1
|
Luo X, Luo B, Fei L, Zhang Q, Liang X, Chen Y, Zhou X. MS4A superfamily molecules in tumors, Alzheimer's and autoimmune diseases. Front Immunol 2024; 15:1481494. [PMID: 39717774 PMCID: PMC11663944 DOI: 10.3389/fimmu.2024.1481494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B). Early research confirmed that most MS4A molecules function as ion channels that regulate the transport of calcium ions. Recent studies have revealed that some MS4A proteins also function as chaperones that interact with various immune molecules, such as pattern recognition receptors and/or immunoglobulin receptors, to form immune complexes and transmit downstream signals, leading to cell activation, growth, and development. Evidence from preclinical animal models and human genetic studies suggests that the MS4A superfamily plays critical roles in the pathogenesis of various diseases, including cancer, infection, allergies, neurodegenerative diseases and autoimmune diseases. We review recent progress in this field and focus on elucidating the molecular mechanisms by which different MS4A molecules regulate the progression of tumors, Alzheimer's disease, and autoimmune diseases. Therefore, in-depth research into MS4A superfamily members may clarify their ability to act as candidate biomarkers and therapeutic targets for these diseases. Eighteen distinct members of the MS4A (membrane-spanning four-domain subfamily A) superfamily of four-transmembrane proteins have been identified in humans, whereas the MS4A genes are translated into twenty-three different molecules in mice. These proteins are selectively expressed on the surface of various immune cells, such as B cells (MS4A1), macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells (MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function as ion channels that regulate the flow of calcium ions [Ca2+] across cell membranes. Recent studies have revealed that some MS4A proteins also act as molecular chaperones and interact with various types of immune receptors, including pattern recognition receptors (PRRs) and immunoglobulin receptors (IgRs), to form signaling complexes, thereby modulating intracellular signaling and cellular activity. Evidence from preclinical animal models and human genetic studies suggests that MS4A proteins play critical roles in various diseases (2). Therefore, we reviewed the recent progress in understanding the role of the MS4A superfamily in diseases, particularly in elucidating its function as a candidate biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of the Non-Commissioned Officer (NCO) School, The Army Medical University, Shijiazhuang, Hebei, China
| | - Bin Luo
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xinyu Liang
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xueqin Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Ye T, Huang H, Chen K, Yu Y, Yue D, Jiang L, Wu H, Zhang N. Development and validation of prognostic signatures of NAD+ metabolism and immune-related genes in colorectal cancer. Heliyon 2024; 10:e34403. [PMID: 39130406 PMCID: PMC11315184 DOI: 10.1016/j.heliyon.2024.e34403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent cause of death from malignant tumors. This study aimed to develop a nicotinamide adenine dinucleotide (NAD+) metabolism and immune-related prognostic signature, providing a theoretical foundation for prognosis and therapy in CRC patients. Methods NAD + metabolism-related and immune-related subtypes of CRC patients were identified by consistent clustering. Differentially expressed genes (DEGs) between the two subtypes of CRC were identified by overlapping. A risk signature was constructed using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Independent prognostic predictors were authenticated by Cox analysis. Gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (ssGSEA) were applied to investigate the connection between the prognostic signature and the immune microenvironment. Chemotherapy drug sensitivity and immunotherapy responsiveness were projected using the 'pRRophetic' package and Tumor Immune Dysfunction and Exclusion (TIDE) website. The Human Protein Atlas (HPA) database was used to assess the protein expression of prognostic genes in CRC and normal tissues. Results Using bioinformatics methods, three prognostic genes related to immune-related NAD + metabolism were identified, and the results were used to establish and verify a prognostic signature related to immune-related NAD + metabolism in CRC patients. Cox regression analysis confirmed that the risk score was a reliable independent prognostic predictor. GSVA and ssGSEA indicated that the prognostic signature was associated with the immune microenvironment. TIDE analysis suggested that the signature might act as an immunotherapy predictor. Chemotherapy sensitivity analysis revealed that COMP was correlated with chemotherapy sensitivity in CRC patients and might be a potential therapeutic target. Conclusion This study identified NAD + metabolism-immune-related prognostic genes (MOGAT2, COMP, and DNASE1L3) and developed a prognostic signature for CRC prognosis, which is significant for clinical prognosis prediction and treatment strategy decisions for CRC patients.
Collapse
Affiliation(s)
- Tao Ye
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Hong Huang
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Kangli Chen
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Yuanao Yu
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Dongqin Yue
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Li Jiang
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Huixian Wu
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Ning Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| |
Collapse
|
3
|
Lv W, Lin S, Zuo Z, Huang Z, Wang Y. Involvement of microglia-expressed MS4A6A in the onset of glioblastoma. Eur J Neurosci 2024; 59:2836-2849. [PMID: 38488530 DOI: 10.1111/ejn.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 05/22/2024]
Abstract
Glioblastoma multiforme (GBM) represents the deadliest form of brain tumour, characterized by its low survival rate and grim prognosis. Cytokines released from glioma-associated microglia/macrophages are involved in establishing the tumour microenvironment, thereby crucially promoting GBM progression. MS4A6A polymorphism was confirmed to be associated with neurodegenerative and polymorphism disease pathobiology, but whether it participates in the regulation of GBM and the underlying mechanisms is still not elucidated. Here, we found that MS4A6A was significantly upregulated in GBM patient samples. The results from the single-cell RNA-sequencing (scRNA-seq) database and immunostaining demonstrated the specific expression of MS4A6A in microglial cells. In vitro, microglial overexpression of MS4A6A stimulated the proliferation and migration of glioblastoma cells. Moreover, high MS4A6A mRNA expression was related to poor prognosis in GBM patients. Our study highlights the potential of MS4A6A as a promising biomarker for GBM, which may provide novel strategies for its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Wenhao Lv
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shengyan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenxing Zuo
- Department of Neurosurgery, Tenth people's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
MC1R Is a Prognostic Marker and Its Expression Is Correlated with MSI in Colorectal Cancer. Curr Issues Mol Biol 2021; 43:1529-1547. [PMID: 34698109 PMCID: PMC8929037 DOI: 10.3390/cimb43030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Melanocortin 1 receptor (MC1R) is thought to be a marker of poor prognosis and a potential target for the treatment of melanoma. Studies have found that MC1R promotes several tumor behaviors, including cell proliferation and differentiation, pigment formation, and genome damage repair. Some single-nucleotide polymorphisms (SNPs) of MC1R are involved in the occurrence and development of melanoma. A few studies have reported a relationship between MC1R and colorectal cancer (CRC). In this research, our objective was to examine MC1R expression and MC1R SNPs and investigate their correlation with the clinicopathological features of human CRC tissues. We evaluated MC1R mRNA expression by performing bioinformatic analyses on human CRC expression datasets. We used Western blotting and RT-qPCR to compare MC1R expression in CRC tissues with that in normal tissues, and MC1R SNPs in CRC tissues were detected by PCR-direct sequencing (DS). The expression of MC1R was significantly decreased in CRC tissues compared with normal tissue, and its expression was negatively associated with P53 expression, MLH1 expression, and PMS2 expression, and high MC1R expression was significantly associated with microsatellite instability (MSI). MC1R SNPs were also associated with the clinicopathological characteristics of CRC; for example, the rs2228479 locus genotype was correlated with Ki67 status, and the rs885479 locus genotype was correlated with age and T stage. In conclusion, MC1R plays a crucial role in the progression of CRC and may be a marker of poor prognosis in CRC.
Collapse
|
5
|
Silva-Gomes R, Mapelli SN, Boutet MA, Mattiola I, Sironi M, Grizzi F, Colombo F, Supino D, Carnevale S, Pasqualini F, Stravalaci M, Porte R, Gianatti A, Pitzalis C, Locati M, Oliveira MJ, Bottazzi B, Mantovani A. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol 2021; 111:817-836. [PMID: 34346525 PMCID: PMC9290968 DOI: 10.1002/jlb.2a0421-200r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Regenerative Medicine and Skeleton, RMeS, Inserm UMR 1229, Oniris, CHU Nantes, Université de Nantes, Nantes, France
| | - Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Berlin, Germany
| | - Marina Sironi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Silvia Carnevale
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Rémi Porte
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Andrea Gianatti
- Unit of Pathology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Constantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria José Oliveira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Cui C, Zhang Y, Liu G, Zhang S, Zhang J, Wang X. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:266-291. [PMID: 36046433 PMCID: PMC9400724 DOI: 10.37349/etat.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
Metastasis is still the primary cause of cancer-related mortality. However, the underlying mechanisms of cancer metastasis are not yet fully understood. Currently, the epithelial-mesenchymal transition, metabolic remodeling, cancer cell intercommunication and the tumor microenvironment including diverse stromal cells, are reported to affect the metastatic process of cancer cells. Calcium ions (Ca2+) are ubiquitous second messengers that manipulate cancer metastasis by affecting signaling pathways. Diverse transporter/pump/channel-mediated Ca2+ currents form Ca2+ oscillations that can be decoded by Ca2+-binding proteins, which are promising prognostic biomarkers and therapeutic targets of cancer metastasis. This paper presents a review of the advances in research on the mechanisms underlying cancer metastasis and the roles of Ca2+-related signals in these events.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shuhong Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
7
|
Liang Y, Su Q, Wu X. Identification and Validation of a Novel Six-Gene Prognostic Signature of Stem Cell Characteristic in Colon Cancer. Front Oncol 2021; 10:571655. [PMID: 33680915 PMCID: PMC7933554 DOI: 10.3389/fonc.2020.571655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells play crucial roles in the development of colon cancer (COAD). This study tried to explore new markers for predicting the prognosis of colon cancer based on stem cell-related genes. In our study, 424 COAD samples from TCGA were divided into three subtypes based on 412 stem cell-related genes; there were significant differences in prognosis, clinical characteristics, and immune scores between these subtypes. 694 genes were screened between subgroups. Subsequently a six-gene signature (DYDC2, MS4A15, MAGEA1, WNT7A, APOD, and SERPINE1) was established. This model had strong robustness and stable predictive performance in cohorts of different platforms. Taken together, the six-gene signature constructed in this study could be used as a novel prognostic marker for COAD patients.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Clinical significance of enterocyte-specific gene polymorphisms as candidate markers of oxaliplatin-based treatment for metastatic colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2021; 21:285-295. [PMID: 33542444 DOI: 10.1038/s41397-021-00207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) can be classified into subtypes based on gene expression signatures. Patients with stage III enterocyte subtype of the CRC Assigner classifier have been shown to benefit from oxaliplatin adjuvant therapy. Here, we investigated whether single nucleotide polymorphisms (SNPs) in two enterocyte subtype-related genes, MS4A12 and CDX2, could predict the efficacy of oxaliplatin in first-line treatment for patients with metastatic CRC (mCRC). Three cohorts of patients were included: a discovery cohort receiving FOLFOX ± bevacizumab (BEV) (n = 146), a validation cohort receiving FOLFOXIRI + BEV (n = 230), and a control cohort receiving FOLFIRI + BEV (n = 228). SNPs were analyzed by PCR-based direct sequencing. In the discovery cohort, MS4A12 rs4939378 and CDX2 rs3812863 were identified as potential markers of efficacy. In the validation cohort, any G allele of MS4A12 rs4939378 was associated with longer progression-free survival (PFS) than the A/A variant in both univariate analysis (12.4 vs. 10.9 months, hazard ratio [HR] 0.70, 95% confidence interval [CI] 0.49-0.99, P = 0.033) and multivariable analysis (HR 0.65, 95%CI 0.44-0.97, P = 0.035) in patients expressing wild-type KRAS, but not mutant KRAS. In contrast, longer PFS was observed for patients expressing the CDX2 rs3812863 G/G variant than any A allele in univariate analysis (32.3 vs. 10.3 months, HR 0.39, 95%CI 0.19-0.81, P = 0.004) only in patients expressing mutant KRAS. These findings were not observed in the control cohort. Thus, MS4A12 and CDX2 SNPs may have utility as predictive biomarkers of response to oxaliplatin-based treatment in mCRC patients.
Collapse
|
9
|
ESR1 ChIP-Seq Identifies Distinct Ligand-Free ESR1 Genomic Binding Sites in Human Hepatocytes and Liver Tissue. Int J Mol Sci 2021; 22:ijms22031461. [PMID: 33540646 PMCID: PMC7867289 DOI: 10.3390/ijms22031461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/11/2023] Open
Abstract
The estrogen receptor alpha (ESR1) is an important gene transcriptional regulator, known to mediate the effects of estrogen. Canonically, ESR1 is activated by its ligand estrogen. However, the role of unliganded ESR1 in transcriptional regulation has been gaining attention. We have recently shown that ligand-free ESR1 is a key regulator of several cytochrome P450 (CYP) genes in the liver, however ligand-free ESR1 has not been characterized genome-wide in the human liver. To address this, ESR1 ChIP-Seq was conducted in human liver samples and in hepatocytes with or without 17beta-estradiol (E2) treatment. We identified both ligand-dependent and ligand-independent binding sites throughout the genome. These two ESR1 binding categories showed different genomic localization, pathway enrichment, and cofactor colocalization, indicating different ESR1 regulatory function depending on ligand availability. By analyzing existing ESR1 data from additional human cell lines, we uncovered a potential ligand-independent ESR1 activity, namely its co-enrichment with the zinc finger protein 143 (ZNF143). Furthermore, we identified ESR1 binding sites near many gene loci related to drug therapy, including the CYPs. Overall, this study shows distinct ligand-free and ligand-bound ESR1 chromatin binding profiles in the liver and suggests the potential broad influence of ESR1 in drug metabolism and drug therapy.
Collapse
|
10
|
Suenaga M, Cao S, Zhang W, Matsusaka S, Okazaki S, Berger MD, Miyamoto Y, Schirripa M, Barzi A, Yamamoto N, Yamaguchi T, Lenz HJ. Role of enterocyte-specific gene polymorphisms in response to adjuvant treatment for stage III colorectal cancer. Pharmacogenet Genomics 2021; 31:10-16. [PMID: 32732498 PMCID: PMC7655616 DOI: 10.1097/fpc.0000000000000416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The enterocyte subtype of colorectal cancer (CRC) responds favorably to oxaliplatin-based adjuvant treatment for stage III CRC. We examined the clinical significance of single-nucleotide polymorphisms (SNPs) in enterocyte-related genes MS4A12 and CDX2 in response to adjuvant treatment for stage III CRC. PATIENTS AND METHODS A total of 350 patients with stage III CRC were included: 274 received adjuvant treatment with surgical resection (discovery cohort) and 76 received surgery alone (control cohort). In the discovery cohort, 68 patients received FOLFOX and 206 received oral fluoropyrimidine. SNPs were analyzed by PCR-based direct sequencing. RESULTS In the discovery cohort, the MS4A12 rs4939378 G/G variant was associated with lower 5-year survival than any A allele [70% vs. 90%, univariate: hazard ratio (HR) 2.29, 95% confidence interval (CI) 1.03-5.06, P = 0.035; multivariate: HR 2.58, 95% CI 1.15-5.76, P = 0.021]. Patients with the CDX2 rs3812863 G/G variant had better overall survival than those with any A allele, although this was not significant in multivariate analysis (5 year-survival: 95% vs. 82%, univariate: HR 0.34, 95% CI 0.12-0.97, P = 0.034; multivariate: HR 0.39, 95% CI 0.13-1.11, P = 0.078). The SNPs did not show significant association with overall survival in the control cohort, and significant interaction was observed between MS4A12 genotypes and groups (P = 0.007). CONCLUSIONS Our findings suggest that MS4A12 and CDX2 gene polymorphisms may predict outcome in stage III CRC. However, the clinical significance of SNPs for response to oxaliplatin may differ by tumor stage.
Collapse
Affiliation(s)
- Mitsukuni Suenaga
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
- Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku 135-8550, Tokyo, Japan
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Wu Zhang
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Satoshi Matsusaka
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Satoshi Okazaki
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Martin D. Berger
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Yuji Miyamoto
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Marta Schirripa
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Afsaneh Barzi
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Noriko Yamamoto
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku 135-8550,Tokyo, Japan
| | - Toshiharu Yamaguchi
- Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku 135-8550, Tokyo, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Identification and Verification of Core Genes in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8082697. [PMID: 32462020 PMCID: PMC7232680 DOI: 10.1155/2020/8082697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/25/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, a malignant neoplasm that occurs in the colorectal mucosa, is one of the most common types of gastrointestinal cancer. Colorectal cancer has been studied extensively, but the molecular mechanisms of this malignancy have not been characterized. This study identified and verified core genes associated with colorectal cancer using integrated bioinformatics analysis. Three gene expression profiles (GSE15781, GSE110223, and GSE110224) were downloaded from the Gene Expression Omnibus (GEO) databases. A total of 87 common differentially expressed genes (DEGs) among GSE15781, GSE110223, and GSE110224 were identified, including 19 upregulated genes and 68 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed for common DEGs using clusterProfiler. These common DEGs were significantly involved in cancer-associated functions and signaling pathways. Then, we constructed protein-protein interaction networks of these common DEGs using Cytoscape software, which resulted in the identification of the following 10 core genes: SST, PYY, CXCL1, CXCL8, CXCL3, ZG16, AQP8, CLCA4, MS4A12, and GUCA2A. Analysis using qRT-PCR has shown that SST, CXCL8, and MS4A12 were significant differentially expressed between colorectal cancer tissues and normal colorectal tissues (P < 0.05). Gene Expression Profiling Interactive Analysis (GEPIA) overall survival (OS) has shown that low expressions of AQP8, ZG16, CXCL3, and CXCL8 may predict poor survival outcome in colorectal cancer. In conclusion, the core genes identified in this study contributed to the understanding of the molecular mechanisms involved in colorectal cancer development and may be targets for early diagnosis, prevention, and treatment of colorectal cancer.
Collapse
|
12
|
Sun L, Zhang Y, Zhang C. Distinct Expression and Prognostic Value of MS4A in Gastric Cancer. Open Med (Wars) 2018; 13:178-188. [PMID: 29756054 PMCID: PMC5941698 DOI: 10.1515/med-2018-0028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer has high malignancy and early metastasis, which lead to poor survival rate. In this study, we assessed the expressions and prognostic values of MS4A family, a newly recently discovered family, by two online dataset, GEPIA and Kaplan Meier-plotter. From these results eight members, MS4A2, MS4A6, MS4A7, MS4A8, MS4A14, MS4A15, TMEM176A and TMEM176B showed positive expression in gastric cancer or normal tissues, and these genes were screened for further analysis of prognostic values. We observed that low mRNA expressions of MS4A2, MS4A7, MS4A14, MS4A15, TMEM176A and TMEM176B were correlated with better overall survival (OS) in all gastric cancer patients, while high mRNA expression of MS4A6 was observed to be associated with good prognosis. MS4A8’s high mRNA level was correlated to better OS in diffuse gastric cancer patients. Further, we estimated prognostic values of MS4A family in gastric cancer patients with different clinic-pathological features, including clinical stages, differentiation level, lymph node status and HER2 status. Our results indicate that these eight MS4A members can estimate prognosis in patients with different pathological groups. In conclusion, MS4A family members are potential biomarkers, and may contribute to tumor progression in gastric cancer.
Collapse
Affiliation(s)
- Lei Sun
- Department of General Surgery, Zaozhuang Municipal Hospital, Zaozhuang, 277100, Shandong Province, China
| | - Yanli Zhang
- Medical Department, Maternity and Child Care Centers, Zaozhuang, 277100, Shandong Province, China
| | - Chao Zhang
- Department of General Surgery, Zaozhuang Municipal Hospital, 41# Longtou Road, Zaozhuang, 277100, Shandong Province, China, Tel. +86-632-3227241
| |
Collapse
|
13
|
Lie KK, Tørresen OK, Solbakken MH, Rønnestad I, Tooming-Klunderud A, Nederbragt AJ, Jentoft S, Sæle Ø. Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish. BMC Genomics 2018; 19:186. [PMID: 29510660 PMCID: PMC5840709 DOI: 10.1186/s12864-018-4570-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species. RESULTS Long and short read sequencing technologies were combined to generate a ballan wrasse genome of 805 Mbp. Analysis of the genome and transcriptome assemblies confirmed the absence of genes that code for proteins involved in gastric function. The gene coding for the appetite stimulating protein ghrelin was also absent in wrasse. Gene synteny mapping identified several appetite-controlling genes and their paralogs previously undescribed in fish. Transcriptome profiling along the length of the intestine found a declining expression gradient from the anterior to the posterior, and a distinct expression profile in the hind gut. CONCLUSIONS We showed gene loss has occurred for all known genes related to stomach function in the ballan wrasse, while the remaining functions of the digestive tract appear intact. The results also show appetite control in ballan wrasse has undergone substantial changes. The loss of ghrelin suggests that other genes, such as motilin, may play a ghrelin like role. The wrasse genome offers novel insight in to the evolutionary traits of this large family. As the stomach plays a major role in protein digestion, the lack of genes related to stomach digestion in wrasse suggests it requires formulated diets with higher levels of readily digestible protein than those for gastric species.
Collapse
Affiliation(s)
- Kai K. Lie
- Institute of Marine Research, P.O. Box. 1870, Nordnes, 5817 Bergen, NO Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, NO Norway
| | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Alexander J. Nederbragt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
- Biomedical Informatics Research Group, Department of Informatics, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Øystein Sæle
- Institute of Marine Research, P.O. Box. 1870, Nordnes, 5817 Bergen, NO Norway
| |
Collapse
|
14
|
Roberts DL, O'Dwyer ST, Stern PL, Renehan AG. Global gene expression in pseudomyxoma peritonei, with parallel development of two immortalized cell lines. Oncotarget 2016; 6:10786-800. [PMID: 25929336 PMCID: PMC4484419 DOI: 10.18632/oncotarget.3198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 01/24/2015] [Indexed: 01/02/2023] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare tumor of appendiceal origin. Treatment is major cytoreductive surgery but morbidity is high. PMP is considered chemo-resistant; its molecular biology is understudied; and presently, there is no platform for pre-clinical drug testing. Here, we performed exon array analysis from laser micro-dissected PMP tissue and normal colonic epithelia. The array analysis identified 27 up-regulated and 34 down-regulated genes: candidate up-regulated genes included SLC16A4, DSC3, Aldolase B, EPHX4, and ARHGAP24; candidate down-regulated genes were MS4A12, TMIGD1 and Caspase-5. We confirmed differential expression of the candidate genes and their protein products using in-situ hybridization and immuno-histochemistry. In parallel, we established two primary PMP cell lines, N14A and N15A, and immortalized with an SV40 T-antigen lentiviral vector. We cross-checked for expression of the candidate genes (from the array analyses) using qPCR in the cell lines and demonstrated that the gene profiles were distinct from those of colorectal tumor libraries and commonly used colon cell lines. N14A and N15A were responsiveness to mitomycin and oxaliplatin. This study characterizes global gene expression in PMP, and the parallel development of the first immortalized PMP cell lines; fit for pre-clinical testing and PMP oncogene discovery.
Collapse
Affiliation(s)
- Darren L Roberts
- Immunology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK.,Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Sarah T O'Dwyer
- Peritoneal Tumour Service, Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Peter L Stern
- Immunology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK
| | - Andrew G Renehan
- Immunology Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, M20 4BX, UK.,Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK.,Peritoneal Tumour Service, Department of Surgery, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| |
Collapse
|
15
|
Drew JE, Farquharson AJ, Vase H, Carey FA, Steele RJC, Ross RA, Bunton DC. Molecular Profiling of Multiplexed Gene Markers to Assess Viability of Ex Vivo Human Colon Explant Cultures. Biores Open Access 2015; 4:425-30. [PMID: 26634188 PMCID: PMC4652222 DOI: 10.1089/biores.2015.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human colon tissue explant culture provides a physiologically relevant model system to study human gut biology. However, the small (20–30 mg) and complex tissue samples used present challenges for monitoring tissue stability, viability, and provision of sufficient tissue for analyses. Combining molecular profiling with explant culture has potential to overcome such limitations, permitting interrogation of complex gene regulation required to maintain gut mucosa in culture, monitor responses to culture environments and interventions. Human ex vivo colon explant gene expression profiles were assayed using an in-house custom-designed hCellMarkerPlex assay at culture time points 0, 1, 2, 4, and 14 h. Characteristic profiles of epithelial cell markers linked to differentiation, cellular polarization, and apoptosis were correlated with visible histochemical changes in explant epithelium during culture and tissue donors. The GenomeLab System provides effective assay of multiple targets not possible from small tissue samples with conventional gene expression technology platforms. This is advantageous to increase the utility of the ex vivo human colon model in applications to interrogate this complex and dynamic tissue environment for use in analytical testing.
Collapse
Affiliation(s)
- Janice E Drew
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen, Scotland
| | - Andrew J Farquharson
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen, Scotland
| | - Hollie Vase
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen, Scotland
| | - Frank A Carey
- Ninewells Hospital and Medical School , Dundee, Scotland
| | | | - Ruth A Ross
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol 2015; 94:11-23. [PMID: 25835430 DOI: 10.1038/icb.2015.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
The MS4A (membrane-spanning 4-domain family, subfamily A) family of proteins contains some well-known members including MS4A1 (CD20), MS4A2 (FcɛRIβ) and MS4A3 (HTm4). These three MS4A family members are expressed on the cell surface of specific leukocyte subsets and have been well characterized as having key roles in regulating cell activation, growth and development. However, beyond MS4A1-3 there are a large number of related molecules (18 to date in humans) where our understanding of their biological roles is at a relatively nascent stage. This review examines the larger MS4A family focusing on their structure, expression, regulation and characterized and/or emerging biological roles. Our own work on one family member MS4A8B, and its possible role in epithelial cell regulation, is also highlighted.
Collapse
|
17
|
Drew JE, Farquharson AJ, Mayer CD, Vase HF, Coates PJ, Steele RJ, Carey FA. Predictive gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma. PLoS One 2014; 9:e113071. [PMID: 25423035 PMCID: PMC4244109 DOI: 10.1371/journal.pone.0113071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/23/2014] [Indexed: 12/15/2022] Open
Abstract
Cancers exhibit abnormal molecular signatures associated with disease initiation and progression. Molecular signatures could improve cancer screening, detection, drug development and selection of appropriate drug therapies for individual patients. Typically only very small amounts of tissue are available from patients for analysis and biopsy samples exhibit broad heterogeneity that cannot be captured using a single marker. This report details application of an in-house custom designed GenomeLab System multiplex gene expression assay, the hCellMarkerPlex, to assess predictive gene signatures of normal, adenomatous polyp and carcinoma colon tissue using archived tissue bank material. The hCellMarkerPlex incorporates twenty-one gene markers: epithelial (EZR, KRT18, NOX1, SLC9A2), proliferation (PCNA, CCND1, MS4A12), differentiation (B4GANLT2, CDX1, CDX2), apoptotic (CASP3, NOX1, NTN1), fibroblast (FSP1, COL1A1), structural (ACTG2, CNN1, DES), gene transcription (HDAC1), stem cell (LGR5), endothelial (VWF) and mucin production (MUC2). Gene signatures distinguished normal, adenomatous polyp and carcinoma. Individual gene targets significantly contributing to molecular tissue types, classifier genes, were further characterised using real-time PCR, in-situ hybridisation and immunohistochemistry revealing aberrant epithelial expression of MS4A12, LGR5 CDX2, NOX1 and SLC9A2 prior to development of carcinoma. Identified gene signatures identify aberrant epithelial expression of genes prior to cancer development using in-house custom designed gene expression multiplex assays. This approach may be used to assist in objective classification of disease initiation, staging, progression and therapeutic responses using biopsy material.
Collapse
Affiliation(s)
- Janice E. Drew
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, Scotland
- * E-mail:
| | - Andrew J. Farquharson
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, Scotland
| | - Claus Dieter Mayer
- Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB21 9SB, Scotland
| | - Hollie F. Vase
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, Scotland
| | - Philip J. Coates
- Ninewells Hospital and Medical School, Dundee, DD1 9SU, Scotland
| | - Robert J. Steele
- Ninewells Hospital and Medical School, Dundee, DD1 9SU, Scotland
| | - Francis A. Carey
- Ninewells Hospital and Medical School, Dundee, DD1 9SU, Scotland
| |
Collapse
|
18
|
Olsen J, Espersen MLM, Jess P, Kirkeby LT, Troelsen JT. The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol 2014; 23:167-76. [PMID: 25126956 DOI: 10.1016/j.suronc.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Homeobox genes are often deregulated in cancer. They can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. It is implicated in differentiation, proliferation, cell-adhesion, and migration. CDX2 has been proposed as a tumor suppressor in colorectal cancer but its role is still controversial. This systematic review were undertaken in order to clarify CDX2s role in colorectal cancer. METHODS A literature search was performed in the MEDLINE database from 1966 to February 2014. Only studies in which all or a part of the experimental design were performed on human colorectal cancer tissue were included. Thus, studies solely performed in cell-lines or animal models were excluded. RESULTS Fifty-two articles of relevance were identified. CDX2 expression was rarely lost in colorectal cancers, however the expression pattern may often be heterogeneous within the tumor and can be selectively down regulated at the invasive front and in tumor buddings. Loss of CDX2 expression is probably correlated to tumor grade, stage, right-sided tumor location, MMR-deficiency, CIMP, and BRAF mutations. The CDX2 gene is rarely mutated but the locus harboring the gene is often amplified and may suggest CDX2 as a linage-survival oncogene. CDX2 might be implicated in cell proliferation and migration through cross-talk with the Wnt-signaling pathway, tumor-stroma proteins, and inflammatory cytokines. CONCLUSION A clear role for CDX2 expression in colorectal cancer remains to be elucidated, and it might differ in relation to the underlying molecular pathways leading to the cancer formation.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, DK-2730 Herlev, Denmark.
| | - P Jess
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
19
|
Hawthorn L, Lan L, Mojica W. Evidence for field effect cancerization in colorectal cancer. Genomics 2013; 103:211-21. [PMID: 24316131 DOI: 10.1016/j.ygeno.2013.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/04/2013] [Accepted: 11/09/2013] [Indexed: 01/08/2023]
Abstract
We compared transcript expression, and chromosomal changes on a series of tumors and surrounding tissues to determine if there is evidence of field cancerization in colorectal cancer. Epithelial cells were isolated from tumors and areas adjacent to the tumors ranging from 1 to 10cm. Tumor abnormalities mirrored those previously reported for colon cancer and while the number and size of the chromosomal abnormalities were greatly reduced in cells from surrounding regions, many chromosome abnormalities were discernable. Interestingly, these abnormalities were not consistent across the field in the same patient samples suggesting a field of chromosomal instability surrounding the tumor. A mutator phenotype has been proposed to account for this instability which states that the genotypes of cells within a tumor would not be identical, but would share at least a single mutation in any number of genes, or a selection of genes affecting a specific pathway which provide a proliferative advantage.
Collapse
Affiliation(s)
- L Hawthorn
- Cancer Center, Georgia Regents University, Augusta, GA, USA.
| | - L Lan
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - W Mojica
- Department of Pathology, Kalieda Health System, Buffalo, NY, USA
| |
Collapse
|
20
|
Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells. Biochem Biophys Res Commun 2013; 434:898-903. [PMID: 23624503 DOI: 10.1016/j.bbrc.2013.04.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chemoresistance is a major cause of treatment failure in colon cancer, and cancer stem cells have been found to be involved in the chemoresistance of colon cancer. However, the mechanisms driving the chemoresistance of colon cancer stem cells have not been addressed. METHODS In this study, we investigated the cytotoxicity of paclitaxel in CD44(+)CD24(+) SW1222 colon cancer cells expressing Cdx1 (CD44(+)CD24(+)Cdx1(+) stem cells) and CD44(+)CD24(+) HCT116 colon cancer cells expressing wild-type p53 (CD44(+)CD24(+)p53wt stem cells). RESULTS SW1222 cells were more resistant to paclitaxel-induced cytotoxicity than HCT116 cells. Conversely, HCT-116 cells had higher matrigel colony formation ability than SW1222 cells. The isolated CD44(+)CD24(+)Cdx1(+) cells showed higher resistance to paclitaxel-induced cytotoxicity than CD44(+)CD24(+)p53wt cells. The resistance of CD44(+)CD24(+)Cdx1(+) cells to paclitaxel is associated with upregulation of Cdx1 and Bcl-2 expression, caspase-3 activity, and the ratio of LC3-II/LC3-I. The sensitivity of CD44(+)CD24(+)p53wt cells to paclitaxel is associated with the downregulation of Bcl-2 expression, upregulation of Bax levels, and upregulation of caspase-3 activity. Silencing of Cdx1 expression and treatment with lysosomal inhibitor bafilomycin A increased paclitaxel-induced cytotoxicity in CD44(+)CD24(+)Cdx1(+) cells. Conversely, overexpression of Cdx1 decreased cell death in CD44(+)CD24(+)p53wt cells. Intratumoral injection of Cdx1 siRNA significantly inhibited tumor growth in a xenograft tumor model inoculated with CD44(+)CD24(+)Cdx1(+) cancer cells. CONCLUSION Cdx1 exerts a protective role in colon cancer stem cells, which play a crucial role in chemoresistance to paclitaxel through activation of autophagy. Autophagy is activated though the Cdx1-Bcl-2-LC3 pathway. In contrast, p53 exerts a major role in apoptosis and inhibits autophagy in colon cancer stem cells.
Collapse
|
21
|
Grainger S, Hryniuk A, Lohnes D. Cdx1 and Cdx2 exhibit transcriptional specificity in the intestine. PLoS One 2013; 8:e54757. [PMID: 23382958 PMCID: PMC3559873 DOI: 10.1371/journal.pone.0054757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
The caudal-related homeodomain transcription factors Cdx1 and Cdx2 are expressed in the developing endoderm with expression persisting into adulthood. Cdx1−/− mutants are viable and fertile and display no overt intestinal phenotype. Cdx2 null mutants are peri-implantation lethal; however, conditional mutation approaches have revealed that Cdx2 is required for patterning the intestinal epithelium and specification of the colon. Cdx2 is also necessary for homeostasis of the intestinal tract in the adult, where Cdx1 and Cdx2 appear to functionally overlap in the distal colon, but not during intestinal development. Cdx1 and Cdx2 exhibit complete overlap of expression in the intestine, although they differ in their relative levels, with Cdx1 maximal in the distal colon and Cdx2 peaking in the proximal cecum. Moreover, Cdx1 protein is graded along the crypt-villus axis, being abundant in the crypts and diminishing towards the villi. Cdx2 is expressed uniformly along this axis, but is differentially phosphorylated; the functional relevance of these expression domains and phosphorylation is currently unknown. Cdx1 and Cdx2 have been suggested to exhibit functional specificity in the intestinal tract. In the present study, using cell-based models, we found that relative to Cdx1, Cdx2 was significantly less potent at effecting a transcriptional response from the Cdx1 promoter, a known Cdx target gene. We subsequently assessed this relationship in vivo using a “gene swap” approach and found that Cdx2 cannot substitute for Cdx1 in this autoregulatory loop. This is in marked contrast with the ability of Cdx2 to support Cdx1 expression and function in paraxial mesoderm and vertebral patterning, thus providing novel in vivo evidence of context-dependent transcriptional specificity between these transcription factors.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Koslowski M, Luxemburger U, Türeci Ö, Sahin U. Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1α. Oncogene 2010; 30:876-82. [DOI: 10.1038/onc.2010.481] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, Schernhammer ES, Hunter DJ, Giovannucci EL, Fuchs CS, Ogino S. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 2010; 9:125. [PMID: 20507599 PMCID: PMC2892454 DOI: 10.1186/1476-4598-9-125] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/27/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genome-wide DNA hypomethylation plays a role in genomic instability and carcinogenesis. LINE-1 (L1 retrotransposon) constitutes a substantial portion of the human genome, and LINE-1 methylation correlates with global DNA methylation status. LINE-1 hypomethylation in colon cancer has been strongly associated with poor prognosis. However, whether LINE-1 hypomethylators constitute a distinct cancer subtype remains uncertain. Recent evidence for concordant LINE-1 hypomethylation within synchronous colorectal cancer pairs suggests the presence of a non-stochastic mechanism influencing tumor LINE-1 methylation level. Thus, it is of particular interest to examine whether its wide variation can be attributed to clinical, pathologic or molecular features. DESIGN Utilizing a database of 869 colorectal cancers in two prospective cohort studies, we constructed multivariate linear and logistic regression models for LINE-1 methylation (quantified by Pyrosequencing). Variables included age, sex, body mass index, family history of colorectal cancer, smoking status, tumor location, stage, grade, mucinous component, signet ring cells, tumor infiltrating lymphocytes, CpG island methylator phenotype (CIMP), microsatellite instability, expression of TP53 (p53), CDKN1A (p21), CTNNB1 (beta-catenin), PTGS2 (cyclooxygenase-2), and FASN, and mutations in KRAS, BRAF, and PIK3CA. RESULTS Tumoral LINE-1 methylation ranged from 23.1 to 90.3 of 0-100 scale (mean 61.4; median 62.3; standard deviation 9.6), and distributed approximately normally except for extreme hypomethylators [LINE-1 methylation < 40; N = 22 (2.5%), which were far more than what could be expected by normal distribution]. LINE-1 extreme hypomethylators were significantly associated with younger patients (p = 0.0058). Residual plot by multivariate linear regression showed that LINE-1 extreme hypomethylators clustered as one distinct group, separate from the main tumor group. The multivariate linear regression model could explain 8.4% of the total variability of LINE-1 methylation (R-square = 0.084). Multivariate logistic regression models for binary LINE-1 hypomethylation outcomes (cutoffs of 40, 50 and 60) showed at most fair predictive ability (area under receiver operator characteristics curve < 0.63). CONCLUSIONS LINE-1 extreme hypomethylators appear to constitute a previously-unrecognized, distinct subtype of colorectal cancers, which needs to be confirmed by additional studies. Our tumor LINE-1 methylation data indicate enormous epigenomic diversity of individual colorectal cancers.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|