoneal microenvironment promotes growth of appendiceal tumors and expression of proliferative pathways in PDXs.
Collapse
Affiliation(s)
- Vinay K. Pattalachinti
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ichiaki Ito
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yue Gu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betul Beyza Gunes
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emma R. Salle
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Melissa Taggart
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Keith Fournier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Mogere E, Mutebi M, Njau A, Mansour MH, Abuodha J, Okiro P. A rare case of breast carcinoma metastasis into a meningioma in a 64-year-old female patient. Radiol Case Rep 2024; 19:1519-1523. [PMID: 38304352 PMCID: PMC10832375 DOI: 10.1016/j.radcr.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 02/03/2024] Open
Abstract
This report discusses the occurrence of tumor-to-tumor metastasis-an atypical phenomenon in oncology where a secondary malignancy develops within an existing primary tumor. The case of a 64-year-old woman is presented, who, with a history of stage II invasive ductal carcinoma of the breast treated with mastectomy and chemoradiotherapy, developed neurological symptoms indicative of a secondary brain tumor. MRI and subsequent histopathological analysis post-craniotomy confirmed a meningioma with a metastatic breast carcinoma, demonstrating the clinical importance of considering tumor-to-tumor metastasis in similar patient histories.
Collapse
Affiliation(s)
- Edwin Mogere
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Nairobi, Kenya
| | - Miriam Mutebi
- Section of Breast and Endocrine, Department of Surgery, Aga Khan University Hospital, Nairobi, Kenya
| | - Allan Njau
- Section of Anatomic Pathology, Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Manel Haj Mansour
- Section of Oncology, Department of Haemato-Oncology, Aga Khan University Hospital, Nairobi, Kenya
| | - Joseph Abuodha
- Section of Oncology, Department of Haemato-Oncology, Aga Khan University Hospital, Nairobi, Kenya
| | - Patricia Okiro
- Section of Anatomic Pathology, Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| |
Collapse
|
17
|
Kembuan GJ, Kim JY, Maus MV, Jan M. Targeting solid tumor antigens with chimeric receptors: cancer biology meets synthetic immunology. Trends Cancer 2024; 10:312-331. [PMID: 38355356 PMCID: PMC11006585 DOI: 10.1016/j.trecan.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a medical breakthrough in the treatment of B cell malignancies. There is intensive focus on developing solid tumor-targeted CAR-T cell therapies. Although clinically approved CAR-T cell therapies target B cell lineage antigens, solid tumor targets include neoantigens and tumor-associated antigens (TAAs) with diverse roles in tumor biology. Multiple early-stage clinical trials now report encouraging signs of efficacy for CAR-T cell therapies that target solid tumors. We review the landscape of solid tumor target antigens from the perspective of cancer biology and gene regulation, together with emerging clinical data for CAR-T cells targeting these antigens. We then discuss emerging synthetic biology strategies and their application in the clinical development of novel cellular immunotherapies.
Collapse
Affiliation(s)
- Gabriele J Kembuan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Joanna Y Kim
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Lee J, Park JE, Lee D, Seo N, An HJ. Advancements in protein glycosylation biomarkers for ovarian cancer through mass spectrometry-based approaches. Expert Rev Mol Diagn 2024; 24:249-258. [PMID: 38112537 DOI: 10.1080/14737159.2023.2297933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Ovarian cancer, characterized by metastasis and reduced 5-year survival rates, stands as a substantial factor in the mortality of gynecological malignancies worldwide. The challenge of delayed diagnosis originates from vague early symptoms and the absence of efficient screening and diagnostic biomarkers for early cancer detection. Recent studies have explored the intricate interplay between ovarian cancer and protein glycosylation, unveiling the potential significance of glycosylation-oriented biomarkers. AREAS COVERED This review examines the progress in glycosylation biomarker research, with particular emphasis on advances driven by mass spectrometry-based technologies. We document milestones achieved, discuss encountered limitations, and also highlight potential areas for future research and development of protein glycosylation biomarkers for ovarian cancer. EXPERT OPINION The association of glycosylation in ovarian cancer is well known, but current research lacks desired sensitivity and specificity for early detection. Notably, investigations into protein-specific and site-specific glycoproteomics have the potential to significantly enhance our understanding of ovarian cancer and facilitate the identification of glycosylation-based biomarkers. Furthermore, the integration of advanced mass spectrometry techniques with AI-driven analysis and glycome databases holds the promise for revolutionizing biomarker discovery for ovarian cancer, ultimately transforming diagnosis and improving patient outcomes.
Collapse
Affiliation(s)
- Jua Lee
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Muhammad SA, Olaoye SO, Umar FK. Are preoperative serum cancer antigen 125 levels a prognostic factor for outcome in epithelial ovarian cancer? A systematic review. Niger Med J 2024; 65:108-118. [PMID: 39005560 PMCID: PMC11240199 DOI: 10.60787/nmj-v65i2-418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background Most patients with epithelial ovarian cancers (EOC) present with advanced-stage disease because of non-specific symptoms and lack of reliable strategies for early diagnosis. Cancer antigen 125 (CA-125) is suggested as a useful prognostic biomarker, its serum level is raised in over 80.0% of patients with EOC. Primary debulking surgery (PDS) followed by chemotherapy is the conventional treatment, but neoadjuvant chemotherapy followed by interval debulking surgery (NACT-IDS) is offered to patients with unresectable disease. There are inconsistencies regarding the role of preoperative CA-125 serum levels to adopt in stratifying patients for treatment choice that offers the most benefit. This review aimed to determine the role of preoperative CA-125 levels in predicting optimal cytoreduction and the association between optimal cytoreduction and survival outcome in patients with EOC. Methodology Three electronic databases CINAHL, Cochrane library and PubMed were searched for potentially relevant articles from 2016 to 2021 on the role of preoperative CA-125 levels in predicting optimal cytoreduction and survival in patients with epithelial ovarian carcinomas. Conclusion In patients who underwent NACT-IDS, a lower preoperative CA-125 value is a predictor of optimal cytoreduction and an increase in preoperative CA-125 value is consistently associated with a decrease in optimal cytoreduction. There was insufficient data to assess overall survival. However, a raised preoperative CA-125 level is poor predictor of chance of achieving optimal cytoreduction and the rate of optimal cytoreduction was a weak predictor of overall survival in women who had primary debulking surgery.
Collapse
Affiliation(s)
- Shittu Adamu Muhammad
- Department of Obstetrics and Gynaecology, Federal Medical Centre Gusau, Zamfara State, Nigeria
| | - Stephen Oyewole Olaoye
- Department of Obstetrics and Gynaecology, Federal Medical Centre Gusau, Zamfara State, Nigeria
| | - Farouk Kabir Umar
- Department of Radiology, Usman Danfodiyo University Teaching Hospital, Sokoto, Sokoto State, Nigeria
| |
Collapse
|
20
|
Klotz DM, Link T, Wimberger P, Kuhlmann JD. A predictive and prognostic model for surgical outcome and prognosis in ovarian cancer computed by clinico-pathological and serological parameters (CA125, HE4, mesothelin). Clin Chem Lab Med 2024; 62:530-539. [PMID: 37816681 DOI: 10.1515/cclm-2023-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVES Numerous prognostic models have been proposed for ovarian cancer, extending from single serological factors to complex gene-expression signatures. Nonetheless, these models have not been routinely translated into clinical practice. We constructed a robust and readily calculable model for predicting surgical outcome and prognosis of ovarian cancer patients by exploiting commonly available clinico-pathological factors and three selected serum parameters. METHODS Serum CA125, human epididymis protein 4 (HE4) and mesothelin (MSL) were quantified by Lumipulse® G chemiluminescent enzyme immunoassay (Fujirebio) in a total of 342 serum samples from 190 ovarian cancer patients, including 152 paired pre- and post-operative samples. RESULTS Detection of pre-operative HE4 and CA125 was the optimal marker combination for blood-based prediction of surgical outcome (AUC=0.86). We constructed a prognostic model, computed by serum levels of pre-operative CA125, post-operative HE4, post-operative MSL and surgical outcome. Prognostic performance of our model was superior to any of these parameters alone and was independent from BRCA1/2 mutational status. We subsequently transformed our model into a prognostic risk index, stratifying patients as "lower risk" or "higher risk". In "higher risk" patients, relapse or death was predicted with an AUC of 0.89 and they had a significantly shorter progression free survival (HR: 9.74; 95 % CI: 5.95-15.93; p<0.0001) and overall survival (HR: 5.62; 95 % CI: 3.16-9.99; p<0.0001) compared to "lower risk" patients. CONCLUSIONS We present a robust predictive/prognostic model for ovarian cancer, which could readily be implemented into routine diagnostics in order to identify ovarian cancer patients at high risk of recurrence.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Honda KI, Miyama M, Nishii Y, Tasaka R, Nakano Y, Umesaki N, Fukuda T, Ichimura T, Yasui T, Sumi T. Metastasis of cervical cancer indicated by elevation of serum CA125 produced by mediastinal lymph nodes: a case report. J Med Case Rep 2024; 18:112. [PMID: 38402387 PMCID: PMC10894469 DOI: 10.1186/s13256-024-04417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND In patient assessment for recurrence of neoplasia, a biomarker that shows an elevated serum value before the first treatment is a candidate for follow-up examination. The biomarker squamous cell carcinoma antigen is usually utilized for follow-up of squamous cell cancer of the cervix. CASE PRESENTATION We herein report a 30-year-old Japanese woman of postoperative metastasis of cervical squamous cell cancer to the mediastinal and supraclavicular lymph nodes as indicated by an elevated serum cancer antigen 125 concentration and not by the squamous cell carcinoma antigen value. After chemoradiotherapy and chemotherapy, the serum cancer antigen 125 concentration decreased to a normal value. Squamous cell carcinoma antigen was found to be distributed in both the squamous cell cancer tissue of the cervix and the supraclavicular lymph node metastatic tissue. By contrast, cancer antigen 125 was distributed in the supraclavicular lymph node metastatic tissue but not in the original squamous cell cancer tissue of the cervix. CONCLUSION In this case, metastasis of cervical cancer to the mediastinal and supraclavicular lymph nodes was shown by the biomarker cancer antigen 125, which was not present in the original neoplasia.
Collapse
Affiliation(s)
- Ken-Ichi Honda
- Department of Obstetrics and Gynecology, PL Hospital, 2204 Shindou, Tondabayashi, Osaka, 584-8585, Japan.
| | - Masato Miyama
- Department of Gynecology, Izumi City General Hospital, Izumi, Japan
| | | | - Reiko Tasaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusuke Nakano
- Department of Oncology, Izumi City General Hospital, Izumi, Japan
| | - Naohiko Umesaki
- Department of Gynecology, Izumi City General Hospital, Izumi, Japan
| | - Takeshi Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoyuki Ichimura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoyo Yasui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshiyuki Sumi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
22
|
Takeda-Uchimura Y, Ikezaki M, Akama TO, Ihara Y, Allain F, Nishitsuji K, Uchimura K. GlcNAc6ST2/CHST4 Is Essential for the Synthesis of R-10G-Reactive Keratan Sulfate/Sulfated N-Acetyllactosamine Oligosaccharides in Mouse Pleural Mesothelium. Molecules 2024; 29:764. [PMID: 38398516 PMCID: PMC10893525 DOI: 10.3390/molecules29040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan;
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Kazuchika Nishitsuji
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Kenji Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| |
Collapse
|
23
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Wang CW, Weaver SD, Boonpattrawong N, Schuster-Little N, Patankar M, Whelan RJ. A Revised Molecular Model of Ovarian Cancer Biomarker CA125 (MUC16) Enabled by Long-read Sequencing. CANCER RESEARCH COMMUNICATIONS 2024; 4:253-263. [PMID: 38197671 PMCID: PMC10829539 DOI: 10.1158/2767-9764.crc-23-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
The biomarker CA125, a peptide epitope located in several tandem repeats of the mucin MUC16, is the gold standard for monitoring regression and recurrence of high-grade serous ovarian cancer in response to therapy. However, the CA125 epitope along with several structural features of the MUC16 molecule are ill defined. One central aspect still unresolved is the number of tandem repeats in MUC16 and how many of these repeats contain the CA125 epitope. Studies from the early 2000s assembled short DNA reads to estimate that MUC16 contained 63 repeats.Here, we conduct Nanopore long-read sequencing of MUC16 transcripts from three primary ovarian tumors and established cell lines (OVCAR3, OVCAR5, and Kuramochi) for a more exhaustive and accurate estimation and sequencing of the MUC16 tandem repeats.The consensus sequence derived from these six sources was confirmed by proteomics validation and agrees with recent additions to the NCBI database. We propose a model of MUC16 containing 19-not 63-tandem repeats. In addition, we predict the structure of the tandem repeat domain using the deep learning algorithm, AlphaFold.The predicted structure displays an SEA domain and unstructured linker region rich in proline, serine, and threonine residues in all 19 tandem repeats. These studies now pave the way for a detailed characterization of the CA125 epitope. Sequencing and modeling of the MUC16 tandem repeats along with their glycoproteomic characterization, currently underway in our laboratories, will help identify novel epitopes in the MUC16 molecule that improve on the sensitivity and clinical utility of the current CA125 assay. SIGNIFICANCE Despite its crucial role in clinical management of ovarian cancer, the exact molecular sequence and structure of the biomarker, CA125, are not defined. Here, we combine long-read sequencing, mass spectrometry, and in silico modeling to provide the foundational dataset for a more complete characterization of the CA125 epitope.
Collapse
Affiliation(s)
- Chien-Wei Wang
- Department of Chemistry, University of Kansas, Lawrence, Kansas
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Nicha Boonpattrawong
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin
| | | |
Collapse
|
25
|
Stockhammer P, Baumeister H, Ploenes T, Bonella F, Theegarten D, Dome B, Pirker C, Berger W, Hegedüs L, Baranyi M, Schuler M, Deshayes S, Bölükbas S, Aigner C, Blanquart C, Hegedüs B. Krebs von den Lungen 6 (KL-6) is a novel diagnostic and prognostic biomarker in pleural mesothelioma. Lung Cancer 2023; 185:107360. [PMID: 37713954 DOI: 10.1016/j.lungcan.2023.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVES Pleural mesothelioma (PM) is a rare disease with dismal outcome. Systemic treatment options include chemotherapy and immunotherapy, but biomarkers for treatment personalization are missing. The only FDA-approved diagnostic biomarker is the soluble mesothelin-related protein (SMRP). Krebs von den Lungen-6 (KL-6) is a human mucin 1 (MUC1) glycoprotein, which has shown diagnostic and prognostic value as a biomarker in other malignancies. The present study investigated whether KL-6 can serve as a diagnostic and/or prognostic biomarker in PM. MATERIALS AND METHODS Using a fully-automated chemiluminescence enzyme immunoassay (CLEIA) for KL-6 and SMRP, pleural effusion samples from 87 consecutive patients with PM and 25 patients with non-malignant pleural disorders were studied. In addition, KL-6 and SMRP levels were determined in corresponding patient sera, and in an independent validation cohort (n = 122). MUC1 mRNA and protein expression, and KL-6 levels in cell line supernatants were investigated in PM primary cell lines in vitro. RESULTS PM patients had significantly higher KL-6 levels in pleural effusion than non-malignant controls (AUC 0.78, p < 0.0001). Among PM patients, levels were highest in those with epithelioid or biphasic histologies. There was a strong positive correlation between pleural effusion levels of KL-6 and SMRP (p < 0.0001). KL-6 levels in sera similarly associated with diagnosis of PM, however, to a lesser extent (AUC 0.71, p = 0.008). PM patients with high pleural effusion KL-6 levels (≥303 IU/mL) had significantly better overall survival (OS) compared to those with low KL-6 levels (HR 0.51, p = 0.004). Congruently, high tumor cell MUC1 mRNA expression in primary cell lines associated with prolonged corresponding patient OS (HR 0.35, p = 0.004). These findings were confirmed in an independent validation cohort. CONCLUSION This is the first study demonstrating KL-6 as a potential novel liquid-based diagnostic and prognostic biomarker in PM.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany; Yale School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA
| | - Hannah Baumeister
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany; Division of Thoracic Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease Unit, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Ráth György u. 7-9, 1122 Budapest, Hungary; National Korányi Institute of Pulmonology, Korányi Frigyes út 1, 1122 Budapest, Hungary; Department of Translational Medicine, Lund University, Box 117, 221 00 Lund, Sweden
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Luca Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllöi ut 93, 195, Budapest, Hungary
| | - Martin Schuler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, German
| | - Sophie Deshayes
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany; Karl-Landsteiner-Institute for Clinical and Translational Thoracic Surgery Research, Bruenner Strasse 68, 1210 Vienna, Austria
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Balazs Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany.
| |
Collapse
|
26
|
Gao H, Ji K, Bao L, Chen H, Lin C, Feng M, Tao L, Wang M. Establishment and verification of prediction model of occult peritoneal metastasis in advanced gastric cancer. World J Surg Oncol 2023; 21:320. [PMID: 37833730 PMCID: PMC10571475 DOI: 10.1186/s12957-023-03188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND To investigate the risk factors associated with the development of occult peritoneal metastasis in advanced gastric cancer, and establish and externally validate a nomogram for predicting the occurrence of occult peritoneal metastasis in patients with advanced gastric cancer. METHODS A total of 111 patients with advanced gastric cancer who underwent laparoscopic exploration or peritoneal lavage cytology examination at the Affiliated Drum Tower Hospital of Nanjing University Medical School from August 2014 to December 2021 were retrospectively analyzed. The patients diagnosed between 2019 and 2021 were assigned to the training set (n = 64), while those diagnosed between 2014 and 2016 constituted the external validation set (n = 47). In the training set, patients were classified into two groups based on preoperative imaging and postoperative pathological data: the occult peritoneal metastasis group (OPMG) and the peritoneal metastasis negative group (PMNG). In the validation set, patients were classified into the occult peritoneal metastasis group (CY1P0, OPMG) and the peritoneal metastasis negative group (CY0P0, PMNG) based on peritoneal lavage cytology results. A nomogram was constructed using univariate and multivariate analyses. The performance of the nomogram was evaluated using Harrell's C-index, the area under the receiver operating characteristic curve (AUC), decision curve analysis (DCA), and calibration plots. RESULTS This study analyzed 22 potential variables of OPM in 111 gastric cancer patients who underwent laparoscopic exploration or peritoneal lavage cytology examination. Logistic regression analysis results showed that Lauren classification, CLDN18.2 score and CA125 were independent risk factors for OPM in patients with gastric cancer. We developed a simple and easy-to-use prediction nomogram of occult peritoneal metastasis in advanced gastric cancer. This nomogram had an excellent diagnostic performance. The AUC of the bootstrap model in the training set was 0.771 and in the validation set was 0.711. This model showed a good fitting and calibration and positive net benefits in decision curve analysis. CONCLUSION We have developed a prediction nomogram of OPM for gastric cancer. This novel nomogram has the potential to enhance diagnostic accuracy for occult peritoneal metastasis in gastric cancer patients.
Collapse
Affiliation(s)
- Hengfei Gao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Kangkang Ji
- Department of Gastrointestinal, Fuyang People's Hospital, Fuyang, China
| | - Linsen Bao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Hao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Chen Lin
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Medical School of Nanjing University, Nanjing, China.
| | - Liang Tao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Medical School of Nanjing University, Nanjing, China.
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
28
|
Pascual-Antón L, Sandoval P, González-Mateo GT, Kopytina V, Tomero-Sanz H, Arriero-País EM, Jiménez-Heffernan JA, Fabre M, Egaña I, Ferrer C, Simón L, González-Cortijo L, Sainz de la Cuesta R, López-Cabrera M. Targeting carcinoma-associated mesothelial cells with antibody-drug conjugates in ovarian carcinomatosis. J Pathol 2023; 261:238-251. [PMID: 37555348 DOI: 10.1002/path.6170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Ovarian carcinomatosis is characterized by the accumulation of carcinoma-associated mesothelial cells (CAMs) in the peritoneal stroma and mainly originates through a mesothelial-to-mesenchymal transition (MMT) process. MMT has been proposed as a therapeutic target for peritoneal metastasis. Most ovarian cancer (OC) patients present at diagnosis with peritoneal seeding, which makes tumor progression control difficult by MMT modulation. An alternative approach is to use antibody-drug conjugates (ADCs) targeted directly to attack CAMs. This strategy could represent the cornerstone of precision-based medicine for peritoneal carcinomatosis. Here, we performed complete transcriptome analyses of ascitic fluid-isolated CAMs in advanced OC patients with primary-, high-, and low-grade, serous subtypes and following neoadjuvant chemotherapy. Our findings suggest that both cancer biological aggressiveness and chemotherapy-induced tumor mass reduction reflect the MMT-associated changes that take place in the tumor surrounding microenvironment. Accordingly, MMT-related genes, including fibroblast activation protein (FAP), mannose receptor C type 2 (MRC2), interleukin-11 receptor alpha (IL11RA), myristoylated alanine-rich C-kinase substrate (MARCKS), and sulfatase-1 (SULF1), were identified as specific actionable targets in CAMs of OC patients, which is a crucial step in the de novo design of ADCs. These cell surface target receptors were also validated in peritoneal CAMs of colorectal cancer peritoneal implants, indicating that ADC-based treatment could extend to other abdominal tumors that show peritoneal colonization. As proof of concept, a FAP-targeted ADC reduced tumor growth in an OC xenograft mouse model with peritoneal metastasis-associated fibroblasts. In summary, we propose MMT as a potential source of ADC-based therapeutic targets for peritoneal carcinomatosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Guadalupe T González-Mateo
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Valeria Kopytina
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Henar Tomero-Sanz
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Eva María Arriero-País
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | | | | | | | | | | | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| |
Collapse
|
29
|
Tang H, Zaroudi M, Zhu Y, Cheng A, Qin L, Zhang B, Liu Y. Toroidal-spiral particles as a CAR-T cell delivery device for solid tumor immunotherapy. J Control Release 2023; 362:620-630. [PMID: 37673306 PMCID: PMC10947521 DOI: 10.1016/j.jconrel.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has resulted in positive effects on patients with hematologic malignancy but shows limited efficacy in solid tumor treatments due to insufficient trafficking and tumor infiltration, intensive CAR-T-related toxicities, and antigen escape. In this work, we developed and investigated a biodegradable and biocompatible polymeric toroidal-spiral particle (TSP) as a in vivo cell incubator and delivery device that can be implanted near tumor through a minimally invasive procedure or injected near or into solid tumors by using a biopsy needle. The main matrix structure of the millimeter-sized TSP is made from crosslinking of gelatin methacrylamine (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) with a tunable degradation rate from a few days to months, providing appropriate mechanical properties and sustained release of co-encapsulated drugs and/or stimulation compounds. The toroidal-spiral layer of the particles, presenting an internal void volume for high-capacity cell loading and flexibility of co-encapsulating small and large molecular compounds with individually manipulated release schedules, is filled with collagen and suspended T cells. The TSPs promote cell proliferation, activation, and migration in the tumor micro-environment in a prolonged and sustained manner. In this study, the efficacy of mesothelin (MSLN) CAR-T cells released from the TSPs was tested in preclinical mouse tumor models. Compared to systemic and intratumoral injection, peritumoral delivery of MSLN CAR-T cells using the TSPs resulted in a superior antitumor effect. The TSPs made of FDA approved materials as an in vivo reactor may provide an option for efficiently local delivery of CAR-T cells to solid tumors for higher efficacy and lower toxicity, with a minimally invasive administration procedure.
Collapse
Affiliation(s)
- Hui Tang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maryam Zaroudi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Lei Qin
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bin Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
30
|
Hagerty BL, Takabe K. Biology of Mesothelin and Clinical Implications: A Review of Existing Literature. World J Oncol 2023; 14:340-349. [PMID: 37869242 PMCID: PMC10588497 DOI: 10.14740/wjon1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
Since its discovery in 1992, mesothelin (MSLN) has generated significant interest as a therapeutic target. A number of characteristics make it ideal for this purpose. First, it is not expressed on the parenchyma of any vital organs. Second, it is differentially expressed on a number of cancer types that have relatively poor prognosis and lack effective systemic options. Third, it is expressed on the cell membrane making it accessible to large molecule targeted therapies. However, unlike other drug targets that have been exploited for therapeutic benefit, the precise function of MSLN, why it is expressed in certain cancers, and its biological role have not been clearly elucidated. Here the existing literature on the cellular function and expression patterns of MSLN across tumor types is reviewed in order to gain further understanding of this intriguing molecule. In doing so, we conclude that there remains significant ambiguity surrounding its function and role in cellular and tumor biology. Furthermore, the expression of MSLN and its relation of prognosis seems to depend on the type of tumor. Finally, the unified mechanism by which MSLN acts as a protein that conveys tumor aggressiveness remains elusive. What is clear is that there is much yet to be discovered in this realm and doing so may have large implications for treatment of otherwise lethal malignancies.
Collapse
Affiliation(s)
- Brendan L Hagerty
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
31
|
Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, Brenner DA, Kisseleva T. The Origin and Fate of Liver Myofibroblasts. Cell Mol Gastroenterol Hepatol 2023; 17:93-106. [PMID: 37743012 PMCID: PMC10665929 DOI: 10.1016/j.jcmgh.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury. Many studies indicate that liver fibrosis is reversible when the causative agent is removed. Regression of liver fibrosis is associated with the disappearance of activated myofibroblasts and resorption of the fibrous scar. In this review, we discuss the results of genetic tracing and cell fate mapping of hepatic stellate cells and portal fibroblasts, their specific characteristics, and potential phenotypes. We summarize research progress in the understanding of the molecular mechanisms underlying the development and reversibility of liver fibrosis, including activation, apoptosis, and inactivation of myofibroblasts.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Wonseok Lee
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Kevin Lam
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Karin Diggle
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
32
|
Hagerty BL, Oshi M, Endo I, Takabe K. High Mesothelin expression in pancreatic adenocarcinoma is associated with aggressive tumor features but not prognosis. Am J Cancer Res 2023; 13:4235-4245. [PMID: 37818071 PMCID: PMC10560932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Mesothelin is a cell surface marker expressed on most pancreatic cancers and has been associated with aggressive biology. Despite its popularity as a drug target, clinical relevance of Mesothelin expression in pancreatic cancer is unclear. We set out to define transcriptomic signatures associated with high Mesothelin expression and identify its role in tumor biology and its clinical relevance. We analyzed pancreatic adenocarcinomas in the cancer genome atlas (TCGA), (n = 145) and the results were validated using GSE62452 cohort (n = 69). We divided the cohorts into high and low Mesothelin expression by the median. High Mesothelin was not associated with progression-free, disease-free, disease specific, nor overall survival in TCGA cohort. Despite this, high Mesothelin expression was associated with high Ki67 expression and enriched all five cell proliferation-related Hallmark gene sets, but not with previously investigated pathways: TNF-alpha, PI3K, nor angiogenesis. Mesothelin expression did not correlate with MUC16 expression. The high Mesothelin pancreatic cancers demonstrated higher homologous recombination deficiency, fraction altered, and silent and non-silent mutation rates (all P < 0.001) that indicate aggressive cancer biology. However, lymphocyte infiltration score, TIL regional fraction, TCR richness, infiltration of CD8 T-cells, and cytolytic activity were all significantly lower in Mesothelin high tumors (all P < 0.015). Finally, we found that Mesothelin expression significantly correlated with sensitivity to cytotoxic chemotherapy in pancreatic cancer cell lines. In conclusion, high Mesothelin expression is associated with enhanced proliferation, depressed immune response, and sensitivity to cytotoxic chemotherapy, which may explain there was no difference in survival in pancreatic cancer patients.
Collapse
Affiliation(s)
- Brendan L Hagerty
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University School of MedicineYokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
33
|
Zhao H, Wu L, Dai J, Sun K, Zi Z, Guan J, Zhang L. Ligand-based adoptive T cell targeting CA125 in ovarian cancer. J Transl Med 2023; 21:596. [PMID: 37670338 PMCID: PMC10481596 DOI: 10.1186/s12967-023-04271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a highly aggressive gynecological malignancy prevalent worldwide. Most OC cases are typically diagnosed at advanced stages, which has led to a 5-year overall survival rate of less than 35% following conventional treatment. Furthermore, immune checkpoint inhibitor therapy has shown limited efficacy in the treatment of patients with OC, and CAR-T therapy has also demonstrated modest results owing to inadequate T cell infiltration. Therefore, novel strategies must be developed to enhance T cell persistence and trafficking within the OC tumor microenvironment. METHODS In this study, we developed a novel adoptive T-cell therapy for ovarian cancer based on a chimeric antigen receptor structure. We used a ligand-receptor binding motif to enhance the therapeutic effect of targeting CA125. Since mesothelin can naturally bind to CA125 with high affinity, we concatenated the core-binding fragment of mesothelin with the 4-1BB and CD3ζ signal fragments to assemble a novel CA125-targeting chimeric receptor (CR). The CAR structure targeting CA125 derived from the 4H11 antibody was also constructed. CR- and CAR-encoding RNA were electroporated into T cells to evaluate their antitumor activity both in vitro and in vivo. RESULTS While CR-T or CAR-T cells exhibited moderate activity against two ovarian cancer cell lines, T cells co-expressing CR and CAR exhibited a superior killing effect compared to T cells expressing either CR or CAR alone. Furthermore, upon interaction with ovarian tumors, the ability of CR and CAR T cells to release activation markers and functional cytokines increased significantly. Similarly, CR and CAR co-expressing T cells persistently controlled the growth of transplanted ovarian cancer tumors in NSG mice and significantly prolonged the overall survival of tumor-challenged mice. Transcriptome sequencing revealed that the survival and cytotoxicity of T cells co-expressing CR and CAR were significantly altered compared with those of T cells expressing either CR or CAR. CONCLUSION Our findings demonstrate that CA125 targeting CR and CAR can synergistically kill ovarian cancer cells, indicating that CA125 targeting by the two binding motifs simultaneously in tumors may improve the therapeutic outcomes of ovarian cancer treatment.
Collapse
Affiliation(s)
- Haihong Zhao
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Lina Wu
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jiemin Dai
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ke Sun
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Zhenguo Zi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junhua Guan
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Liwen Zhang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
34
|
Whitfield HJ, Berthelet J, Mangiola S, Bell C, Anderson RL, Pal B, Yeo B, Papenfuss AT, Merino D, Davis MJ. Single-cell RNA sequencing captures patient-level heterogeneity and associated molecular phenotypes in breast cancer pleural effusions. Clin Transl Med 2023; 13:e1356. [PMID: 37691350 PMCID: PMC10493486 DOI: 10.1002/ctm2.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura. There is a need to characterize the phenotypic diversity of breast cancer cell populations in the pleural microenvironment, and investigate how this varies across patients. METHODS Here, we used single-cell RNA-sequencing to study the heterogeneity of 10 MPEs from seven metastatic breast cancer patients, including three Miltenyi-enriched samples using a negative selection approach. This dataset of almost 65 000 cells was analysed using integrative approaches to compare heterogeneous cell populations and phenotypes. RESULTS We identified substantial inter-patient heterogeneity in the composition of cell types (including malignant, mesothelial and immune cell populations), in expression of subtype-specific gene signatures and in copy number aberration patterns, that captured variability across breast cancer cell populations. Within individual MPEs, we distinguished mesothelial cell populations from malignant cells using key markers, the presence of breast cancer subtype expression patterns and copy number aberration patterns. We also identified pleural mesothelial cells expressing a cancer-associated fibroblast-like transcriptomic program that may support cancer growth. CONCLUSIONS Our dataset presents the first unbiased assessment of breast cancer-associated MPEs at a single cell resolution, providing the community with a valuable resource for the study of MPEs. Our work highlights the molecular and cellular diversity captured in MPEs and motivates the potential use of these clinically relevant biopsies in the development of targeted therapeutics for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Holly J. Whitfield
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Jean Berthelet
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Stefano Mangiola
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Caroline Bell
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Robin L. Anderson
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Peter MacCallum Cancer CentreParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
| | - Bhupinder Pal
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Belinda Yeo
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Austin HealthHeidelbergVictoriaAustralia
| | - Anthony T. Papenfuss
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneCarltonVictoriaAustralia
| | - Delphine Merino
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Immunology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Melissa J. Davis
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- The South Australian Immunogenomics Cancer InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
35
|
Haas AR, Golden RJ, Litzky LA, Engels B, Zhao L, Xu F, Taraszka JA, Ramones M, Granda B, Chang WJ, Jadlowsky J, Shea KM, Runkle A, Chew A, Dowd E, Gonzalez V, Chen F, Liu X, Fang C, Jiang S, Davis MM, Sheppard NC, Zhao Y, Fraietta JA, Lacey SF, Plesa G, Melenhorst JJ, Mansfield K, Brogdon JL, Young RM, Albelda SM, June CH, Tanyi JL. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol Ther 2023; 31:2309-2325. [PMID: 37312454 PMCID: PMC10422001 DOI: 10.1016/j.ymthe.2023.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.
Collapse
Affiliation(s)
- Andrew R Haas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Ryan J Golden
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Boris Engels
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Linlin Zhao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Fangmin Xu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - John A Taraszka
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Melissa Ramones
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Brian Granda
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Wan-Jung Chang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julie Jadlowsky
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kim-Marie Shea
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adam Runkle
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily Dowd
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vanessa Gonzalez
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chongyun Fang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Akarsu M, Ak G, Dündar E, Metintaş M. Genetic analysis of familial predisposition in the pathogenesis of malignant pleural mesothelioma. J Cancer Res Clin Oncol 2023; 149:7767-7778. [PMID: 37027032 DOI: 10.1007/s00432-023-04730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE Mesothelioma is the primary tumor of the mesothelial cell membrane. The most important etiology is asbestos exposure. The development of malignant mesothelioma in very few of the population exposed to asbestos and its frequent occurrence in some families may be significant in terms of genetic predisposition. Again, the presence of relatives with mesothelioma who did not have asbestos contact strengthens this argument. This disease, which has limited treatment options and has a poor prognosis, revealing a genetic predisposition, if any, may prolong survival with early diagnosis and effective treatment. METHODS Based on the genetic predisposition idea, we diagnosed and followed a total of ten individuals of relatives with mesothelioma. DNA was isolated from peripheral blood and whole genome sequencing analysis was done. Common gene mutations in ten individuals were filtered using bioinformatics. After this filter, from the remaining variants, very rare in the population and damaging mutations are selected. RESULTS Eight thousand six hundred and twenty-two common variants have been identified in ten individuals with this analysis. In total, 120 variants were found on 37 genes in 15 chromosomes. These genes are PIK3R4, SLC25A5, ITGB6, PLK2, RAD17, HLA-B, HLA-DRB1, HLA-DQB1, GRM, IL20RA, MAP3K7, RIPK2, and MUC16. CONCLUSION Our finding, PIK3R4 gene, is directly associated with mesothelioma development. Twelve genes, which are associated with cancer, were detected in literature. Additional studies, which scan first-degree relatives of individual, are needed to find the specific gene region.
Collapse
Affiliation(s)
- Muhittin Akarsu
- Department of Chest Disease, Eskisehir City Hospital, 26080, Eskisehir, Turkey.
| | - Güntülü Ak
- Lung and Pleural Cancers Research and Clinical Center, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Emine Dündar
- Department of Pathology, Faculty of Medicine, Eskisehir Osmangazi University, Meselik Kampusu, 26480, Eskisehir, Turkey
| | - Muzaffer Metintaş
- Lung and Pleural Cancers Research and Clinical Center, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| |
Collapse
|
37
|
Zeng X, Ou H, Zeng C, Liu Q, Wang W, Yao J. Multi-omics integrated analyzed the origin of intrahepatic mucinous cholangiocarcinoma: a case report. Front Oncol 2023; 13:1175707. [PMID: 37546424 PMCID: PMC10401833 DOI: 10.3389/fonc.2023.1175707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Intrahepatic mucinous cholangiocarcinoma (IMCC) is a rare subtype of intrahepatic cholangiocarcinoma (IHCC). Limited data describe the genetic characteristics of IMCC and insights on its pathogenesis are lacking. Here, we employed a multi-omics approach to analyze somatic mutations, transcriptome, proteome and metabolome of tumor tissue obtained from a case of IMCC in order to clarify the pathogenesis of IMCC. A total of 54 somatic mutations were detected, including a G12D mutation in KRAS that is likely to be involved in the onset of IMCC. The genes consistently up-regulated at the transcription level and in the proteome were enriched for mucin and mucopolysaccharide biosynthesis, for cell cycle functions and for inflammatory signaling pathways. The consistently down-regulated genes were enriched in bile synthesis and fatty acid metabolism pathways. Further multi-omics analysis found that mucin synthesis by MUC4 and MUC16 was elevated by up-regulated expression of mesothelin (MSLN). Moreover, transcription factor ONECUT3 was identified that possibly activates the transcription of mucin and mucopolysaccharide biosynthesis in IMCC.
Collapse
Affiliation(s)
- Xiaokang Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Qingbo Liu
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, China
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
38
|
Song Y, Yuan M, Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets 2023; 27:745-756. [PMID: 37584221 DOI: 10.1080/14728222.2023.2248376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION The largest transmembrane mucin, mucin 16 (MUC16), contains abundant glycosylation sites on the molecular surface, allowing it to participate in various molecular pathways. When cells lose polarity and become cancerous, MUC16 is overexpressed, and more of the extracellular region (cancer antigen [CA]125) is released into serum and possibly, promote the development of diseases. Thus, MUC16 plays an indispensable role in clinical research and application. AREAS COVERED This review summarizes the update proposed role of MUC16 in carcinogenesis and metastasis. Most importantly, we prospect its potential value in targeted therapy after screening 1226 articles published within the last 10 years from PubMed. Two reviewers screened each record and each report retrieved independently. We have summarized the progress of MUC16/CA125 in basic research and clinical application, and predicted its possible future development directions. EXPERT OPINION As an important noninvasive co-factor in the diagnosis of gynecological diseases, MUC16 has been used for a long time, especially in the diagnosis and treatment of ovarian cancer. The overexpression of MUC16 plays a very obvious role in regulating inflammatory response, supporting immune suppression, and promoting the proliferation, division, and metastasis of cancer cells. In the next 20 years, there will be a luxuriant clinical application of MUC16 as a target for immune monitoring and immunotherapy.
Collapse
Affiliation(s)
- Yaan Song
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
39
|
Bukkuri A, Adler FR. Biomarkers or biotargets? Using competition to lure cancer cells into evolutionary traps. Evol Med Public Health 2023; 11:264-276. [PMID: 37599857 PMCID: PMC10439788 DOI: 10.1093/emph/eoad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Indexed: 08/22/2023] Open
Abstract
Background and Objectives Cancer biomarkers provide information on the characteristics and extent of cancer progression and help inform clinical decision-making. However, they can also play functional roles in oncogenesis, from enabling metastases and inducing angiogenesis to promoting resistance to chemotherapy. The resulting evolution could bias estimates of cancer progression and lead to suboptimal treatment decisions. Methodology We create an evolutionary game theoretic model of cell-cell competition among cancer cells with different levels of biomarker production. We design and simulate therapies on top of this pre-existing game and examine population and biomarker dynamics. Results Using total biomarker as a proxy for population size generally underestimates chemotherapy efficacy and overestimates targeted therapy efficacy. If biomarker production promotes resistance and a targeted therapy against the biomarker exists, this dynamic can be used to set an evolutionary trap. After chemotherapy selects for a high biomarker-producing cancer cell population, targeted therapy could be highly effective for cancer extinction. Rather than using the most effective therapy given the cancer's current biomarker level and population size, it is more effective to 'overshoot' and utilize an evolutionary trap when the aim is extinction. Increasing cell-cell competition, as influenced by biomarker levels, can help prime and set these traps. Conclusion and Implications Evolution of functional biomarkers amplify the limitations of using total biomarker levels as a measure of tumor size when designing therapeutic protocols. Evolutionarily enlightened therapeutic strategies may be highly effective, assuming a targeted therapy against the biomarker is available.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
40
|
Chaudhary S, Appadurai MI, Maurya SK, Nallasamy P, Marimuthu S, Shah A, Atri P, Ramakanth CV, Lele SM, Seshacharyulu P, Ponnusamy MP, Nasser MW, Ganti AK, Batra SK, Lakshmanan I. MUC16 promotes triple-negative breast cancer lung metastasis by modulating RNA-binding protein ELAVL1/HUR. Breast Cancer Res 2023; 25:25. [PMID: 36918912 PMCID: PMC10012760 DOI: 10.1186/s13058-023-01630-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is highly aggressive with an increased metastatic incidence compared to other breast cancer subtypes. However, due to the absence of clinically reliable biomarkers and targeted therapy in TNBC, outcomes are suboptimal. Hence, there is an urgent need to understand biological mechanisms that lead to identifying novel therapeutic targets for managing metastatic TNBC. METHODS The clinical significance of MUC16 and ELAVL1 or Hu antigen R (HuR) was examined using breast cancer TCGA data. Microarray was performed on MUC16 knockdown and scramble TNBC cells and MUC16-associated genes were identified using RNA immunoprecipitation and metastatic cDNA array. Metastatic properties of MUC16 were evaluated using tail vein experiment. MUC16 and HuR downstream pathways were confirmed by ectopic overexpression of MUC16-carboxyl-terminal (MUC16-Cter), HuR and cMyc as well as HuR inhibitors (MS-444 and CMLD-2) in TNBC cells. RESULTS MUC16 was highly expressed in TNBC and correlated with its target HuR. Depletion of MUC16 showed decreased invasion, migration, and colony formation abilities of human and mouse TNBC cells. Mice injected with MUC16 depleted cells were less likely to develop lung metastasis (P = 0.001). Notably, MUC16 and HuR were highly expressed in the lung tropic TNBC cells and lung metastases. Mechanistically, we identified cMyc as a HuR target in TNBC using RNA immunoprecipitation and metastatic cDNA array. Furthermore, MUC16 knockdown and pharmacological inhibition of HuR (MS-444 and CMLD-2) in TNBC cells showed a reduction in cMyc expression. MUC16-Cter or HuR overexpression models indicated MUC16/HuR/cMyc axis in TNBC cell migration. CONCLUSIONS Our study identified MUC16 as a TNBC lung metastasis promoter that acts through HuR/cMyc axis. This study will form the basis of future studies to evaluate the targeting of both MUC16 and HuR in TNBC patients.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Muthamil Iniyan Appadurai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Chirravuri Venkata Ramakanth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, 68105-1850, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
41
|
Bakun OV, Koval HD, Dudka YA, Oshchepkova IA, Makoviichuk KY. INFLUENCE OF PROBIOTICS ON THE MESOTHELIN LEVEL IN WOMEN WITH ENDOMETRIOSIS ASSOCIATED WITH INFERTILITY IN COMPLEX PREPARATION FOR ASSISTED REPRODUCTIVE TECHNOLOGIES. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2455-2459. [PMID: 38112364 DOI: 10.36740/wlek202311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim: To study the determination of Mesothelin level in women with endometriosis associated with infertility and estimate influence of probiotic on endometriosis according of Mesothelin level in complex preparation before assisted reproductive technologies. PATIENTS AND METHODS Materials and methods: In this study, we conducted a retrospective analysis of the medical records of 40 infertile women who underwent assisted reproductive technologies while also using the probiotic "Femina Probiz." We divided the participants into two groups. The control group comprised 11 women who had tubal infertility due to a previous inflammatory condition but were otherwise found to be in good health through comprehensive clinical and laboratory assessments. These women, aged between 21 and 42 with an average age of 29.75 years, did not use the probiotic "Femina Probiz." The main group consisted of 29 women diagnosed with external genital endometriosis who were undergoing assisted reproductive technologies. Women in the main group received the probiotic "Femina Probiz" from Unic Biotech Ltd, India. They took one tablet twice a day for one month as part of their overall treatment before undergoing assisted reproductive technologies. We measured the Mesothelin levels before and after this preparation phase. This study was conducted at Bukovinian State Medical University and Centre of Reproductive Medicine. It's worth noting that the primary infertility incidence was significantly higher in the main group of patients. RESULTS Results: In the main group, we observed that the Mesothelin level was 0.73±0.01, which was significantly higher than the post-preparation level (0.59±0.01). In contrast, the control group had a Mesothelin level of 0.49±0.01. Interestingly, we noted that the Mesothelin level in patients increased approximately twofold before preparation compared to those who had undergone preparation. This suggests that the use of the probiotic led to a sharp reduction in the elevated Mesothelin levels. Consequently, the significant decrease in Mesothelin levels after using the probiotic indicates its effectiveness and potential utility in the preparation phase of assisted reproductive technologies programs. CONCLUSION Conclusions: The elevated Mesothelin levels indicate a strong association between the pathogenesis of endometriosis and inflammation, as well as damage to the peritoneum. The incorporation of a probiotic as part of a comprehensive preparation regimen prior to assisted reproductive technologies notably enhances the overall health of patients and leads to a reduction in Mesothelin levels. Based on our findings, we highly recommend the inclusion of this probiotic preparation in clinical practice.
Collapse
Affiliation(s)
- Oksana V Bakun
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE
| | - Halyna D Koval
- BUKOVINIAN STATE MEDICAL UNIVERSITY, CHERNIVTSI, UKRAINE
| | | | | | | |
Collapse
|
42
|
Evaluation of serum CA125-Tn glycoform in peritoneal dissemination and surgical completeness of high-grade serous ovarian cancer. J Ovarian Res 2022; 15:134. [PMID: 36564848 PMCID: PMC9784250 DOI: 10.1186/s13048-022-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Peritoneal dissemination is the predominant feature of malignant progression in ovarian cancer and is a major cause of poor surgical outcomes and clinical prognoses. Abnormal glycosylation of carbohydrate antigen 125 (CA125) may be involved in peritoneal implantation and metastasis. Here, we evaluated the clinical relevance of CA125-Tn glycoform in the assessment of high-grade serous ovarian cancer (HGSOC). METHODS A total of 72 patients diagnosed with HGSOC were included. Pre-treatment serum CA125-Tn levels were measured using an antibody-lectin enzyme-linked immunosorbent assay. The association of CA125-Tn with clinical factors was analyzed in all cases, whereas its association with peritoneal dissemination, residual disease, and progression-free survival was analyzed in stage III-IV cases. RESULTS Pre-treatment serum CA125-Tn levels were significantly higher in advanced-stage HGSOC patients than in early-stage patients (P = 0.029). In advanced-stage patients, the pre-treatment CA125-Tn level increased with an increase in Fagotti's score (P = 0.004) and with the extension of peritoneal dissemination (P = 0.011). The pre-treatment CA125-Tn level increased with the volume of residual disease (P = 0.005). The association between CA125-Tn level and suboptimal surgery remained significant even after adjustment for treatment type and stage. Pre-treatment CA125-Tn levels were also related to disease recurrence. CONCLUSION Serum CA125-Tn level could be a novel biomarker for peritoneal dissemination and a promising predictor of surgical completeness in ovarian cancer. Patients with lower CA125-Tn levels were more likely to have no residual disease. CA125-Tn could help surgeons to adopt optimized treatment strategies for patients with advanced ovarian cancer as a pre-treatment evaluator.
Collapse
|
43
|
Babeker H, Ketchemen JP, Annan Sudarsan A, Andrahennadi S, Tikum AF, Nambisan AK, Fonge H, Uppalapati M. Engineering of a Fully Human Anti-MUC-16 Antibody and Evaluation as a PET Imaging Agent. Pharmaceutics 2022; 14:pharmaceutics14122824. [PMID: 36559316 PMCID: PMC9785263 DOI: 10.3390/pharmaceutics14122824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Antibodies that recognize cancer biomarkers, such as MUC16, can be used as vehicles to deliver contrast agents (imaging) or cytotoxic payloads (therapy) to the site of tumors. MUC16 is overexpressed in 80% of epithelial ovarian cancer (EOC) and 65% of pancreatic ductal adenocarcinomas (PDAC), where effective ‘theranostic’ probes are much needed. This work aims to develop fully human antibodies against MUC16 and evaluate them as potential immuno-PET imaging probes for detecting ovarian and pancreatic cancers. We developed a fully human monoclonal antibody, M16Ab, against MUC16 using phage display. M16Ab was conjugated with p-SCN-Bn-DFO and radiolabeled with 89Zr. 89Zr-DFO-M16Ab was then evaluated for binding specificity and affinity using flow cytometry. In vivo evaluation of 89Zr-DFO-M16Ab was performed by microPET/CT imaging at different time points at 24−120 h post injection (p.i.) and ex vivo biodistribution studies in mice bearing MUC16-expressing OVCAR3, SKOV3 (ovarian) and SW1990 (pancreatic) xenografts. 89Zr-DFO-M16Ab bound specifically to MUC16-expressing cancer cells with an EC50 of 10nM. 89Zr-DFO-M16Ab was stable in serum and showed specific uptake and retention in tumor xenografts even after 120 h p.i. (microPET/CT) with tumor-to-blood ratios > 43 for the SW1990 xenograft. Specific tumor uptake was observed for SW1990/OVCAR3 xenografts but not in MUC16-negative SKOV3 xenografts. Pharmacokinetic study shows a relatively short distribution (t1/2α) and elimination half-life (t1/2ß) of 4.4 h and 99 h, respectively. In summary, 89Zr-DFO-M16Ab is an effective non-invasive imaging probe for ovarian and pancreatic cancers and shows promise for further development of theranostic radiopharmaceuticals.
Collapse
Affiliation(s)
- Hanan Babeker
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Arunkumar Annan Sudarsan
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Samitha Andrahennadi
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Anand Krishnan Nambisan
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK S7N 0W8, Canada
- Correspondence: (H.F.); (M.U.); Tel.: +1-306-966-5137 (M.U.)
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (H.F.); (M.U.); Tel.: +1-306-966-5137 (M.U.)
| |
Collapse
|
44
|
Johnson MD. Metastases to Meningiomas: A Comprehensive Literature Review Including Mediating Proteins. Cancers (Basel) 2022; 14:cancers14235877. [PMID: 36497364 PMCID: PMC9738472 DOI: 10.3390/cancers14235877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Approximately 5-15% of solid tumors metastasizing to the central nervous system metastasize to the leptomeninges. Less common, is metastasis to leptomeningeal meningiomas. These are primarily carcinomas of the breast and lung. Awareness of this phenomenon is critical to the evaluation of meningiomas, especially since the metastases may be the first indication of an occult tumor elsewhere in the body. Lack of clear demarcation between the metastasis and meningioma parenchyma, as well as histological features similar to the meningioma, may hinder recognition. The mechanisms underlying metastases anchoring and spread along the leptomeninges are not established. However, several cell adhesion molecules are thought to contribute to this phenomenon. E cadherin is a cell adhesion molecule present in meningioma cells. Binding to endothelium by adhesion molecules such as ICAM, B1 integrin, P-selectin, PECAM-1, CXCL12 and SDF-1 have also been proposed as part of the mechanisms underlying breast carcinoma metastases. In addition, the leptomeninges and meningiomas express mesothelin that acts as an anchoring protein coupling with mucin-16. Consequently, metastatic tumor cell mucin and mesothelin may also facilitate the anchoring of metastases to meningiomas.
Collapse
Affiliation(s)
- Mahlon D Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Ave. Box 626, Rochester, NY 14623, USA
| |
Collapse
|
45
|
Lakshmanan I, Marimuthu S, Chaudhary S, Seshacharyulu P, Rachagani S, Muniyan S, Chirravuri-Venkata R, Atri P, Rauth S, Nimmakayala RK, Siddiqui JA, Gautam SK, Shah A, Natarajan G, Parte S, Bhyravbhatla N, Mallya K, Haridas D, Talmon GA, Smith LM, Kumar S, Ganti AK, Jain M, Ponnusamy MP, Batra SK. Muc16 depletion diminishes KRAS-induced tumorigenesis and metastasis by altering tumor microenvironment factors in pancreatic ductal adenocarcinoma. Oncogene 2022; 41:5147-5159. [PMID: 36271032 PMCID: PMC9841597 DOI: 10.1038/s41388-022-02493-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
MUC16, membrane-bound mucin, plays an oncogenic role in pancreatic ductal adenocarcinoma (PDAC). However, the pathological role of MUC16 in the PDAC progression, tumor microenvironment, and metastasis in cooperation with KrasG12D and Trp53R172H mutations remains unknown. Deletion of Muc16 with activating mutations KrasG12D/+ and Trp53R172H/+ in mice significantly decreased progression and prolonged overall survival in KrasG12D/+; Trp53R172H/+; Pdx-1-Cre; Muc16-/- (KPCM) and KrasG12D/+; Pdx-1-Cre; Muc16-/- (KCM), as compared to KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) and KrasG12D/+; Pdx-1-Cre (KC) mice, respectively. Muc16 knockout pancreatic tumor (KPCM) displays decreased tumor microenvironment factors and significantly reduced incidence of liver and lung metastasis compared to KPC. Furthermore, in silico data analysis showed a positive correlation of MUC16 with activated stroma and metastasis-associated genes. KPCM mouse syngeneic cells had significantly lower metastatic and endothelial cell binding abilities than KPC cells. Similarly, KPCM organoids significantly decreased the growth rate compared to KPC organoids. Interestingly, RNA-seq data revealed that the cytoskeletal proteins Actg2, Myh11, and Pdlim3 were downregulated in KPCM tumors. Further knockdown of these genes showed reduced metastatic potential. Overall, our results demonstrate that Muc16 alters the tumor microenvironment factors during pancreatic cancer progression and metastasis by changing the expression of Actg2, Myh11, and Pdlim3 genes.
Collapse
Affiliation(s)
- Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramakanth Chirravuri-Venkata
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198-4375, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, and University of Nebraska Medical Center, Omaha, NE, 68105-1850, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
46
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022; 86:207-223. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Lheureux
- University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Toronto, Ontario, Canada
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical unit Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
47
|
Nishio T, Koyama Y, Fuji H, Ishizuka K, Iwaisako K, Taura K, Hatano E, Brenner DA, Kisseleva T. The Role of Mesothelin in Activation of Portal Fibroblasts in Cholestatic Liver Injury. BIOLOGY 2022; 11:1589. [PMID: 36358290 PMCID: PMC9687690 DOI: 10.3390/biology11111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Fibrosis is a common consequence of abnormal wound healing, which is characterized by infiltration of myofibroblasts and formation of fibrous scar. In liver fibrosis, activated Hepatic Stellate Cells (aHSCs) and activated Portal Fibroblasts (aPFs) are the major contributors to the origin of hepatic myofibroblasts. aPFs are significantly involved in the pathogenesis of cholestatic fibrosis, suggesting that aPFs may be a primary target for anti-fibrotic therapy in cholestatic injury. aPFs are distinguishable from aHSCs by specific markers including mesothelin (Msln), Mucin 16 (Muc16), and Thymus cell antigen 1 (Thy1, CD90) as well as fibulin 2, elastin, Gremlin 1, ecto-ATPase nucleoside triphosphate diphosphohydrolase 2. Msln plays a critical role in activation of PFs, via formation of Msln-Muc16-Thy1 complex that regulates TGFβ1/TGFβRI-mediated fibrogenic signaling. The opposing pro- and anti-fibrogenic effects of Msln and Thy1 are key components of the TGFβ1-induced activation pathway in aPFs. In addition, aPFs and activated lung and kidney fibroblasts share similarities across different organs with expression of common markers and activation cascade including Msln-Thy1 interaction. Here, we summarize the potential function of Msln in activation of PFs and development of cholestatic fibrosis, offering a novel perspective for anti-fibrotic therapy targeting Msln.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroaki Fuji
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0394, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka 530-8480, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - David A. Brenner
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| |
Collapse
|
48
|
Armbrister R, Ochoa L, Abbott KL. The clinical role of glycobiology on ovarian cancer progression. Adv Cancer Res 2022; 157:1-22. [PMID: 36725106 DOI: 10.1016/bs.acr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diverse carbohydrate (glycan) structures are located on lipids and proteins that cover the surface of human cells known as the glycocalyx. Research over many decades have illustrated that the glycan structures located in the glycocalyx change dramatically with cancer contributing to the early development and progression of tumors. New therapeutic and diagnostic applications for cancers based on targeting glycan changes are now in development and in early stage clinical trials. There is an abundance of research for ovarian cancer indicating that certain glycoproteins and glycolipids play major roles in the progression, recurrence, and chemoresistance of this disease. This review is focused on discussion of these biomarkers and how translational medicine for ovarian cancer can be further defined focusing on targeting glycans, glycoproteins, and glycan-mediated interactions.
Collapse
Affiliation(s)
- Rhyisa Armbrister
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Translational Glycobiology Institute, Florida International University, Miami, FL, United States
| | - Laura Ochoa
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Translational Glycobiology Institute, Florida International University, Miami, FL, United States
| | - Karen L Abbott
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Translational Glycobiology Institute, Florida International University, Miami, FL, United States.
| |
Collapse
|
49
|
Characterization of Mesothelin Glycosylation in Pancreatic Cancer: Decreased Core Fucosylated Glycoforms in Pancreatic Cancer Patients’ Sera. Biomedicines 2022; 10:biomedicines10081942. [PMID: 36009489 PMCID: PMC9405996 DOI: 10.3390/biomedicines10081942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, there are no reliable biomarkers for the diagnosis of pancreatic cancer (PaC). Glycoproteomic approaches that analyze the glycan determinants on specific glycoproteins have proven useful to develop more specific cancer biomarkers than the corresponding protein levels. In PaC, mesothelin (MSLN) is a neo-expressed glycoprotein. MSLN glycosylation has not been described and could be altered in PaC. In this work, we aimed to characterize MSLN glycans from PaC cells and serum samples to assess their potential usefulness as PaC biomarkers. First, we analyzed MSLN glycans from PaC cell lines and then we developed an enzyme-linked lectin assay to measure core fucosylated-MSLN (Cf-MSLN) glycoforms. MSLN glycans from PaC cells were analyzed by glycan sequencing and through Western blotting with lectins. All of the cell lines secreted MSLN, with its three N-glycosylation sites occupied by complex-type N-glycans, which were mainly α2,3-sialylated, core fucosylated and highly branched. The Cf-MSLN glycoforms were quantified on PaC serum samples, and compared with MSLN protein levels. The Cf-MSLN was significantly decreased in PaC patients compared to control sera, while no differences were detected by using MSLN protein levels. In conclusion, Cf-MSLN glycoforms were differently expressed in PaC, which opens the way to further investigate their usefulness as PaC biomarkers.
Collapse
|
50
|
Hua T, Zeng Z, Chen J, Xue Y, Li Y, Sang Q. Human Malignant Rhabdoid Tumor Antigens as Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:3685. [PMID: 35954348 PMCID: PMC9367328 DOI: 10.3390/cancers14153685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Atypical teratoid rhabdoid tumor (ATRT) is a lethal type of malignant rhabdoid tumor in the brain, seen mostly in children under two years old. ATRT is mainly linked to the biallelic inactivation of the SMARCB1 gene. To understand the deadly characteristics of ATRT and develop novel diagnostic and immunotherapy strategies for the treatment of ATRT, this study investigated tumor antigens, such as alpha-fetoprotein (AFP), mucin-16 (MUC16/CA125), and osteopontin (OPN), and extracellular matrix modulators, such as matrix metalloproteinases (MMPs), in different human malignant rhabdoid tumor cell lines. In addition, the roles of MMPs were also examined. MATERIALS AND METHODS Five human cell lines were chosen for this study, including two ATRT cell lines, CHLA-02-ATRT and CHLA-05-ATRT; a kidney malignant rhabdoid tumor cell line, G401; and two control cell lines, human embryonic kidney HEK293 and HEK293T. Both ATRT cell lines were treated with a broad-spectrum MMP inhibitor, GM6001, to investigate the effect of MMPs on cell proliferation, viability, and expression of tumor antigens and biomarkers. Gene expression was examined using a reverse transcription polymerase chain reaction (RT-PCR), and protein expression was characterized by immunocytochemistry and flow cytometry. RESULTS All the rhabdoid tumor cell lines tested had high gene expression levels of MUC16, OPN, AFP, and MSLN. Low expression levels of neuron-specific enolase (ENO2) by the two ATRT cell lines demonstrated their lack of neuronal genotype. Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) and tissue inhibitor of metalloproteinases-2 (TIMP-2) were highly expressed in these malignant rhabdoid tumor cells, indicating their invasive phenotypes. GM6001 significantly decreased ATRT cell proliferation and the gene expression of MSLN, OPN, and several mesenchymal markers, suggesting that inhibition of MMPs may reduce the aggressiveness of rhabdoid cancer cells. CONCLUSION The results obtained from this study may advance our knowledge of the molecular landscapes of human malignant rhabdoid tumors and their biomarkers for effective diagnosis and treatment. This work analyzed the expression of human malignant rhabdoid tumor antigens that may serve as biomarkers for the development of novel therapeutic strategies, such as cancer vaccines and targeted and immunotherapies targeting osteopontin and mesothelin, for the treatment of patients with ATRT and other malignant rhabdoid tumors.
Collapse
Affiliation(s)
- Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Ziwei Zeng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Junji Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310-6046, USA;
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Qingxiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|