1
|
Berger T, Vanselow J, Conley A, Almand TJ, Nitta-Oda BS. Multifaceted epigenetic regulation of porcine testicular aromatase. Mol Cell Endocrinol 2022; 541:111526. [PMID: 34856344 DOI: 10.1016/j.mce.2021.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022]
Abstract
Testicular aromatase catalyzes the synthesis of estradiol, which contributes to regulation of porcine Sertoli cell proliferation and postpubertal maintenance of Sertoli cell numbers. Although aromatase enzymatic activity decreases with age and is persistently reprogrammed by prepubertal treatment with the aromatase inhibitor letrozole, the molecular bases for regulation have not been identified. DNA methylation was examined as a potential regulatory mechanism using DNA from Leydig cells isolated from 16-, 40-, and 68-week-old boars and from 68- week-old littermates treated with the aromatase inhibitor, letrozole. Methylation levels of individual CpG dinucleotides located in the distal untranslated exon 1 of the relevant aromatase encoding gene, CYP19A3, were quite high in Leydig cell DNA, and increased further with maturity of boar (P < 0.05), while aromatase activity and transcript abundance decreased more than two-fold. However, reduced aromatase activity following letrozole treatment was not accompanied by altered DNA methylation. Testicular expression of miR378 was altered by prepubertal treatment with letrozole. The data provide evidence for two different epigenetic mechanisms that regulate aromatase expression and enzymatic activity in the boar testis.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| | - Jens Vanselow
- Research Institute for Farm Animal Biology FBN, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alan Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Tana Jo Almand
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| | - Barbara S Nitta-Oda
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Lee KH. Expressional Modulation of Aquaporin 1 and 9 in the Rat Epididymis by
an Anabolic-Androgenic Steroid, Nandrolone Decanoate. Dev Reprod 2021; 25:245-255. [PMID: 35141450 PMCID: PMC8807133 DOI: 10.12717/dr.2021.25.4.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022]
Abstract
The spermatozoa become mature in the epididymis which is divided into initial
segment and caput, corpus, and cauda epididymis. The water movement across the
epididymal epithelium is important for creating luminal microenvironment for
sperm maturation. Aquaporins (Aqps) are water channel proteins,
and expression of Aqps is regulated by androgens. The current
research was focused to examine expressional regulation of Aqp1
and Aqp9 by an androgenic-anabolic steroid, nandrolone
decanoate (ND). The ND at the low dose (2 mg/ kg body weight/week) or high dose
(10 mg) was subcutaneously administrated into male rats for 2 or 12 weeks.
Transcript levels of Aqp1 and Aqp9 were
determined by quantitative real-time polymerase chain reaction (PCR) analyses.
In the initial segment, level of Aqp1 was decreased with 12
week-treatment, while Aqp9 level was decreased by the high dose
treatment for 12 weeks. In the caput epididymis, Aqp9
expression was decreased by the low dose treatment. The 2 week-treatment
resulted in an increase of Aqp1 level but a decrease of
Aqp9 expression in the corpus epididymis. In the corpus
epididymis, the 12 week-treatment at the low dose caused the reduction of
Aqp1 and Aqp9 levels, but the high dose
treatment resulted in an increase of Aqp1 expression and a
decrease of Aqp9 level. In the cauda epididymis,
Aqp1 expression was decreased by 2 and 12 week-treatments,
while increases of Aqp9 levels was detected with the high dose
treatment for 2 weeks and with 12 week-treatment. These findings indicate
differential regulation of Aqp1 and Aqp9
expression among epididymal segments by ND.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular
Biology, College of Medicine, Eulji University,
Daejeon 34824, Korea
- Corresponding author Ki-Ho Lee, Dept. of
Biochemistry and Molecular Biology, Eulji University, Daejeon 34824, Korea. Tel:
+82-42-259-1643, Fax:
+82-42-259-1649, E-mail:
| |
Collapse
|
3
|
Menad R, Fernini M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Farida K, Bonnet X, Moudilou E, Exbrayat JM. Androgen and estrogen receptors immunolocalization in the sand rat (Psammomys Obesus) cauda epididymis. Acta Histochem 2021; 123:151683. [PMID: 33508524 DOI: 10.1016/j.acthis.2021.151683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/06/2022]
Abstract
Both androgens and estrogens play key, albeit incompletely described, roles in the functioning of the epididymis. Because this tightly-coiled tubular structure is compartmented, precise mapping of the distribution of sex steroid's receptors is important. Such receptors have been located in the first segments (caput, corpus), but the last part (cauda) remains poorly explored. We used immunochemistry to localize androgen (AR) and estrogen (ESR1 and ESR2) receptors in the cauda in the fat sand rat (Psammomys obesus). We compared results obtained during the breeding versus resting seasons. We also used individuals castrated, or castrated then treated with testosterone, or subjected to the ligation of their efferent ducts. During the breeding season, in principal cells, we found strong staining both for AR and ESR1 in the apical cytoplasm, and strong staining for ESR2 in the nucleus. During the resting season, principal cells were positive for AR and ESR1, but negative for ESR2. In castrated animals, staining was null for ESR2 and AR, and weak for ESR1. In castrated then treated animals, immuno-expression was restored but only for AR and ESR1. Following efferent duct ligation, AR reactivity decreased while ESR1 and ESR2 provided strong staining. Broadly similar, but not fully identical patterns were observed in basal cells. They were positive for ESR2 and AR during the breeding season, but not for ESR1. During the resting season, staining was modest for ESR1 and AR and negative for ESR2. In all experimentally treated animals, we observed weak staining for AR and ESR1, and a lack of signal for ESR2. Overall, this study provides strong evidence that androgens and estrogens are involved in the seasonal regulation of the whole epididymis in the fat sand rat, with marked differences between caput and cauda (the corpus is highly reduced in rodent).
Collapse
|
4
|
Ge W, Xiao L, Duan H, Jiang Y, Lv J, Ding Z, Hu J, Zhao X, Zhang Y. Androgen receptor, aromatase, oestrogen receptor α/β and G protein-coupled receptor 30 expression in the testes and epididymides of adult sheep. Reprod Domest Anim 2020; 55:460-468. [PMID: 31958357 DOI: 10.1111/rda.13638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/12/2020] [Indexed: 12/29/2022]
Abstract
The androgen receptor (AR) plays a key role in reproduction, and aromatase (P450arom), nuclear oestrogen receptors (ERs) α and β, and G protein-coupled receptor 30 (GPR30) are important for testicular and epididymal cell proliferation and development. In the study, we have investigated the expression and localization of AR, P450arom, ERα, ERβ and GPR30 in testes and epididymides of sexually mature sheep by quantitative reverse transcription-polymerase chain reaction, Western blotting and immunohistochemistry. The results demonstrate that the AR, P450arom and ERα levels in the caput and corpus epididymis were significantly lower than those in the testis and cauda epididymis (p < .05), the ERβ level in the testis was significantly higher than in the caput, corpus and cauda epididymis (p < .05), and the GPR30 level in the caput epididymis was significantly lower than in the testis and corpus and cauda epididymis (p < .05). These receptors were mainly detected in epididymal epithelial, basal, smooth muscle, Sertoli and Leydig cells, as well as in spermatozoa. Taken together, the results suggest that sheep epididymides and testes have the potential for estradiol synthesis and are the targets of both androgens and estradiol. These results provide a foundation for further studies on the mechanisms of androgens and estradiol signalling in the testes and epididymides of sheep.
Collapse
Affiliation(s)
- Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Wang J, Liu Q, Qi H, Wang Y, Gao Q, Gao F, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of androgen receptor, P450arom and estrogen receptors in the epididymis of the wild ground squirrel (Citellus dauricus Brandt). Gen Comp Endocrinol 2019; 270:131-138. [PMID: 30539793 DOI: 10.1016/j.ygcen.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/08/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the seasonal expressions of androgen receptor (AR), estrogen receptors alpha and beta (ERα and ERβ) and aromatase cytochrome P450 (P450arom) in the epididymis of the wild ground squirrel. Histologically, the epididymis was with larger duct diameter and cell population during the breeding season. AR was presented in the peritubular smooth muscle cells and epithelial cells in the whole epididymis with stronger staining in the breeding period. P450arom was intensely localized in epithelial cells and spermatozoa during the breeding season, absent in the non-breeding season and moderately stained in pre-hibernation. During the breeding season, ERα was intensely expressed in epithelial cytoplasm and/or nucleus, whereas in the non-breeding season and pre-hibernation, weaker staining signal was found in nucleus of epithelial cells. ERβ was absent in the entire annual cycle by immunohistochemical and Real-time PCR detection. The mRNA levels of AR, P450arom and ERα were higher in the epididymis of the breeding season when compared to those of the non-breeding season and pre-hibernation. Taken together, these results suggest that epididymis of the wild ground squirrel is a primary target for androgen and estrogen, and the expression of P450arom represents that epididymis may be a potential source of estrogen.
Collapse
Affiliation(s)
- Junjie Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qian Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Hongyu Qi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yi Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qiong Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fuli Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Hess RA. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis. SPERMATOGENESIS 2014; 4:e979103. [PMID: 26413389 PMCID: PMC4581051 DOI: 10.4161/21565562.2014.979103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.
Collapse
Affiliation(s)
- Rex A Hess
- Reproductive Biology & Toxicology; Department of Comparative Biosciences; College of Veterinary Medicine; University of Illinois ; Urbana, IL USA
| |
Collapse
|
7
|
Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Joensen UN, Main KM, Skakkebaek NE, Juul A, Jørgensen N, Andersson AM. Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:478-84. [PMID: 24786630 PMCID: PMC4014766 DOI: 10.1289/ehp.1307309] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Few human studies have examined bisphenol A (BPA) exposure in relation to semen quality and reproductive hormones in men, and results are divergent. OBJECTIVES We examined associations between urinary BPA concentration and reproductive hormones, as well as semen quality, in young men from the general population. METHODS Our study population consisted of 308 young men from the general population. Urinary BPA concentration was measured by isotope dilution TurboFlow-liquid chromatography-tandem mass spectrometry. We used multiple linear regression analysis to estimate associations between BPA concentration and reproductive hormones and semen quality, adjusting for confounding factors. RESULTS We found that 98% of the men had detectable urinary levels of BPA. Median (5th-95th percentiles) BPA concentration was 3.25 ng/mL (0.59-14.89 ng/mL). Men with BPA concentrations above the lowest quartile had higher concentrations of serum testosterone, luteinizing hormone (LH), estradiol, and free testosterone compared with the lowest quartile (p trend ≤ 0.02). Men in the highest quartile of BPA excretion had on average 18% higher total testosterone (95% CI: 8, 28%), 22% higher LH (95% CI: 6, 39%), and 13% higher estradiol (95% CI: 4, 24%) compared with lowest quartile. Men in the highest quartile of BPA also had significantly lower percentage progressive motile spermatozoa compared with men in the lowest quartile (-6.7 percentage points, 95% CI: -11.76, -1.63). BPA was not associated with other semen parameters. Adjusting for dietary patterns did not influence the results. CONCLUSIONS The pattern of associations between BPA and reproductive hormones could indicate an antiandrogenic or antiestrogenic effect, or both, of BPA on the hypothalamic-pituitary-gonadal hormone feedback system, possibly through a competitive inhibition at the receptor level. However, additional research is needed to confirm our findings and to further test the suggested potential mechanisms.
Collapse
Affiliation(s)
- Tina Harmer Lassen
- University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Menad R, Smaï S, Moudilou E, Khammar F, Exbrayat JM, Gernigon-Spychalowicz T. Immunolocalization of estrogen and androgen receptors in the caput epididymidis of the fat sand rat (Psammomys obesus): Effects of seasonal variations, castration and efferent duct ligation. Acta Histochem 2014; 116:559-69. [PMID: 24360974 DOI: 10.1016/j.acthis.2013.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 12/05/2022]
Abstract
The fat sand rat (Psammomys obesus) is a model to study seasonal reproductive cycle changes and several metabolic disorders. In order to show a possible involvement of estrogens in the male reproductive functions, the expression of estrogen receptors (ESR1 and ESR2) and androgen receptor (AR) were investigated in the caput epididymidis of fat sand rats during the breeding season, resting season, after castration, after castration followed by testosterone treatment, and after ligation of efferent ducts. In the breeding season, principal cells presented a strong immunostaining of AR in both nuclei and cytoplasm, a strong staining of ESR1, mainly in the apical zone, and a strong immunoexpression of ESR2, mainly in nuclei. In the resting season, a moderate immunostaining of AR in both cytoplasm and nuclei was observed. ESR1 staining showed a strong immunoreactivity in the nuclei. In contrast, the nuclei were negative for ESR2. After castration, a low and selective signal distribution was observed: the nuclei were moderately positive for AR and ESR2, and negative for ESR1. After castration and testosterone treatment, an androgen-dependence for AR and the restoration of ESR1 but not ESR2 immunoexpression were observed. After ligation of the efferent ducts, a considerable reduction of AR immunoreactivity was observed in contrast to ESR1 and ESR2, which gave a strong immunostaining signal. These results illustrate the complexity of the regulation of the androgen and estrogen receptor expression in the epididymis and argue for the coexistence of both androgenic and estrogenic pathways.
Collapse
|
9
|
Pereira MFN, Fernandes SAF, Nascimento AR, Siu ER, Hess RA, Oliveira CA, Porto CS, Lazari MFM. Effects of the oestrogen receptor antagonist Fulvestrant on expression of genes that affect organization of the epididymal epithelium. Andrology 2014; 2:559-71. [PMID: 24782439 DOI: 10.1111/j.2047-2927.2014.00219.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
Abstract
The role of oestrogens in epididymal function is still unclear. Knockout of the oestrogen receptor ESR1 (Esr1(-/-) ) or treatment with the anti-oestrogen Fulvestrant affect epididymal milieu and sperm motility. We investigated the effect of in vivo treatment of rats with Fulvestrant on: (i) expression of genes that may be important for the architecture and function of the epididymal epithelium: prominins 1 and 2, metalloproteinase 7, claudin 7, beta-catenin and cadherin 13, and (ii) levels of oestradiol and testosterone, and expression of oestrogen and androgen receptors, in the initial segment (IS), caput, corpus and cauda epididymis. Fulvestrant (i) reduced gene expression of prominin 1 (variant 1) in the caput, reduced prominin 1 protein content in the caput epididymis and in the efferent ductules, and increased the localization of prominin 1 in microvilli of the caput and corpus; (ii) reduced gene expression of prominin 2 in the corpus and cauda epididymis; (iii) increased the metalloproteinase 7 content in the apical region of principal cells from IS/caput; (iv) reduced in the corpus epididymis, but increased in the efferent ductules, the cadherin 13 mRNA level; (v) reduced testosterone but increased oestradiol levels in the corpus and cauda; (vi) increased the androgen receptor protein content in all regions of the epididymis, and the oestrogen receptor GPER in the corpus and cauda epididymis. In conclusion, treatment with Fulvestrant induced regional-specific changes in hormonal and steroid receptor content, and affected expression of proteins important for epithelial organization and absorption/secretion. The mechanisms of oestrogen action may differ among epididymal regions, which may contribute to determine region-specific sperm functions.
Collapse
Affiliation(s)
- M F N Pereira
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zaya R, Hennick C, Pearl CA. In vitro expression of androgen and estrogen receptors in prepubertal and adult rat epididymis. Gen Comp Endocrinol 2012; 178:573-86. [PMID: 22809666 DOI: 10.1016/j.ygcen.2012.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 11/26/2022]
Abstract
Androgens and estrogens regulate epididymal function but the mechanisms by which these hormones act is not fully understood. Epididymal culture systems have been described but none of these identify if AR, ERα and ERβ are expressed concurrently under identical culture conditions. Presumably, the actions of androgens and estrogens require their receptors and our results demonstrate for the first time that rat epididymal cell cultures express AR, ERα and ERβ protein under identical culture conditions. Furthermore, we demonstrate that the expression of these receptors in vitro mirrors normal in vivo expression patterns, a key finding for past and future studies. An epididymal culture system that maintains expression of androgen and estrogen receptors will allow for future investigations into the regulation and function of the epididymis. Previous studies showing prepubertal expression of ERα, did not find ERα expression in adult animals, making our study the first to demonstrate both prepubertal and adult expression of ERα. Additionally, species differences have been suggested to exist with regards to epididymal expression of ERα. Our results are the first to experimentally compare ERα expression in two different rat species and show that expression is similar between the two species. The expression of ERα and ERβ protein prior to puberty and into adulthood provides further supports for the hypothesis that the epididymis may be influenced by estrogens, in addition to androgens, during development and mature function.
Collapse
Affiliation(s)
- Renee Zaya
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI 49008, USA
| | | | | |
Collapse
|
11
|
Sperm head morphometry in ejaculates of adult marmosets (Callithrix jacchus): A model for studying sperm subpopulations and among-donor variations. Theriogenology 2012; 78:1152-65. [DOI: 10.1016/j.theriogenology.2012.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/20/2012] [Accepted: 05/20/2012] [Indexed: 11/22/2022]
|
12
|
Abstract
Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies.
Collapse
Affiliation(s)
- Carlos Stocco
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
13
|
Lee IW, Kuo PH, Su MT, Kuan LC, Hsu CC, Kuo PL. Quantitative trait analysis suggests polymorphisms of estrogen-related genes regulate human sperm concentrations and motility. Hum Reprod 2011; 26:1585-96. [PMID: 21429951 DOI: 10.1093/humrep/der062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human spermatogenesis is regulated by complex networks, and estrogens are recognized as one of the significant regulators of spermatogenesis. We tested the associations between variants of estrogen-related genes and semen parameters. METHODS We performed genotyping for genetic variants of estrogen-related genes and quantitative trait analysis of fertile and infertile men with well-characterized reproductive phenotypes. Men with known semen parameters (n= 677) were enrolled, including 210 fertile men and 467 infertile men. A total of 17 genetic markers from 10 genes, including 2 estrogen receptors (ER-α, ER-β), 7 estrogen synthesizing/metabolizing genes (CYP19A1, HSD17B1, CYP1A1, CYP1B1, COMT, GSTM1, GSTT1) and 1 transport gene (SHBG) were genotyped. Sperm concentration, motility and morphology were taken as quantitative traits to correlate with genetic variants in the estrogen-related genes. RESULTS Five genes (rs1801132 and rs2228480 of the ER-α gene, rs1256049 and rs4986938 of the ER-β gene, rs605059 of the HSD17B1 gene, rs1799941 of the SHBG gene and rs1048943 and rs4646903 of the CYP1A1 gene) were found to be significantly associated with sperm concentration (P< 0.01), while five genes (rs1801132 of the ER-a gene, rs1256049 of the ER-β gene, rs1048943 of the CYP1A1 gene, rs605059 of the HSD17B1 gene and rs1799941 along with rs6259 of the SHBG gene) were associated with sperm motility (P< 0.01). None of the estrogen-related genes were associated with sperm morphology. With an increasing number of risk alleles, sperm concentration and motility tended to deteriorate and show a loci-dosage effect. CONCLUSIONS Quantitative trait analysis based on a limited number of genetic markers suggests that estrogen-related genes mainly regulate sperm concentration and motility.
Collapse
Affiliation(s)
- I-Wen Lee
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Estrogen's presence in the male reproductive system has been known for over 60 years, but its potential function in the epididymis remains an important area of investigation. Estrogen is synthesized by germ cells, producing a relatively high concentration in rete testis fluid. There are two estrogen receptors (ESR), the presence of which in the head of the epididymis is well documented and consistent between species; however, in other regions of the epididymis, their expression appears to be isotype, species, and cell specific. ESR1 is expressed constitutively in the epididymis; however, its presence is downregulated by high doses of estrogen, making the design of experiments complicated, as the phenotype of the Cyp19a1(-/-) mouse does not resemble that of the Esr1(-/-) mouse. Ligand-independent and DNA-binding Esr1 mutant models further demonstrate the complexity and importance of both signaling pathways in maintenance of efferent ductules and epididymis. Data now reveal the presence of not only classical nuclear receptors, but also cytoplasmic ESR and rapid responding membrane receptors; however, their importance in the epididymis remains undetermined. ESR1 regulates ion transport and water reabsorption in the efferent ducts and epididymis, and its regulation of other associated genes is continually being uncovered. In the male, some genes, such as Aqp9 and Slc9a3, contain both androgen and estrogen response elements and are dually regulated by these hormones. While estrogen pathways are a necessity for fertility in the male, future studies are needed to understand the interplay between androgens and estrogens in epididymal tissues, particularly in cell types that contain both receptors and their cofactors.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
15
|
Fernandes SAF, Gomes GRO, Siu ER, Damas-Souza DM, Bruni-Cardoso A, Augusto TM, Lazari MFM, Carvalho HF, Porto CS. The anti-oestrogen fulvestrant (ICI 182,780) reduces the androgen receptor expression, ERK1/2 phosphorylation and cell proliferation in the rat ventral prostate. ACTA ACUST UNITED AC 2010; 34:486-500. [DOI: 10.1111/j.1365-2605.2010.01109.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Lazari MFM, Lucas TFG, Yasuhara F, Gomes GRO, Siu ER, Royer C, Fernandes SAF, Porto CS. Estrogen receptors and function in the male reproductive system. ACTA ACUST UNITED AC 2009; 53:923-33. [DOI: 10.1590/s0004-27302009000800005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 05/26/2023]
Abstract
A substantial advance in our understanding on the estrogen signaling occurred in the last decade. Estrogens interact with two receptors, ESR1 and ESR2, also known as ERα and ERβ, respectively. ESR1 and ESR2 belong to the nuclear receptor family of transcription factors. In addition to the well established transcriptional effects, estrogens can mediate rapid signaling, triggered within seconds or minutes. These rapid effects can be mediated by ESRs or the G protein-coupled estrogen receptor GPER, also known as GPR30. The effects of estrogen on cell proliferation, differentiation and apoptosis are often mediated by growth factors. The understanding of the cross-talk between androgen, estrogen and growth factors signaling pathways is therefore essential to understand the physiopathological mechanisms of estrogen action. In this review we focused on recent discoveries about the nature of the estrogen receptors, and on the signaling and function of estrogen in the male reproductive system.
Collapse
|
17
|
Deshpande SN, Vijayakumar G, Rao AJ. Oestrogenic regulation and differential expression of WNT4 in the bonnet monkey and rodent epididymis. Reprod Biomed Online 2009; 18:555-61. [PMID: 19400999 DOI: 10.1016/s1472-6483(10)60134-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A role for oestrogen in regulating fluid reabsorption in the monkey epididymis was recently demonstrated. Here, these studies are extended to identify potential oestrogen-regulated proteins in the cauda region of monkey epididymis treated with vehicle and oestrogen receptor antagonist (ICI 182780). Two-dimensional electrophoretic analysis was used to identify the proteins. The results indicated down-regulation of WNT4 in the ICI-182780-treated monkey cauda. In addition, the Wnt4 mRNA concentration was also reduced in the caput regions of ICI-182780- treated rats and oestrogen receptor knockout mice. WNT4 is a key regulator of gonadal differentiation in humans and mice and plays a pivotal role in early mouse embryogenesis. The results of the present study establish the presence of WNT4 in the monkey epididymis and its regulation by oestrogen, and suggest a role for WNT4 in maintaining epididymal homeostasis.
Collapse
Affiliation(s)
- Shayu N Deshpande
- Department of Developmental Biology, Memorial Sloan Kettering Cancer Research Centre, New York, NY 10021, USA
| | | | | |
Collapse
|
18
|
Yasuhara F, Gomes GRO, Siu ER, Suenaga CI, Maróstica E, Porto CS, Lazari MFM. Effects of the antiestrogen fulvestrant (ICI 182,780) on gene expression of the rat efferent ductules. Biol Reprod 2008; 79:432-41. [PMID: 18495684 DOI: 10.1095/biolreprod.107.067413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The efferent ductules express the highest amount of estrogen receptors ESR1 (ERalpha) and ESR2 (ERbeta) within the male reproductive tract. Treatment of rats with the antiestrogen fulvestrant (ICI 182,780) causes inhibition of fluid reabsorption in the efferent ductules, leading to seminiferous tubule atrophy and infertility. To provide a more comprehensive knowledge about the molecular targets for estrogen in the rat efferent ductules, we investigated the effects of ICI 182,780 treatment on gene expression using a microarray approach. Treatment with ICI 182,780 increased or reduced at least 2-fold the expression of 263 and 98 genes, respectively. Not surprisingly, several genes that encode ion channels and macromolecule transporters were affected. Interestingly, treatment with ICI 182,780 markedly altered the expression of genes related to extracellular matrix organization. Matrix metalloproteinase 7 (Mmp7), osteopontin (Spp1), and neuronal pentraxin 1 (Nptx1) were among the most altered genes in this category. Upregulation of Mmp7 and Spp1 and downregulation of Nptx1 were validated by Northern blot. Increase in Mmp7 expression was further confirmed by immunohistochemistry and probably accounted for the decrease in collagen content observed in the efferent ductules of ICI 182,780-treated animals. Downregulation of Nptx1 probably contributed to the extracellular matrix changes and decreased amyloid deposition in the efferent ductules of ICI 182,780-treated animals. Identification of new molecular targets for estrogen action may help elucidate the regulatory role of this hormone in the male reproductive tract.
Collapse
Affiliation(s)
- Fabiana Yasuhara
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu DY, Li Y, Bi ZW, Yu HM, Li XJ. Expression and Immunohistochemical Localization of Aquaporin-1 in Male Reproductive Organs of the Mouse. Anat Histol Embryol 2007; 37:1-8. [DOI: 10.1111/j.1439-0264.2007.00827.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Pearl CA, Berger T, Roser JF. Estrogen and androgen receptor expression in relation to steroid concentrations in the adult boar epididymis. Domest Anim Endocrinol 2007; 33:451-9. [PMID: 17034985 DOI: 10.1016/j.domaniend.2006.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The steroid hormone regulation of the epididymis in a high estrogen producing animal like the boar is not currently understood. To test the hypothesis that the boar epididymis is an estrogen and androgen responsive tissue, the presence of estrogen and androgen receptors, in conjunction with steroid hormone concentrations were investigated in the boar epididymis. Epididymal (caput, corpus, cauda) and testicular samples of boars (1-2.5 years; n=5) were collected for immunolocalization of estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta) and androgen receptor (AR). Concentrations of testosterone, estradiol and estrogen conjugates (EC) in the tissue were also determined. AR and ERbeta were localized in the principal and basal cells of all three epididymal regions. ERalpha was localized in the principal cells of the caput, some cells of the corpus and was not present in the cauda. Testosterone (p<0.0001), estradiol (p<0.0001) and EC (p<0.005) were significantly lower in the epididymis compared with the testis. The epididymal regions were not significantly different from each other for testosterone (p>0.15) or estradiol (p>0.09). EC were significantly higher in the corpus than either the caput (p=0.003) or cauda (p=0.002). These results suggest that the boar epididymis is responsive to both estrogens and androgens and that both steroid hormones are important for proper epididymal function. Since testosterone and estradiol concentrations are similar throughout the epididymis, regional differences in steroid hormone regulation are likely due to differences in receptor expression.
Collapse
Affiliation(s)
- Christopher A Pearl
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | | | | |
Collapse
|
21
|
Pearl CA, At-Taras E, Berger T, Roser JF. Reduced endogenous estrogen delays epididymal development but has no effect on efferent duct morphology in boars. Reproduction 2007; 134:593-604. [PMID: 17890295 DOI: 10.1530/rep-06-0239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study presented herein was designed to test the hypothesis that reduced endogenous estrogen in the boar alters efferent duct morphology, epididymal morphology, and steroid receptor expression. Twenty-eight littermate pairs of boars were treated with Letrozole, an aromatase inhibitor, or with vehicle from 1 week of age until castration at 2 through 8 months. Efferent ducts and epididymides were examined for morphological development and steroid receptor expression. Efferent duct morphology was not different between control and Letrozole-treated animals at any examined age. Androgen receptor (AR), estrogen receptor α (ERα), and β (ERβ) were expressed in the epithelial cells of the efferent ducts at all ages; expression was similar in control and treated animals. Morphological development of the caput and corpus was delayed in Letrozole-treated animals, but this delay was transient since morphology was similar between control and treated animals at 8 months. The cauda did not show a delay in development, but was more developed in treated animals at 2 months. AR, ERα, and ERβ were expressed in all three epididymal regions; no difference was observed between control and treated animals. In summary, estrogen appears to be important for development of the epididymis; however, the cauda may be regulated differently than the caput and corpus. Results for the efferent ducts suggest that the normally high endogenous estrogens are not required for regulation of fluid reabsorption in the boar. It also suggests that any ER activation required for maintenance of efferent duct morphology and function is normal in Letrozole-treated boars.
Collapse
Affiliation(s)
- Christopher A Pearl
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
22
|
Shayu D, Rao AJ. Expression of functional aromatase in the epididymis: role of androgens and LH in modulation of expression and activity. Mol Cell Endocrinol 2006; 249:40-50. [PMID: 16569475 DOI: 10.1016/j.mce.2006.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/18/2006] [Indexed: 11/21/2022]
Abstract
The primary source of 17beta-estradiol (E2) in the male is the testis, which expresses the enzyme complex aromatase that is involved in E2 biosynthesis. However, recent evidences suggest that the epididymis is also capable of E2 biosynthesis. Our results demonstrate the presence of cytochrome P450 aromatase (P450(AROM)) and 17beta-hydroxysteroid dehydrogenase I messenger ribonucleic acid (mRNA) in the caput and cauda regions of rat epididymis. The androgenic substrates testosterone and androstenedione could be utilized by the rat epididymal aromatase for E2 biosynthesis as assessed by radioimmunoassay. P450(AROM) expression is transcriptionally regulated in a tissue-specific manner by various factors including androgens and luteinizing hormone (LH). Androgens could positively modulate epididymal P450(AROM) mRNA levels as assessed by castration studies, treatment with flutamide or in vitro incubation of tissue minces with 5 alpha-dihydrotestosterone (DHT). Several extra-gonadal tissues including the epididymis are known to express LH receptors (LHR). Our study revealed a higher level of LHR mRNA expression in the cauda region compared to the caput. Caudal membrane extracts could bind human chorionic gonadotropin (hCG), which resulted in the production of cAMP. Interestingly, hCG could also regulate P450(AROM) mRNA expression in vitro and enhance E2 biosynthesis. Together our results highlight the presence of a functional aromatase in the epididymis that is subject to regulation by LH and androgens.
Collapse
Affiliation(s)
- D Shayu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
23
|
McCarthy MJ, At-Taras EE, Pearl CA, Nitta-Oda BS, Roser JF, Conley AJ, Berger T. Suppression of endogenous estrogen during development affects porcine epididymal sperm maturation. Mol Reprod Dev 2006; 73:1122-8. [PMID: 16804882 DOI: 10.1002/mrd.20519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen plays an important role in male reproduction, critical for sustained fertility in some species. Reducing estrogen's interaction with its receptor(s) in monkey and mouse models is associated with reduced sperm motility and, in some cases, documented elimination of sperm fertilizing ability, suggesting that normal epididymal function may be estrogen dependent. The objective of these experiments was to evaluate the effects of reduced endogenous estrogen on development of epididymal function in the pig, a species in which males have very high levels of endogenous estrogen. Letrozole, a potent inhibitor of estrogen synthesis, was administered to neonatal boars from 1 week of age and markedly suppressed estrogen production. Epididymal function assessed as acquisition of sperm fertilizing ability (in vitro fertilization of zona-free oocytes) was reduced in Letrozole-treated animals at 24 and 28 weeks of age (23% and 30% fertilization, respectively compared with 37% and 54% in vehicle controls) but had recovered by 32 weeks of age. Cauda epididymal sperm numbers were reduced in treated animals (35% of control values at 20 weeks of age) but appeared to be recovering at 32 weeks of age. Reduction of endogenous estrogen had no effect on other aspects of epididymal function (percentage of motile sperm, sperm motion parameters, sperm head morphometrics, or ability of sperm to undergo an acrosome reaction). Reducing endogenous estrogen during postnatal development appears to have transient effects on porcine epididymal function. These transient effects suggest that the pig, with its high endogenous estrogen, may respond differently than other species to reduced estrogen synthesis.
Collapse
Affiliation(s)
- Megan J McCarthy
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, 95616-8521, USA
| | | | | | | | | | | | | |
Collapse
|