1
|
Jacob T, Sindhu S, Hasan A, Malik MZ, Arefanian H, Al-Rashed F, Nizam R, Kochumon S, Thomas R, Bahman F, Shenouda S, Wilson A, Akther N, Al-Roub A, Abukhalaf N, Albeloushi S, Abu-Farha M, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Soybean oil-based HFD induces gut dysbiosis that leads to steatosis, hepatic inflammation and insulin resistance in mice. Front Microbiol 2024; 15:1407258. [PMID: 39165573 PMCID: PMC11334085 DOI: 10.3389/fmicb.2024.1407258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
High-fat diets (HFDs) shape the gut microbiome and promote obesity, inflammation, and liver steatosis. Fish and soybean are part of a healthy diet; however, the impact of these fats, in the absence of sucrose, on gut microbial dysbiosis and its association with liver steatosis remains unclear. Here, we investigated the effect of sucrose-free soybean oil-and fish oil-based high fat diets (HFDs) (SF-Soy-HFD and SF-Fish-HFD, respectively) on gut dysbiosis, obesity, steatosis, hepatic inflammation, and insulin resistance. C57BL/6 mice were fed these HFDs for 24 weeks. Both diets had comparable effects on liver and total body weights. But 16S-rRNA sequencing of the gut content revealed induction of gut dysbiosis at different taxonomic levels. The microbial communities were clearly separated, showing differential dysbiosis between the two HFDs. Compared with the SF-Fish-HFD control group, the SF-Soy-HFD group had an increased abundance of Bacteroidetes, Firmicutes, and Deferribacteres, but a lower abundance of Verrucomicrobia. The Clostridia/Bacteroidia (C/B) ratio was higher in the SF-Soy-HFD group (3.11) than in the SF-Fish-HFD group (2.5). Conversely, the Verrucomicrobiacae/S24_7 (also known as Muribaculaceae family) ratio was lower in the SF-Soy-HFD group (0.02) than that in the SF-Fish-HFD group (0.75). The SF-Soy-HFD group had a positive association with S24_7, Clostridiales, Allobaculum, Coriobacteriaceae, Adlercreutzia, Christensenellaceae, Lactococcus, and Oscillospira, but was related to a lower abundance of Akkermansia, which maintains gut barrier integrity. The gut microbiota in the SF-Soy-HFD group had predicted associations with host genes related to fatty liver and inflammatory pathways. Mice fed the SF-Soy-HFD developed liver steatosis and showed increased transcript levels of genes associated with de novo lipogenesis (Acaca, Fasn, Scd1, Elovl6) and cholesterol synthesis (Hmgcr) pathways compared to those in the SF-Fish-HFD-group. No differences were observed in the expression of fat uptake genes (Cd36 and Fabp1). The expression of the fat efflux gene (Mttp) was reduced in the SF-Soy-HFD group. Moreover, hepatic inflammation markers (Tnfa and Il1b) were notably expressed in SF-Soy-HFD-fed mice. In conclusion, SF-Soy-HFD feeding induced gut dysbiosis in mice, leading to steatosis, hepatic inflammation, and impaired glucose homeostasis.
Collapse
Affiliation(s)
- Texy Jacob
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | - Amal Hasan
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | | | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
2
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
3
|
Fang J, Zhang Z, Cheng Y, Yang H, Zhang H, Xue Z, Lu S, Dong Y, Song C, Zhang X, Zhou Y. EPA and DHA differentially coordinate the crosstalk between host and gut microbiota and block DSS-induced colitis in mice by a reinforced colonic mucus barrier. Food Funct 2022; 13:4399-4420. [PMID: 35297435 DOI: 10.1039/d1fo03815j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon with a continuously remitting and relapsing course. Its etiology is closely related to abnormal interactions between host and gut microbiota. The mucus barrier lining the gastrointestinal tract is necessary to coordinate host and gut microbiota interaction by nourishing and modulating the microbiota. Differential effects of the anti-inflammatory fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on UC progression in mice were firstly addressed by our previous work; here, the mechanism for their respective effects were further uncovered from host-microbiome crosstalk based on mucus barrier modulation to pave the way for UC therapy. Methods: Assessment of the disease activity index and histopathology score was conducted in mice with dextran sodium sulfate (DSS)-induced colitis pre-treated with different doses of EPA and DHA. Mucin generation, glycosylation and secretion were evaluated by a combination of electron microscopy, specific mucous staining, and qPCR. Western blotting was used to analyze the underlying molecular events. Fecal short chain fatty acids were detected using gas chromatography, and the gut microbial composition was analyzed using 16S rRNA sequencing. Results: Compared with DHA, the more potent inhibitory effect of high dose EPA on DSS-induced colitis was reconfirmed, which was underlain by a reinforced mucus layer as indicated by increased mucin granule release, mucus layer stratification and markedly upregulated expression of the key modulators involved in goblet cell differentiation. In turn a remarkably enhanced mucus barrier in the EPA group functioned to modulate the gut microbiome, as demonstrated by the enriched abundance of the phylum Bacteroidetes and mucin-degrading bacterium Akkermansia muciniphila producing acetic and propionic acids. Conclusions: EPA and DHA differentially coordinate the interaction between the host and the gut microbiota and relieve mucus barrier disruption in DSS-induced colitis. EPA may develop into a promising adjunctive therapy for UC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,College of Medicine, Shaoxing University, 508 Huancheng Road, Shaoxing, Zhejiang Province, 312000, People's Republic of China
| | - ZhuangWei Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yinyin Cheng
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Haitao Yang
- Mingzhou Hospital of Zhejiang University Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, 315040 Zhejiang, People's Republic of China
| | - Hui Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zhe Xue
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Songtao Lu
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yichen Dong
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chunyan Song
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Gastroenterology and hepatology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yuping Zhou
- Department of Gastroenterology and hepatology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang, 315020, People's Republic of China. .,Institute of Digestive Disease of Ningbo University, Ningbo, 315020, People's Republic of China
| |
Collapse
|
4
|
Salaga M, Bartoszek A, Binienda A, Krajewska JB, Fabisiak A, Mosińska P, Dziedziczak K, Niewinna K, Talar M, Tarasiuk A, Kordek R, Fichna J. Activation of Free Fatty Acid Receptor 4 Affects Intestinal Inflammation and Improves Colon Permeability in Mice. Nutrients 2021; 13:nu13082716. [PMID: 34444876 PMCID: PMC8399282 DOI: 10.3390/nu13082716] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Diet is considered an important trigger in inflammatory bowel diseases (IBD), as feeding habits can affect intestinal permeability and clearance of bacterial antigens, consequently influencing the immune system. Free fatty acid receptors (FFARs), expressed on the intestinal epithelial cells, belong to the family of luminal-facing receptors that are responsive to nutrients. The objective of this study was to characterize the anti-inflammatory activity and the effect on intestinal barrier function of synthetic FFAR agonists in mouse models of colitis. Therapeutic activity of GW9508 (FFAR1 agonist), 4-CMTB (FFAR2 agonist), AR420626 (FFAR3 agonist), and GSK137647 (FFAR4 agonist) was investigated in two models of semi-chronic colitis: induced by trinitrobenzenesulfonic acid (TNBS), mimicking Crohn's disease, as well as induced by dextran sulfate sodium (DSS), which recapitulates ulcerative colitis in humans. Moreover, we assessed the influence of FFARs agonists on epithelial ion transport and measured the ion flow stimulated by forskolin and veratridine. Administration of FFAR4 agonist GSK137647 attenuated both TNBS-induced and DSS-induced colitis in mice, as indicated by macroscopic parameters and myeloperoxidase activity. The action of FFAR4 agonist GSK137647 was significantly blocked by pretreatment with selective FFAR4 antagonist AH7614. Moreover, FFAR1 and FFAR4 agonists reversed the increase in the colon permeability caused by inflammation. FFAR4 restored the tight junction genes expression in mouse colon. This is the first evaluation of the anti-inflammatory activity of selective FFAR agonists, showing that pharmacological intervention targeting FFAR4, which is a sensor of medium and long chain fatty acids, attenuates intestinal inflammation.
Collapse
Affiliation(s)
- Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Katarzyna Dziedziczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
- Correspondence: ; Tel.: +48-42-272-57-07; Fax: +48-42-272-56-94
| |
Collapse
|
5
|
Effects of olives and their constituents on the expression of ulcerative colitis: a systematic review of randomised controlled trials. Br J Nutr 2021; 127:1153-1171. [PMID: 34100354 DOI: 10.1017/s0007114521001999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extra virgin olive oil is often associated with anti-inflammatory and antioxidant properties. Its effects on inflammatory conditions such as ulcerative colitis (UC), however, have yet to be defined. As such, we aimed to conduct a systematic review and meta-analysis of studies investigating olive-based interventions in UC. A comprehensive database search for randomised controlled trials was performed between 9 July 2018 and 16 August 2018. Studies identified from search alerts were included up to 22 June 2020. Both individuals living with UC at any disease stage and murine models of UC were included in this review. No human trials meeting the eligibility criteria were identified, while nineteen animal studies comprised 849 murine models of UC were included in this review. Pooling of the data could not be performed due to heterogeneous outcomes; however, general trends favouring olive-based interventions were identified. Milder disease expression including weight maintenance, reduced rectal bleeding and well-formed stools favouring olive-based interventions was statistically significant in 16/19 studies, with moderate-to-large effect sizes (-0·66 (95 % CI -1·56, 0·24) to -12·70 (95 % CI -16·8, -8·7)). Olive-based interventions did not prevent the development of colitis-like pathologies in any study. In conclusion, effects of olive-based interventions on murine models of UC appear promising, with milder disease outcomes favouring the intervention in most trials and effect sizes suggesting potential clinical relevance. However, the lack of published randomised controlled human trials warrants further investigation to determine if these effects would translate to individuals living with UC.
Collapse
|
6
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
7
|
Durkin LA, Childs CE, Calder PC. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium-A Review. Foods 2021; 10:foods10010199. [PMID: 33478161 PMCID: PMC7835870 DOI: 10.3390/foods10010199] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells (enterocytes) form part of the intestinal barrier, the largest human interface between the internal and external environments, and responsible for maintaining regulated intestinal absorption and immunological control. Under inflammatory conditions, the intestinal barrier and its component enterocytes become inflamed, leading to changes in barrier histology, permeability, and chemical mediator production. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) can influence the inflammatory state of a range of cell types, including endothelial cells, monocytes, and macrophages. This review aims to assess the current literature detailing the effects of ω-3 PUFAs on epithelial cells. Marine-derived ω-3 PUFAs, eicosapentaenoic acid and docosahexaenoic acid, as well as plant-derived alpha-linolenic acid, are incorporated into intestinal epithelial cell membranes, prevent changes to epithelial permeability, inhibit the production of pro-inflammatory cytokines and eicosanoids and induce the production of anti-inflammatory eicosanoids and docosanoids. Altered inflammatory markers have been attributed to changes in activity and/or expression of proteins involved in inflammatory signalling including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator activated receptor (PPAR) α and γ, G-protein coupled receptor (GPR) 120 and cyclooxygenase (COX)-2. Effective doses for each ω-3 PUFA are difficult to determine due to inconsistencies in dose and time of exposure between different in vitro models and between in vivo and in vitro models. Further research is needed to determine the anti-inflammatory potential of less-studied ω-3 PUFAs, including docosapentaenoic acid and stearidonic acid.
Collapse
Affiliation(s)
- Luke A. Durkin
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Correspondence:
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
8
|
Pagano E, Iannotti FA, Piscitelli F, Romano B, Lucariello G, Venneri T, Di Marzo V, Izzo AA, Borrelli F. Efficacy of combined therapy with fish oil and phytocannabinoids in murine intestinal inflammation. Phytother Res 2020; 35:517-529. [PMID: 32996187 DOI: 10.1002/ptr.6831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1β, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Fabio A Iannotti
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| |
Collapse
|
9
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
10
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
12
|
Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and Alternative Medicines Used by Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:415-429.e15. [PMID: 27743873 DOI: 10.1053/j.gastro.2016.10.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Patients and physicians often have many questions regarding the role of complementary and alternative medicines (CAMs), or nonallopathic therapies, for inflammatory bowel diseases (IBDs). CAMs of various forms are used by more than half of patients with IBD during some point in their disease course. We summarize the available evidence for the most commonly used and discussed CAMs. We discuss evidence for the effects of herbs (such as cannabis and curcumin), probiotics, acupuncture, exercise, and mind-body therapy. There have been few controlled studies of these therapies, which have been limited by their small sample sizes; most studies have been uncontrolled. In addition, there has been a lack of quality control for herbal preparations. It has been a challenge to design rigorous, randomized, placebo-controlled trials, in part owing to problems of adequate blinding for psychological interventions, acupuncture, and exercise. These barriers have limited the acceptance of CAMs by physicians. However, such therapies might be used to supplement conventional therapies and help ease patient symptoms. We conclude that physicians should understand the nature of and evidence for CAMs for IBD so that rational advice can be offered to patients who inquire about their use. CAMs have the potential to aid in the treatment of IBD, but further research is needed to validate these approaches.
Collapse
Affiliation(s)
- Adam S Cheifetz
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Robert Gianotti
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Raphael Luber
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Lee J, Moraes-Vieira PM, Castoldi A, Aryal P, Yee EU, Vickers C, Parnas O, Donaldson CJ, Saghatelian A, Kahn BB. Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Protect against Colitis by Regulating Gut Innate and Adaptive Immune Responses. J Biol Chem 2016; 291:22207-22217. [PMID: 27573241 DOI: 10.1074/jbc.m115.703835] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
We recently discovered a structurally novel class of endogenous lipids, branched palmitic acid esters of hydroxy stearic acids (PAHSAs), with beneficial metabolic and anti-inflammatory effects. We tested whether PAHSAs protect against colitis, which is a chronic inflammatory disease driven predominantly by defects in the innate mucosal barrier and adaptive immune system. There is an unmet clinical need for safe and well tolerated oral therapeutics with direct anti-inflammatory effects. Wild-type mice were pretreated orally with vehicle or 5-PAHSA (10 mg/kg) and 9-PAHSA (5 mg/kg) once daily for 3 days, followed by 10 days of either 0% or 2% dextran sulfate sodium water with continued vehicle or PAHSA treatment. The colon was collected for histopathology, gene expression, and flow cytometry. Intestinal crypt fractions were prepared for ex vivo bactericidal assays. Bone marrow-derived dendritic cells pretreated with vehicle or PAHSA and splenic CD4+ T cells from syngeneic mice were co-cultured to assess antigen presentation and T cell activation in response to LPS. PAHSA treatment prevented weight loss, improved colitis scores (stool consistency, hematochezia, and mouse appearance), and augmented intestinal crypt Paneth cell bactericidal potency via a mechanism that may involve GPR120. In vitro, PAHSAs attenuated dendritic cell activation and subsequent T cell proliferation and Th1 polarization. The anti-inflammatory effects of PAHSAs in vivo resulted in reduced colonic T cell activation and pro-inflammatory cytokine and chemokine expression. These anti-inflammatory effects appear to be partially GPR120-dependent. We conclude that PAHSA treatment regulates innate and adaptive immune responses to prevent mucosal damage and protect against colitis. Thus, PAHSAs may be a novel treatment for colitis and related inflammation-driven diseases.
Collapse
Affiliation(s)
- Jennifer Lee
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Pedro M Moraes-Vieira
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Angela Castoldi
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Pratik Aryal
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Eric U Yee
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Christopher Vickers
- the Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Oren Parnas
- the Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Cynthia J Donaldson
- the Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Alan Saghatelian
- the Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Barbara B Kahn
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| |
Collapse
|
14
|
Urinary Metabolic Phenotyping Reveals Differences in the Metabolic Status of Healthy and Inflammatory Bowel Disease (IBD) Children in Relation to Growth and Disease Activity. Int J Mol Sci 2016; 17:ijms17081310. [PMID: 27529220 PMCID: PMC5000707 DOI: 10.3390/ijms17081310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background: Growth failure and delayed puberty are well known features of children and adolescents with inflammatory bowel disease (IBD), in addition to the chronic course of the disease. Urinary metabonomics was applied in order to better understand metabolic changes between healthy and IBD children. Methods: 21 Pediatric patients with IBD (mean age 14.8 years, 8 males) were enrolled from the Pediatric Gastroenterology Outpatient Clinic over two years. Clinical and biological data were collected at baseline, 6, and 12 months. 27 healthy children (mean age 12.9 years, 16 males) were assessed at baseline. Urine samples were collected at each visit and subjected to 1H Nuclear Magnetic Resonance (NMR) spectroscopy. Results: Using 1H NMR metabonomics, we determined that urine metabolic profiles of IBD children differ significantly from healthy controls. Metabolic differences include central energy metabolism, amino acid, and gut microbial metabolic pathways. The analysis described that combined urinary urea and phenylacetylglutamine—two readouts of nitrogen metabolism—may be relevant to monitor metabolic status in the course of disease. Conclusion: Non-invasive sampling of urine followed by metabonomic profiling can elucidate and monitor the metabolic status of children in relation to disease status. Further developments of omic-approaches in pediatric research might deliver novel nutritional and metabolic hypotheses.
Collapse
|
15
|
Barbalho SM, Goulart RDA, Quesada K, Bechara MD, de Carvalho ADCA. Inflammatory bowel disease: can omega-3 fatty acids really help? Ann Gastroenterol 2016; 29:37-43. [PMID: 26752948 PMCID: PMC4700845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Adjuvants to the traditional therapy of inflammatory bowel disease (IBD) have been studied to enhance the efficacy of the treatment and improve patients' quality of life. Omega-3 polyunsaturated fatty acids (ω3FA) have been associated with attenuation of the inflammatory responses in IBD, possibly acting as substrates for anti-inflammatory eicosanoid production, similar to prostaglandins and leukotrienes. ω3FA also act as substrates for the synthesis of resolvins, maresins and protectins, indispensable in resolving inflammation processes. These acids may influence the development or course of IBD by: reducing oxidative stress, production of tumor necrosis factor-α and proinflammatory cytokines; working as chemopreventive agents; and decreasing the expression of adhesion molecules. There are numerous controversies in the literature on the effects of ω3FA in the prevention or treatment of IBD, but their effects in reducing inflammation is incontestable. Therefore, more studies are warranted to elucidate the pathophysiological mechanisms and establish the recommended daily intake to prevent or induce remission in IBD patients.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília and Food Technology School (FATEC) (Sandra Maria Barbalho),
Correspondence to: Dr Sandra Maria Barbalho, Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Higino Muzzi Filho Avenue, 1001, Marília-SP, 15525-902 Brazil, Tel.: +55 14 99655 3190, e-mail:
| | | | - Karina Quesada
- Department of Nutrition, School of Medicine, University of Marília (Karina Quesada)
| | - Marcelo Dib Bechara
- Department of Biochemistry and Genetics, School of Medicine, University of Marília (Marcelo Dib Bechara)
| | | |
Collapse
|
16
|
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer. Mar Drugs 2015; 13:6152-209. [PMID: 26437418 PMCID: PMC4626684 DOI: 10.3390/md13106152] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Sofía García-Mauriño
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville 41012, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Antonio Alcaide
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| |
Collapse
|
17
|
Shen Y, Wan H, Zhu J, Fang Z, Che L, Xu S, Lin Y, Li J, Wu D. Fish Oil and Olive Oil Supplementation in Late Pregnancy and Lactation Differentially Affect Oxidative Stress and Inflammation in Sows and Piglets. Lipids 2015; 50:647-58. [DOI: 10.1007/s11745-015-4024-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/14/2015] [Indexed: 01/15/2023]
|
18
|
Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, Wu GD. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 2015; 148:1087-106. [PMID: 25597840 PMCID: PMC4409494 DOI: 10.1053/j.gastro.2015.01.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
Some of the most common symptoms of the inflammatory bowel diseases (IBD, which include ulcerative colitis and Crohn's disease) are abdominal pain, diarrhea, and weight loss. It is therefore not surprising that clinicians and patients have wondered whether dietary patterns influence the onset or course of IBD. The question of what to eat is among the most commonly asked by patients, and among the most difficult to answer for clinicians. There are substantial variations in dietary behaviors of patients and recommendations for them, although clinicians do not routinely endorse specific diets for patients with IBD. Dietary clinical trials have been limited by their inability to include a placebo control, contamination of study groups, and inclusion of patients receiving medical therapies. Additional challenges include accuracy of information on dietary intake, complex interactions between foods consumed, and differences in food metabolism among individuals. We review the roles of diet in the etiology and management of IBD based on plausible mechanisms and clinical evidence. Researchers have learned much about the effects of diet on the mucosal immune system, epithelial function, and the intestinal microbiome; these findings could have significant practical implications. Controlled studies of patients receiving enteral nutrition and observations made from patients on exclusion diets have shown that components of whole foods can have deleterious effects for patients with IBD. Additionally, studies in animal models suggested that certain nutrients can reduce intestinal inflammation. In the future, engineered diets that restrict deleterious components but supplement beneficial nutrients could be used to modify the luminal intestinal environment of patients with IBD; these might be used alone or in combination with immunosuppressive agents, or as salvage therapy for patients who do not respond or lose responsiveness to medical therapies. Stricter diets might be required to induce remission, and more sustainable exclusion diets could be used to maintain long-term remission.
Collapse
Affiliation(s)
| | | | | | | | | | - James D. Lewis
- Co-Corresponding authors: James D. Lewis, Professor of Medicine and Epidemiology, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 720 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Office: (215) 573-5137, Fax: (215) 573-0813, ; Gary D. Wu, Professor of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Suite 915, Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, Office: (215) 898-0158, Fax: (215) 573-2024,
| | - Gary D. Wu
- Co-Corresponding authors: James D. Lewis, Professor of Medicine and Epidemiology, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 720 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Office: (215) 573-5137, Fax: (215) 573-0813, ; Gary D. Wu, Professor of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Suite 915, Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, Office: (215) 898-0158, Fax: (215) 573-2024,
| |
Collapse
|
19
|
Martin FPJ, Lichti P, Bosco N, Brahmbhatt V, Oliveira M, Haller D, Benyacoub J. Metabolic phenotyping of an adoptive transfer mouse model of experimental colitis and impact of dietary fish oil intake. J Proteome Res 2015; 14:1911-9. [PMID: 25751005 DOI: 10.1021/pr501299m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are acute and chronic disabling inflammatory disorders with multiple complex etiologies that are not well-defined. Chronic intestinal inflammation has been linked to an energy-deficient state of gut epithelium with alterations in oxidative metabolism. Plasma-, urine-, stool-, and liver-specific metabonomic analyses are reported in a naïve T cell adoptive transfer (AT) experimental model of colitis, which evaluated the impact of long-chain n-3 polyunsaturated fatty acid (PUFA)-enriched diet. Metabolic profiles of AT animals and their controls under chow diet or fish oil supplementation were compared to describe the (i) consequences of inflammatory processes and (ii) the differential impact of n-3 fatty acids. Inflammation was associated with higher glycoprotein levels (related to acute-phase response) and remodeling of PUFAs. Low triglyceride levels and enhanced PUFA levels in the liver suggest activation of lipolytic pathways that could lead to the observed increase of phospholipids in the liver (including plasmalogens and sphingomyelins). In parallel, the increase in stool excretion of most amino acids may indicate a protein-losing enteropathy. Fecal content of glutamine was lower in AT mice, a feature exacerbated under fish oil intervention that may reflect a functional relationship between intestinal inflammatory status and glutamine metabolism. The decrease in Krebs cycle intermediates in urine (succinate, α-ketoglutarate) also suggests a reduction in the glutaminolytic pathway at a systemic level. Our data indicate that inflammatory status is related to this overall loss of energy homeostasis.
Collapse
Affiliation(s)
- Francois-Pierre J Martin
- †Nestlé Institute of Health Sciences SA, Molecular Biomarkers Dpt, EPFL Innovation Park, Building H, 1015 Lausanne, Switzerland
| | - Pia Lichti
- ‡Technische Universität München, Chair of Nutrition and Immunology, ZIEL-Research Center for Nutrition and Food Sciences, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Nabil Bosco
- §Nestlé Research Center, Nutrition and Health Department, 1000 Lausanne, Switzerland
| | - Viral Brahmbhatt
- §Nestlé Research Center, Nutrition and Health Department, 1000 Lausanne, Switzerland
| | - Manuel Oliveira
- §Nestlé Research Center, Nutrition and Health Department, 1000 Lausanne, Switzerland
| | - Dirk Haller
- ‡Technische Universität München, Chair of Nutrition and Immunology, ZIEL-Research Center for Nutrition and Food Sciences, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Jalil Benyacoub
- §Nestlé Research Center, Nutrition and Health Department, 1000 Lausanne, Switzerland
| |
Collapse
|
20
|
Zhao H, Chan-Li Y, Collins SL, Zhang Y, Hallowell RW, Mitzner W, Horton MR. Pulmonary delivery of docosahexaenoic acid mitigates bleomycin-induced pulmonary fibrosis. BMC Pulm Med 2014; 14:64. [PMID: 24742272 PMCID: PMC3998951 DOI: 10.1186/1471-2466-14-64] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/08/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is an untreatable, fatal disease characterized by excess deposition of extracellular matrix and inflammation. Although the etiology of pulmonary fibrosis is unknown, recent studies have implicated dysregulated immune responses and wound healing. Since n-3 polyunsaturated fatty acids (n-3 PUFAs) may beneficially modulate immune responses in a variety of inflammatory disorders, we investigated the therapeutic role of docosahexaenoic acid (DHA), a single n-3 PUFA, in lung fibrosis. METHODS Intratracheal DHA or PBS was administered to mouse lungs 4 days prior to intratracheal bleomycin treatment. Body weight and survival were monitored for 21 days. Bronchoalveolar fluid (BALF) and lung inflammatory cells, cytokines, eicosanoids, histology and lung function were determined on serial days (0, 3, 7, 14, 21) after bleomycin injury. RESULTS Intratracheal administration of DHA mitigated bleomycin-induced lung injury. Mice pretreated with DHA had significantly less weight loss and mortality after bleomycin injury. The lungs from DHA-pretreated mice had markedly less fibrosis. DHA pretreatment also protected the mice from the functional changes associated with bleomycin injury. Bleomycin-induced cellular inflammation in BALF and lung tissue was blunted by DHA pretreatment. These advantageous effects of DHA pretreatment were associated with decreased IL-6, LTB4, PGE2 and increased IL-10. CONCLUSIONS Our findings demonstrate that intratracheal administration of DHA, a single PUFA, protected mice from the development of bleomycin-induced pulmonary inflammation and fibrosis. These results suggest that further investigations regarding the role of n-3 polyunsaturated fatty acids in fibrotic lung injury and repair are needed.
Collapse
Affiliation(s)
- Hongyun Zhao
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, 5th floor, Baltimore, MD, USA
- Departments of Environmental Health Sciences, Division of Physiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, 5th floor, Baltimore, MD, USA
| | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, 5th floor, Baltimore, MD, USA
| | - Yuan Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Robert W Hallowell
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, 5th floor, Baltimore, MD, USA
| | - Wayne Mitzner
- Departments of Environmental Health Sciences, Division of Physiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, 5th floor, Baltimore, MD, USA
| |
Collapse
|