1
|
Quintão CCR, Saraiva NZ, Oliveira CS, Paris EC, Camargo LSA, Brandão HM, Munk M. Antioxidant effects and compatibility of zinc oxide nanoparticles during in vitro maturation of bovine oocytes and subsequent embryo development. Theriogenology 2024; 230:1-7. [PMID: 39226648 DOI: 10.1016/j.theriogenology.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have garnered significant attention in biological applications due to their known antioxidant properties. However, their potential impact on assisted reproduction techniques remains largely unexplored, particularly in the context of oocyte quality maintenance within in vitro culture systems, where free radicals can exert detrimental effects. This study investigated the effects of incorporating ZnO-NPs to in vitro maturation (IVM) media on the developmental, cryosurvival, and metabolic profiles of bovine embryos. Three concentrations of ZnO-NPs (0, 1.0, and 1.5 μg/mL) were evaluated. We observed, for the first time, that the inclusion of ZnO-NPs at a concentration of 1.0 μg/mL led to a significant increase in the number of embryonic cells (p < 0.05) accompanied by a reduction in reactive oxygen species production (p < 0.05). Notably, ZnO-NPs did not alter embryonic development, cryosurvival rates, or mitochondrial viability. These findings suggested that ZnO-NPs has antioxidant properties and are compatible with bovine oocytes. Consequently, they may serve as promising supplements to the IVM media, potentially enhancing the efficiency of assisted reproduction techniques.
Collapse
Affiliation(s)
- Carolina C R Quintão
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Brazil.
| | - Naiara Z Saraiva
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Brazil
| | - Clara S Oliveira
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Brazil
| | - Elaine C Paris
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentation, São Carlos, Brazil
| | - Luiz S A Camargo
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Brazil
| | - Humberto M Brandão
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
2
|
Huang Y, Wei Y, Liang F, Huang Y, Huang J, Luo X, Xie B. Exploring the link between dietary zinc intake and endometriosis risk: insights from a cross-sectional analysis of American women. BMC Public Health 2024; 24:2935. [PMID: 39443887 PMCID: PMC11515777 DOI: 10.1186/s12889-024-20433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Endometriosis is a complex disorder with genetic, immune, inflammatory, and multifactorial etiologies. Zinc, an essential trace element, plays a crucial role in various physiological processes. Dysregulation or deficiency of zinc can lead to aberrations in human physiology. However, the association between dietary zinc and endometriosis remains ambiguous. This study aimed to investigate the link between dietary zinc intake and endometriosis. METHODS Utilizing cross-sectional data from the National Health and Nutrition Examination Survey, we analyzed information from American women aged 20-54 years between 1999 and 2006. After adjusting for relevant covariates, multivariable logistic regression analysis was employed to assess correlations. RESULTS A total of 4315 women were included in the study. The multivariable logistic regression model revealed a positive correlation between dietary zinc intake and the risk of endometriosis, even after controlling for confounding variables. Relative to individuals with lower zinc consumption (≤ 8 mg/day), the adjusted odds ratio (OR) values for dietary zinc intake and endometriosis in the 8-14 mg/day and > 14 mg/day groups were 1.19 (95% CI: 0.92-1.54, p = 0.189) and 1.60 (95% CI: 1.12-2.27, p = 0.009), respectively. CONCLUSIONS Our findings suggest a positive correlation between dietary zinc intake and the prevalence of endometriosis. However, further investigations are necessary to better understand this association and explore the potential role of dietary zinc in endometriosis.
Collapse
Affiliation(s)
- Yingmei Huang
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Yumei Wei
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Feng Liang
- Gynecology Department, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingqin Huang
- Center for Reproductive Medicine, Maternaland , Child Health Hospital in Guangxi, Nanning, China
| | - Jianyong Huang
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Xuehui Luo
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China
| | - Baoli Xie
- Gynecology Department, The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
3
|
Li X, Zhang J, Chun, Ling X, Luan T. Association between the composite dietary antioxidant index and risk of infertility: Evidence from NHANES 2013-2020 and a Mendelian randomization study. Int J Gynaecol Obstet 2024. [PMID: 39422585 DOI: 10.1002/ijgo.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE The Composite Dietary Antioxidant Index (CDAI) measures the antioxidant capacity of the diet, which is believed to provide protection against various diseases, including depression, osteoporosis, and papillomavirus infection, by neutralizing harmful oxidative stress. However, the relationship between CDAI and infertility is not well understood. This research aims to explore the potential correlations between CDAI and the risk of infertility. METHODS This research harnessed data from the National Health and Nutrition Examination Survey (NHANES) to execute a cross-sectional analysis involving 8263 US women aged 20-45. Each participant was subjected to two distinct 24-h dietary recall interviews. We calculated the CDAI using average daily antioxidant intake. Infertility was assessed using a standardized questionnaire. The association between CDAI and infertility was examined using weighted multiple logistic regression models, while nonlinear correlations were explored through restricted cubic splines. To affirm the robustness of our findings, sensitivity and subgroup analyses were performed using unweighted logistic regression. Additionally, to ascertain the causal influence of circulating antioxidant levels on infertility, a two-sample univariable Mendelian randomization (MR) analysis was conducted, using the inverse variance weighted (IVW) method as the primary analytic approach. RESULTS Participants who were infertile exhibited lower CDAI levels compared to their fertile counterparts. When confounding variables were accounted for in the multivariate weighted logistic regression model, an inverse relationship was observed between CDAI and infertility, with the odds ratio for the highest versus lowest quartile being 0.55 (0.33-0.90, P = 0.02). However, the IVW method indicated that genetically predicted elevated levels of CDAI did not significantly correlate with infertility. CONCLUSION Cross-sectional observational studies indicate that antioxidants from diets might diminish infertility risks. However, findings from MR studies do not confirm a causal connection. Additional prospective research is required to elucidate this association further.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - JuanJuan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Chun
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| |
Collapse
|
4
|
Fang H, Lin D, Zhang Z, Chen H, Zheng Z, Jiang D, Wang W. Association of coexposure to perfluoroalkyl and polyfluoroalkyl compounds and heavy metals with pregnancy loss and reproductive lifespan: The mediating role of cholesterol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117160. [PMID: 39388969 DOI: 10.1016/j.ecoenv.2024.117160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have demonstrated the toxic effects of per- and polyfluoroalkyl substances (PFASs) and heavy metals on the reproductive system. However, the interactions and combined effects of these substances remain unexplored. This study utilizes data from the National Health and Nutrition Examination Survey to investigate the associations between coexposure to four types of PFASs, lead (Pb), mercury (Hg) and self-reported pregnancy loss and reproductive lifespan in females. Genes associated with these substances and abortion were identified via the Comparative Toxicogenomics Database. The results revealed that Ln-PFOA (IRR=1.88, 95 % CI=1.42-2.50, Ln--: log transformed), Ln-PFOS (IRR=1.58, 95 % CI=1.12-2.22), Ln-PFHxS (IRR=1.99, 95 % CI=1.57-2.52), and Ln-Hg (IRR=1.92, 95 % CI=1.41-2.43) were positively associated with the risk of pregnancy loss. Ln-PFOA (β=1.27, 95 % CI=0.28-2.27), Ln-PFOS (β=1.01, 95 % CI=0.39-1.63), Ln-PFHxS (β=0.71, 95 % CI=0.12-1.63), Ln-PFNA (β=1.15, 95 % CI=0.23-2.08), Ln-Pb (β=3.87, 95 % CI=2.58-5.15), and Ln-Hg (β=1.01, 95 % CI=0.39-1.64) exposures were positively associated with reproductive lifespan. The mixed and overall effects of coexposure to PFASs and heavy metals were positively correlated with the risk of pregnancy loss and reproductive lifespan. Cholesterol partially mediated the association with the risk of pregnancy loss, whereas delay in menopause fully mediated the association with reproductive lifespan. Significant additive interactions were observed between PFOA and Pb and between PFOS, PFHxS, PFNA and Hg at high levels of coexposure. Thirty-nine overlapping genes associated with abortion were identified for these substances, and further analyses revealed that these genes significantly interact and may contribute to abortion through oxidative stress.
Collapse
Affiliation(s)
- Hua Fang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Dai Lin
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Dongdong Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Cao M, Bai L, Wei H, Guo Y, Sun G, Sun H, Shi B. Dietary supplementation with pterostilbene activates the PI3K-AKT-mTOR signalling pathway to alleviate progressive oxidative stress and promote placental nutrient transport. J Anim Sci Biotechnol 2024; 15:133. [PMID: 39369257 PMCID: PMC11456245 DOI: 10.1186/s40104-024-01090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/14/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Progressive oxidative stress easily occurs as a result of a gradual increase in the intensity of maternal metabolism due to rapid foetal development and increased intensity of lactation. However, studies on the effects of processive oxidative stress on nutrient transport in the placenta have received little attention. The present study was conducted on sows at 85 days of gestation to study the effects of pterostilbene (PTE) on maternal oxidative stress status and placental nutrient transport. RESULTS PTE increased the antioxidant capacity and immunoglobulin content in mothers' blood and milk, reduced the level of inflammatory factors, and improved the nutrient content of milk. PTE also reduced sow backfat loss and the number of weak sons, and increased piglet weaning weight and total weaning litter weight. We subsequently found that PTE enhanced placental glucose and fatty acid transport and further affected glycolipid metabolism by increasing the expression of LAL, PYGM, and Gbe-1, which activated the PI3K phosphorylation pathway. Moreover, PTE addition altered the relative abundance of the Firmicutes, Proteobacteria, Parabacillus, and Bacteroidetes-like RF16 groups in sow faeces. PTE increased the levels of acetate, propionate, butyrate and isovalerate in the faeces. CONCLUSIONS These findings reveal that the addition of PTE during pregnancy and lactation mitigates the effects of processive oxidative stress on offspring development by altering maternal microbial and placental nutrient transport capacity.
Collapse
Affiliation(s)
- Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liyun Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoyun Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yantong Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
7
|
Zhu C, Zhou H, Bao M, Tang S, Gu X, Han M, Li P, Jiang Q. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: A transcriptome and intestinal microorganism analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107046. [PMID: 39197247 DOI: 10.1016/j.aquatox.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The global prevalence and accumulation of plastic waste is leading to pollution levels that cause significant damage to ecosystems and ecological security. Exposure to two concentrations (1 and 5 mg/L) of 500 nm polystyrene (PS)-nanoplastics (NPs) for 14 d was evaluated in Simocephalus vetulus using transcriptome and 16 s rRNA sequencing analyses. PS-NP exposure resulted in stress-induced antioxidant defense, disturbed energy metabolism, and affected the FoxO signaling pathway, causing neurotoxicity. The expression of Cyclin D1 (CCND), glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PCK) genes was decreased compared to the control, whereas the expression of caspase3 (CASP3), caspase7 (CASP7), Superoxide dismutase (SOD), Heat shock protein 70 (HSP70), MPV17, and Glutathione S-transferase (GST) genes was increased, thus, suggesting that NP ingestion triggered oxidative stress and disrupted energy metabolism.. PS-NPs were present in the digestive tract of S. vetulus after 14 days of exposure. In addition, the abundance of the Proteobacteria and opportunistic pathogens was elevated after PS-NPs exposure. The diversity and homeostasis of the S. vetulus gut microbiota were disrupted and the stability of intestinal barrier function was impaired. Multiomic analyses highlighted the molecular toxicity and microbial changes in S. vetulus after exposure to NPs, providing an overview of how plastic pollution affects freshwater organisms and ecosystems.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China; Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Mengyu Bao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
8
|
Wang Y, Wang S, Zang Z, Li B, Liu G, Huang H, Zhao X. Molecular and transcriptomic analysis of the ovary during laying and brooding stages in Zhedong white geese ( Anser cygnoides domesticus). Br Poult Sci 2024; 65:631-644. [PMID: 38916443 DOI: 10.1080/00071668.2024.2364351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
1. This study investigates the molecular mechanisms affecting brooding in Zhedong white geese by examining differences in reproductive endocrine levels, ovarian histology and transcriptomics.2. Twenty 18-month-old Zhedong white geese were selected to examine their ovaries using histological, biochemical, molecular biological, and high-throughput sequencing techniques during the laying and brooding periods.3. The results showed that the number of atretic follicles and apoptotic cells in the ovaries increased significantly (p < 0.05), the levels of follicle-stimulating hormone, luteinising hormone, gonadotropin-releasing hormone and oestradiol decreased significantly (p < 0.05), and the level of prolactin increased significantly (p < 0.01) during the brooding stage.4. In broody geese, the expression of CASP3, CASP9, P53, BAX, and Cyt-c were considerably higher (p < 0.05), but BCL2 expression was significantly lower (p < 0.05).5. In ovarian tissues, 260 differentially expressed lncRNAs, 13 differentially expressed miRNA and 60 differentially expressed mRNA were all discovered using transcriptome sequencing analysis. Functional enrichment analysis revealed that the differentially expressed mRNA and non-coding RNA target genes were primarily involved in ECM-receptor interaction, cell adhesion, cardiac muscle contraction, mTOR signalling, and the calcium signalling pathway.6. In conclusion, follicular atrophy and apoptosis occurred in the ovaries and serum reproductive hormone levels were significantly changed during the brooding period of Zhedong white geese. COL3A1, COL1A2, GRIA1, RNF152, miR-192, and miR-194 may be important candidates for the regulation of brooding behaviour, with the mTOR signalling pathway playing a key role.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - S Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Z Zang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - B Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - G Liu
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - H Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - X Zhao
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
9
|
Zhao J, Yang Y, Qin J, Tao S, Jiang C, Huang H, Wan Q, Chen Y, Xu S, Qiao H. Transcutaneous Auricular Vagus Nerve Stimulation Ameliorates Preeclampsia-Induced Apoptosis of Placental Trophoblastic Cells Via Inhibiting the Mitochondrial Unfolded Protein Response. Neurosci Bull 2024; 40:1502-1518. [PMID: 38874677 PMCID: PMC11422338 DOI: 10.1007/s12264-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/28/2024] [Indexed: 06/15/2024] Open
Abstract
Preeclampsia is a serious obstetric complication. Currently, there is a lack of effective preventive approaches for this disease. Recent studies have identified transcutaneous auricular vagus nerve stimulation (taVNS) as a potential novel non-pharmaceutical therapeutic modality for preeclampsia. In this study, we investigated whether taVNS inhibits apoptosis of placental trophoblastic cells through ROS-induced UPRmt. Our results showed that taVNS promoted the release of acetylcholine (ACh). ACh decreased the expression of UPRmt by inhibiting the formation of mitochondrial ROS (mtROS), presumably through M3AChR. This reduced the release of pro-apoptotic proteins (cleaved caspase-3, NF-κB-p65, and cytochrome C) and helped preserve the morphological and functional integrity of mitochondria, thus reducing the apoptosis of placental trophoblasts, improving placental function, and relieving preeclampsia. Our study unravels the potential pathophysiological mechanism of preeclampsia. In-depth characterization of the UPRmt is essential for developing more effective therapeutic strategies for preeclampsia targeting mitochondrial function.
Collapse
Affiliation(s)
- Jing Zhao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yanan Yang
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Jiayi Qin
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Siyu Tao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Chunmei Jiang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Huixuan Huang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Qiunan Wan
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yuqi Chen
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Shouzhu Xu
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
| | - Haifa Qiao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China.
| |
Collapse
|
10
|
Gebremichael B, Lassi ZS, Begum M, Zhou SJ. Effect of perinatal consumption of low-calorie sweetener on maternal health: A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 63:164-176. [PMID: 38954514 DOI: 10.1016/j.clnesp.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND AIMS Evidence regarding perinatal low-calorie (or artificial) sweetener (LCS) consumption and its effect on maternal health outcomes is limited and inconclusive. The primary outcomes of our systematic review and meta-analysis were the effect of preconception and pregnancy LCS exposure on reproductive and pregnancy outcomes. Secondary outcomes included long-term maternal health. METHODS A systematic search of electronic databases, including PubMed, Embase, CINAHL, the Cochrane Library, Scopus, Web of Science, PsycINFO, ProQuest Health and Medical, ClinicalTrials.gov and Google Scholar, was conducted up to 20 November 2023. Primary studies, including clinical trials, cohort studies, case-control studies, which reported any LCS consumption during perinatal period and pregnancy and maternal health outcomes were eligible. A random effects model with restricted maximum likelihood estimation was used for the meta-analysis. We appraised the quality of the included studies using the National Institute of Health study quality appraisal tool and the overall quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation tool. RESULTS A total of 19 eligible studies with 203,706 participants were included. LCS consumption during pregnancy was associated with 11% increased risk of preterm birth (RR = 1.11, 95% CI: 1.07-1.16, I2 = 0.01%) and 42% increased risk of gestational diabetes (RR = 1.42, 95% CI: 0.98-2.04, I2 = 67.60%) compared with no consumption, however, the effect size for gestational diabetes was not precise as the 95% CI indicated that the effect estimate could range from 2% lower risk to 204% (or 2.04 times) higher risk. We found no association between LCS consumption during pregnancy and gestational weight gain (standardized mean difference (SMD) = 0.04; 95% CI: -0.17 - 0.24, I2 = 41.31%) or gestational age at birth (SMD = 0.00; 95% CI: -0.13 - 0.14, I2 = 80.13%). The effect of LCS consumption on reproductive treatment outcomes were inconsistent. CONCLUSIONS Based on the evidence available, LCS consumption in pregnancy was associated with increased risk of preterm birth and gestational diabetes. Robust research, such as well-designed randomized trials and large prospective cohort studies, is required to confirm the causal effect of LCS consumption during perinatal period on adverse maternal health outcomes.
Collapse
Affiliation(s)
- Bereket Gebremichael
- Department of Food and Nutrition, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia; College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Zohra S Lassi
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia; School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Mumtaz Begum
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| | - Shao Jia Zhou
- Department of Food and Nutrition, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
11
|
La Marca A, Diamanti M. Factors affecting age at menopause and their relationship with ovarian reserve: a comprehensive review. EUR J CONTRACEP REPR 2024; 29:245-255. [PMID: 39007753 DOI: 10.1080/13625187.2024.2375281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE The aim of this article was to discuss all the factors affecting the age at menopause and their correlation with ovarian reserve. MATERIALS AND METHODS A narrative review of original articles was performed using PubMed until December 2023. The following keywords were used to generate the list of citations: 'menopause', 'ovarian reserve' 'oocytes quality and quantity', 'ovarian ageing'. RESULTS Menopause is the final step in the process of ovarian ageing and is influenced by the oocyte pool at birth. Conditions that accelerate follicle depletion during the reproductive lifespan lead to premature ovarian insufficiency (POI) and premature ovarian failure (POF), while a higher ovarian reserve is associated with a delayed time to menopause. Reproductive history, sociodemographic, lifestyle and iatrogenic factors may impact ovarian reserve and the age at menopause. CONCLUSIONS Some factors affecting the age at menopause are modifiable and the risks of early menopause may be preventable. We hypothesise that by addressing these modifiable factors we may also preserve ovarian reserve. However, further interventional studies are needed to evaluate the effects of the described strategies on ovarian reserve.
Collapse
Affiliation(s)
- Antonio La Marca
- Obstetrics and Gynecology Unit, Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Modena, Italy
| | - Marialaura Diamanti
- Obstetrics and Gynecology Unit, Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Shao Y, Ma L, Zhou J, Wu K, Tang X. Impact of dietary antioxidants on female infertility risk: evidence from NHANES. Sci Rep 2024; 14:22623. [PMID: 39349955 PMCID: PMC11443145 DOI: 10.1038/s41598-024-72434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
The composite dietary antioxidant index (CDAI) serves as a valuable instrument for evaluating the intake of dietary antioxidants. This research aims to clarify the connection between CDAI and the risk of female infertility by analyzing data from the National Health and Nutrition Examination Survey from 2013 to 2018. Participants underwent two 24-h dietary recall interviews to calculate CDAI. Female infertility was determined through two questionnaires. Logistic regression model, restricted cubic spline and subgroup analysis were employed to examine the association between CDAI and female infertility. The study encompassed 2162 participants. Participants with female infertility had lower CDAI levels compared to those without. Following adjustment for confounding variables, a negative association between CDAI levels and female infertility was observed (Q4 vs. Q1, OR [95% CI] 0.392 [0.193, 0.795], P = 0.016). RCS demonstrated a statistically significant linear negative relationship between CDAI and female infertility. Subgroup analysis showed no significant interaction. This study illustrates a negative link between the CDAI and female infertility, indicating that higher consumption of dietary antioxidants may be associated with a reduced risk of female infertility. Additional rigorously designed prospective studies are necessary to validate these results.
Collapse
Affiliation(s)
- Yifeng Shao
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China
| | - Lisha Ma
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China
| | - Jianqing Zhou
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China
| | - Kang Wu
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China.
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China.
| | - Xuedong Tang
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China.
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China.
| |
Collapse
|
13
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Bhardwaj JK, Siwach A, Sachdeva SN. Nicotine as a female reproductive toxicant-A review. J Appl Toxicol 2024. [PMID: 39323358 DOI: 10.1002/jat.4702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The preceding decades have seen an extensive emergence of the harmful effects of tobacco smoke on systemic health. Among the various compounds of tobacco, nicotine is one of the principal, potentially hazardous, and toxic components which is an oxidant agent that can affect both men's and women's fertility. Nicotine exerts its effect by modulating the expression of transmembrane ligand-gated ion channels called nicotinic acetylcholine receptors. The activities of female reproduction might be disrupted by exposure to nicotine at various sites, such as the ovary or reproductive tract. It's been demonstrated that nicotine might cause oxidative stress, apoptosis, hormonal imbalance, abnormalities in chromosomal segregation, impact oocyte development, and disruption in ovarian morphology and functions. This review paper summarizes the findings and provides an updated overview of the evidence on the harmful effects of nicotine use on women's reproductive health and the resulting detrimental impacts on the body. Additionally, it provides the detailed possible mechanisms involved in impairing reproductive processes like folliculogenesis, oocyte maturation, steroidogenesis, and pregnancy in different animal species.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
15
|
Li X, He Y, Yan Q, Kuai D, Zhang H, Wang Y, Wang K, Tian W. Dihydrotestosterone induces reactive oxygen species accumulation and mitochondrial fission leading to apoptosis of granulosa cells. Toxicology 2024; 509:153958. [PMID: 39332622 DOI: 10.1016/j.tox.2024.153958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Dihydrotestosterone (DHT), which has significant androgenic activity,is a major player in follicle development and ovary function in females. However, an excess of androgens may result in increased follicular apoptosis with adverse effects on female fertility. This study aimed to explore the mechanism by which DHT induces apoptosis in human ovarian granulosa cells (GCs). The association between DHT and GC apoptosis was explored by the construction of rat models of polycystic ovary syndrome (PCOS). It was found that serum DHT levels were negatively correlated with thickness of the GC layer in PCOS model rats (R2=0.8342, p<0.0001), compared with control rats, together with significant increases in cofactors (Fis1: p=0.008; MFF: p=0.044). The GC SVOG cell line was used to clarify the mechanism by which DHT influenced GC apoptosis in in vitro experiments. The results confirmed that apoptosis in SVOG cells was positively associated with the DHT dose. The expression of the autophagy-related proteins LC3A/B (p=0.027) and the proapoptotic protein Bax (p=0.0095) were increased, while that of the anti-apoptotic protein Bcl-2 (p=0.0005) was decreased in the high-dose DHT group. ROS levels were significantly increased (p=0.0237) and the mitochondrial membrane potential ΔΨm was decreased (p=0.0194). Moreover, ultrastructural analysis of the mitochondria indicated significant damage. The results of RT-qPCR and western blotting showed that two fission cofactor-Fis1(p=0.034) and MFF (p=0.039) were significantly increased after treatment with high doses of DHT. Even though the overall expression of Drp1 did not change significantly (p=0.5961), that of activated Phosphor-Drp1(Ser616) was significantly increased (p=0.046), while the expression of Phosphor-Drp1 (Ser637) was markedly reduced (p=0.007) following exposure to high concentrations of DHT. All these effects could be reversed by the Drp1 inhibitor Mdivi-1. These findings indicated the impact of DHT on ROS aggregation and mitochondrial fission, resulting in GC apoptosis. An imbalance in Drp1 phosphorylation may be the key link in DHT-induced excessive mitochondrial fission.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying He
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Adeogun AE, Ogunleye OD, Akhigbe TM, Oyedokun PA, Adegbola CA, Saka WA, Afolabi OA, Akhigbe RE. Impact of arsenic on male and female reproductive function: a review of the pathophysiology and potential therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03452-6. [PMID: 39287676 DOI: 10.1007/s00210-024-03452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Arsenic is a ubiquitous metalloid and heavy metal that contributes to the global decline in human fertility. Humans are constantly exposed to arsenic through biotic and abiotic sources, especially ingestion of arsenic-contaminated food and water. Its exposure is associated with several adverse health challenges, including reproductive toxicity. In spite of its reported adverse effects, arsenic exposure remains a global challenge. Hence, this study provides a comprehensive review of the literature on the impact and mechanism of arsenic on male and female reproductive function. Additionally, a review of the potential therapeutic strategies is presented. Evidence from the literature reveals that arsenic upregulates reactive oxygen species (ROS) generation which mediates arsenic-induced suppression of the hypothalamic-pituitary-gonadal axis and inactivation of 3β-HSD and 17β-HSD activities, leading to reduced gonadal steroidogenesis. Through several oxidative stress-dependent signaling, arsenic induces the apoptosis of the germ cells, thus contributing to the development of infertility. At the moment, there is no specific treatment for arsenic-induced reproductive toxicity. However, increasing data form the scientific literature reveals the benefits of antioxidants in ameliorating arsenic-induced reproductive toxicity. These molecules suppress ROS generation and maintain optimal activities of the hypothalamic-pituitary-gonadal axis, leading to optimal steroidogenesis and gametogenesis as well as improved germ cells. Overall, this study revealed the impact and associated mechanism of arsenic-induced reproductive toxicity. It also provides evidence from the literature demonstrating potential therapeutic measures in managing arsenic-induced reproductive toxicity.
Collapse
Affiliation(s)
- A E Adeogun
- Department of Physiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - O D Ogunleye
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State University, Ejigbo Campus, Osogbu, Osun State, Nigeria
| | - P A Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - C A Adegbola
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - W A Saka
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - O A Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
17
|
Li T, Wei Y, Jiao B, Hao R, Zhou B, Bian X, Wang P, Zhou Y, Sun X, Zhang J. Bushen Huoxue formula attenuates lipid accumulation evoking excessive autophagy in premature ovarian insufficiency rats and palmitic acid-challenged KGN cells by modulating lipid metabolism. Front Pharmacol 2024; 15:1425844. [PMID: 39351088 PMCID: PMC11439644 DOI: 10.3389/fphar.2024.1425844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) has affected about 3.7% of women of reproductive age and is a major factor contributing to infertility. Bushen Huoxue formula (BHF), a traditional Chinese medicine prescription, is clinically used to treat POI in China. This study aims to investigate the potential mechanisms of BHF in combating POI using corticosterone-induced rats and palmitic acid (PA)-challenged human ovarian granulosa cells (GCs). Methods Initially, ultra performance liquid chromatography tandem mass spectrometry was employed to analyze the components of BHF. The pharmacodynamic parameters evaluated included body weight, ovaries index, and serum hormone in rats. Follicle numbers were observed using H&E staining. Additionally, PCNA and TUNEL staining were used to assess GCs proliferation and apoptosis, respectively. Lipid accumulation and ROS levels were examined using Oil Red O and ROS staining. Protein expressions were determined by western blot. To probe mechanisms, cell viability and E2 levels in BHF-treated, PA-stimulated GCs were determined using MTT and ELISA, respectively. Cell apoptosis and ROS levels were assessed using TUNEL and ROS staining. Proteins related to lipid metabolism and autophagy in PA-stimulated GCs were studied using agonists. Results Our results shown that BHF effectively normalized serum hormone levels, including follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), estradiol (E2), and luteinizing hormone (LH). Concurrently, BHF also significantly reduced follicular atresia and promoted cell proliferation while inhibiting apoptosis in POI rats. Furthermore, BHF mitigated ovarian lipid accumulation by modulating lipid metabolism, which included reducing lipid synthesis (expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α), increasing lipid catabolism (expression of adipose triglyceride lipase), and enhancing lipid oxidation (expression of carnitine palmitoyl transferase 1A). Mechanistically, the therapeutic effects of BHF on POI were linked with alleviation of lipid deposition-induced reactive oxygen species (ROS) accumulation and excessive autophagy, corroborating the results in PA-challenged GCs. After treatment with elesclomol (a ROS inducer) and rapamycin (an autophagy inducer) in GCs, the effects of BHF were almost counteracted under model conditions. Conclusion These findings suggest that BHF alleviates the symptoms of POI by altering lipid metabolism and reducing lipid accumulation-induced ROS and autophagy, offering evidence for BHF's efficacy in treating POI clinically.
Collapse
Affiliation(s)
- Tian Li
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Yao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibie Jiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Tonglu Hospital of Traditional Chinese Medicine, Tonglu, China
| | - Rui Hao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibei Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlan Bian
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Peijuan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xia Sun
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Wang X, Lin Y, Ge Y, Craig E, Liu X, Miller RK, Thurston SW, Brunner J, Barrett ES, O'Connor TG, Rich DQ, Zhang JJ. Systemic oxidative stress levels during the course of pregnancy: Associations with exposure to air pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124463. [PMID: 38942277 PMCID: PMC11418402 DOI: 10.1016/j.envpol.2024.124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increased systemic oxidative stress, implicated in adverse pregnancy outcomes for both mothers and fetuses, has been associated with gestational exposure to air pollutants such as polycyclic aromatic hydrocarbons (PAHs), fine particulate matter (PM2.5), and nitrogen dioxide (NO2). However, it is unclear whether exposure to pollutants at levels below the current air quality standards can increase oxidative stress in pregnant women. In a cohort of 305 pregnant persons residing in western New York, we examined the association between exposure to PM2.5, NO2, and PAHs (measured as urinary 1-hydroxypyrene) and urinary biomarkers of oxidative stress (malondialdehyde [MDA] and 8-hydroxy-2'-deoxyguanosine [8-OHdG]) measured in each trimester. After controlling for gestational stage, maternal age, lifestyles, and socioeconomic factors, each interquartile range (IQR) increase in 1-hydroxypyrene concentration (65.8 pg/ml) was associated with a 7.73% (95%CI: 3.18%,12.3%) higher in MDA levels throughout the pregnancy and in the first and second trimester. An IQR increase in PM2.5 concentration (3.20 μg/m3) was associated with increased MDA levels in the first trimester (8.19%, 95%CI: 0.28%,16.1%), but not the 2nd (-7.99%, 95% CI: 13.8%, -2.23%) or 3rd trimester (-2.81%, 95% CI: 10.0%, 4.38%). The average cumulative PM2.5 exposures in the 3-7 days before urine collection were associated with increased 8-OHdG levels during the second trimester, with the largest difference (22.6%; 95% CI: 3.46%, 41.7%) observed in relation to a one IQR increase in PM2.5 concentration in the previous 7 days. In contrast, neither oxidative stress biomarker was associated with NO2 exposure. Observed in pregnant women exposed to low-level air pollution, these findings expanded previously reported associations between systemic oxidative stress and high-level PM2.5 and PAH concentrations. Further, the first and second trimesters may be a susceptible window during pregnancy for oxidative stress responses to air pollution exposure.
Collapse
Affiliation(s)
- Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Yihui Ge
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Emily Craig
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Xiaodong Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychology, University of Rochester, Rochester, NY, USA; Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily S Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychology, University of Rochester, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Feng T, Li S, Wang P, Zhu D, Xu Z, Wang L, Li A, Kulyar MF, Shen Y. Hepatoprotective effects of Radix Bupleuri extract on aflatoxin B1-induced liver injury in ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116781. [PMID: 39067074 DOI: 10.1016/j.ecoenv.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Aflatoxin B1 (AFB1) is recognized as the most toxic mycotoxin, widely present in nature and known to specifically target the liver, leading to severe consequences to animal and human health. The mechanisms underlying AFB1-induced hepatotoxicity involve oxidative stress and apoptosis. Radix Bupleuri (RB) and its extracts (RBE), traditional Chinese herbs with a rich history spanning over 2000 years, have been reported to possess hepatoprotective properties. Nevertheless, the impact of RBE on AFB1-induced liver injury remains to be fully elucidated. The current study utilized Pekin ducks as experimental models to explore the effects of RBE on AFB1-induced liver injury both in vitro and in vivo. In vitro findings indicated that RBE mitigated AFB1-induced cytotoxicity, improved primary duck hepatocytes (PDHs) morphology, and reduced intracellular reactive oxygen species (ROS) levels. In vivo experiments demonstrated that: I) RBE alleviated the growth inhibitory caused by AFB1, as evidenced by improved final body weight and weight gain. II) AFB1 led to significant alterations in serum biochemical parameters (AST, ALT, TP, and ALB) and liver lesions attenuated by RBE supplementation at 2.5 g/kg. III) RBE significantly mitigated oxidative stress induced by AFB1. IV) AFB1-induced changes in mRNA and protein levels associated with oxidative stress and apoptosis were counteracted by RBE. In conclusion, our results suggest that RBE offers protection against AFB1-induced liver injury in ducks, primarily through its antioxidative and anti-apoptotic properties. These findings indicate the potential of RBE in preventing and treating AFB1 poisoning.
Collapse
Affiliation(s)
- Tianyi Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Siyu Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Di Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhixiang Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lidan Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
20
|
Nadri P, Zahmatkesh A, Bakhtari A. The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals. Biol Reprod 2024; 111:529-542. [PMID: 38753882 DOI: 10.1093/biolre/ioae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azizollah Bakhtari
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
21
|
Del Prete C, Vastolo A, Pasolini MP, Cocchia N, Montano C, Cutrignelli MI. Effects of maternal dietary supplementation with antioxidants on clinical status of mares and their foal. BMC Vet Res 2024; 20:404. [PMID: 39256763 PMCID: PMC11389071 DOI: 10.1186/s12917-024-04252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The peripartum period constitutes a delicate physiological moment in mares showing a transient state of oxidative stress. Diet supplementation with antioxidants during pregnancy in women appears to have a beneficial effect on mother and neonate health. The aim of this work was to evaluate the effects of diet supplementation with a commercial product containing a mix of antioxidants (Oxyliver®, Candioli) on the length of gestation, weight, and haemato-biochemical parameters in Italian Salernitano mares and their newborn foals. Eight late-term pregnant mares were randomly divided into two groups: Antiox group receiving 30 g/day of antioxidants, and Car group receiving the same amount of carrot powder, from 290 to 320 days of gestation. The following parameters were evaluated in mares: weight, colostrum composition, haemato-biochemical parameters, progesterone, and cortisol blood concentrations, along with blood oxidant/antioxidant status. Assessments were conducted at specific time points: immediately before the start of diet supplementation (T0), 15 days after (T1), at the end of diet supplementation (T2), within 8 h after parturition (T3), and 10 days post-partum (T4). Foal parameters such as weight, haemato-biochemical values, cortisol concentration, and blood oxidative stress variables were assessed within 8 h of birth (TF0) and at 10 days of age (TF1). RESULTS Pregnancy was shorter in the Antiox group (P < 0.05) compared with the Car group; the foals' weight increase of group Antiox (40%) was higher (P < 0.05) compared to those of the Car group (28.6%). The colostrum of the Antiox group exhibited higher levels of Brix, total solids, protein, nonfat solids, casein, urea, density, free fatty acids, and glucose, while lower levels of fat and lactose were observed compared to the Car group (P < 0.05). Mares' serum albumin at T1 and T3, creatinine, glucose, total proteins, total bilirubin, AST, and ALT at T3 were lower in Antiox than in the Car group. No significant differences were found in foals. CONCLUSIONS While the limited sample size and the potential variability of evaluated parameters, the observed outcomes suggest that Oxyliver® supplementation in mares might safely decrease gestation length and enhance liver function, thus potentially improving colostrum quality and offspring development.
Collapse
Affiliation(s)
- Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, Napoli, 80137, Italy
| | - Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, Napoli, 80137, Italy
| | - Maria Pia Pasolini
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, Napoli, 80137, Italy.
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, Napoli, 80137, Italy
| | - Chiara Montano
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, Napoli, 80137, Italy
| | - Monica Isabella Cutrignelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino 1, Napoli, 80137, Italy
| |
Collapse
|
22
|
Asemi R, Ahmadi Asouri S, Aghadavod E, Jamilian M. The beneficial influences of vitamin D intake on inflammation and oxidative stress in infertile women with polycystic ovary syndrome. Ann Med Surg (Lond) 2024; 86:5218-5223. [PMID: 39239011 PMCID: PMC11374188 DOI: 10.1097/ms9.0000000000002349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
Objective Oxidative stress and inflammation play a vital function in the pathophysiology of polycystic ovary syndrome (PCOS) and infertility. The aim of this work was to control the impacts of vitamin D intake on metabolic profiles in infertile subjects with PCOS. Trial design and methods This randomized, double-blinded, placebo-controlled clinical trial was carried out among 40 infertile women with PCOS. Subjects were randomly divided into two intervention groups to take either 50 000 IU vitamin D (n=20) or placebo (n=20) weekly for 8 weeks. Metabolic profiles and few inflammatory cytokines expression evaluated on peripheral blood mononuclear cells (PBMCs) of participants, using real-time polymerase chain reaction (RT-PCR) method. Results Vitamin D intake decreased high-sensitivity C-reactive protein (hs-CRP) (-0.9±1.1 vs. 0.3±0.9 mg/l, P=0.002) and elevated total antioxidant capacity (TAC) levels (49.2±60.2 vs. -50.6±161.8 mmol/l, P=0.02) compared with placebo; but no significant effects on other metabolic parameters were observed. Moreover, a significant downregulation of tumor necrosis factor alpha (TNF-α) expression (P=0.03) was observed after taking vitamin D compared with the placebo. Conclusions Overall, vitamin D intake for eight weeks had beneficial impacts on hs-CRP, TAC, and TNF-α among infertile women with PCOS.
Collapse
Affiliation(s)
- Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Department of Biochemistry, Kashan University of Medical Sciences, Kashan
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Department of Biochemistry, Kashan University of Medical Sciences, Kashan
| | - Mehri Jamilian
- Traditional and Complementary Medicine Research Center, Department of Gynecology, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
23
|
Oral S, Akpak YK, Turan G, Lafci D, Kinci MF, Usta CS. Efficacy of colchicine and melatonin in the treatment of rat endometriosis model: An animal study. J Reprod Immunol 2024; 165:104294. [PMID: 39106545 DOI: 10.1016/j.jri.2024.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE This study investigates the therapeutic effects of colchicine and melatonin on endometriotic implants in an experimentally created endometriosis model in rats. STUDY DESIGN Forty-four adult female Wistar albino rats weighing between 260 and 300 g, 8 weeks old, were selected for the study. The unilateral uterine horn of rats with a bicornuate uterus was excised for 1 cm, washed with sterile saline, incised longitudinally, and the endometrium was exposed. A 0.5*0.5 cm endometrial tissue sample taken with a scalpel was implanted with suturing (4/0 Vicryl) to the abdominal wall. Forty-four rats were divided into four groups. Group 1 was randomized as the endometriosis group (control), Group 2 as endometriosis + colchicine treatment, Group 3 as endometriosis + melatonin treatment, and Group 4 as the endometriosis + melatonin + colchicine treatment group. The colchicine (Sigma Chemical Co., St Louis, Missouri) group was administered orally at a dose of 0.1 mg/kg, and the Melatonin group orally at a dose of melatonin (20 mg/kg per day). Treatment continued daily for 30 days. RESULTS In the post-treatment focal diameter measurements, the endometrial focal diameter in the colchicine and colchicine + melatonin group was significantly lower than the control group (p=0.026). Bcl-2 levels of the colchicine group were lower than the control group and the melatonin group (p=0.021). CONCLUSION Colchicine and melatonin reduce adhesion to the peritoneal surface in ectopic endometrial cells. It also acts by increasing apoptosis and decreasing cell survival.
Collapse
Affiliation(s)
- Serkan Oral
- Halic Univercity, Faculty of Medicine, Department of Obstetrics and Gynecology, Türkiye.
| | - Yaşam Kemal Akpak
- University of Health Sciences, İzmir Faculty of Medicine, İzmir City Hospital, Department of Obstetrics and Gynecology, Türkiye.
| | - Gulay Turan
- Balıkesir University Medical Faculty Medical Pathology Department, Türkiye.
| | - Duygu Lafci
- Balikesir University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Türkiye.
| | | | - Ceyda Sancakli Usta
- Balikesir University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Türkiye.
| |
Collapse
|
24
|
Gayete-Lafuente S, Vilà Famada A, Albayrak N, Espinós Gómez JJ, Checa Vizcaíno MÁ, Moreno-Sepulveda J. Indirect markers of oocyte quality in patients with ovarian endometriosis undergoing IVF/ICSI: a systematic review and meta-analysis. Reprod Biomed Online 2024; 49:104075. [PMID: 38943812 DOI: 10.1016/j.rbmo.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 07/01/2024]
Abstract
This systematic review and meta-analysis aimed to evaluate the impact of ovarian endometriomas (OMA) on indirect markers of oocyte quality in patients undergoing IVF, compared with women without anatomical or functional ovarian abnormalities. The search spanned original randomized controlled trials, case-control studies and cohort studies published in MEDLINE, the Cochrane Controlled Trials Register and the ClinicalTrials.gov database up to October 2023. Thirty-one studies were included in the meta-analysis, showing no significant differences in fertilization (OR 1.10, 95% CI 0.94-1.30), blastulation (OR 0.86, 95% CI 0.64-1.14) and cancellation (OR 1.06, 95% CI 0.78-1.44) rates. However, patients with OMA exhibited significantly lower numbers of total and mature (metaphase II) oocytes retrieved (mean difference -1.59, 95% CI -2.25 to -0.94; mean difference -1.86, 95% CI -2.46 to -1.26, respectively), and lower numbers of top-quality embryos (mean difference -0.49, 95% CI -0.92 to -0.06). The Ovarian Sensitivity Index was similar between the groups (mean difference -1.55, 95% CI -3.27 to 0.18). The lack of data published to date prevented meta-analysis on euploidy rate. In conclusion, although the presence of OMA could decrease the oocyte yield in patients undergoing IVF/intracytoplasmic sperm injection, it does not appear to have an adverse impact on oocyte quality.
Collapse
Affiliation(s)
- Sonia Gayete-Lafuente
- Obstetrics and Gynaecology Department, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Gynecology, Obstetrics and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| | - Anna Vilà Famada
- Department of Obstetrics and Gynaecology, Catalan Health Institute, Barcelona, Spain
| | - Nazli Albayrak
- Department of Obstetrics and Gynaecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Juan José Espinós Gómez
- Obstetrics and Gynaecology Department, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Fertty Clinic, Barcelona, Spain
| | - Miguel Ángel Checa Vizcaíno
- Fertty Clinic, Barcelona, Spain; Faculty of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | | |
Collapse
|
25
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
26
|
Quan H, Guo Y, Li S, Jiang Y, Shen Q, He Y, Zhou X, Yuan X, Li J. Phospholipid Phosphatase 3 ( PLPP3) Induces Oxidative Stress to Accelerate Ovarian Aging in Pigs. Cells 2024; 13:1421. [PMID: 39272993 PMCID: PMC11394089 DOI: 10.3390/cells13171421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Ovarian aging results in reproductive disorders and infertility in mammals. Previous studies have reported that the ferroptosis and autophagy caused by oxidative stress may lead to ovarian aging, but the mechanisms remain unclear. In this study, we compared the morphological characteristics between the aged and young ovaries of pigs and found that the aged ovaries were larger in size and showed more corpora lutea. TUNEL assay further showed that the apoptosis level of granulosa cells (GCs) was relatively higher in the aged ovaries than those in young ovaries, as well as the expressions of autophagy-associated genes, e.g., p62, ATG7, ATG5, and BECN1, but that the expressions of oxidative stress and aging-associated genes, e.g., SOD1, SIRT1, and SIRT6, were significantly lower. Furthermore, the RNA-seq, Western blotting, and immunofluorescence suggested that phospholipid phosphatase 3 (PLPP3) protein was significantly upregulated in the aged ovaries. PLPP3 was likely to decrease the expressions of SIRT1 and SIRT6 to accelerate cellular senescence of porcine GCs, inhibit the expressions of SOD1, CAT, FSP1, FTH1, and SLC7A11 to exacerbate oxidative stress and ferroptosis, and arouse autophagy to retard the follicular development. In addition, two SNPs of PLPP3 promoter were significantly associated with the age at puberty. g.155798586 (T/T) and g.155798718 (C/C) notably facilitated the mRNA and protein level of PLPP3. In conclusion, PLPP3 might aggravate the oxidative stress of GCs to accelerate ovarian aging, and two molecular markers of PLPP3 were identified for ovarian aging in pigs. This work not only contributes to investigations on mechanisms for ovarian aging but also provides valuable molecular markers to postpone ovarian aging in populations.
Collapse
Affiliation(s)
- Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yixuan Guo
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingpeng Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Yu Y, Liu M, Wang Z, Liu Y, Yao M, Wang L, Zhong L. Identification of oxidative stress signatures of lung adenocarcinoma and prediction of patient prognosis or treatment response with single-cell RNA sequencing and bulk RNA sequencing data. Int Immunopharmacol 2024; 137:112495. [PMID: 38901238 DOI: 10.1016/j.intimp.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Lung adenocarcinoma (LUAD), the most common subtype of lung cancer globally, has seen improved prognosis with advancements in diagnostic, surgical, radiotherapy, and molecular therapy techniques, while its 5-year survival rate remains low. Molecular biomarkers provide prognostic value. Oxidative stress factors, such as reactive nitrogen species and ROS, are crucial in various stages of tumor progression, influencing cell transformation, proliferation, angiogenesis, and metastasis. ROS demonstrate dual roles, affecting tumor cells, hypoxia sensitivity, and the microenvironment. Comprehensive analysis of oxidative stress in LUAD has not been conducted to date. Therefore, we systematically investigated the regulatory patterns of oxidative stress in LUAD based on oxidative stress-related genes and correlated these patterns with cellular infiltration characteristics of the tumor immune microenvironment. The model utilizes single-factor Cox analysis to screen key differential genes with prognostic value and employs least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis to construct a prognostic-related prediction model. Ten candidate genes were selected based on this model. The risk score was constructed using the coefficients and expression levels of these ten genes. Furthermore, the impact of this risk score on overall survival (OS) was determined. Two genes with the most significant differential expression, SFTPB and S100P, were selected through qRT-PCR. Cell experiments including CCK-8, Edu, transwell assays confirmed their effects on lung cancer cells growth, consistent with the results of bioinformatics analysis. These findings suggested that this model held potential clinical value for evaluating the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yunchi Yu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Miaoyan Liu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Zihang Wang
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yufan Liu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Yao
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Li Wang
- Research Center for Intelligence Information Technology, Nantong University, Nantong 226001, Jiangsu, China
| | - Lou Zhong
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
28
|
Maleki-Hajiagha A, Shafie A, Maajani K, Amidi F. Effect of astaxanthin supplementation on female fertility and reproductive outcomes: a systematic review and meta-analysis of clinical and animal studies. J Ovarian Res 2024; 17:163. [PMID: 39127677 PMCID: PMC11316280 DOI: 10.1186/s13048-024-01472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/06/2024] [Indexed: 08/12/2024] Open
Abstract
CONTEXT Oxidative stress (OS) plays a harmful role in female reproduction and fertility. Several studies explored various dietary interventions and antioxidant supplements, such as astaxanthin (AST), to mitigate the adverse effects of OS on female fertility. Ameliorative effects of AST on female fertility and the redox status of reproductive organs have been shown in several animal and clinical studies. OBJECTIVES The main objective of present systematic review and meta-analysis of both animal and clinical studies was to provide a comprehensive overview of the current evidence on the effects of AST on female fertility and reproductive outcomes. The effect of AST on redox status, inflammatory and apoptotic markers in reproductive organs were included as the secondary outcomes. DATA SOURCES We systematically searched electronic databases including PubMed, Scopus, and Web of Science, until January 1, 2024, using specified search terms related to AST, female reproductive performance, and infertility, considering the diverse synonyms found in the literature for interventional studies that compared oral AST supplementation with placebo or control in human or animal models. DATA EXTRACTION Two independent reviewers extracted data on study characteristics, outcomes, and risk of bias. We pooled the results using random-effects models and assessed the heterogeneity and quality of evidence. We descriptively reported the data from animal models, as meta-analysis was not possible. DATA ANALYSIS The meta-analysis of clinical trials showed that AST significantly increased the oocyte maturation rate (MD: 8.40, 95% CI: 4.57 to 12.23, I2: 0%) and the total antioxidant capacity levels in the follicular fluid (MD: 0.04, 95% CI: 0.02 to 0.06, I2: 0%). The other ART and pregnancy outcomes and redox status markers did not show statistically significant changes. The animal studies reported ameliorative effects of AST on redox status, inflammation, apoptosis, and ovarian tissue histomorphology. CONCLUSION This systematic review shows that AST supplementation may improve assisted reproductive technology outcomes by enhancing oocyte quality and reducing OS in the reproductive organs. However, the evidence is limited by the heterogeneity, risk of bias, and small sample size of the included studies.
Collapse
Affiliation(s)
- Arezoo Maleki-Hajiagha
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Anahid Shafie
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Khadije Maajani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955, Iran.
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Chen Z, Xiao L, Sun Q, Chen Q, Hua W, Zhang J. Effects of Acremonium terricola Culture on Lactation Performance, Immune Function, Antioxidant Capacity, and Intestinal Flora of Sows. Antioxidants (Basel) 2024; 13:970. [PMID: 39199216 PMCID: PMC11352107 DOI: 10.3390/antiox13080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to determine the effects of different doses of Acremonium terricola culture (ATC) on lactation performance, immune function, antioxidant capacity, and intestinal flora of sows. Forty-five Landrace sows (3-6 parity) were randomly assigned to the following three treatments from 85 days of gestation to 21 days after farrowing: a control diet (CON, basal diet), a low-dose Acremonium terricola culture diet (0.2% ATC, basal diet + 0.2% ATC), and a high-dose Acremonium terricola culture diet (0.4% ATC, basal diet + 0.4% ATC). Compared with the CON group, the supplementation of 0.2% ATC increased the average daily milk yield of sows by 4.98%, increased milk fat, total solids, and freezing point depression on day 1 postpartum (p < 0.05), increased serum concentration of Triiodothyronine, Thyroxin, and Estradiol on day 21 postpartum (p < 0.05). Compared with the CON group, the supplementation of 0.4% ATC increased the average daily milk yield of sows by 9.38% (p < 0.05). Furthermore, the supplementation of 0.2% ATC increased serum concentration of IgG, IgM, and IFN-γ, CD4 on day 1 postpartum (p < 0.05) and increased serum concentration of immunoglobulin A ( IgA), immunoglobulin G (IgG), immunoglobulin M ( IgM), complement 3 (C3), cluster of differentiation 4 (CD4), cluster of differentiation 8 (CD8), interferon-γ (IFN-γ) on day 21 postpartum (p < 0.05), while the supplementation of 0.4% ATC reduced serum concentration of IL-2 on day 21 postpartum (p < 0.05). Moreover, the supplementation of 0.4% ATC significantly increased serum concentration of catalase (CAT) (p < 0.05). Additionally, the supplementation of ATC affected the relative abundance of the intestinal flora at different taxonomic levels in sows and increased the abundance of beneficial bacteria such as in the norank_f__Eubacterium_coprostanoligenes group, Eubacterium_coprostanoligenes group, and Lachnospiraceae_XPB1014 group of sows, while reducing the abundance of harmful bacteria such as Phascolarctobacterium and Clostridium_sensu_stricto_1. These data revealed that the supplementation of ATC during late gestation and lactation can improve lactation performance, immune function, antioxidant capacity, and the gut microbiota. Compared with supplementation of 0.4% ATC, 0.2% ATC enhances the levels of thyroid-related hormones, specific antibodies, and cytokines in serum, promotes the diversity of beneficial gut microbiota, beneficial bacteria in the intestine, reduces the population of harmful bacteria, and thereby bolsters the immunity of sows. Hence, 0.2% ATC is deemed a more optimal concentration.
Collapse
Affiliation(s)
- Zhirong Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Qian Sun
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Weidong Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| |
Collapse
|
30
|
Lang LI, Wang ZZ, Liu B, Chang-Qing SHEN, Jing-Yi TU, Shi-Cheng WANG, Rui-Ling LEI, Si-Qi PENG, Xiong XIAO, Yong-Ju ZHAO, Qiu XY. The effects and mechanisms of heat stress on mammalian oocyte and embryo development. J Therm Biol 2024; 124:103927. [PMID: 39153259 DOI: 10.1016/j.jtherbio.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The sum of nonspecific physiological responses exhibited by mammals in response to the disruption of thermal balance caused by high-temperature environments is referred to as heat stress (HS). HS affects the normal development of mammalian oocyte and embryos and leads to significant economic losses. Therefore, it is of great importance to gain a deep understanding of the mechanisms underlying the effects of HS on oocyte and embryonic development and to explore strategies for mitigating or preventing its detrimental impacts in the livestock industry. This article provides an overview of the negative effects of HS on mammalian oocyte growth, granulosa cell maturation and function, and embryonic development. It summarizes the mechanisms by which HS affects embryonic development, including generation of reactive oxygen species (ROS), endocrine disruption, the heat shock system, mitochondrial autophagy, and molecular-level alterations. Furthermore, it discusses various measures to ameliorate the effects of HS, such as antioxidant use, enhancement of mitochondrial function, gene editing, cultivating varieties possessing heat-resistant genes, and optimizing the animals'rearing environment. This article serves as a valuable reference for better understanding the relationship between HS and mammalian embryonic development as well as for improving the development of mammalian embryos and economic benefits under HS conditions in livestock production.
Collapse
Affiliation(s)
- L I Lang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Zhen-Zhen Wang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Bin Liu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - S H E N Chang-Qing
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - T U Jing-Yi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - W A N G Shi-Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - L E I Rui-Ling
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - P E N G Si-Qi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - X I A O Xiong
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Z H A O Yong-Ju
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xiao-Yan Qiu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
31
|
Rizk FH, El Saadany AA, Elshamy AM, Abd Ellatif RA, El-Guindy DM, Helal DS, Hamama MG, El-Sharnoby JAEH, Abdel Ghafar MT, Faheem H. Ameliorating effects of adropin on letrozole-induced polycystic ovary syndrome via regulating steroidogenesis and the microbiota inflammatory axis in rats. J Physiol 2024; 602:3621-3639. [PMID: 38980987 DOI: 10.1113/jp285793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Growing evidence supports the role of gut microbiota in chronic inflammation, insulin resistance (IR) and sex hormone production in polycystic ovary syndrome (PCOS). Adropin plays a pivotal role in the regulation of glucose and lipid metabolism and is negatively correlated with IR, which affects intestinal microbiota and sex hormones. However, the effect of adropin administration in PCOS has yet to be investigated. The present study aimed to assess the effects of adropin on letrozole (LTZ)-induced PCOS in rats and the potential underlying mechanisms. The experimental groups were normal, adropin, letrozole and LTZ + adropin. At the end of the experiment, adropin significantly ameliorated PCOS, as evidenced by restoring the normal ovarian structure, decreasing the theca cell thickness in antral follicles, as well as serum testosterone and luteinizing hormone levels and luteinizing hormone/follicle-stimulating hormone ratios, at the same time as increasing granulosa cell thickness in antral follicles, oestradiol and follicle-stimulating hormone levels. The ameliorating effect could be attributed to its effect on sex hormone-binding globulin, key steroidogenic genes STAR and CYP11A1, IR, lipid profile, gut microbiota metabolites-brain-ovary axis components (short chain fatty acids, free fatty acid receptor 3 and peptide YY), intestinal permeability marker (zonulin and tight junction protein claudin-1), lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B inflammatory pathway and oxidative stress makers (malondialdehyde and total antioxidant capacity). In conclusion, adropin has a promising therapeutic effect on PCOS by regulating steroidogenesis, IR, lipid profile, the gut microbiota inflammatory axis and redox homeostasis. KEY POINTS: Adropin treatment reversed endocrine and ovarian morphology disorders in polycystic ovary syndrome (PCOS). Adropin regulated the ovarian steroidogenesis and sex hormone-binding globulin in PCOS. Adropin improved lipid profile and decreased insulin resistance in PCOS. Adropin modulated the components of the gut-brain-ovary axis (short chain fatty acids, free fatty acid receptor 3 and peptide YY) in PCOS. Adropin improved intestinal barrier integrity, suppressed of lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B signalling pathway and oxidative stress in PCOS.
Collapse
Affiliation(s)
- Fatma H Rizk
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira Mostafa Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Abd Ellatif
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M El-Guindy
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Duaa S Helal
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed G Hamama
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Heba Faheem
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Ferreira AF, Machado-Simões J, Moniz I, Soares M, Carvalho A, Diniz P, Ramalho-Santos J, Sousa AP, Lopes-da-Costa L, Almeida-Santos T. Chemical reversion of age-related oocyte dysfunction fails to enhance embryo development in a bovine model of postovulatory aging. J Assist Reprod Genet 2024; 41:1997-2009. [PMID: 38822989 PMCID: PMC11339206 DOI: 10.1007/s10815-024-03151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
PURPOSE There are no clinical treatments to prevent/revert age-related alterations associated with oocyte competence decline in the context of advanced maternal age. Those alterations have been attributed to oxidative stress and mitochondrial dysfunction. Our study aimed to test the hypothesis that in vitro maturation (IVM) medium supplementation with antioxidants (resveratrol or phloretin) may revert age-related oocyte competence decline. METHODS Bovine immature oocytes were matured in vitro for 23 h (young) and 30 h (aged). Postovulatory aged oocytes (control group) and embryos obtained after fertilization were examined and compared with oocytes supplemented with either 2 μM of resveratrol or 6 μM phloretin (treatment groups) during IVM. RESULTS Aged oocytes had a significantly lower mitochondrial mass and proportion of mitochondrial clustered pattern, lower ooplasmic volume, higher ROS, lower sirtuin-1 protein level, and a lower blastocyst rate in comparison to young oocytes, indicating that postovulatory oocytes have a lower quality and developmental competence, thus validating our experimental model. Supplementation of IVM medium with antioxidants prevented the generation of ROS and restored the active mitochondrial mass and pattern characteristic of younger oocytes. Moreover, sirtuin-1 protein levels were also restored but only following incubation with resveratrol. Despite these findings, the blastocyst rate of treatment groups was not significantly different from the control group, indicating that resveratrol and phloretin could not restore the oocyte competence of postovulatory aged oocytes. CONCLUSION Resveratrol and phloretin can both revert the age-related oxidative stress and mitochondrial dysfunction during postovulatory aging but were insufficient to enhance embryo developmental rates under our experimental conditions.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal.
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra, 3000-548, Portugal.
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- EUGIN Coimbra, Filipe Hodart N° 12, 3000-185, Coimbra, Portugal.
| | - Juliana Machado-Simões
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Inês Moniz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Alexandra Carvalho
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Diniz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - João Ramalho-Santos
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- EUGIN Coimbra, Filipe Hodart N° 12, 3000-185, Coimbra, Portugal
| | - Luís Lopes-da-Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Science, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra, 3000-548, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- EUGIN Coimbra, Filipe Hodart N° 12, 3000-185, Coimbra, Portugal
| |
Collapse
|
33
|
Alsolami K, Hamza RZ. Orlistat and metformin combination ameliorates obesity-induced renal injury via suppressing renal oxidative stress in male rats. Toxicol Res (Camb) 2024; 13:tfae135. [PMID: 39175812 PMCID: PMC11336066 DOI: 10.1093/toxres/tfae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Orlistat (ORS) and metformin (MEF) are robustly used as well-established clinical drugs for the treatment for both obesity and the consequences of diabetes mellitus. Additionally, no study has been conducted to explore the consequence of the combination of both ORS and MEF on the kidneys of rats with obesity-induced renal injury (OBS). OBJECTIVES Therefore, the objective of the current research was designed to explore the possible ameliorative effects of either ORS and/or MEF or their combination against obesity (OBS) induced experimental renal oxidative stress. METHODS Renal oxidative stress was investigated at redox histopathological and immunohistological points in the kidney tissues. RESULTS The levels of urea, uric acid, and creatinine increased with the obesity effect; in addition, the myeloperoxidase (MPO) and xanthine oxidase (XO) activators were elevated significantly with the induction of OBS. The levels of non-enzymatic antioxidants (glutathione and thiol) declined sharply in OBS rats as compared to the normal group. CONCLUSION The data displayed that the combination of both ORS and MEF declined the obesity effects significantly by reducing the level of peroxidation (MDA), and enhancement intracellular antioxidant enzymes. These biochemical findings were supported by histopathology, immunohistochemistry, and Masson-Trichrome evaluation, which showed minor morphological changes in the kidneys of rats.
Collapse
Affiliation(s)
- Khadeejah Alsolami
- Pharmacology and Toxicology Department, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reham Z Hamza
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
34
|
Chen Y, Tian P, Li Y, Tang Z, Zhang H. Thiram exposure: Disruption of the blood-testis barrier and altered apoptosis-autophagy dynamics in testicular cells via the Bcl-2/Bax and mTOR/Atg5/p62 pathways in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106010. [PMID: 39084803 DOI: 10.1016/j.pestbp.2024.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Thiram, a prevalent dithiocarbamate insecticide in agriculture, is widely employed as a crop insecticide and preservative. Chronic exposure to thiram has been linked to various irreversible damages, including tibial cartilage dysplasia, erythrocytotoxicity, renal issues, and immune system compromise. Limited research exists on its effects on reproductive organs. This study investigated the reproductive toxicology in mouse testes exposure to varying concentrations (0, 30, 60, and 120 mg/kg) of thiram. Our study uncovered a series of adverse effects in mice subjected to thiram exposure, including emaciation, stunted growth, decreased water intake, and postponed testicular maturation. Biochemical analysis in thiram-exposed mice showed elevated levels of LDH and AST, while ALP, TG, ALT, and urea were decreased. Histologically, thiram disrupted the testis' microarchitecture and compromised its barrier function by widening the gap between spermatogenic cells and promoting fibrosis. The expression of pro-apoptotic genes (Bax, APAF1, Cytc, and Caspase-3) was downregulated, whereas Bcl-2 expression increased in thiram-treated mice compared to controls. Conversely, the expression of Atg5 was upregulated, and mTOR and p62 expression decreased, with a trend towards lower LC3b levels. Thiram also disrupted the blood-testis barrier, significantly reducing the mRNA expression of zona occludens-1 (ZO-1) and occludin. In conclusion, chronic exposure to high thiram concentrations (120 mg/kg) caused testicular tissue damage, affecting the blood-testis barrier and modulating apoptosis and autophagy through the Bcl-2/Bax and mTOR/Atg5/p62 pathways. This study contributes to understanding the molecular basis of thiram-induced reproductive toxicity and underscores the need for further research and precautions for those chronically exposed to thiram and its environmental residuals.
Collapse
Affiliation(s)
- Yongjian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peipei Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Su Z, Ding P, Su W, Li X, Li Y, Li X, Lao K, Wang Y. Association between oxidative balance score and female infertility from the national health and nutrition examination survey 2013-2018. Front Endocrinol (Lausanne) 2024; 15:1386021. [PMID: 39140031 PMCID: PMC11319134 DOI: 10.3389/fendo.2024.1386021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Background The correlation between oxidative stress and female infertility pathogenesis was established, and the oxidative balance score (OBS) can serve as a measure of overall oxidative stress burden within an individual. Prior reports have not addressed the relationship between OBS and female infertility. This study endeavors to investigate the association between infertility risk in female and OBS. Methods The analysis focused on data from the National Health and Nutrition Examination Survey 2013-2018. OBS was determined from 16 dietary components and 4 lifestyle components. Multivariate logistic regression was employed to investigate the relationship between OBS and female infertility. Further stratified analysis was conducted to examine the associations across various subgroups. To elucidate the dose-response relationship between infertility risk in female and OBS, a restricted cubic spline function was employed. Results The study included a total of 1410 participants. Through weighted multivariable logistic regression analysis, we observed a consistent inverse correlation between OBS and the risk of female infertility [OR (95% CI) = 0.97 (0.95, 0.99), p = 0.047]. When participants were segregated into quartiles based on OBS, those in the highest quartile had a 61% [OR (95% CI) = 0.39 (0.2, 0.79), p = 0.01] reduced risk of infertility compared to those in the lowest quartile of OBS. A trend test assessing OBS by quartile also revealed the relationship between OBS and female infertility. This correlation remained constant across both dietary and lifestyle OBS. Additionally, lifestyle OBS and female infertility exhibited a nonlinear association. A sensitivity analysis verified the consistency of our findings. Conclusion The study found that a higher OBS is associated with a lower prevalence of female infertility. These results emphasized the potential role of oxidative homeostasis in the pathogenesis of infertility and highlighted the importance of follow-up studies and prevention strategies.
Collapse
Affiliation(s)
- Zhe Su
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Peihui Ding
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Wenjing Su
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xia Li
- Community Health Service Center of Dudian Street in Bincheng District, Binzhou, China
| | - Yiqian Li
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaoran Li
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Kaixue Lao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
36
|
Yi Y, Feng Y, Shi Y, Xiao J, Liu M, Wang K. Per- and Polyfluoroalkyl Substances (PFASs) and Their Potential Effects on Female Reproductive Diseases. TOXICS 2024; 12:539. [PMID: 39195641 PMCID: PMC11358978 DOI: 10.3390/toxics12080539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of anthropogenic organic compounds widely present in the natural and human living environments. These emerging persistent pollutants can enter the human body through multiple channels, posing risks to human health. In particular, exposure to PFASs in women may cause a series of reproductive health hazards and infertility. Based on a review of the existing literature, this study preliminarily summarizes the effects of PFAS exposure on the occurrence and development of female reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS), endometriosis, primary ovarian insufficiency (POI), and diminished ovarian reserve (DOR). Furthermore, we outline the relevant mechanisms through which PFASs interfere with the physiological function of the female ovary and finally highlight the role played by nutrients in reducing the reproductive health hazards caused by PFASs. It is worth noting that the physiological mechanisms of PFASs in the above diseases are still unclear. Therefore, it is necessary to further study the molecular mechanisms of PFASs in female reproductive diseases and the role of nutrients in this process.
Collapse
Affiliation(s)
- Yuqing Yi
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yang Feng
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yuechen Shi
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Jiaming Xiao
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ming Liu
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ke Wang
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
| |
Collapse
|
37
|
Chen Y, Zhang J, Tian Y, Xu X, Wang B, Huang Z, Lou S, Kang J, Zhang N, Weng J, Liang Y, Ma W. Iron accumulation in ovarian microenvironment damages the local redox balance and oocyte quality in aging mice. Redox Biol 2024; 73:103195. [PMID: 38781731 PMCID: PMC11145558 DOI: 10.1016/j.redox.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Accumulating oxidative damage is a primary driver of ovarian reserve decline along with aging. However, the mechanism behind the imbalance in reactive oxygen species (ROS) is not yet fully understood. Here we investigated changes in iron metabolism and its relationship with ROS disorder in aging ovaries of mice. We found increased iron content in aging ovaries and oocytes, along with abnormal expression of iron metabolic proteins, including heme oxygenase 1 (HO-1), ferritin heavy chain (FTH), ferritin light chain (FTL), mitochondrial ferritin (FTMT), divalent metal transporter 1 (DMT1), ferroportin1(FPN1), iron regulatory proteins (IRP1 and IRP2) and transferrin receptor 1 (TFR1). Notably, aging oocytes exhibited enhanced ferritinophagy and mitophagy, and consistently, there was an increase in cytosolic Fe2+, elevated lipid peroxidation, mitochondrial dysfunction, and augmented lysosome activity. Additionally, the ovarian expression of p53, p21, p16 and microtubule-associated protein tau (Tau) were also found to be upregulated. These alterations could be phenocopied with in vitro Fe2+ administration in oocytes from 2-month-old mice but were alleviated by deferoxamine (DFO). In vivo application of DFO improved ovarian iron metabolism and redox status in 12-month-old mice, and corrected the alterations in cytosolic Fe2+, ferritinophagy and mitophagy, as well as related degenerative changes in oocytes. Thereby in the whole, DFO delayed the decline in ovarian reserve and significantly increased the number of superovulated oocytes with reduced fragmentation and aneuploidy. Together, our findings suggest that aging-related disturbance in ovarian iron homeostasis contributes to excessive ROS production and that iron chelation may improve ovarian redox status, and efficiently delay the decline in ovarian reserve and oocyte quality in aging mice. These data propose a novel intervention strategy for preserving the ovarian reserve function in elderly women.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shuo Lou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyi Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ningning Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
38
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
39
|
Deng C, Ke X, Lin L, Fan Y, Li C. Association between indicators of visceral lipid accumulation and infertility: a cross-sectional study based on U.S. women. Lipids Health Dis 2024; 23:186. [PMID: 38872138 PMCID: PMC11170861 DOI: 10.1186/s12944-024-02178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Evidence on the association between visceral lipid accumulation and infertility remains limited and controversial. Therefore, the current investigation is the first investigation to unveil this correlation by utilizing novel indicators of visceral lipid accumulation. METHODS The present study utilized the NHANES 2013-2020 dataset. Researchers utilized multiple logistic regression, smoothed curve fitting, and subgroup analysis to investigate the associations of waist circumference (WC), metabolic score for visceral fat (METS-VF), lipid accumulation product (LAP), visceral adiposity index (VAI) with infertility. Additionally, the eXtreme Gradient Boosting (XGBoost) algorithm model was utilized to evaluate the relative importance of the factors. RESULTS After adjusting for potential factors that could influence the results, researchers discovered that all these four indicators of visceral lipid accumulation exhibited strong positive correlations with the probability of infertility. The subgroup analysis demonstrated that the correlations remained consistent in the majority of subgroups (P for interaction > 0.05). The results of XGBoost algorithm model indicate that METS-VF is the most meaningful factor in infertility. The ROC curve research revealed that while METS-VF had the greatest AUC values, there was no variation in the AUC value of different markers of visceral fat accumulation (P > 0.05). CONCLUSIONS The present investigation discovered that increased WC, METS-VF, LAP, and VAI were associated with a heightened prevalence of infertility.
Collapse
Affiliation(s)
- Chenyuan Deng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinpeng Ke
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liangcai Lin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Chaohui Li
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
41
|
Talukdar S, Singh SK, Mishra MK, Singh R. Emerging Trends in Nanotechnology for Endometriosis: Diagnosis to Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:976. [PMID: 38869601 PMCID: PMC11173792 DOI: 10.3390/nano14110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Endometriosis, an incurable gynecological disease that causes abnormal growth of uterine-like tissue outside the uterine cavity, leads to pelvic pain and infertility in millions of individuals. Endometriosis can be treated with medicine and surgery, but recurrence and comorbidities impair quality of life. In recent years, nanoparticle (NP)-based therapy has drawn global attention, notably in medicine. Studies have shown that NPs could revolutionize conventional therapeutics and imaging. Researchers aim to enhance the prognosis of endometriosis patients with less invasive and more effective NP-based treatments. This study evaluates this potential paradigm shift in endometriosis management, exploring NP-based systems for improved treatments and diagnostics. Insights into nanotechnology applications, including gene therapy, photothermal therapy, immunotherapy, and magnetic hyperthermia, offering a theoretical reference for the clinical use of nanotechnology in endometriosis treatment, are discussed in this review.
Collapse
Affiliation(s)
- Souvanik Talukdar
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Santosh K. Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
42
|
Baki KB, Sapmaz T, Sevgin K, Topkaraoglu S, Erdem E, Tekayev M, Guler EM, Beyaztas H, Bozali K, Aktas S, Irkorucu O, Sapmaz E. Curcumin and gallic acid have a synergistic protective effect against ovarian surface epithelium and follicle reserve damage caused by autologous intraperitoneal ovary transplantation in rats. Pathol Res Pract 2024; 258:155320. [PMID: 38728794 DOI: 10.1016/j.prp.2024.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The objective of this study to examine the effects of curcumin and gallic acid use against oxidative stress damage in the autologous intraperitoneal ovarian transplantation model created in rats on ovarian follicle reserve, ovarian surface epithelium, and oxidant-antioxidant systems. 42 adult female Sprague Dawley rats (n=7) were allocated into 6 groups. Group 1 served as the control. In Group 2, rats underwent ovarian transplantation (TR) to their peritoneal walls. Group 3 received corn oil (CO) (0.5 ml/day) one day before and 14 days after transplantation. Group 4 was administered curcumin (CUR) (100 mg/kg/day), Group 5 received gallic acid (GA) (20 mg/kg/day), and Group 6 was treated with a combination of curcumin and gallic acid via oral gavage after transplantation. Rats were sacrificed on the 14th postoperative day, and blood along with ovaries were collected for analysis. The removed ovaries were analyzed at light microscopic, fluorescence microscopic, and biochemical levels. In Group 2 and Group 3, while serum and tissue Total Oxidant Levels (TOS) and Oxidative Stress Index (OSI) increased, serum Total Antioxidant Levels (TAS) decreased statistically significantly (p˂0.05) compared to the other groups (Groups 1, 4, 5, and 6). The ovarian follicle reserve was preserved and the changes in the ovarian surface epithelium and histopathological findings were reduced in the antioxidant-treated groups (Groups 4, 5, and 6). In addition, immunofluorescence examination revealed that the expression of Cytochrome C and Caspase 3 was stronger and Ki-67 was weaker in Groups 2 and 3, in comparison to the groups that were given antioxidants. It can be said that curcumin and gallic acid have a histological and biochemical protective effect against ischemia-reperfusion injury due to ovarian transplantation, and this effect is stronger when these two antioxidants are applied together compared to individual use.
Collapse
Affiliation(s)
- Kubra Basol Baki
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; Bezmialem Vakif University, Medical Faculty, Department of Histology and Embryology, Istanbul, Türkiye
| | - Tansel Sapmaz
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye.
| | - Kubra Sevgin
- University of Health Sciences, International Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Sude Topkaraoglu
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Esra Erdem
- University of Health Sciences, Vocational School of Health Services, Department of Medical Services and Techniques, Pathology Laboratory Techniques Program, Istanbul 34668, Türkiye
| | - Muhammetnur Tekayev
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Eray Metin Guler
- University of Health Sciences, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Hakan Beyaztas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Kubra Bozali
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Selman Aktas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Türkiye
| | - Oktay Irkorucu
- University of Sharjah, College of Medicine, Department of Clinical Sciences, Sharjah, United Arab Emirates
| | - Ekrem Sapmaz
- University of Health Sciences, Adana City Training and Research Hospital, Department of Gynecology and Obstetrics, Adana, Türkiye
| |
Collapse
|
43
|
Duan H, Yang S, Yang S, Zeng J, Yan Z, Zhang L, Ma X, Dong W, Zhang Y, Zhao X, Hu J, Xiao L. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155468. [PMID: 38471315 DOI: 10.1016/j.phymed.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Animal Science and Technology College, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
44
|
Zhang Y, Wang M, Zhang T, Wang H, Chen Y, Zhou T, Yang R. Spermbots and Their Applications in Assisted Reproduction: Current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:5095-5108. [PMID: 38836008 PMCID: PMC11149708 DOI: 10.2147/ijn.s465548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024] Open
Abstract
Sperm quality is declining dramatically during the past decades. Male infertility has been a serious health and social problem. The sperm cell driven biohybrid nanorobot opens a new era for automated and precise assisted reproduction. Therefore, it is urgent and necessary to conduct an updated review and perspective from the viewpoints of the researchers and clinicians in the field of reproductive medicine. In the present review, we first update the current classification, design, control and applications of various spermbots. Then, by a comprehensive summary of the functional features of sperm cells, the journey of sperms to the oocyte, and sperm-related dysfunctions, we provide a systematic guidance to further improve the design of spermbots. Focusing on the translation of spermbots into clinical practice, we point out that the main challenges are biocompatibility, effectiveness, and ethical issues. Considering the special requirements of assisted reproduction, we also propose the three laws for the clinical usage of spermbots: good genetics, gentle operation and no contamination. Finally, a three-step roadmap is proposed to achieve the goal of clinical translation. We believe that spermbot-based treatments can be validated and approved for in vitro clinical usage in the near future. However, multi-center and multi-disciplinary collaborations are needed to further promote the translation of spermbots into in vivo clinical applications.
Collapse
Affiliation(s)
- Yixuan Zhang
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Min Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, People’s Republic of China
| | - Ting Zhang
- Department of Laboratory Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Wuxi, 214002, People’s Republic of China
| | - Honghua Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, People’s Republic of China
| | - Ying Chen
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Tao Zhou
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Rui Yang
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| |
Collapse
|
45
|
Zhang D, Ji L, Yang Y, Weng J, Ma Y, Liu L, Ma W. Ceria Nanoparticle Systems Alleviate Degenerative Changes in Mouse Postovulatory Aging Oocytes by Reducing Oxidative Stress and Improving Mitochondrial Functions. ACS NANO 2024; 18:13618-13634. [PMID: 38739841 DOI: 10.1021/acsnano.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Postovulatory aging oocytes usually feature diminished potential for fertilization and poor embryonic development due to enhanced oxidative damage to the subcellular organelles and macromolecules, which stands as a formidable obstacle in assisted reproductive technologies (ART). Here, we developed lipoic acid (LA) and polyethylene glycol (PEG)-modified CeO2 nanoparticles (LA-PEG-CeNPs) with biocompatibility, enzyme-like autocatalytic activity, and free radical scavenging capacity. We further investigated the LA-PEG-CeNPs effect in mouse postovulatory oocytes during in vitro aging. The results showed that LA-PEG-CeNPs dramatically reduced the accumulation of ROS in aging oocytes, improving mitochondrial dysfunction; they also down-regulated the pro-apoptotic activity by rectifying cellular caspase-3, cleaved caspase-3, and Bcl-2 levels. Consistently, this nanoenzyme prominently alleviated the proportion of abnormalities in spindle structure, chromosome alignment, microtubule stability, and filamentous actin (F-actin) distribution in aging oocytes, furthermore decreased oocyte fragmentation, and improved its ability of fertilization and development to blastocyst. Taken together, our finding suggests that LA-PEG-CeNPs can alleviate oxidative stress damage on oocyte quality during postovulatory aging, implying their potential value for clinical practice in assisted reproduction.
Collapse
Affiliation(s)
- Danmei Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Lingcun Ji
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiran Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yanmin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
46
|
Valipour J, Taghizadeh F, Esfahani R, Ramesh M, Rastegar T. Role of nuclear factor erythroid 2-related factor 2 (Nrf2) in female and male fertility. Heliyon 2024; 10:e29752. [PMID: 38720768 PMCID: PMC11076650 DOI: 10.1016/j.heliyon.2024.e29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidative stress refers to a condition where there is an imbalance between the production of reactive oxygen species and their removal by antioxidants. While the function of reactive oxygen species as specific second messengers under physiological conditions is necessary, their overproduction can lead to numerous instances of cell and tissue damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of many cytoprotective genes that respond to redox stresses. Nrf2 is regularly degraded by kelch-like ECH-associated protein 1 through the ubiquitin-proteasome pathway. The kelch-like ECH-associated protein 1 and Nrf2 complex have attracted attention in both basic and clinical infertility research fields. Oxidative stress is implicated in the pathogenesis of female infertility, including primary ovarian insufficiency, polycystic ovarian syndrome, and endometriosis, as well as male infertility, namely varicocele, cryptorchidism, spermatic cord torsion, and orchitis. Most scientists believe that Nrf2 is a potential therapeutic method in female and male infertility disorders due to its antioxidant effect. Here, the potential roles of oxidative stress and Nrf2 in female and male infertility disorders are reviewed. Moreover, the key role of Nrf2 in the inhibition or induction of these diseases is discussed.
Collapse
Affiliation(s)
- Jamal Valipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Esfahani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Ramesh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
48
|
Smith GD, Wilcoxen TE, Hudson SB, Virgin EE, Durso AM, Van der Walt M, Spence AR, Neuman‐Lee LA, Webb AC, Terletzky PA, French SS. Anthropogenic and climatic factors interact to influence reproductive timing and effort. Ecol Evol 2024; 14:e11306. [PMID: 38737567 PMCID: PMC11082630 DOI: 10.1002/ece3.11306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/26/2024] [Accepted: 04/07/2024] [Indexed: 05/14/2024] Open
Abstract
Reproduction, although absolutely essential to a species' persistence, is in itself challenging. As anthropogenic change increasingly affects every landscape on Earth, it is critical to understand how specific pressures impact the reproductive efforts of individuals, which directly contribute to the success or failure of populations. However, organisms rarely encounter a single burden at a time, and the interactions of environmental challenges can have compounding effects. Understanding environmental and physiological pressures is difficult because they are often context-dependent and not generalizable, but long-term monitoring across variable landscapes and weather patterns can improve our understanding of these complex interactions. We tested the effects of urbanization, climate, and individual condition on the reproductive investment of wild side-blotched lizards (Uta stansburiana) by measuring physiological/reproductive metrics from six populations in urban and rural areas over six consecutive years of variable precipitation. We observed that reproductive stage affected body condition, corticosterone concentration, and oxidative stress. We also observed that reproductive patterns differed between urban and rural populations depending on rainfall, with rural animals increasing reproductive investment during rainier years compared to urban conspecifics, and that reproductive decisions appeared to occur early in the reproductive process. These results demonstrate the plastic nature of a generalist species optimizing lifetime fitness under varying conditions.
Collapse
Affiliation(s)
- Geoffrey D. Smith
- Department of Biological SciencesUtah Tech UniversitySt. GeorgeUtahUSA
| | | | - Spencer B. Hudson
- Department of BiologyUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
| | - Emily E. Virgin
- Department of BiologyUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
| | - Andrew M. Durso
- Department of Biological SciencesFlorida Gulf Coast UniversityFt. MyersFloridaUSA
| | | | - Austin R. Spence
- Department of Wildlife, Fish, and Conservation BiologyUniversity of California ‐ DavisDavisCaliforniaUSA
| | | | - Alison C. Webb
- Department of BiologyUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
| | - Patricia A. Terletzky
- Ecology CenterUtah State UniversityLoganUtahUSA
- Department of Wildland ResourcesUtah State UniversityLoganUtahUSA
| | - Susannah S. French
- Department of BiologyUtah State UniversityLoganUtahUSA
- Ecology CenterUtah State UniversityLoganUtahUSA
| |
Collapse
|
49
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Reactive oxygen species signalling in the deterioration of quality of mammalian oocytes cultured in vitro: Protective effect of antioxidants. Cell Signal 2024; 117:111103. [PMID: 38367792 DOI: 10.1016/j.cellsig.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
50
|
Kircali-Haznedar N, Mumusoglu S, Bilgic P. How phytochemicals influence reproductive outcomes in women receiving assisted reproductive techniques: a systematic review. Nutr Rev 2024:nuae037. [PMID: 38641329 DOI: 10.1093/nutrit/nuae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
CONTEXT Over the past few years, there has been an increasing amount of scholarly literature suggesting a connection between the nutritional status of pregnant mothers and early fetal development, as well as the long-term health consequences of their offspring. Multiple studies have documented that alterations in dietary patterns prior to conception have the potential to affect the initial stages of embryonic development. OBJECTIVES The aim of this study was to perform a comprehensive review of the research pertaining to the correlation between phytochemicals ( specifically, polyphenols, carotenoids and phytoestrogens) and assisted reproductive technology (ART). DATA SOURCES PubMed, Scopus, Web of Science, and Clinical Trials databases were searched from January 1978 to March 2023. STUDY SELECTION This study comprised observational, randomized controlled, and cohort studies that examined the effects of phytochemicals on ART results. The study's outcomes encompass live birth rate, clinical pregnancy, and ongoing pregnancy. DATA EXTRACTION The assessment of study quality was conducted by 2 researchers, independently, using the Quality Criteria Checklist for Primary Research. RESULTS A total of 13 studies were included, of which there were 5 randomized controlled studies, 1 nonrandomized controlled study, 6 prospective cohort studies, and 1 retrospective cohort study. CONCLUSION This research focused on investigating the impact of phytochemicals on ART and has highlighted a dearth of articles addressing that topic. Collaboration among patients, physicians, and nutritionists is crucial for doing novel research. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023426332.
Collapse
Affiliation(s)
- Nagihan Kircali-Haznedar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Selcuk University, Selcuklu, Konya, Türkiye
| | - Sezcan Mumusoglu
- Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Pelin Bilgic
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Türkiye
| |
Collapse
|