1
|
He K, Zhao Z, Zhang J, Li D, Wang S, Liu Q. Cholesterol Metabolism in Neurodegenerative Diseases. Antioxid Redox Signal 2024. [PMID: 38842175 DOI: 10.1089/ars.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
de Oliveira J, Moreira ELG, de Bem AF. Beyond cardiovascular risk: Implications of Familial hypercholesterolemia on cognition and brain function. Ageing Res Rev 2024; 93:102149. [PMID: 38056504 DOI: 10.1016/j.arr.2023.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.
Collapse
Affiliation(s)
- Jade de Oliveira
- Laboratory of investigation on metabolic disorders and neurodegenerative diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| | - Eduardo Luiz Gasnhar Moreira
- Neuroscience Coworking Lab, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, University of Brasilia, Brasília, Federal District, DF 70910-900, Brazil; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040360, Brazil.
| |
Collapse
|
3
|
Karakatsani ME, Ji R, Murillo MF, Kugelman T, Kwon N, Lao YH, Liu K, Pouliopoulos AN, Honig LS, Duff KE, Konofagou EE. Focused ultrasound mitigates pathology and improves spatial memory in Alzheimer's mice and patients. Theranostics 2023; 13:4102-4120. [PMID: 37554284 PMCID: PMC10405840 DOI: 10.7150/thno.79898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/12/2023] [Indexed: 08/10/2023] Open
Abstract
Rationale: Bilateral sonication with focused ultrasound (FUS) in conjunction with microbubbles has been shown to separately reduce amyloid plaques and hyperphosphorylated tau protein in the hippocampal formation and the entorhinal cortex in different mouse models of Alzheimer's disease (AD) without any therapeutic agents. However, the two pathologies are expressed concurrently in human disease. Therefore, the objective of this study is to investigate the effects of repeated bilateral sonications in the presence of both pathologies. Methods: Herein, we investigate its functional and morphological outcomes on brains bearing both pathologies simultaneously. Eleven transgenic mice of the 3xTg-AD line (14 months old) expressing human amyloid beta and human tau and eleven age-matched wild-type littermates received four weekly bilateral sonications covering the hippocampus followed by working memory testing. Afterwards, immunohistochemistry and immunoassays (western blot and ELISA) were employed to assess any changes in amyloid beta and human tau. Furthermore, we present preliminary data from our clinical trial using a neuronavigation-guided FUS system for sonications in AD patients (NCT04118764). Results: Interestingly, both wild-type and transgenic animals that received FUS experienced improved working memory and spent significantly more time in the escape platform-quadrant, with wild-type animals spending 43.2% (sham: 37.7%) and transgenic animals spending 35.3% (sham: 31.0%) of the trial in the target quadrant. Furthermore, this behavioral amelioration in the transgenic animals correlated with a 58.3% decrease in the neuronal length affected by tau and a 27.2% reduction in total tau levels. Amyloid plaque population, volume and overall load were also reduced overall. Consistently, preliminary data from a clinical trial involving AD patients showed a 1.8% decrease of amyloid PET signal 3-weeks after treatment in the treated hemisphere compared to baseline. Conclusion: For the first time, it is shown that bilateral FUS-induced BBB opening significantly and simultaneously ameliorates both coexistent pathologies, which translated to improvements in spatial memory of transgenic animals with complex AD, the human mimicking phenotype. The level of cognitive improvement was significantly correlated with the volume of BBB opening. Non-transgenic animals were also shown to exhibit similar memory amelioration for the first time, indicating that BBB opening results into benefits in the neuronal function regardless of the existence of AD pathology. A potential mechanism of action for the reduction of the both pathologies investigated was the cholesterol metabolism, specifically the LRP1b receptor, which exhibited increased expression levels in transgenic mice following FUS-induced BBB opening. Initial clinical evidence supported that the beta amyloid reduction shown in rodents could be translatable to humans with significant amyloid reduction shown in the treated hemisphere.
Collapse
Affiliation(s)
| | - Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Maria F. Murillo
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Tara Kugelman
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Keyu Liu
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Karen E. Duff
- UK Dementia Research Institute, University College London, London, UK
| | - Elisa E. Konofagou
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
4
|
Erikson KM, El-Khouri K, Petric R, Tang C, Chen J, Vasquez DEC, Fordahl SC, Jia Z. Carbon Nanodots Attenuate Lipid Peroxidation in the LDL Receptor Knockout Mouse Brain. Antioxidants (Basel) 2023; 12:antiox12051081. [PMID: 37237947 DOI: 10.3390/antiox12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Abnormal cholesterol metabolism can lead to oxidative stress in the brain. Low-density lipoprotein receptor (LDLr) knockout mice are models for studying altered cholesterol metabolism and oxidative stress onset in the brain. Carbon nanodots are a new class of carbon nanomaterials that possess antioxidant properties. The goal of our study was to evaluate the effectiveness of carbon nanodots in preventing brain lipid peroxidation. LDLr knockout mice and wild-type C57BL/6J mice were treated with saline or 2.5 mg/kg bw of carbon nanodots for a 16-week period. Brains were removed and dissected into the cortex, midbrain, and striatum. We measured lipid peroxidation in the mouse brain tissues using the Thiobarbituric Acid Reactive Substances Assay and iron and copper concentrations using Graphite Furnace Atomic Absorption Spectroscopy. We focused on iron and copper due to their association with oxidative stress. Iron concentrations were significantly elevated in the midbrain and striatum of the LDLr knockout mice compared to the C57BL/6J mice, whereas lipid peroxidation was greatest in the midbrain and cortex of the LDLr knockout mice. Treatment with carbon nanodots in the LDLr knockout mice attenuated both the rise in iron and lipid peroxidation, but they had no negative effect in the C57BL/6J mice, indicating the anti-oxidative stress properties of carbon nanodots. We also assessed locomotor and anxiety-like behaviors as functional indicators of lipid peroxidation and found that treatment with carbon nanodots prevented the anxiety-like behaviors displayed by the LDLr knockout mice. Overall, our results show that carbon nanodots are safe and may be an effective nanomaterial for combating the harmful effects caused by lipid peroxidation.
Collapse
Affiliation(s)
- Keith M Erikson
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Kristina El-Khouri
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Radmila Petric
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
- Institute for the Environment, University of North Carolina, Chapel-Hill, NC 27517, USA
| | - Chenhao Tang
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| | - Jinlan Chen
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| | | | - Steve C Fordahl
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| |
Collapse
|
5
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
6
|
Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. [PMID: 37019248 DOI: 10.1016/j.neubiorev.2023.105155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.
Collapse
|
7
|
Sreekumar PG, Su F, Spee C, Araujo E, Nusinowitz S, Reddy ST, Kannan R. Oxidative Stress and Lipid Accumulation Augments Cell Death in LDLR-Deficient RPE Cells and Ldlr-/- Mice. Cells 2022; 12:43. [PMID: 36611838 PMCID: PMC9818299 DOI: 10.3390/cells12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid peroxidation from oxidative stress is considered a major contributor to age-related macular degeneration (AMD). The retina is abundant with circulating low-density lipoproteins (LDL), which are taken up by LDL receptor (LDLR) in the RPE and Müller cells. The purpose of this study is to investigate the role of LDLR in the NaIO3-induced model of dry AMD. Confluent primary human RPE (hRPE) and LDLR-silenced ARPE-19 cells were stressed with 150 µM tert-butyl hydroperoxide (tBH) and caspase 3/7 activation was determined. WT and Ldlr-/- mice were administered NaIO3 (20 mg/kg) intravenously. On day 7, fundus imaging, OCT, ERG, and retinal thickness were measured. Histology, TUNEL, cleaved caspase 3 and lipid accumulation were assessed. Treatment of hRPE with tBH markedly decreased LDLR expression. Caspase 3/7 activation was significantly increased in LDLR-silenced ARPE-19 cells treated with tBH. In Ldlr-/- mice, NaIO3 administration resulted in significant (a) retinal thinning, (b) compromised photoreceptor function, (c) increased percentage of cleaved caspase 3 positive and apoptotic cells, and (d) increased lipid droplet accumulation in the RPE, Bruch membrane, choroid, and sclera, compared to WT mice. Our findings imply that LDLR loss leads to lipid accumulation and impaired retinal function, which may contribute to the development of AMD.
Collapse
Affiliation(s)
| | - Feng Su
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - Eduardo Araujo
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Ahamad S, Bhat SA. Recent Update on the Development of PCSK9 Inhibitors for Hypercholesterolemia Treatment. J Med Chem 2022; 65:15513-15539. [PMID: 36446632 DOI: 10.1021/acs.jmedchem.2c01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The proprotein convertase subtilisin/kexin-type 9 (PCSK9) binds to low-density lipoprotein receptors (LDLR), thereby trafficking them to lysosomes upon endocytosis and enhancing intracellular degradation to prevent their recycling. As a result, the levels of circulating LDL cholesterol (LDL-C) increase, which is a prominent risk factor for developing atherosclerotic cardiovascular diseases (ASCVD). Thus, PCSK9 has become a promising therapeutic target that offers a fertile testing ground for new drug modalities to regulate plasma LDL-C levels to prevent ASCVD. In this review, we have discussed the role of PCSK9 in lipid metabolism and briefly summarized the current clinical status of modalities targeting PCSK9. In particular, a detailed overview of peptide-based PCSK9 inhibitors is presented, which emphasizes their structural features and design, therapeutic effects on patients, and preclinical cardiovascular disease (CVD) models, along with PCSK9 modulation mechanisms. As a promising alternative to monoclonal antibodies (mAbs) for managing LDL-C, anti-PCSK9 peptides are emerging as a prospective next generation therapy.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Tahmasbi F, Mirghafourvand M, Shamekh A, Mahmoodpoor A, Sanaie S. Effects of probiotic supplementation on cognitive function in elderly: A systematic review and Meta-analysis. Aging Ment Health 2022; 26:1778-1786. [PMID: 34428991 DOI: 10.1080/13607863.2021.1966743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Probiotic supplementation has been linked to changes in cognitive function via the gut-brain axis (GBA). However, the current literature lacks a comprehensive review regarding this matter in the elderly population. METHOD Electronic databases including Medline (PubMed), Scopus, Embase, Web of Science, and Google Scholar were comprehensively searched for identifying studies that assessed the effects of probiotics on the cognitive function of the elderly published until July 2020. Articles were critically reviewed and if met the inclusion criteria, entered the study. RESULTS Among a total of 1374 studies, 10 were eligible for meta-analysis. No significant alteration was found in the cognition of the elderly (SMD=-0.04; 95% CI [- 1.07,0.98]; P = 0.93). There was a nonsignificant increase in the level of brain-derived neurotrophic factor (SMD = 0.58; 95% CI [-1.40,2.56]; P = 0.56) and a nonsignificant reduction in malondialdehyde levels (SMD=-0.44; 95% CI [-1.07,0.19]; P = 0.17). Levels of total antioxidant capacity (SMD = 39.93; 95% CI [2.92,76.95]; P = 0.03) and total glutathione (SMD = 61.51; 95% CI [12.39,110.62]; P = 0.01) significantly increased. A significant reduction was also noted in total cholesterol levels (SMD=-4.23; 95% CI [-8.32, -0.14]; P = 0.04). CONCLUSION Our study did not support the hypothesis of the positive effect of probiotics on cognitive function in the elderly population; which might be due to the heterogeneity across the studies.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Midwifery Department, Social Determinants of Health Research Center, Tabriz, University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Anesthesiology and Critical Care Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
11
|
Burmeister SS. Ecology, Cognition, and the Hippocampus: A Tale of Two Frogs. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:211-224. [PMID: 35051940 DOI: 10.1159/000522108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The underlying hypothesis that motivates research into the relationship between ecology, cognition, and the hippocampus is that selection to solve problems in nature shapes cognition through changes in the hippocampus. This hypothesis has been explored almost exclusively in mammals and birds. However, if one is interested in the principles that shape the evolution of vertebrate cognition, work in amphibians is essential. To address this gap, we have developed a research program contrasting cognitive abilities and hippocampal neurobiology in two species of frog with distinct social and spatial ecologies. We have found that the poison frog Dendrobates auratus, a diurnal species whose interactions with the physical and social environment are complex, is more adept and flexible at spatial learning and learned inhibition than the túngara frog, a nocturnal species that lacks complex interactions with the spatial and social environment. Because spatial learning and learned inhibition are closely associated with hippocampal function in other vertebrates, we used RNA sequencing to characterize molecular differences in the hippocampus of the two species. We have found that D. auratus has greater levels of expression of genes associated with neurogenesis, synaptic plasticity, and cellular activity, and lower levels of expression of genes associated with apoptosis, compared to the túngara frog. Our studies are consistent with the idea that D. auratus, with their more complex social and spatial ecology, have enhanced hippocampally dependent cognitive abilities compared to túngara frogs. Further characterization of the features of hippocampal neurobiology that confer distinctive cognitive abilities will help elucidate the neural features that are necessary for the evolution of enhanced hippocampally dependent cognition.
Collapse
Affiliation(s)
- Sabrina S Burmeister
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Zhang H, Yang S, Zhu W, Niu T, Wang Z, An K, Xie Z, Wang P, Huang X, Wang C, Shangguan H, Yuan Y, Wang S. Free Triiodothyronine Levels are Related to Executive Function and Scene Memory in Type 2 Diabetes Mellitus Patients Without Diagnosed Thyroid Diseases. Diabetes Metab Syndr Obes 2022; 15:1041-1050. [PMID: 35411164 PMCID: PMC8994555 DOI: 10.2147/dmso.s355656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE We aim to determine the role of free triiodothyronine (FT3), the main active ingredient of thyroid hormones (THs), in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment (MCI). PATIENTS AND METHODS A total of 255 T2DM patients without diagnosed thyroid diseases were recruited and divided into MCI group and healthy cognition group. Neuropsychological functions were observed by multidimensional cognitive function scales in including MoCA, Digit Span Test (DST), Verbal Fluency Test (VFT), Clock drawing test (CDT), Trail Making Test (TMT) A and B, Instantaneously Recalled Auditory Verbal Learning Test (AVLT-IR), Delayed Recalled Auditory Verbal Learning Test (AVLT-DR) and Logical Memory Test (LMT). Correlation and logistic regression analyses were performed to explore the association between FT3 and diabetic cognitive dysfunction. RESULTS Compared with 147 normal cognition patients, 108 MCI patients exhibited lower FT3 and higher HOMA-IR. FT3 level was not only positively correlated with MoCA scores, but DST, VFT and LMT, while negatively associated with TMTB. Furthermore, there is a negative association between FT3 and HOMA-IR. Logistic regression showed that decreased FT3 is a risk factor of MCI in T2DM patients. Although FT3 is not the risk factor of MCI after homeostasis model assessment of insulin resistance (HOMA-IR) was entered as an independent variable, lower FT3 is associated with VFT and LMT adjusted by age, education, BMI, DM duration, HBP duration, smoking, HbA1c and HOMA-IR. CONCLUSION Lower FT3 levels may involve in MCI, especially for executive function and scene memory in T2DM patients without diagnosed thyroid diseases.
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, People’s Republic of China
| | - Shufang Yang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Department of Endocrinology, Taizhou People’s Hospital, Taizhou, People’s Republic of China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Zheng Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Zuoling Xie
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Pin Wang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xi Huang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Chenchen Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Haiyan Shangguan
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yang Yuan
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
- Correspondence: Shaohua Wang; Yang Yuan, Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People’s Republic of China, Tel +86-25-83262815; +86-13814003661, Fax +86-25-83285132, Email ;
| |
Collapse
|
13
|
Zhang H, Zhu W, Niu T, Wang Z, An K, Cao W, Shi J, Wang S. Inverted U-shaped correlation between serum low-density lipoprotein cholesterol levels and cognitive functions of patients with type 2 diabetes mellitus. Lipids Health Dis 2021; 20:103. [PMID: 34511118 PMCID: PMC8436464 DOI: 10.1186/s12944-021-01534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) metabolic disorder is common in individuals with diabetes. The role of LDL-C in mild cognitive impairment (MCI) remains to be explored. We aim to investigate the associations between LDL-C at different levels and details of cognition decline in patients with type 2 diabetes mellitus (T2DM). METHODS Patients with T2DM (n = 497) were recruited. Clinical parameters and neuropsychological tests were compared between patients with MCI and controls. Goodness of fit was assessed to determine the linear or U-shaped relationship between LDL-C and cognitive function. The cut-off point of LDL-C was calculated. Correlation and regression were carried out to explore the relationship between cognitive dysfunction and LDL-C levels above and below the cut-off point. RESULTS Although no significant difference in LDL-C levels was detected in 235 patients with MCI, compared with 262 patients without MCI, inverted-U-shaped association was determined between LDL-C and Montreal Cognitive Assessment (MoCA). The cut-off point of LDL-C is 2.686 mmol/l. LDL-C (>2.686 mmol/l) is positively related to Trail Making Test B (TMTB) indicating executive function. LDL-C (<2.686 mmol/l) is positively associated with Clock Drawing Test (CDT) reflecting visual space function in patients with T2DM. CONCLUSION Inverted U-shaped correlation was found between serum LDL-C and cognitive function in patients with T2DM. Despite that the mechanisms of different LDL-C levels involved in special cognitive dysfunctions remain incompletely clarified, excessive LDL-C damages executive function, while the deficient LDL-C impairs visual space function. TRIAL REGISTRATION ChiCTR-OCC-15006060 .
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Zheng Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China.,School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, PR China. .,School of Medicine, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
14
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
The CC Genotype of Insulin-Induced Gene 2 rs7566605 Is a Protective Factor of Hypercholesteremia Susceptible to Mild Cognitive Impairment, Especially to the Executive Function of Patients with Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2021; 2020:4935831. [PMID: 32596317 PMCID: PMC7303749 DOI: 10.1155/2020/4935831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/04/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Methods 233 T2DM patients with MCI or without MCI were recruited. Baseline data and genotype frequency were compared between MCI and non-MCI groups. Demographic parameters and neuropsychological tests results were analyzed among patients with different genotypes. Further correlation and regression analysis were conducted to find the association between cognition and cholesterol. Results Despite no significant statistical difference was detected, we observed higher levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) in patients with MCI than those without MCI. In addition, we observed higher TC and LDL levels in patients with GG or GC genotypes than those with CC genotype (P < 0.001, P = 0.004, or P < 0.001, P = 0.002). Interestingly, increased MoCA and decreased TMTB scores were found in patients with CC genotype, compared to those with GG or CG genotype (P = 0.009, P = 0.024, or P = 0.005, P = 0.109). Moreover, partial correlation (P = 0.030 and P = 0.004, respectively) and multiple linear regression (P = 0.030 and P = 0.005, respectively) showed that TC and LDL levels are associated with the TMTB score, indicating the executive function. Conclusions CC genotype of INSIG-2 rs7566605 may be a protective factor of hypercholesteremia susceptible to MCI, especially to the executive function of T2DM. This trial is registered with ChiCTROCC15006060.
Collapse
|
16
|
Gao H, Song R, Li Y, Zhang W, Wan Z, Wang Y, Zhang H, Han S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR -/- Mice Modeling Atherosclerosis by Targeting the Microbiome-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14480-14491. [PMID: 33237770 DOI: 10.1021/acs.jafc.0c05677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is known that cardiovascular disease can result in cognitive impairment. However, whether oat fiber improves cognitive behavior through a cardiovascular-related mechanism remains unclear. The present work was aimed to elucidate the potential of oat fiber on cognitive behavior by targeting the neuroinflammation signal and microbiome-gut-brain axis in a mouse model of atherosclerosis. Male low-density lipoprotein receptor knock-out (LDLR-/-) mice were treated with a high fat/cholesterol diet without or with 0.8% oat fiber for 14 weeks. Behavioral tests indicated that LDLR-/- mice exhibited a significant cognitive impairment; however, oat fiber can improve cognitive behavior by reducing latency to the platform and increasing the number of crossing and swimming distance in the target quadrant. Oat fiber can inhibit Aβ plaque processing in both the cortex and hippocampus via decreasing the relative protein expression of GFAP and IBα1. Notably, oat fiber inhibited the nod-like receptor family pyrin domain-containing 3 inflammasome activation and blocked the toll-like receptor 4 signal pathway in both the cortex and hippocampus, accompanied by a reduction of circulating serum lipopolysaccharide. In addition, oat fiber raised the expressions of short-chain fatty acid (SCFA) receptors and tight junction proteins (zonula occludens-1 and occludin) and improved intestinal microbiota diversity via increasing the contents of gut metabolites SCFAs. In summary, the present study provided experimental evidence that dietary oat fiber retarded the progression of cognitive impairment in a mouse model of atherosclerosis. Mechanistically, the neuroprotective potential was related to oat fiber and its metabolites SCFAs on the diversity and abundance of gut microbiota that produced anti-inflammatory metabolites, leading to repressed neuroinflammation and reduced gut permeability through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Hui Gao
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ruijuan Song
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Yuezhen Li
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Weiguo Zhang
- Independent Scientist, Irving, Texas 75039, United States
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ying Wang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Hong Zhang
- Department of Food and Nutrition, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009 Jiangsu, P.R. China
| | - Shufen Han
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| |
Collapse
|
17
|
Tóth ME, Dukay B, Hoyk Z, Sántha M. Cerebrovascular Changes and Neurodegeneration Related to Hyperlipidemia: Characteristics of the Human ApoB-100 Transgenic Mice. Curr Pharm Des 2020; 26:1486-1494. [PMID: 32067608 PMCID: PMC7403644 DOI: 10.2174/1381612826666200218101818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/07/2023]
Abstract
Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases. A growing number of evidence suggests that cardiovascular risk factors, such as hyperlipidemia, may increase the likelihood of developing dementia. Due to differences in lipoprotein metabolism, wild-type mice are protected against diet-induced hypercholesterolemia, and their serum lipid profile is different from that observed in humans. Therefore, several transgenic mouse models have been established to study the role of different apolipoproteins and their receptors in lipid metabolism, as well as the complications related to pathological lipoprotein levels. This mini-review focused on a transgenic mouse model overexpressing an apolipoprotein, the human ApoB-100. We discussed literature data and current advancements on the understanding of ApoB-100 induced cardio- and cerebrovascular lesions in order to demonstrate the involvement of this type of apolipoprotein in a wide range of pathologies, and a link between hyperlipidemia and neurodegeneration.
Collapse
Affiliation(s)
- Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary
| | - Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary
| |
Collapse
|
18
|
de Oliveira J, Engel DF, de Paula GC, Melo HM, Lopes SC, Ribeiro CT, Delanogare E, Moreira JCF, Gelain DP, Prediger RD, Gabilan NH, Moreira ELG, Ferreira ST, de Bem AF. LDL Receptor Deficiency Does not Alter Brain Amyloid-β Levels but Causes an Exacerbation of Apoptosis. J Alzheimers Dis 2020; 73:585-596. [DOI: 10.3233/jad-190742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Daiane F. Engel
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Gabriela C. de Paula
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Helen M. Melo
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Samantha C. Lopes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Camila T. Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Eslen Delanogare
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - José Claudio F. Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daniel P. Gelain
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Rui D. Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Nelson H. Gabilan
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Eduardo Luiz G. Moreira
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Sergio T. Ferreira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Andreza F. de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brasil
| |
Collapse
|
19
|
Van Skike CE, Lin A, Roberts Burbank R, Halloran JJ, Hernandez SF, Cuvillier J, Soto VY, Hussong SA, Jahrling JB, Javors MA, Hart MJ, Fischer KE, Austad SN, Galvan V. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell 2020; 19:e13057. [PMID: 31693798 PMCID: PMC6974719 DOI: 10.1111/acel.13057] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
Cerebrovascular dysfunction and cognitive decline are highly prevalent in aging, but the mechanisms underlying these impairments are unclear. Cerebral blood flow decreases with aging and is one of the earliest events in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the mechanistic/mammalian target of rapamycin (mTOR) drives disease progression in mouse models of AD and in models of cognitive impairment associated with atherosclerosis, closely recapitulating vascular cognitive impairment. In the present studies, we sought to determine whether mTOR plays a role in cerebrovascular dysfunction and cognitive decline during normative aging in rats. Using behavioral tools and MRI-based functional imaging, together with biochemical and immunohistochemical approaches, we demonstrate that chronic mTOR attenuation with rapamycin ameliorates deficits in learning and memory, prevents neurovascular uncoupling, and restores cerebral perfusion in aged rats. Additionally, morphometric and biochemical analyses of hippocampus and cortex revealed that mTOR drives age-related declines in synaptic and vascular density during aging. These data indicate that in addition to mediating AD-like cognitive and cerebrovascular deficits in models of AD and atherosclerosis, mTOR drives cerebrovascular, neuronal, and cognitive deficits associated with normative aging. Thus, inhibitors of mTOR may have potential to treat age-related cerebrovascular dysfunction and cognitive decline. Since treatment of age-related cerebrovascular dysfunction in older adults is expected to prevent further deterioration of cerebral perfusion, recently identified as a biomarker for the very early (preclinical) stages of AD, mTOR attenuation may potentially block the initiation and progression of AD.
Collapse
Affiliation(s)
- Candice E. Van Skike
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexas
| | - Ai‐Ling Lin
- Sanders‐Brown Center on AgingDepartment of Pharmacology and Nutritional SciencesDepartment of Biomedical EngineeringDepartment of NeuroscienceUniversity of KentuckyLexingtonKentucky
| | - Raquel Roberts Burbank
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
| | - Jonathan J. Halloran
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
| | - Stephen F. Hernandez
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexas
| | - James Cuvillier
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexas
- Department of Veterans AffairsSouth Texas Veterans Health Care SystemSan AntonioTexas
| | - Vanessa Y. Soto
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
| | - Stacy A. Hussong
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
- Department of Veterans AffairsSouth Texas Veterans Health Care SystemSan AntonioTexas
| | - Jordan B. Jahrling
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
| | - Martin A. Javors
- Department of PsychiatryUniversity of Texas Health San AntonioSan AntonioTexas
| | - Matthew J. Hart
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
- Center for Innovation in Drug DiscoveryCancer Therapy and Research Center, and the Department of BiochemistryUniversity of Texas Health San AntonioSan AntonioTexas
- RNAi/CRISPR High Throughput Screening FacilityGreehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTexas
| | - Kathleen E. Fischer
- Department of Biology and Nathan Shock Center of Excellence in the Basic Biology of AgingUniversity of Alabama at BirminghamBirminghamAlabama
| | - Steven N. Austad
- Department of Biology and Nathan Shock Center of Excellence in the Basic Biology of AgingUniversity of Alabama at BirminghamBirminghamAlabama
| | - Veronica Galvan
- Department of Cellular and Integrative PhysiologyBarshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexas
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexas
- Department of Veterans AffairsSouth Texas Veterans Health Care SystemSan AntonioTexas
| |
Collapse
|
20
|
Rej S, Schulte SW, Rajji TK, Gildengers AG, Miranda D, Menon M, Butters MA, Mulsant BH. Statins and cognition in late-life bipolar disorder. Int J Geriatr Psychiatry 2018; 33:1355-1360. [PMID: 30022520 DOI: 10.1002/gps.4956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Recent data suggests that statins have positive effects on cognition in older adults. Studies in patients with mood disorders have found contradicting positive and negative effects of statins on mood and cognition, with limited data in bipolar disorder (BD). The objective of this study was to assess the association between statin use and cognition in older adults with BD. METHODS In a cross-sectional sample of 143 euthymic older adults with BD (age ≥ 50), statin users (n = 48) and nonusers (n = 95) were compared for cognitive outcomes: Global and cognitive domain z-scores were calculated from detailed neuropsychological batteries using normative data from healthy comparators (n = 87). RESULTS The sample had a mean age of 64.3 (±8.9) years, 65.0% were female, with an average of 15.1 (±2.79) years of education. Statin users did not differ from nonusers on global (-0.60 [±0.69] vs -0.49 [±0.68], t[127] = 0.80, P = .42) or individual cognitive domains z-score. CONCLUSIONS In older patients with BD, statin use is not independently associated with cognitive impairment. This suggests that in older BD patients, the cognitive dysfunction associated with BD trumps the potential cognitive benefit that is associated with statins in older adults without a psychiatric disorder. Further, statins do not seem to exacerbate this cognitive dysfunction. Future longitudinal studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Soham Rej
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, Jewish General Hospital, McGill University, Montreal, Canada
| | - Sarah Waters Schulte
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, Centre for Addiction and Mental Health, Toronto, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, Centre for Addiction and Mental Health, Toronto, Canada
| | | | - Dielle Miranda
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, Centre for Addiction and Mental Health, Toronto, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benoit H Mulsant
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
21
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
22
|
Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene 2017; 36:6462-6471. [PMID: 28759039 PMCID: PMC5690879 DOI: 10.1038/onc.2017.247] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Abstract
Obesity is associated with an increase in cancer-specific mortality in women with breast cancer. Elevated cholesterol, particularly low-density lipoprotein cholesterol (LDL-C) is frequently seen in obese women. Here, we aimed to determine the importance of elevated circulating LDL, and LDL receptor (LDLR) expression in tumor cells, on the growth of breast cancer using mouse models of hyperlipidemia. We describe two novel immunodeficient mouse models of hyperlipidemia (Rag1−/−/LDLR−/− and Rag1−/−/ApoE (apolipoprotein E)−/− mice), in addition to established immunocompetent LDLR−/− and ApoE−/− mice. The mice were used to study the effects of elevated LDL-C in human triple negative (MDA-MB-231) and mouse Her2/Neu overexpressing (MCNeuA) breast cancers. Tumors derived from MCNeuA and MDA-MB-231 cells had high LDLR expression and formed larger tumors in mice with high circulating LDL-C concentrations than in mice with lower LDL-C. Silencing the LDLR in the tumor cells led to decreased growth of Her2Neu overexpressing tumors in LDLR−/− and ApoE−/− mice, with increased Caspase 3 cleavage. Additionally, in vitro, silencing the LDLR led to decreased cell survival in serum-starved conditions, associated with Caspase 3 cleavage. Examining publically available human datasets, we found that high LDLR expression in human breast cancers was associated with decreased recurrence-free survival, particularly in patients treated with systemic therapies. Overall, our results highlight the importance of the LDLR in the growth of triple negative and HER2 overexpressing breast cancers in the setting of elevated circulating LDL-C, which may be important contributing factors to the increased recurrence and mortality in obese women with breast cancer.
Collapse
|
23
|
Qian C, Tan F. Ratio of apoB/LDL: a potential clinical index for vascular cognitive impairment. BMC Neurol 2016; 16:243. [PMID: 27887584 PMCID: PMC5123286 DOI: 10.1186/s12883-016-0766-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/17/2016] [Indexed: 12/04/2022] Open
Abstract
Background Vascular cognitive impairment (VCI), compared to vascular dementia (VD), has a broader definition and highlights the effect of vascular disease in dementia, and stroke seems play an important role in the development of VCI. However, not all patients with brain infarcts suffer from VCI; unique risk factors appear to cause such progression. This study aimed to find potential risk factors of vascular cognitive impairment among patients with brain infarcts. Methods Thirty-seven dementia patients and 74 brain infarction patients were included; all had infarcts in both basilar ganglia. The frequencies of risk factors, such as age, hypertension, and hyperlipidemia, were compared between the two groups. Results The incident rate of hyperlipidemia in the patients with dementia was 35.14%, which was significantly lower than that in the patients with infarction (59.46%, P = 0.015). In the dementia group, there was a positive correlation between the ratio of apoprotein B (apoB)/low density lipoprotein (LDL) and the Mini Mental State Examination (MMSE) score (R = 0.411, P = 0.011). Conclusion Our study indicated that the ratio of apoB/LDL may be a potential clinical index for vascular cognitive impairment. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0766-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Neurology, Shengjing hospital of China Medical University, NO.53 Huangxiang Road, Shenyang, China
| | - Fei Tan
- Department of Neurology, Shengjing hospital of China Medical University, NO.53 Huangxiang Road, Shenyang, China.
| |
Collapse
|
24
|
Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer's Disease: A Randomized, Double-Blind and Controlled Trial. Front Aging Neurosci 2016; 8:256. [PMID: 27891089 PMCID: PMC5105117 DOI: 10.3389/fnagi.2016.00256] [Citation(s) in RCA: 532] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is associated with severe cognitive impairments as well as some metabolic defects. Scant studies in animal models indicate a link between probiotics and cognitive function. This randomized, double-blind, and controlled clinical trial was conducted among 60 AD patients to assess the effects of probiotic supplementation on cognitive function and metabolic status. The patients were randomly divided into two groups (n = 30 in each group) treating with either milk (control group) or a mixture of probiotics (probiotic group). The probiotic supplemented group took 200 ml/day probiotic milk containing Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus fermentum (2 × 109 CFU/g for each) for 12 weeks. Mini-mental state examination (MMSE) score was recorded in all subjects before and after the treatment. Pre- and post-treatment fasting blood samples were obtained to determine the related markers. After 12 weeks intervention, compared with the control group (-5.03% ± 3.00), the probiotic treated (+27.90% ± 8.07) patients showed a significant improvement in the MMSE score (P <0.001). In addition, changes in plasma malondialdehyde (-22.01% ± 4.84 vs. +2.67% ± 3.86 μmol/L, P <0.001), serum high-sensitivity C-reactive protein (-17.61% ± 3.70 vs. +45.26% ± 3.50 μg/mL, P <0.001), homeostasis model of assessment-estimated insulin resistance (+28.84% ± 13.34 vs. +76.95% ± 24.60, P = 0.002), Beta cell function (+3.45% ± 10.91 vs. +75.62% ± 23.18, P = 0.001), serum triglycerides (-20.29% ± 4.49 vs. -0.16% ± 5.24 mg/dL, P = 0.003), and quantitative insulin sensitivity check index (-1.83 ± 1.26 vs. -4.66 ± 1.70, P = 0.006) in the probiotic group were significantly varied compared to the control group. We found that the probiotic treatment had no considerable effect on other biomarkers of oxidative stress and inflammation, fasting plasma glucose, and other lipid profiles. Overall, the current study demonstrated that probiotic consumption for 12 weeks positively affects cognitive function and some metabolic statuses in the AD patients. CLINICAL TRIAL REGISTRATION http://www.irct.ir/, IRCT201511305623N60.
Collapse
Affiliation(s)
- Elmira Akbari
- Physiology Research Center, Kashan University of Medical Sciences Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences Kashan, Iran
| | - Reza Daneshvar Kakhaki
- Department of Neurology, School of Medicine, Kashan University of Medical Sciences Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences Kashan, Iran
| | - Ebrahim Kouchaki
- Department of Neurology, School of Medicine, Kashan University of Medical Sciences Kashan, Iran
| | - Omid Reza Tamtaji
- Physiology Research Center, Kashan University of Medical Sciences Kashan, Iran
| | - Gholam Ali Hamidi
- Physiology Research Center, Kashan University of Medical Sciences Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Kashan University of Medical Sciences Kashan, Iran
| |
Collapse
|
25
|
Rej S, Saleem M, Herrmann N, Stefatos A, Rau A, Lanctôt KL. Serum low-density lipoprotein levels, statin use, and cognition in patients with coronary artery disease. Neuropsychiatr Dis Treat 2016; 12:2913-2920. [PMID: 27877045 PMCID: PMC5108559 DOI: 10.2147/ndt.s115505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM Statins have been associated with decreased cognition due to the effects of low concentrations of low-density lipoprotein (LDL) on brain function. This has remained controversial and is particularly relevant to patients with coronary artery disease (CAD), who have an increased risk of cognitive decline and are frequently prescribed statins. This study hypothesized that low concentration of LDL is associated with poor cognition in CAD patients using statins. It also explored the association between high-dose versus low-dose statins on cognition in this population. PATIENTS AND METHODS Baseline cross-sectional data from a longitudinal study of 120 statin-using CAD patients were examined (mean statin duration 25±43 months). The main outcomes were measures of global cognition and cognitive domains, with poor cognition defined as cognitive performance ≤1 standard deviation below the population age and education adjusted means. A battery of cognitive tests was used to assess verbal memory, executive function, speed of processing, visuospatial memory, and global cognition. Adjusting for age, sex, education, and other covariates, multivariable logistic regression analyses assessed associations between low LDL levels (<1.5 mmol/L), statin use, and poor cognition. RESULTS LDL levels were not associated with global cognition or individual cognitive domains. High-dose statin use was associated with higher visuospatial memory (odds ratio, OR [95% confidence interval, CI] =0.12 [0.02-0.66], P=0.01) and executive functioning (OR =0.25 [0.06-0.99], P=0.05). This effect was independent of covariates such as LDL levels. CONCLUSION Low LDL levels do not appear to be associated with poor cognition in CAD patients using statins. Whether high-dose statin use may have positive effects on cognition in CAD patients could be investigated in future studies.
Collapse
Affiliation(s)
| | - Mahwesh Saleem
- Department of Pharmacology and Toxicology, University of Toronto; Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON
| | - Nathan Herrmann
- Department of Psychiatry; Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON
| | - Anthi Stefatos
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Allison Rau
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON
| | - Krista L Lanctôt
- Department of Psychiatry; Department of Pharmacology and Toxicology, University of Toronto; Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON
| |
Collapse
|
26
|
Ettcheto M, Petrov D, Pedrós I, de Lemos L, Pallàs M, Alegret M, Laguna JC, Folch J, Camins A. Hypercholesterolemia and neurodegeneration. Comparison of hippocampal phenotypes in LDLr knockout and APPswe/PS1dE9 mice. Exp Gerontol 2015; 65:69-78. [DOI: 10.1016/j.exger.2015.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
|