1
|
Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev Endocrinol 2022; 18:461-472. [PMID: 35534573 DOI: 10.1038/s41574-022-00675-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
Abstract
Macrophages have diverse phenotypes and functions due to differences in their origin, location and pathophysiological context. Although their main role in the liver has been described as immunoregulatory and detoxifying, changes in macrophage phenotypes, diversity, dynamics and function have been reported during obesity-related complications such as non-alcoholic fatty liver disease (NAFLD). NAFLD encompasses multiple disease states from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocarcinoma. Obesity and insulin resistance are prominent risk factors for NASH, a disease with a high worldwide prevalence and no approved treatment. In this Review, we discuss the turnover and function of liver-resident macrophages (Kupffer cells) and monocyte-derived hepatic macrophages. We examine these populations in both steady state and during NAFLD, with an emphasis on NASH. The explosion in high-throughput gene expression analysis using single-cell RNA sequencing (scRNA-seq) within the last 5 years has revolutionized the study of macrophage heterogeneity, substantially increasing our understanding of the composition and diversity of tissue macrophages, including in the liver. Here, we highlight scRNA-seq findings from the last 5 years on the diversity of liver macrophages in homeostasis and metabolic disease, and reveal hepatic macrophage function beyond their classically described inflammatory role in the progression of NAFLD and NASH pathogenesis.
Collapse
Affiliation(s)
- Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ping Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
3
|
Nagle MP, Tam GS, Maltz E, Hemminger Z, Wollman R. Bridging scales: From cell biology to physiology using in situ single-cell technologies. Cell Syst 2021; 12:388-400. [PMID: 34015260 DOI: 10.1016/j.cels.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Biological organization crosses multiple spatial scales: from molecular, cellular, to tissues and organs. The proliferation of molecular profiling technologies enables increasingly detailed cataloging of the components at each scale. However, the scarcity of spatial profiling has made it challenging to bridge across these scales. Emerging technologies based on highly multiplexed in situ profiling are paving the way to study the spatial organization of cells and tissues in greater detail. These new technologies provide the data needed to cross the scale from cell biology to physiology and identify the fundamental principles that govern tissue organization. Here, we provide an overview of these key technologies and discuss the current and future insights these powerful techniques enable.
Collapse
Affiliation(s)
- Maeve P Nagle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gabriela S Tam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Evan Maltz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Hemminger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roy Wollman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Abstract
Hepatocytes operate in highly structured repeating anatomical units termed liver lobules. Blood flow along the lobule radial axis creates gradients of oxygen, nutrients and hormones, which, together with morphogenetic fields, give rise to a highly variable microenvironment. In line with this spatial variability, key liver functions are expressed non-uniformly across the lobules, a phenomenon termed zonation. Technologies based on single-cell transcriptomics have constructed a global spatial map of hepatocyte gene expression in mice revealing that ~50% of hepatocyte genes are expressed in a zonated manner. This broad spatial heterogeneity suggests that hepatocytes in different lobule zones might have not only different gene expression profiles but also distinct epigenetic features, regenerative capacities, susceptibilities to damage and other functional aspects. Here, we present genomic approaches for studying liver zonation, describe the principles of liver zonation and discuss the intrinsic and extrinsic factors that dictate zonation patterns. We also explore the challenges and solutions for obtaining zonation maps of liver non-parenchymal cells. These approaches facilitate global characterization of liver function with high spatial resolution along physiological and pathological timescales.
Collapse
Affiliation(s)
- Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Cha SJ, Park K, Srinivasan P, Schindler CW, van Rooijen N, Stins M, Jacobs-Lorena M. CD68 acts as a major gateway for malaria sporozoite liver infection. ACTA ACUST UNITED AC 2015. [PMID: 26216124 PMCID: PMC4548058 DOI: 10.1084/jem.20110575] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cha et al. use a phage display library screen to identify a peptide, P39, that binds to CD68 on the surface of Kupffer cells to inhibit malaria sporozoite cell entry. Thus, P39 may represent a therapeutic strategy for malaria by limiting hepatic infection. After being delivered by the bite from an infected mosquito, Plasmodium sporozoites enter the blood circulation and infect the liver. Previous evidence suggests that Kupffer cells, a macrophage-like component of the liver blood vessel lining, are traversed by sporozoites to initiate liver invasion. However, the molecular determinants of sporozoite–Kupffer cell interactions are unknown. Understanding the molecular basis for this specific recognition may lead to novel therapeutic strategies to control malaria. Using a phage display library screen, we identified a peptide, P39, that strongly binds to the Kupffer cell surface and, importantly, inhibits sporozoite Kupffer cell entry. Furthermore, we determined that P39 binds to CD68, a putative receptor for sporozoite invasion of Kupffer cells that acts as a gateway for malaria infection of the liver.
Collapse
Affiliation(s)
- Sung-Jae Cha
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Kiwon Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Prakash Srinivasan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Christian W Schindler
- Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032 Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VUmc, 1081 BT Amsterdam, Netherlands
| | - Monique Stins
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
6
|
Bell P, Wang L, Gao G, Haskins ME, Tarantal AF, McCarter RJ, Zhu Y, Yu H, Wilson JM. Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates. Mol Genet Metab 2011; 104:395-403. [PMID: 21778099 PMCID: PMC3269907 DOI: 10.1016/j.ymgme.2011.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 12/19/2022]
Abstract
Gene transfer vectors based on adeno-associated virus 8 (AAV8) are highly efficient in liver transduction and can be easily administered by intravenous injection. In mice, AAV8 transduces predominantly hepatocytes near central veins and yields lower transduction levels in hepatocytes in periportal regions. This transduction bias has important implications for gene therapy that aims to correct metabolic liver enzymes because metabolic zonation along the porto-central axis requires the expression of therapeutic proteins within the zone where they are normally localized. In the present study we compared the expression pattern of AAV8 expressing green fluorescent protein (GFP) in liver between mice, dogs, and non-human primates. We confirmed the pericentral dominance in transgene expression in mice with AAV8 when the liver-specific thyroid hormone-binding globulin (TBG) promoter was used but also observed the same expression pattern with the ubiquitous chicken β-actin (CB) and cytomegalovirus (CMV) promoters, suggesting that transduction zonation is not caused by promoter specificity. Predominantly pericentral expression was also found in dogs injected with AAV8. In contrast, in cynomolgus and rhesus macaques the expression pattern from AAV vectors was reversed, i.e. transgene expression was most intense around portal areas and less intense or absent around central veins. Infant rhesus macaques as well as newborn mice injected with AAV8 however showed a random distribution of transgene expression with neither portal nor central transduction bias. Based on the data in monkeys, adult humans treated with AAV vectors are predicted to also express transgenes predominantly in periportal regions whereas infants are likely to show a uniform transduction pattern in liver.
Collapse
Affiliation(s)
- Peter Bell
- Gene Therapy Program, Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jambekar AA, Palma E, Nicolosi L, Rasola A, Petronilli V, Chiara F, Bernardi P, Needleman R, Brusilow WSA. A glutamine synthetase inhibitor increases survival and decreases cytokine response in a mouse model of acute liver failure. Liver Int 2011; 31:1209-21. [PMID: 21745296 DOI: 10.1111/j.1478-3231.2011.02553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acute liver failure (ALF) can be induced in mice by administering Escherichia coli lipopolysaccharide (LPS) and D-galactosamine (D-GalN), which induce an inflammatory response involving tumour necrosis factor (TNF)-α production and a hepatocyte-specific transcriptional block. Under these conditions, binding of TNF-α to its cognate receptor on hepatocytes eventually leads to their apoptosis. AIMS As part of an effort to identify drugs to treat this disease model, we have investigated whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) could play a protective role, given its effectiveness in the inhibition of brain swelling associated with hyperammonaemia. METHODS Mouse survival, glutamine synthetase activity, hepatocyte apoptosis and induction of inflammatory cytokines were measured in mice treated with MSO before an intraperitoneal injection of LPS/D-GalN. The effect of MSO on viability and on TNF-α release was also assessed on inflammatory and liver cells. RESULTS We have found that, in mice treated with LPS/D-GalN, MSO (i) drastically increases animal survival; (ii) sharply reduces glutamine synthetase activity, without inhibiting its other target, γ-glutamyl cysteine synthetase; (iii) inhibits death receptor-mediated apoptosis in hepatocytes upstream to cytokine binding; (iv) strongly reduces the overall inflammatory cytokine response, including a significant decrease in TNF-α induction in vivo and ex vivo, and in the interferon-γ level and signalling. CONCLUSIONS These results demonstrate that the MSO target glutamine synthetase is required for the early steps of the cytokine response to endotoxins, and that its pharmacological inhibition may be exploited to treat inflammation.
Collapse
Affiliation(s)
- Amruta A Jambekar
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Santos M, Marcos R, Santos N, Malhão F, Monteiro RAF, Rocha E. An unbiased stereological study on subpopulations of rat liver macrophages and on their numerical relation with the hepatocytes and stellate cells. J Anat 2010; 214:744-51. [PMID: 19438768 DOI: 10.1111/j.1469-7580.2009.01055.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies on liver macrophages have elucidated their key roles in immunological, fibrotic and regenerative responses, and shown that macrophages are not a homogeneous population. In the rat, two sets of liver macrophages coexist, identified by ED1 and ED2 antibodies. Those sets have different quantitative responses in liver injuries and may have different tasks throughout the injury and recovery phases. Nevertheless, the total number (N), number per gram (N g(-1)) and proportion of those macrophages in relation to other liver cells has never been quantified using design-based stereology. Thus, we combined immunocytochemistry with those tools to produce an unbiased estimate of the N of ED1(+) and of ED2(+) cells. A smooth fractionator sampling scheme was applied to the liver of five male Wistar rats (3 months old), to obtain systematic uniform random sections (30 microm thick); these were immunostained with the monoclonal antibodies: ED1, a pan-macrophagic marker; and ED2, which identifies the completely differentiated macrophages, i.e. Kupffer cells. The N of ED1(+) cells was 340 x 10(6), estimated with a coefficient of error (CE) of 0.04, and that of ED2(+) cells was 283 x 10(6), with a CE of 0.05. These figures correspond to 10.7% and 8.9%, respectively, of the total liver cells. The new data constitute reference values for correlative inferences. Also, the methodological strategy, by its accuracy and precision, is valuable for future investigations on the liver cell composition in various models of disease, and especially for studying the more subtle variations that occur during the injury and recovery phases.
Collapse
Affiliation(s)
- Marta Santos
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar - ICBAS, University of Porto - UPorto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Roy DN, Mandal S, Sen G, Biswas T. Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats. Chem Biol Interact 2009; 182:136-47. [PMID: 19715684 DOI: 10.1016/j.cbi.2009.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/11/2022]
Abstract
Chronic exposure to copper induces hepatocellular apoptosis with greater injury in the periportal region compared to the perivenous region. Here we have identified the factors responsible for the development of regional damage in the liver under in vivo conditions. Enhanced production of reactive oxygen species (ROS) with predominance of superoxide radical (O(2)(-)) indicates the contribution of redox imbalance in the process. This may be linked with copper catalyzed oxidation of GSH to GSSG resulting in the generation of O(2)(-). Downregulation of Cu-Zn SOD in consequence of the degradation of this enzyme, causes decreased dismutation of O(2)(-), that further contributes to the enhanced level of O(2)(-) in the periportal region. Decreased functioning of Mn SOD activity, reduction in mitochondrial thiol/disulphide ratio and generation of O(2)(-) were much higher in the mitochondria from periportal region, which point to the involvement of this organelle in the regional hepatotoxicity observed during copper exposure. This was supported by copper-mediated enhanced mitochondrial dysfunction as evident from ATP depletion, collapse of mitochondrial membrane potential (MMP) and induction of mitochondrial permeability transition (MPT). Results suggest the active participation of O(2)(-) in inducing mitochondrial dysfunction preferentially in the periportal region that eventually leads to the development of hepatotoxicity due to copper exposure under in vivo condition.
Collapse
|
10
|
Abstract
As the introduction of the concept on tumor-associated macrophages (TAMs), the two-way role of macrophages in tumor development has been more and more focused. Other than inhibiting the development of tumors as traditional thinking says, macrophages can also promote the proceeding of several kinds of tumors through angiogenesis and matrix remolding, etc. As a special kind of macrophages, Kupffer cells also play a two-way role in the development of liver cancer. The lucubrating of the mechanism of macrophage in the proceeding of tumors must be beneficial to the therapy of tumors.
Collapse
|
11
|
Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR. New insights into functional aspects of liver morphology. Toxicol Pathol 2005; 33:27-34. [PMID: 15805053 DOI: 10.1080/01926230590881826] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver is structurally and functionally complex and has been considered second only to brain in its complexity. Many mysteries still exist in this heterogeneous tissue whose functional unit of the lobule has continued to stump morphologists for over 300 years. The primary lobule, proposed by Matsumoto in 1979, has been gaining acceptance as the functional unit of the liver over other conceptual views because it's based on vessel architecture and includes the classic lobule as a secondary feature. Although hepatocytes comprise almost 80% of the liver, there are at least another dozen cell types, many of which provide "cross-talk" and play important functional roles in the normal and diseased liver. The distribution and functional roles of all cells in the liver must be carefully considered in both the analysis and interpretation of research data, particularly data in the area of genomics and "phenotypic anchoring" of gene expression results. Discoveries regarding the functional heterogeneity of the various liver cell types, including hepatocytes, hepatic stellate cells, sinusoidal endothelia, and Kupffer cells, are providing new insights into our understanding of the development, prevention and treatment of liver disease. For example, functional differences along zonal patterns (centrilobular or periportal) have been demonstrated for sinusoidal endothelium, Kupffer cells, and hepatocytes and can explain the gradients and manifestations of disease observed within lobules. Intralobular gradients of bile uptake, glycogen depletion, glutamine synthetase, and carboxylesterase by hepatocytes; widened fenestrations in centrilobular sinusoidal lining cells; and differences in the components of centrilobular extracellular matrix or function of Kupffer cells have been demonstrated. Awareness of the complexities and heterogeneity of the liver will add to a greater understanding of liver function and disease processes that lead to toxicity, cancer, and other diseases.
Collapse
Affiliation(s)
- David E Malarkey
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|