1
|
Middleton ALO, Byrne JP, Calder PC. The Influence of Bariatric (Metabolic) Surgery on Blood Polyunsaturated Fatty Acids: A Systematic Review. Clin Nutr ESPEN 2022; 48:121-140. [DOI: 10.1016/j.clnesp.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
|
2
|
Liakh I, Janczy A, Pakiet A, Korczynska J, Proczko-Stepaniak M, Kaska L, Sledzinski T, Mika A. One-anastomosis gastric bypass modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation. Int J Obes (Lond) 2021; 46:408-416. [PMID: 34732836 DOI: 10.1038/s41366-021-01013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Oxylipins are polyunsaturated fatty acid derivatives involved in the regulation of various processes, including chronic inflammation, insulin resistance and hepatic steatosis. They can be synthesized in various tissues, including adipose tissue. There is some evidence that obesity is associated with the deregulation of serum oxylipin levels. The aim of this study was to evaluate the effect of bariatric surgery (one-anastomosis gastric bypass) on the serum levels of selected oxylipins and their fatty acid precursors and to verify the hypothesis that their changes after surgery can contribute to the resolution of inflammation. Moreover, we compared the oxylipin levels (prostaglandin E2, 13-HODE, maresin 1 and resolvin E1), fatty acids and the expression of enzymes that synthesize oxylipins in adipose tissue of lean controls and subjects with severe obesity. SUBJECTS/METHODS The study included 50 patients with severe obesity that underwent bariatric surgery and 41 subjects in lean, control group. Fatty acid content was analyzed by GC-MS, oxylipin concentrations were measured with immunoenzymatic assay kits and real-time PCR analysis was used to assess mRNA levels in adipose tissue. RESULTS Our results show increased expression of some enzymes that synthesize oxylipins in adipose tissue and alterations in the levels of oxylipins in both adipose tissue and serum of subjects with obesity. After bariatric surgery, the levels of anti-inflammatory oxylipins increased, whereas pro-inflammatory oxylipins decreased. CONCLUSIONS In patients with obesity, the metabolism of oxylipins is deregulated in adipose tissue, and their concentrations in serum are altered. Bariatric surgery modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Medical University of Gdansk, Gdansk, Poland
| | - Agata Janczy
- Department of Clinical Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
3
|
Aslan M. Polyunsaturated Fatty Acid and Sphingolipid Measurements by Tandem Mass Spectrometry. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200504094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Linoleic Acid (LA) (omega-6) and Alpha-Linolenic Acid (ALA) (omega-3) are essential
fatty acids and give rise to Arachidonic Acid (AA), Eicosapentaenoic Acid (EPA) and Docosahexaenoic
Acid (DHA) that are important in metabolic homeostasis. The omega-6:omega-3 ratio can be
a prognostic consideration in cardiovascular and inflammatory diseases. Sphingolipids are bioactive
lipids found in cell membranes that play a role in cell growth, differentiation and apoptosis. Electrospray
Ionization (ESI) coupled with tandem Mass Spectrometry (MS/MS) is a simple and speedy
method to identify and quantify these lipids in various biological matrices. Tandem mass spectrometric
analyses can be performed on cell lysates, tissue homogenates and serum samples to measure
quantitative changes directly in lipid extracts from these different matrices. The present review summarizes
measurement of omega-3 (n-3) and omega-6 (n-6) Polyunsaturated Fatty Acids (PUFAs),
their metabolism to eicosanoids and their role in certain disease states. Altered sphingolipid metabolism
is also associated with a number of human diseases. Therefore, understanding sphingolipid metabolism
is important to comprehend the function of sphingolipids in cellular processes. In this review,
we focus on pathways of Ceramide (CER) and Sphingomyelin (SM) synthesis and discuss altered
levels reported in disease states. Results of reported studies herein clearly show that PUFAs,
SMs and CERs carry out a large number of fundamental functions. They serve as structural elements
in cellular membranes, and they work as signaling molecules. Alterations in their amounts of expression
occurring in diabetes, obesity, inflammation and ER stress-related conditions lead to dysfunctions
contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
4
|
Liakh I, Sledzinski T, Kaska L, Mozolewska P, Mika A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020; 25:E5307. [PMID: 33203044 PMCID: PMC7696154 DOI: 10.3390/molecules25225307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with alterations in the composition and amounts of lipids. Lipids have over 1.7 million representatives. Most lipid groups differ in composition, properties and chemical structure. These small molecules control various metabolic pathways, determine the metabolism of other compounds and are substrates for the syntheses of different derivatives. Recently, lipidomics has become an important branch of medical/clinical sciences similar to proteomics and genomics. Due to the much higher lipid accumulation in obese patients and many alterations in the compositions of various groups of lipids, the methods used for sample preparations for lipidomic studies of samples from obese subjects sometimes have to be modified. Appropriate sample preparation methods allow for the identification of a wide range of analytes by advanced analytical methods, including mass spectrometry. This is especially the case in studies with obese subjects, as the amounts of some lipids are much higher, others are present in trace amounts, and obese subjects have some specific alterations of the lipid profile. As a result, it is best to use a method previously tested on samples from obese subjects. However, most of these methods can be also used in healthy, nonobese subjects or patients with other dyslipidemias. This review is an overview of sample preparation methods for analysis as one of the major critical steps in the overall analytical procedure.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| | - Paulina Mozolewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Liakh I, Pakiet A, Sledzinski T, Mika A. Methods of the Analysis of Oxylipins in Biological Samples. Molecules 2020; 25:E349. [PMID: 31952163 PMCID: PMC7024226 DOI: 10.3390/molecules25020349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Oxylipins are derivatives of polyunsaturated fatty acids and due to their important and diverse functions in the body, they have become a popular subject of studies. The main challenge for researchers is their low stability and often very low concentration in samples. Therefore, in recent years there have been developments in the extraction and analysis methods of oxylipins. New approaches in extraction methods were described in our previous review. In turn, the old analysis methods have been replaced by new approaches based on mass spectrometry (MS) coupled with liquid chromatography (LC) and gas chromatography (GC), and the best of these methods allow hundreds of oxylipins to be quantitatively identified. This review presents comparative and comprehensive information on the progress of various methods used by various authors to achieve the best results in the analysis of oxylipins in biological samples.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
6
|
Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state. Prostaglandins Other Lipid Mediat 2017; 128-129:1-7. [DOI: 10.1016/j.prostaglandins.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
|
7
|
KIRAC EBRU, ÖZCAN FILIZ, TUZCU HAZAL, ELPEK GULSUMO, ASLAN MUTAY. Analysis of polyunsaturated fatty acids and the omega-6 inflammatory pathway in hepatic ischemia/re-perfusion injury. Mol Med Rep 2015; 12:4149-4156. [PMID: 26062838 PMCID: PMC4526095 DOI: 10.3892/mmr.2015.3908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 05/15/2015] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to assess omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) in liver tissue and evaluate changes in the n‑6-associated inflammatory pathway following liver ischemia/re‑perfusion (IR) injury. Male Wistar rats which were allowed free access to standard rat chow were included in the study. Blood vessels supplying the median and left lateral hepatic lobes were occluded with an arterial clamp for 60 min, followed by 60 min of re‑perfusion. Levels of arachidonic acid (AA, C20:4n‑6), dihomo‑gamma‑linolenic acid (DGLA, C20:3n‑6), eicosapentaenoic acid (EPA, C20:5n‑3) and docosahexaenoic acid (DHA, C22:6n‑3) in liver tissue were determined by an optimized multiple reaction monitoring method using ultra fast‑liquid chromatography coupled with tandem mass spectrometry. Phospholipase A2 (PLA2), cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in tissue samples to evaluate changes in the n‑6 inflammatory pathway. Total histopathological score of cellular damage were significantly increased following hepatic IR injury. n‑3 and n‑6 PUFA levels were significantly increased in post‑ischemic liver tissue compared to those in non‑ischemic controls. No significant difference was observed in the AA/DHA and AA/EPA ratio in post‑ischemic liver tissues compared with that in the control. Tissue activity of PLA2 and COX as well as PGE2 levels were significantly increased in post‑ischemic liver tissues compared to those in non‑ischemic controls. The results of the present study suggested that increased hydrolysis of fatty acids via PLA2 triggers the activity of COX and leads to increased PGE2 levels. Future studies evaluating agents which block the formation of eicosanoids derived from n‑6 PUFAs may facilitate the development and application of treatment strategies in liver injury following IR.
Collapse
Affiliation(s)
- EBRU KIRAC
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - FILIZ ÖZCAN
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - HAZAL TUZCU
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - GULSUM O ELPEK
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - MUTAY ASLAN
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
- Correspondence to: Professor Mutay Aslan, Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Dumlupinar Bulvari, Antalya 07070, Turkey, E-mail:
| |
Collapse
|
8
|
Ercan S, Kencebay C, Basaranlar G, Ozcan F, Derin N, Aslan M. Induction of omega 6 inflammatory pathway by sodium metabisulfite in rat liver and its attenuation by ghrelin. Lipids Health Dis 2015; 14:7. [PMID: 25889219 PMCID: PMC4335696 DOI: 10.1186/s12944-015-0008-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
Background Sodium metabisulfite is commonly used as preservative in foods but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory effects in many organs. This study aimed to assess endogenous omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) in rat peripheral organs following sodium metabisulfite treatment and determine the possible effect of ghrelin on changes in n-6 inflammatory pathway. Methods Male Wistar rats included in the study were allowed free access to standard rat chow. Sodium metabisulfite was given by gastric gavage and ghrelin was administered intraperitoneally for 5 weeks. Levels of arachidonic acid (AA, C20:4n-6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) in liver, heart and kidney tissues were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in tissue samples to evaluate changes in n-6 inflammatory pathway. Results Omega-6 PUFA levels, AA/DHA and AA/EPA ratio were significantly increased in liver tissue following sodium metabisulfite treatment compared to controls. No significant change was observed in heart and kidney PUFA levels. Tissue activity of COX and PGE2 levels were also significantly increased in liver tissue of sodium metabisulfite treated rats compared to controls. Ghrelin treatment decreased n-6 PUFA levels and reduced COX and PGE2 levels in liver tissue of sodium metabisulfite treated rats. Conclusion Current results suggest that ghrelin exerts anti-inflammatory action through modulation of n-6 PUFA levels in hepatic tissue.
Collapse
Affiliation(s)
- Sevim Ercan
- Akdeniz University, Vocational School of Health Services, Antalya, 07070, Turkey.
| | - Ceren Kencebay
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Goksun Basaranlar
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Filiz Ozcan
- Akdeniz University, Medical School, Department of Medical Biochemistry, Antalya, 07070, Turkey.
| | - Narin Derin
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Mutay Aslan
- Akdeniz University, Medical School, Department of Medical Biochemistry, Antalya, 07070, Turkey.
| |
Collapse
|
9
|
Aslan M, Celmeli G, Özcan F, Kupesiz A. LC–MS/MS analysis of plasma polyunsaturated fatty acids in patients with homozygous sickle cell disease. Clin Exp Med 2014; 15:397-403. [DOI: 10.1007/s10238-014-0293-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
|
10
|
Aslan M, Özcan F, Tuzcu H, Kıraç E, Elpek GO. Inhibition of neutral sphingomyelinase decreases arachidonic acid mediated inflammation in liver ischemia-reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7814-23. [PMID: 25550821 PMCID: PMC4270595 DOI: pmid/25550821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/08/2023]
Abstract
This study aimed to determine the role of selective neutral sphingomyelinase (N-SMase) inhibition on arachidonic acid (AA) mediated inflammation following liver ischemia-reperfusion (IR) injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Levels of AA in liver tissue were determined by multiple reaction monitoring (MRM) using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Phospholipase A₂ (PLA₂), cyclooxygenase (COX) and prostaglandin E₂ (PGE₂) were measured in liver tissue. Arachidonic acid levels, activity of PLA₂, COX and PGE₂ levels were significantly increased in postischemic liver tissue compared to nonischemic controls. N-SMase inhibition significantly decreased COX activity and PGE₂ levels in postischemic liver. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate inflammation in liver I/R injury.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine Antalya 07070, Turkey
| | - Filiz Özcan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine Antalya 07070, Turkey
| | - Hazal Tuzcu
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine Antalya 07070, Turkey
| | - Ebru Kıraç
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine Antalya 07070, Turkey
| | - Gulsum O Elpek
- Department of Pathology, Akdeniz University Faculty of Medicine Antalya 07070, Turkey
| |
Collapse
|