1
|
Di Giorgio E, Xodo S, Orsaria M, Mariuzzi L, Picco R, Tolotto V, Cortolezzis Y, D'Este F, Grandi N, Driul L, Londero A, Xodo LE. The central role of creatine and polyamines in fetal growth restriction. FASEB J 2024; 38:e70222. [PMID: 39614665 DOI: 10.1096/fj.202401946r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Placental insufficiency often correlates with fetal growth restriction (FGR), a condition that has both short- and long-term effects on the health of the newborn. In our study, we analyzed placental tissue from infants with FGR and from infants classified as small for gestational age (SGA) or appropriate for gestational age (AGA), performing comprehensive analyses that included transcriptomics and metabolomics. By examining villus tissue biopsies and 3D trophoblast organoids, we identified significant metabolic changes in placentas associated with FGR. These changes include adaptations to reduced oxygen levels and modifications in arginine metabolism, particularly within the polyamine and creatine phosphate synthesis pathways. Specifically, we found that placentas with FGR utilize arginine to produce phosphocreatine, a crucial energy reservoir for ATP production that is essential for maintaining trophoblast function. In addition, we found polyamine insufficiency in FGR placentas due to increased SAT1 expression. SAT1 facilitates the acetylation and subsequent elimination of spermine and spermidine from trophoblasts, resulting in a deficit of polyamines that cannot be compensated by arginine or polyamine supplementation alone, unless SAT1 expression is suppressed. Our study contributes significantly to the understanding of metabolic adaptations associated with placental dysfunction and provides valuable insights into potential therapeutic opportunities for the future.
Collapse
Affiliation(s)
| | - Serena Xodo
- Clinic of Obstetrics and Gynecology, Santa Maria della Misericordia Hospital, ASUFC, Udine, Italy
| | - Maria Orsaria
- Institute of Pathology, Department of Medicine, University of Udine, Udine, Italy
| | - Laura Mariuzzi
- Institute of Pathology, Department of Medicine, University of Udine, Udine, Italy
| | | | | | | | | | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Lorenza Driul
- Department of Medicine, University of Udine, Udine, Italy
- Clinic of Obstetrics and Gynecology, Santa Maria della Misericordia Hospital, ASUFC, Udine, Italy
| | - Ambrogio Londero
- Obstetrics and Gynecology Unit, IRCCS Institute Giannina Gaslini, Genova, Italy
| | - Luigi E Xodo
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
2
|
Li Q, Wei X, Wu F, Qin C, Dong J, Chen C, Lin Y. Development and validation of preeclampsia predictive models using key genes from bioinformatics and machine learning approaches. Front Immunol 2024; 15:1416297. [PMID: 39544937 PMCID: PMC11560445 DOI: 10.3389/fimmu.2024.1416297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Background Preeclampsia (PE) poses significant diagnostic and therapeutic challenges. This study aims to identify novel genes for potential diagnostic and therapeutic targets, illuminating the immune mechanisms involved. Methods Three GEO datasets were analyzed, merging two for training set, and using the third for external validation. Intersection analysis of differentially expressed genes (DEGs) and WGCNA highlighted candidate genes. These were further refined through LASSO, SVM-RFE, and RF algorithms to identify diagnostic hub genes. Diagnostic efficacy was assessed using ROC curves. A predictive nomogram and fully Connected Neural Network (FCNN) were developed for PE prediction. ssGSEA and correlation analysis were employed to investigate the immune landscape. Further validation was provided by qRT-PCR on human placental samples. Result Five biomarkers were identified with validation AUCs: CGB5 (0.663, 95% CI: 0.577-0.750), LEP (0.850, 95% CI: 0.792-0.908), LRRC1 (0.797, 95% CI: 0.728-0.867), PAPPA2 (0.839, 95% CI: 0.775-0.902), and SLC20A1 (0.811, 95% CI: 0.742-0.880), all of which are involved in key biological processes. The nomogram showed strong predictive power (C-index 0.873), while FCNN achieved an optimal AUC of 0.911 (95% CI: 0.732-1.000) in five-fold cross-validation. Immune infiltration analysis revealed the importance of T cell subsets, neutrophils, and NK cells in PE, linking these genes to immune mechanisms underlying PE pathogenesis. Conclusion CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 are validated as key diagnostic biomarkers for PE. Nomogram and FCNN could credibly predict PE. Their association with immune infiltration underscores the crucial role of immune responses in PE pathogenesis.
Collapse
Affiliation(s)
- Qian Li
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Wei
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanmei Qin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junpeng Dong
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Cao C, Saxena R, Gray KJ. Placental Origins of Preeclampsia: Insights from Multi-Omic Studies. Int J Mol Sci 2024; 25:9343. [PMID: 39273292 PMCID: PMC11395466 DOI: 10.3390/ijms25179343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Preeclampsia (PE) is a major cause of maternal and neonatal morbidity and mortality worldwide, with the placenta playing a central role in disease pathophysiology. This review synthesizes recent advancements in understanding the molecular mechanisms underlying PE, focusing on placental genes, proteins, and genetic variants identified through multi-omic approaches. Transcriptomic studies in bulk placental tissue have identified many dysregulated genes in the PE placenta, including the PE signature gene, Fms-like tyrosine kinase 1 (FLT1). Emerging single-cell level transcriptomic data have revealed key cell types and molecular signatures implicated in placental dysfunction and PE. However, the considerable variability among studies underscores the need for standardized methodologies and larger sample sizes to enhance the reproducibility of results. Proteomic profiling of PE placentas has identified numerous PE-associated proteins, offering insights into potential biomarkers and pathways implicated in PE pathogenesis. Despite significant progress, challenges such as inconsistencies in study findings and lack of validation persist. Recent fetal genome-wide association studies have identified multiple genetic loci associated with PE, with ongoing efforts to elucidate their impact on placental gene expression and function. Future directions include the integration of multi-omic data, validation of findings in diverse PE populations and clinical subtypes, and the development of analytical approaches and experimental models to study the complex interplay of placental and maternal factors in PE etiology. These insights hold promise for improving risk prediction, diagnosis, and management of PE, ultimately reducing its burden on maternal and neonatal health.
Collapse
Affiliation(s)
- Chang Cao
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn J Gray
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Stylianou N, Sebina I, Matigian N, Monkman J, Doehler H, Röhl J, Allenby M, Nam A, Pan L, Rockstroh A, Sadeghirad H, Chung K, Sobanski T, O'Byrne K, Almeida ACSF, Rebutini PZ, Machado‐Souza C, Stonoga ETS, Warkiani ME, Salomon C, Short K, McClements L, de Noronha L, Huang R, Belz GT, Souza‐Fonseca‐Guimaraes F, Clifton V, Kulasinghe A. Whole transcriptome profiling of placental pathobiology in SARS-CoV-2 pregnancies identifies placental dysfunction signatures. Clin Transl Immunology 2024; 13:e1488. [PMID: 38322491 PMCID: PMC10846628 DOI: 10.1002/cti2.1488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus infection in pregnancy is associated with higher incidence of placental dysfunction, referred to by a few studies as a 'preeclampsia-like syndrome'. However, the mechanisms underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we investigated whether the transcriptional architecture of the placenta is altered in response to SARS-CoV-2 infection. Methods We utilised whole-transcriptome, digital spatial profiling, to examine gene expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the third trimester of their pregnancy (n = 7) and those collected prior to the start of the coronavirus disease 2019 (COVID-19) pandemic (n = 9). Results Through comprehensive spatial transcriptomic analyses of the trophoblast and villous core stromal cell subpopulations in the placenta, we identified SARS-CoV-2 to promote signatures associated with hypoxia and placental dysfunction. Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH) and preeclampsia (FLT1, EGFR, KISS1, PAPPA2) were enriched with SARS-CoV-2. Pathways related to increased nutrient uptake, vascular tension, hypertension and inflammation were also enriched in SARS-CoV-2 samples compared to uninfected controls. Conclusions Our findings demonstrate the utility of spatially resolved transcriptomic analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy, particularly its role in placental dysfunction. Furthermore, this study highlights the significance of digital spatial profiling in mapping the intricate crosstalk between trophoblasts and villous core stromal cells, thus shedding light on pathways associated with placental dysfunction in pregnancies with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nataly Stylianou
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Ismail Sebina
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - James Monkman
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Hadeel Doehler
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Joan Röhl
- Faculty of Health Sciences and MedicineBond UniversityRobinaQLDAustralia
| | - Mark Allenby
- BioMimetic Systems Engineering Lab, School of Chemical EngineeringUniversity of Queensland (UQ)St LuciaQLDAustralia
| | - Andy Nam
- Nanostring Technologies, Inc.SeattleWAUSA
| | - Liuliu Pan
- Nanostring Technologies, Inc.SeattleWAUSA
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Kimberly Chung
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Thais Sobanski
- Australian Prostate Cancer Research Centre – Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Ken O'Byrne
- Princess Alexandra HospitalWoolloongabbaQLDAustralia
| | | | - Patricia Zadorosnei Rebutini
- Postgraduate Program of Health Sciences, School of MedicinePontifícia Universidade Católica do Paraná ´ –PUCPRCuritibaBrazil
| | - Cleber Machado‐Souza
- Postgraduate Program in Biotechnology Applied in Health of Children and AdolescentInstituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno PríncipeCuritibaBrazil
| | | | - Majid E Warkiani
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Kirsty Short
- School of Chemistry and Molecular Biosciences, Faculty of ScienceThe University of QueenslandSt LuciaQLDAustralia
| | - Lana McClements
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Lucia de Noronha
- Postgraduate Program of Health Sciences, School of MedicinePontifícia Universidade Católica do Paraná ´ –PUCPRCuritibaBrazil
| | - Ruby Huang
- School of Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Gabrielle T Belz
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - Vicki Clifton
- Mater Medical Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
5
|
Wei L, Liping Z, Suya K. Expression of insulin-like growth factor binding protein-3 in HELLP syndrome. BMC Pregnancy Childbirth 2023; 23:778. [PMID: 37950229 PMCID: PMC10637003 DOI: 10.1186/s12884-023-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE To investigate the expression of insulin-like growth factor binding protein-3(IGFBP-3) in HELLP syndrome and its possible role in the pathogenesis of this disease. METHODS 1) 87 subjects were enrolled, including 29 patients with HELLP syndrome, 29 patients with pre-eclampsia (PE), and 29 healthy gravidae as control. The levels of IGFBP-3, IGF-1, TGF-β1, and VEGF in maternal and umbilical blood of them were detected using ELISA. Correlation analysis was used to observe the correlation between IGFBP-3 and IGF-1/TGF-β1/VEGF in maternal and umbilical blood, as well as that between maternal serum IGFBP-3 and clinical diagnostic indicators of HELLP syndrome. 2) Human hepatic sinusoid endothelial cells (HLSEC) and human umbilical vein endothelial cells (HUVEC) were cultured with different concentrations of IGFBP-3. After 72 h of culture, cell apoptosis and the normal living cells rate were detected and compared. RESULTS 1) In both maternal and umbilical blood of HELLP group, levels of IGFBP-3 and TGF-β1 were higher than control and PE group, IGF-1was lower than control group, VEGF was lower than control and PE group. IGFBP-3 in maternal blood was correlated with IGF-1/TGF-β1/ VEGF, while IGFBP-3 in umbilical blood was linked to IGF-1/TGF-β1. In maternal blood, there was a negative correlation between PLT and IGFBP-3, and a positive correlation between ALT/AST/LDH and IGFBP-3. 2) After cultured with IGFBP-3, the total apoptosis rate of either HLSEC or HUVEC was considerably elevated, while the normal living rate was decreased. CONCLUSION The expression of IGFBP-3 is elevated in HELLP syndrome, which may subsequently promote cell apoptosis by affecting the expression and function of IGF-1, VEGF, and TGFβ1 in the IGF/PI3K/Akt, TGF-β1/Smad3, and VEGF/eNOS/NO pathways. IGFBP-3 aggravates inflammatory reactions of the vascular endothelium and liver under hypoxia, affects the normal function of cells, and plays a role in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Li Wei
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, Jiangsu, China
| | - Zhou Liping
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, Jiangsu, China
| | - Kang Suya
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Hesson AM, Langen ES, Plazyo O, Gudjonsson JE, Ganesh SK. Placental transcriptome analysis of hypertensive pregnancies identifies distinct gene expression profiles of preeclampsia superimposed on chronic hypertension. BMC Med Genomics 2023; 16:91. [PMID: 37131171 PMCID: PMC10152005 DOI: 10.1186/s12920-023-01522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The pathogenesis of preeclampsia superimposed on chronic hypertension (SI) is poorly understood relative to preeclampsia (PreE) occurring in pregnant people without chronic hypertension. Placental transcriptomes in pregnancies complicated by PreE and SI have not been previously compared. METHODS We identified pregnant people in the University of Michigan Biorepository for Understanding Maternal and Pediatric Health with hypertensive disorders affecting singleton, euploid gestations (N = 36) along with non-hypertensive control subjects (N = 12). Subjects were grouped as: (1) normotensive (N = 12), (2) chronic hypertensive (N = 13), (3) preterm PreE with severe features (N = 5), (4) term PreE with severe features (N = 11), (5) preterm SI (N = 3), or (6) term SI (N = 4). Bulk RNA sequencing of paraffin-embedded placental tissue was performed. The primary analysis assessed differential gene expression relative to normotensive and chronic hypertensive placentas, where Wald adjusted P values < 0.05 were considered significant. Unsupervised clustering analyses and correlation analyses were performed between conditions of interest, and a gene ontology was constructed. RESULTS Comparing samples from pregnant people with hypertensive diseases to non-hypertensive controls, there were 2290 differentially expressed genes. The log2-fold changes in genes differentially expressed in chronic hypertension correlated better with term (R = 0.59) and preterm (R = 0.63) PreE with severe features than with term (R = 0.21) and preterm (R = 0.22) SI. A relatively poor correlation was observed between preterm SI and preterm PreE with severe features (0.20) as well as term SI and term PreE with severe features (0.31). The majority of significant genes were downregulated in term and preterm SI versus normotensive controls (92.1%, N = 128). Conversely, most term and preterm PreE with severe features genes were upregulated compared to the normotensive group (91.8%, N = 97). Many of the upregulated genes in PreE with the lowest adjusted P values are known markers of abnormal placentation (e.g., PAAPA, KISS1, CLIC3), while the downregulated genes with the greatest adjusted P values in SI have fewer known pregnancy-specific functions. CONCLUSIONS We identified unique placental transcriptional profiles in clinically relevant subgroups of individuals with hypertension in pregnancy. Preeclampsia superimposed on chronic hypertension was molecularly distinct from preeclampsia in individuals without chronic hypertension, and chronic hypertension without preeclampsia, suggesting that preeclampsia superimposed on hypertension may represent a distinct entity.
Collapse
Affiliation(s)
- Ashley M Hesson
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, 1500 East Medical Center Dr., Ann Arbor, MI, 48109, USA.
| | - Elizabeth S Langen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, 1500 East Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Olesya Plazyo
- Departments of Dermatology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Johann E Gudjonsson
- Departments of Dermatology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Department of Human Genetics, University of Michigan, MSRB III / Room 7220A, 1150 West Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Wei X, Zhou S, Liao L, Liu M, Gao Y, Yin Y, Xu Q, Zhou R. Comprehensive analysis of transcriptomic profiling of 5-methylcytosin modification in placentas from preeclampsia and normotensive pregnancies. FASEB J 2023; 37:e22751. [PMID: 36692426 DOI: 10.1096/fj.202201248r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.
Collapse
Affiliation(s)
- Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Shengping Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
8
|
Arakaza A, Zou L, Zhu J. Placenta Accreta Spectrum Diagnosis Challenges and Controversies in Current Obstetrics: A Review. Int J Womens Health 2023; 15:635-654. [PMID: 37101719 PMCID: PMC10124567 DOI: 10.2147/ijwh.s395271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Background Placenta accreta spectrum (PAS) is the most common obstetric complication in current obstetrics in which the placenta is fully or partially attached to the uterine myometrial layer at delivery. This is commonly due to the deficiency of the uterine interface between the uterine endometrial and myometrial layers leading to abnormal decidualization at the uterine scar area, which permits the abnormally placental anchoring villous and trophoblasts, deeply invade the myometrium. The prevalence of PAS is globally at rising trends every day in modern obstetrics originally due to the high increasing rate of cesarean sections, placenta previa, and assisted reproductive technology (ART). Thus, the early and precise diagnosis of PAS is imperative to prevent maternal intrapartum or postpartum bleeding complications. Objective The main aim of this review is to debate the current challenges and controversies in the routine diagnosis of PAS diseases in obstetrics. Data Source We retrospectively reviewed the recent articles on different methods of diagnosing PAS in PubMed, Google Scholar, Web of Science, Medline, Embase, and other website databases. Results Despite that, the standard ultrasound is a reliable and key tool for the diagnosis of PAS, the lack of ultrasound features does not exclude the diagnosis of PAS. Therefore, clinical assessment of risk factors, MRI tests, serological markers, and placental histopathological tests are also indispensable for the prediction of PAS. Previously, limited studies reached a high sensitivity rate of diagnosis PAS in appropriate cases, while many studies recommended the inclusion of different diagnosis methods to improve the diagnosis accuracy. Conclusion A multidisciplinary squad with well-experienced obstetricians, radiologists, and histopathologists should be involved in the establishment of the early and conclusive diagnosis of PAS.
Collapse
Affiliation(s)
- Arcade Arakaza
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Correspondence: Li Zou, Email
| | - Jianwen Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
9
|
Daghestani MH, Alqahtani HA, AlBakheet A, Al Deery M, Awartani KA, Daghestani MH, Kaya N, Warsy A, Coskun S, Colak D. Global Transcriptional Profiling of Granulosa Cells from Polycystic Ovary Syndrome Patients: Comparative Analyses of Patients with or without History of Ovarian Hyperstimulation Syndrome Reveals Distinct Biomarkers and Pathways. J Clin Med 2022; 11:jcm11236941. [PMID: 36498516 PMCID: PMC9740016 DOI: 10.3390/jcm11236941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is often a complication of polycystic ovarian syndrome (PCOS), the most frequent disorder of the endocrine system, which affects women in their reproductive years. The etiology of OHSS is multifactorial, though the factors involved are not apparent. In an attempt to unveil the molecular basis of OHSS, we conducted transcriptome analysis of total RNA extracted from granulosa cells from PCOS patients with a history of OHSS (n = 6) and compared them to those with no history of OHSS (n = 18). We identified 59 significantly dysregulated genes (48 down-regulated, 11 up-regulated) in the PCOS with OHSS group compared to the PCOS without OHSS group (p-value < 0.01, fold change >1.5). Functional, pathway and network analyses revealed genes involved in cellular development, inflammatory and immune response, cellular growth and proliferation (including DCN, VIM, LIFR, GRN, IL33, INSR, KLF2, FOXO1, VEGF, RDX, PLCL1, PAPPA, and ZFP36), and significant alterations in the PPAR, IL6, IL10, JAK/STAT and NF-κB signaling pathways. Array findings were validated using quantitative RT-PCR. To the best of our knowledge, this is the largest cohort of Saudi PCOS cases (with or without OHSS) to date that was analyzed using a transcriptomic approach. Our data demonstrate alterations in various gene networks and pathways that may be involved in the pathophysiology of OHSS. Further studies are warranted to confirm the findings.
Collapse
Affiliation(s)
- Maha H. Daghestani
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (M.H.D.); (D.C.)
| | - Huda A. Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - AlBandary AlBakheet
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mashael Al Deery
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khalid A. Awartani
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mazin H. Daghestani
- Department of Obstetrics and Gynecology, Umm-Al-Qura University, Makkah 24382, Saudi Arabia
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Arjumand Warsy
- Central Laboratory, Center for Women Scientific and Medical Studies, King Saud University, Riyadh 11451, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Correspondence: (M.H.D.); (D.C.)
| |
Collapse
|
10
|
Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells 2021; 10:cells10123576. [PMID: 34944082 PMCID: PMC8700087 DOI: 10.3390/cells10123576] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays fundamental roles during development, maturation, and aging. Members of this axis, composed of various ligands, receptors, and binding proteins, are regulated in a tissue- and time-specific manner that requires precise control that is not completely understood. Some of the most recent advances in understanding the implications of this axis in human growth are derived from the identifications of new mutations in the gene encoding the pregnancy-associated plasma protein PAPP-A2 protease that liberates IGFs from their carrier proteins in a selective manner to allow binding to the IGF receptor 1. The identification of three nonrelated families with mutations in the PAPP-A2 gene has shed light on how this protease affects human physiology. This review summarizes our understanding of the implications of PAPP-A2 in growth physiology, obtained from studies in genetically modified animal models and the PAPP-A2 deficient patients known to date.
Collapse
|
11
|
Chu T, Mouillet JF, Cao Z, Barak O, Ouyang Y, Sadovsky Y. RNA Network Interactions During Differentiation of Human Trophoblasts. Front Cell Dev Biol 2021; 9:677981. [PMID: 34150771 PMCID: PMC8209545 DOI: 10.3389/fcell.2021.677981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
In the human placenta, two trophoblast cell layers separate the maternal blood from the villous basement membrane and fetal capillary endothelial cells. The inner layer, which is complete early in pregnancy and later becomes discontinuous, comprises the proliferative mononuclear cytotrophoblasts, which fuse together and differentiate to form the outer layer of multinucleated syncytiotrophoblasts. Because the syncytiotrophoblasts are responsible for key maternal-fetal exchange functions, tight regulation of this differentiation process is critical for the proper development and the functional role of the placenta. The molecular mechanisms regulating the fusion and differentiation of trophoblasts during human pregnancy remain poorly understood. To decipher the interactions of non-coding RNAs (ncRNAs) in this process, we exposed cultured primary human trophoblasts to standard in vitro differentiation conditions or to conditions known to hinder this differentiation process, namely exposure to hypoxia (O2 < 1%) or to the addition of dimethyl sulfoxide (DMSO, 1.5%) to the culture medium. Using next generation sequencing technology, we analyzed the differential expression of trophoblastic lncRNAs, miRNAs, and mRNAs that are concordantly modulated by both hypoxia and DMSO. Additionally, we developed a model to construct a lncRNA-miRNA-mRNA co-expression network and inferred the functions of lncRNAs and miRNAs via indirect gene ontology analysis. This study improves our knowledge of the interactions between ncRNAs and mRNAs during trophoblast differentiation and identifies key biological processes that may be impaired in common gestational diseases, such as fetal growth restriction or preeclampsia.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jean-Francois Mouillet
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhishen Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Oren Barak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Keikkala E, Forstén J, Ritvos O, Stenman UH, Kajantie E, Hämäläinen E, Räikkönen K, Villa PM, Laivuori H. Serum Inhibin-A and PAPP-A2 in the prediction of pre-eclampsia during the first and second trimesters in high-risk women. Pregnancy Hypertens 2021; 25:116-122. [PMID: 34116346 DOI: 10.1016/j.preghy.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Maternal serum inhibin-A, pregnancy associated plasma protein-A (PAPP-A) and PAPP-A2 together with placental growth factor (PlGF), maternal risk factors and uterine artery pulsatility index (UtA PI) were analysed to study their ability to predict pre-eclampsia (PE). STUDY DESIGN Serial serum samples for the nested case-control study were collected prospectively at 12-14, 18-20 and 26-28 weeks of gestation from 11 women who later developed early-onset PE (EO PE, diagnosis < 34 + 0 weeks of gestation), 34 women who developed late-onset PE (LO PE, diagnosis ≥ 34 + 0 weeks) and 89 controls. MAIN OUTCOME MEASURES Gestational age -adjusted multiples of the median (MoM) values were calculated for biomarker concentrations. Multivariate regression analyses were performed to combine first trimester biomarkers, previously reported results on PlGF, maternal risk factors and UtA PI. Area under curve (AUC) values and 95% confidence intervals (CIs) for the prediction of PE and its subtypes were calculated. RESULTS A high first trimester inhibin-A predicted PE (AUC 0.618, 95%CI, 0.513-0.724), whereas PAPP-A and PlGF predicted only EO PE (0.701, 0.562-0.840 and 0.798, 0.686-0.909, respectively). At 26-28 weeks PAPP-A2 and inhibin-A predicted all PE subtypes. In the multivariate setting inhibin-A combined with maternal pre-pregnancy body mass index, prior PE and mean UtA PI predicted PE (0.811,0.726-0.896) and LO PE (0.824, 0.733-0.914). CONCLUSIONS At first trimester inhibin-A show potential ability to predict not only EO PE but also LO PE whereas PlGF and PAPP-A predict only EO PE. At late second trimester inhibin-A and PAPP-A2 might be useful for short-term prediction of PE.
Collapse
Affiliation(s)
- Elina Keikkala
- Oulu University Hospital and University of Oulu, Medical Research Center Oulu, PEDEGO Research Unit, Oulu, Finland; Finnish Institute for Health and Welfare, Population Health Unit, Helsinki and Oulu, Finland.
| | - Janina Forstén
- University of Helsinki and Helsinki University Hospital, Childreńs Hospital, Child Psychiatry, Helsinki, Finland
| | - Olli Ritvos
- Bacteriology and Immunology and Physiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Departments of Clinical Chemistry, University of Helsinki, Helsinki and University of Eastern Finland, Kuopio, Finland
| | - Eero Kajantie
- Oulu University Hospital and University of Oulu, Medical Research Center Oulu, PEDEGO Research Unit, Oulu, Finland; Finnish Institute for Health and Welfare, Population Health Unit, Helsinki and Oulu, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Esa Hämäläinen
- Departments of Clinical Chemistry, University of Helsinki, Helsinki and University of Eastern Finland, Kuopio, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Pia M Villa
- Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Obstetrics and Gynecology, Hyvinkää Hospital, Hyvinkää, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
13
|
Saei H, Govahi A, Abiri A, Eghbali M, Abiri M. Comprehensive transcriptome mining identified the gene expression signature and differentially regulated pathways of the late-onset preeclampsia. Pregnancy Hypertens 2021; 25:91-102. [PMID: 34098523 DOI: 10.1016/j.preghy.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/11/2021] [Accepted: 05/08/2021] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is categorized as a pregnancy-related hypertensive disorder and is a serious concern in pregnancies. Several factors, including genetic factors (placenta gene expression, and imprinting), oxidative stress, the inaccurate immune response of the mother, and the environmental factors are responsible for PE development, but still, the exact mechanism of the pathogenesis has remained unknown. The main aim of the present study is to identify the gene expression signature in placenta tissue, to unveil disease etiology mechanisms. The GEO, PubMed, and ArrayExpress databases have selected to identify gene expression datasets on placenta samples of both preeclampsia and the normotensive controls. A comprehensive gene expression meta-analysis of fourteen publicly available microarray data of preeclampsia disease has performed to identify gene expression signature and responsible biological pathways and processes. Using two different meta-analysis pipeline (in-house and INMEX) we have identified a total of 1234 differentially expressed genes (DEGs) with in-house method, including 713 overexpressed and 356 under-expressed genes whereas 272 DEGs (131 over and 141 under-expressed) have identified with INMEX, across PEs and healthy controls. Comprehensive functional enrichment and pathway analysis was performed by EnrichR library, whic revealed "Asparagine N-linked glycosylation Homo sapiens", "Nef and signal transduction", "Hemostasis", and "immune system" among the most enriched terms. The present study sets out to explain a novel database of candidate genetic markers and biological pathways that play a critical role in PE development, which might aid in the identification of diagnostic, prognostic, and therapeutic informative molecules.
Collapse
Affiliation(s)
- Hassan Saei
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Govahi
- Department of Medical Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Abiri
- Perinatology Department, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Eghbali
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Cruz JDO, Conceição IMCA, Tosatti JAG, Gomes KB, Luizon MR. Global DNA methylation in placental tissues from pregnant with preeclampsia: A systematic review and pathway analysis. Placenta 2020; 101:97-107. [PMID: 32942147 DOI: 10.1016/j.placenta.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Pre-eclampsia (PE) is the major cause of fetal and maternal mortality and can be classified according to gestational age of onset into early-onset (EOPE, <34 weeks of gestation) and late- (LOPE, ≥34 weeks of gestation). DNA methylation (DNAm) may help to understand the abnormal placentation in PE. Therefore, we performed a systematic review to assess the role of global DNAm on pathophysiology of PE, focused on fetal and maternal tissues of placenta from pregnant with PE, including EOPE and LOPE. We searched the databases EMBASE, Medline/PubMed, Cochrane Central Register of Controlled Trials, Scopus, Lilacs, Scielo and Google Scholar, and followed the MOOSE guidelines. Moreover, we performed pathway analysis with the overlapping genes from the included studies. Twelve out of 24 included studies in the qualitative analysis considered the classification into EOPE and LOPE. We did not found heterogeneity in the criteria used for diagnosis of PE, and a few studies evaluated whether confounding factors would influence placental DNAm. Fourteen out of 24 included studies showed hypomethylation in placental tissue from pregnant with PE compared to controls. The differences in DNAm are specific to genes or differentially methylated regions, and more evident in EOPE and preterm PE compared to controls, rather than LOPE and term PE. The overlapping genes from included studies revealed pathways relevant to pathophysiology of PE. Our findings highlighted the heterogeneous results of the included studies, mainly focused on North America and China. Replication studies in different populations should use the same placental tissues, techniques to assess DNAm and pipelines for bioinformatic analysis.
Collapse
Affiliation(s)
- Juliana de O Cruz
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela M C A Conceição
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Jéssica A G Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karina B Gomes
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
16
|
Tu C, Tao F, Qin Y, Wu M, Cheng J, Xie M, Shen B, Ren J, Xu X, Huang D, Chen H. Serum proteins differentially expressed in early- and late-onset preeclampsia assessed using iTRAQ proteomics and bioinformatics analyses. PeerJ 2020; 8:e9753. [PMID: 32953262 PMCID: PMC7473043 DOI: 10.7717/peerj.9753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preeclampsia remains a serious disorder that puts at risk the lives of perinatal mothers and infants worldwide. This study assessed potential pathogenic mechanisms underlying preeclampsia by investigating differentially expressed proteins (DEPs) in the serum of patients with early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE) compared with healthy pregnant women. METHODS Blood samples were collected from four women with EOPE, four women with LOPE, and eight women with normal pregnancies, with four women providing control samples for each preeclampsia group. Serum proteins were identified by isobaric tags for relative and absolute quantitation combined with liquid chromatography-tandem mass spectrometry. Serum proteins with differences in their levels compared with control groups of at least 1.2 fold-changes and that were also statistically significantly different between the groups at P < 0.05 were further analyzed. Bioinformatics analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses, were used to determine the key proteins and signaling pathways associated with the development of PE and to determine those DEPs that differed between women with EOPE and those with LOPE. Key protein identified by mass spectrometry was verified by enzyme linked immunosorbent assay (ELISA). RESULTS Compared with serum samples from healthy pregnant women, those from women with EOPE displayed 70 proteins that were differentially expressed with significance. Among them, 51 proteins were significantly upregulated and 19 proteins were significantly downregulated. In serum samples from women with LOPE, 24 DEPs were identified , with 10 proteins significantly upregulated and 14 proteins significantly downregulated compared with healthy pregnant women. Bioinformatics analyses indicated that DEPs in both the EOPE and LOPE groups were associated with abnormalities in the activation of the coagulation cascade and complement system as well as with lipid metabolism. In addition, 19 DEPs in the EOPE group were closely related to placental development or invasion of tumor cells. Downregulationof pregnancy-specific beta-1-glycoprotein 9 (PSG9) in the LOPE group was confirmed by ELISA. CONCLUSION The pathogenesis of EOPE and LOPE appeared to be associated with coagulation cascade activation, lipid metabolism, and complement activation. However, the pathogenesis of EOPE also involved processes associated with greater placental injury. This study provided several new proteins in the serum which may be valuable for clinical diagnosis of EOPE and LOPE, and offered potential mechanisms underpinning the development of these disorders.
Collapse
Affiliation(s)
- Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Feng Tao
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ji Cheng
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Min Xie
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Junjiao Ren
- Department of Science and Education, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Dayan Huang
- Department of Science and Education, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Lamale-Smith LM, Gumina DL, Kramer AW, Browne VA, Toledo-Jaldin L, Julian CG, Winn VD, Moore LG. Uteroplacental Ischemia Is Associated with Increased PAPP-A2. Reprod Sci 2020; 27:529-536. [PMID: 31994005 DOI: 10.1007/s43032-019-00050-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
Residence at high altitude (> 2500 m) has been associated with an increased frequency of preeclampsia. Pappalysin-2 (PAPP-A2) is an insulin-like growth factor binding protein-5 (IGFBP-5) protease that is elevated in preeclampsia, and up-regulated by hypoxia in placental explants. The relationships between PAPP-A2, altitude, and indices of uteroplacental ischemia are unknown. We aimed to evaluate the association of altitude, preeclampsia, and uterine artery flow or vascular resistance with PAPP-A2 levels. PAPP-A2, uterine artery diameter, volumetric blood flow, and pulsatility indices were measured longitudinally in normotensive Andean women residing at low or high altitudes in Bolivia and in a separate Andean high-altitude cohort with or without preeclampsia. PAPP-A2 levels increased with advancing gestation, with the rise tending to be greater at high compared to low altitude, and higher in early-onset preeclamptic compared to normotensive women at high altitude. Uterine artery blood flow was markedly lower and pulsatility index higher in early-onset preeclamptic normotensive women compared to normotensive women. PAPP-A2 was unrelated to uterine artery pulsatility index in normotensive women but positively correlated in the early-onset preeclampsia cases. We concluded that PAPP-A2 is elevated at high altitude and especially in cases of early-onset preeclampsia with Doppler indices of uteroplacental ischemia.
Collapse
Affiliation(s)
- Leah M Lamale-Smith
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, San Diego, CA, USA.
| | - Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Anita W Kramer
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Vaughn A Browne
- Department of Emergency Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Colleen G Julian
- Department of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
18
|
Chiu NF, Tai MJ, Wu HP, Lin TL, Chen CY. Development of a bioaffinity SPR immunosensor based on functionalized graphene oxide for the detection of pregnancy-associated plasma protein A2 in human plasma. Int J Nanomedicine 2019; 14:6735-6748. [PMID: 31686806 PMCID: PMC6709825 DOI: 10.2147/ijn.s213653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Graphene-like material such as functionalized carboxyl-graphene oxide (carboxyl-GO) can be intelligently tuned to achieve particular properties for biological and chemical sensing applications. Methods In this study, we propose a method to improve interference of non-specific proteins for use in human plasma assays. The highly specific interactions between molecules are an advantage of carboxyl-GO-based surface plasmon resonance (SPR) immunoassays, and this can be applied to spiked plasma samples with pregnancy-associated plasma protein A2 (PAPPA2). Results The experiment results showed that carboxyl-GO could be used to modulate the plasmon resonance energy, work function and conductivity properties. In addition, carboxyl groups could be used to enhance the conduction of electrons between carboxyl-GO and Au electrodes due to the excellent conductivity and electron transfer rate. The carboxyl-GO-based SPR chip exhibited high sensitivity based on the electric field amplification effects of the composite dielectric material. Therefore, the surface electric field could be enhanced by electron transfer, thereby greatly improving the sensitivity of the sensing system. Enhanced electric field intensity was generated around the carboxyl-GO of 63.58 V/m, and the measured work function was 4.95 eV. The results showed that the carboxyl-GO-based SPR biosensor had high sensitivity, affinity and selective ability for PAPPA2 protein with a high association rate constant (ka) of 3.1 ×109 M-1 S-1 and a limit of detection of 0.01 pg/mL in spiked human plasma. Conclusion The results showed a detection accuracy of protein in spiked plasma of >90% compared to PBS buffer, suggesting that the carboxyl-GO-based SPR biosensor could be used in assays of human plasma for early and late gynecological diseases. The future of this technology will be useful for the diagnosis and evaluation of the risk of early maternal preeclampsia and potentially in clinical applications for gestational diseases.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Jung Tai
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hwai-Ping Wu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Li Lin
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 10449, Taiwan.,Department of Medicine, Mackay Medical College, Taipei 25245, Taiwan
| |
Collapse
|
19
|
Jiang SW, Zhou W, Wang J, Little LM, Leaphart L, Jay J, Igbinigie E, Chen H, Li J. Gene expression patterns associated with human placental trophoblast differentiation. Clin Chim Acta 2019; 495:637-645. [PMID: 29329728 DOI: 10.1016/j.cca.2018.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023]
Abstract
Cell fusion is a hallmark of placental trophoblast cell differentiation and the mature syncytiotrophoblasts play essential roles for fetal-maternal exchange and production of pregnancy-related hormones. Using a well-established in vitro trophoblast differentiation model, we performed a microarray analysis on mRNA expression in trophoblast and syncytiotrophoblast cell cultures. Dramatic changes in gene expression patterns were detected during trophoblast differentiation. Real-time PCR analysis confirmed the reliability of the microarray data. As many as 3524 novel and known genes have been found to be up- or down-regulated for >2-fold. A number of cell cycle regulator including CDC6, CDC20, Cyclins B2, L1 and E2, were down-regulated in the syncytiotrophoblast, providing a mechanism for the loss of mitotic activity during trophoblast differentiation. Further characterization on the identified genes may lead to better understanding of placental patho-physiology in obstetric diseases such as preeclampsia.
Collapse
Affiliation(s)
- Shi-Wen Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA; Department of Obstetrics and Gynecology, Memorial Health Hospital, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Wei Zhou
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213000, China
| | - Lauren M Little
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Lynn Leaphart
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Jacob Jay
- Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Eseosaserea Igbinigie
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Haibin Chen
- Department of Histology & Embryology, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Jinping Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA; Department of Obstetrics and Gynecology, Memorial Health Hospital, Mercer University School of Medicine, Savannah, GA 31404, USA; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
20
|
Kordus RJ, Hossain A, Corso MC, Chakraborty H, Whitman-Elia GF, LaVoie HA. Cumulus cell pappalysin-1, luteinizing hormone/choriogonadotropin receptor, amphiregulin and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 mRNA levels associate with oocyte developmental competence and embryo outcomes. J Assist Reprod Genet 2019; 36:1457-1469. [PMID: 31187330 DOI: 10.1007/s10815-019-01489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To determine whether a selected set of mRNA biomarkers expressed in individual cumulus granulosa cell (CC) masses show association with oocyte developmental competence, embryo ploidy status, and embryo outcomes. METHODS This prospective observational cohort pilot study assessed levels of mRNA biomarkers in 163 individual CC samples from 15 women stimulated in antagonist cycles. Nineteen mRNA biomarker levels were measured by real-time PCR and related to the development of their corresponding individually cultured oocytes and subsequent embryos, embryo ploidy status, and live birth outcomes. RESULTS PAPPA mRNA levels were significantly higher in CC from oocytes that led to euploid embryos resulting in live births and aneuploid embryos compared to immature oocytes by ANOVA. LHCGR mRNA levels were significantly higher in CC of oocytes resulting in embryos associated with live birth compared to immature oocytes and oocytes resulting in arrested embryos by ANOVA. Using a general linearized mixed model to assess ploidy status, CC HSD3B mRNA levels in oocytes producing euploid embryos were significantly lower than other oocyte outcomes, collectively. When transferred euploid embryos outcomes were analyzed by ANOVA, AREG mRNA levels were significantly lower and PAPPA mRNA levels significantly higher in CC from oocytes that produced live births compared to transferred embryos that did not form a pregnancy. CONCLUSIONS Collectively, PAPPA, LHCGR, and AREG mRNA levels in CC may be able to identify oocytes with the best odds of resulting in a live birth, and HSD3B1 mRNA levels may be able to identify oocytes capable of producing euploid embryos.
Collapse
Affiliation(s)
- Richard J Kordus
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Fertility Center of the Carolinas, Department of Obstetrics and Gynecology, Prisma Health - Upstate, Greenville, SC, USA
| | - Akhtar Hossain
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Michael C Corso
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Gail F Whitman-Elia
- Advanced Fertility and Reproductive Endocrinology Institute, LLC, Columbia, SC, USA
- Piedmont Reproductive Endocrinology Group, Columbia, SC, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
21
|
Sun X, Qu T, He X, Yang X, Guo N, Mao Y, Xu X, Sun X, Zhang X, Wang W. Screening of differentially expressed proteins from syncytiotrophoblast for severe early-onset preeclampsia in women with gestational diabetes mellitus using tandem mass tag quantitative proteomics. BMC Pregnancy Childbirth 2018; 18:437. [PMID: 30404616 PMCID: PMC6223002 DOI: 10.1186/s12884-018-2066-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have revealed that women with gestational diabetes mellitus (GDM) have an increased risk of developing preeclampsia (PE). The possible reason is the abnormal lipid metabolism caused by GDM that leads to dysfunction of vascular endothelial cells and atherosclerosis, resulting in the onset of PE. However, studies focusing on the pathogenesis of PE in syncytiotrophoblast of GDM patients are lacking. This study aimed to compare differentially expressed proteins from syncytiotrophoblast between women with GDM and women with GDM with subsequently developed PE. METHODS Syncytiotrophoblast samples were obtained from pregnant women immediately after delivery. To explore the protein expression changes of syncytiotrophoblast that might explain the pathogenesis of PE in women with GDM, quantitative proteomics was performed using tandem mass tag (TMT) isobaric tags and liquid chromatography-tandem mass spectrometry. Bioinformatics analysis was performed to enrich the biological processes that these differentially expressed proteins were involved in. RESULTS A total of 28,234 unique peptides and 4140 proteins were identified in all samples. Among them, 23 differentially expressed proteins were identified between patients with GDM and patients with GDM with subsequently developed PE. Therein, 11 proteins were upregulated and 12 proteins were downregulated. Two relative proteins (FLT1 and PABPC4) were independently verified using immunoblotting analysis. Bioinformatic results indicated that the onset of PE in patients with GDM is a multifactorial disorder, involving factors such as apoptosis, transcriptional misregulation, oxidative stress, lipid metabolism, cell infiltration and migration, and angiogenesis. CONCLUSION These results indicated that the inadequacy of endometrium infiltration, angiogenic disorder, and oxidative stress in syncytiotrophoblast are more likely to occur in patients with GDM and may be the potential mechanisms leading to such patients secondarily developing severe early-onset PE.
Collapse
Affiliation(s)
- Xiaotong Sun
- 0000 0000 8571 0482grid.32566.34The First Clinical Medical College, Lanzhou University, Lanzhou, China
- grid.417234.7Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Tao Qu
- grid.417234.7Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, China
| | - Xiyan He
- grid.417234.7Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Xueping Yang
- grid.417234.7Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Nan Guo
- grid.417234.7Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Mao
- grid.417234.7Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, China
| | - Xianghong Xu
- grid.417234.7Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaodong Sun
- 0000 0004 1790 6079grid.268079.2Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuehong Zhang
- 0000 0000 8571 0482grid.32566.34The First Clinical Medical College, Lanzhou University, Lanzhou, China
- grid.412643.6The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Weihua Wang
- Houston Fertility Laboratory, Houston, TX USA
| |
Collapse
|
22
|
Christians JK, Lennie KI, Huicochea Munoz MF, Binning N. PAPP-A2 deficiency does not exacerbate the phenotype of a mouse model of intrauterine growth restriction. Reprod Biol Endocrinol 2018; 16:58. [PMID: 29895300 PMCID: PMC5996520 DOI: 10.1186/s12958-018-0376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pregnancy-associated plasma protein-A2 (PAPP-A2) is consistently upregulated in the placentae of pregnancies complicated by preeclampsia and fetal growth restriction. The causes and significance of this upregulation remain unknown, but it has been hypothesized that it is a compensatory response to improve placental growth and development. We predicted that, if the upregulation of PAPP-A2 in pregnancy complications reflects a compensatory response, then deletion of Pappa2 in mice would exacerbate the effects of a gene deletion previously reported to impair placental development: deficiency of matrix metalloproteinase-9 (MMP9). METHODS We crossed mice carrying deletions in Pappa2 and Mmp9 to produce pregnancies deficient in one, both, or neither of these genes. We measured pregnancy rates, number of conceptuses, fetal and placental growth, and the histological structure of the placenta. RESULTS We found no evidence of reduced fertility, increased pregnancy loss, or increased fetal demise in Mmp9 -/- females. In pregnancies segregating for Mmp9, Mmp9 -/- fetuses were lighter than their siblings with a functional Mmp9 allele. However, deletion of Pappa2 did not exacerbate or reveal any effects of Mmp9 deficiency. We observed some effects of Pappa2 deletion on placental structure that were independent of Mmp9 deficiency, but no effects on fetal growth. At G16, male fetuses were heavier than female fetuses and had heavier placentae with larger junctional zones and smaller labyrinths. CONCLUSIONS Effects of Mmp9 deficiency were not exacerbated by the deletion of Pappa2. Our results do not provide evidence that upregulation of placental PAPP-A2 represents a mechanism to compensate for impaired fetal growth.
Collapse
Affiliation(s)
- Julian K. Christians
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Kendra I. Lennie
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Maria F. Huicochea Munoz
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Nimrat Binning
- 0000 0004 1936 7494grid.61971.38Department of Biological Sciences, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
23
|
Sifakis S, Androutsopoulos VP, Pontikaki A, Velegrakis A, Papaioannou GI, Koukoura O, Spandidos DA, Papantoniou N. Placental expression of PAPPA, PAPPA-2 and PLAC-1 in pregnacies is associated with FGR. Mol Med Rep 2018. [PMID: 29532882 PMCID: PMC5928614 DOI: 10.3892/mmr.2018.8721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fetal growth restriction (FGR) is a gynecological disorder of varying etiology. In the present study, an expression analysis of pregnancy-associated plasma protein A (PAPPA), pregnancy-associated plasma protein A2 (PAPPA2) and placenta-specific-1 (PLAC-1) was conducted in pregnancies with FGR and control pregnancies. Placental tissues were collected from pregnancies with FGR (n=16) and control pregnancies (n=16) and the expression of the genes of interest was examined by qPCR. The mean expression levels of PAPPA and PAPPA2 were significantly lower (P<0.001) in placental tissues from FGR pregnancies compared with tissues from healthy subjects, whereas the opposite pattern was observed for PLAC-1 (P<0.001). PAPPA and PLAC-1 expression in FGR and control subjects correlated with birth weight (P<0.001). The findings suggest a possible pathophysiological link between the development of FGR and the expression of PAPPA, PAPPA2 and PLAC-1.
Collapse
Affiliation(s)
- Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | - Artemis Pontikaki
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Alexis Velegrakis
- Department of Obstetrics and Gynecology, Venizeleion Hospital, 71409 Heraklion, Greece
| | - George I Papaioannou
- Department of Obstetrics and Gynecology, Attikon University Hospital, University of Athens, 12462 Athens, Greece
| | - Ourania Koukoura
- Department of Obstetrics and Gynecology, University of Thessalia, 41110 Larissa, Greece
| | - Demetrios A Spandidos
- Department of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Nikos Papantoniou
- Department of Obstetrics and Gynecology, Attikon University Hospital, University of Athens, 12462 Athens, Greece
| |
Collapse
|
24
|
Tejera E, Cruz-Monteagudo M, Burgos G, Sánchez ME, Sánchez-Rodríguez A, Pérez-Castillo Y, Borges F, Cordeiro MNDS, Paz-Y-Miño C, Rebelo I. Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis. BMC Med Genomics 2017; 10:50. [PMID: 28789679 PMCID: PMC5549357 DOI: 10.1186/s12920-017-0286-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. METHODS We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. RESULTS The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. CONCLUSION Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia pathogenesis through experimental approaches.
Collapse
Affiliation(s)
- Eduardo Tejera
- Facultad de Medicina, Universidad de Las Américas, Av. de los Granados E12-41y Colimes esq, EC170125, Quito, Ecuador.
| | - Maykel Cruz-Monteagudo
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, FL 33136, Miami, USA.,Department of General Education, West Coast University-Miami Campus, Doral, FL 33178, USA.,CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Germán Burgos
- Facultad de Medicina, Universidad de Las Américas, Av. de los Granados E12-41y Colimes esq, EC170125, Quito, Ecuador
| | - María-Eugenia Sánchez
- Facultad de Medicina, Universidad de Las Américas, Av. de los Granados E12-41y Colimes esq, EC170125, Quito, Ecuador
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Calle París S/N, EC1101608, Loja, Ecuador
| | | | - Fernanda Borges
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | | | - César Paz-Y-Miño
- Centro de Investigaciones genética y genómica, Facultad de Ciencias de la Salud, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Irene Rebelo
- Faculty of Pharmacy, University of Porto, Porto, Portugal.,UCIBIO@REQUIMTE, Caparica, Portugal
| |
Collapse
|
25
|
Shpiz A, Ben-Yosef D, Kalma Y. Impaired function of trophoblast cells derived from translocated hESCs may explain pregnancy loss in women with balanced translocation (11;22). J Assist Reprod Genet 2016; 33:1493-1499. [PMID: 27503403 DOI: 10.1007/s10815-016-0781-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The aim of the study was to study whether the trophoblasts carrying unbalanced translocation 11,22 [t(11;12)] display abnormal expression of trophoblastic genes and impaired functional properties that may explain implantation failure. METHODS t(11;22) hESCs and control hESCs were differentiated in vitro into trophoblast cells in the presence of BMP4, and trophoblast vesicles (TBVs) were created in suspension. The expression pattern of extravillous trophoblast (EVT) genes was compared between translocated and control TBVs. The functional properties of the TBVs were evaluated by their attachment to endometrium cells (ECC1) and invasion through trans-well inserts. RESULTS TBVs derived from control hESCs expressed EVT genes from functioning trophoblast cells. In contrast, TBVs differentiated from the translocated hESC line displayed impaired expression of EVT genes. Moreover, the number of TBVs that were attached to endometrium cells was significantly lower compared to the controls. Correspondingly, invasiveness of trophoblast-differentiated translocated cells was also significantly lower than that of the control cells. CONCLUSIONS These results may explain the reason for implantation failure in couple carriers of t(11;22). They also demonstrate that translocated hESCs comprise a valuable in vitro human model for studying the mechanisms underlying implantation failure.
Collapse
Affiliation(s)
- Alina Shpiz
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.
| | - Yael Kalma
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| |
Collapse
|
26
|
Kedia K, Smith SF, Wright AH, Barnes JM, Tolley HD, Esplin MS, Graves SW. Global "omics" evaluation of human placental responses to preeclamptic conditions. Am J Obstet Gynecol 2016; 215:238.e1-238.e20. [PMID: 26970495 DOI: 10.1016/j.ajog.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a leading cause of maternal death. Its cause is still debated but there is general agreement that the placenta plays a central role. Perhaps the most commonly proposed contributors to PE include placental hypoxia, oxidative stress, and increased proinflammatory cytokines. How the placenta responds to these abnormalities has been considered but not as part of a comprehensive analysis of low-molecular-weight biomolecules and their responses to these accepted PE conditions. OBJECTIVE Using a peptidomic approach, we sought to identify a set of molecules exhibiting differential expression in consequence of provocative agents/chemical mediators of PE applied to healthy human placental tissue. STUDY DESIGN Known PE conditions were imposed on normal placental tissue from 13 uncomplicated pregnancies and changes in the low-molecular-weight peptidome were evaluated. A t test was used to identify potential markers for each imposed stress. These markers were then submitted to a least absolute shrinkage and selection operator multinomial logistic regression model to identify signatures specific to each stressor. Estimates of model performance on external data were obtained through internal validation. RESULTS A total of 146 markers were increased/decreased as a consequence of exposure to proposed mediators of PE. Of these 75 changed with hypoxia; 23 with hypoxia-reoxygenation/oxidative stress and 48 from exposure to tumor necrosis factor-α. These markers were chemically characterized using tandem mass spectrometry. Identification rates were: hypoxia, 34%; hypoxia-reoxygenation, 60%; and tumor necrosis factor-α, 50%. Least absolute shrinkage and selection operator modeling specified 16 markers that effectively distinguished all groups, ie, the 3 abnormal conditions and control. Bootstrap estimates of misclassification rates, multiclass area under the curve, and Brier score were 0.108, 0.944, and 0.160, respectively. CONCLUSION Using this approach we found previously unknown molecular changes in response to individual PE conditions that allowed development biomolecular signatures for exposure to each accepted pathogenic condition.
Collapse
|
27
|
Christians JK, Bath AK, Amiri N. Pappa2 deletion alters IGFBPs but has little effect on glucose disposal or adiposity. Growth Horm IGF Res 2015; 25:232-239. [PMID: 26164771 DOI: 10.1016/j.ghir.2015.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 07/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Insulin-like growth factor binding proteins (IGFBPs) are involved in glucose and lipid metabolism, and their actions are modulated by proteases. The aim of this study was to examine the effects of an IGFBP-5 protease, pregnancy associated plasma protein-A2 (PAPP-A2), on glucose metabolism and susceptibility to diet-induced obesity. DESIGN Postnatal growth, circulating IGF-I, IGFBP-3 and IGFBP-5 levels, and glucose tolerance were measured in Pappa2 deletion mice and littermate controls on a chow diet. Males were subsequently fed a high-fat diet for 8 weeks to measure weight gain and adiposity, as well as glucose tolerance in response to a metabolic challenge. RESULTS Circulating IGFBP-5 levels were ~2-fold higher in mice with no functional PAPP-A2 than in littermate controls, as expected. In contrast, circulating IGFBP-3 levels were reduced by ~15-fold, and total IGF-I levels were ~60% higher in Pappa2 deletion mice. There was no effect of Pappa2 deletion on fasting blood glucose levels or glucose clearance after intraperitoneal injection of 2g glucose/kg body weight in mice on a chow diet. In males on a high-fat diet, there was no difference between genotypes in weight gain or adiposity, adjusting for differences in initial body weight, or in fasting blood glucose or insulin levels, or in glucose clearance. CONCLUSIONS Despite a dramatic disruption of the balance between circulating IGF-I, IGFBP-3 and -5, we found no effects of Pappa2 deletion on glucose metabolism, weight gain or adiposity on a high-fat diet.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Amrit K Bath
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Neilab Amiri
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
28
|
Christians JK, King AY, Rogowska MD, Hessels SM. Pappa2 deletion in mice affects male but not female fertility. Reprod Biol Endocrinol 2015; 13:109. [PMID: 26416573 PMCID: PMC4587772 DOI: 10.1186/s12958-015-0108-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/16/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies have found associations between the gene encoding pregnancy associated plasma protein-A2 (PAPP-A2), a protease of insulin-like growth factor binding protein -5 (IGFBP-5), and measures of female reproductive performance in cattle. The purpose of the present study was to test the effects of Pappa2 deletion on reproduction in mice. FINDINGS We measured the fertility and offspring growth of Pappa2 deletion females, and also performed reciprocal matings (i.e., deletion males mated to control females) to control for the effects of offspring genotype. Ovarian and testicular IGFBP-5 levels were measured by Western blotting. As expected, deletion of Pappa2 increased ovarian IGFBP-5 levels. However, Pappa2 deletion in females had no effect on the interval between pairing and the birth of the first litter, the interval between the births of the first and second litters, or litter size. Offspring weight was lower in the offspring of Pappa2 deletion females, but effects of similar magnitude were observed in the offspring of Pappa2 deletion males, suggesting that the effects were due to heterozygosity for the deletion in the offspring. Pappa2 deletion in males had no effect on litter size or the interval between pairing and the birth of the first litter. However, the interval between the births of the first and second litters was significantly longer in deletion males. CONCLUSIONS Pappa2 deletion had no effect on female reproductive performance. In contrast, Pappa2 deletion had subtle effects on male fertility, although the underlying mechanism remains to be elucidated.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Avery Y King
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Monika D Rogowska
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Sonia M Hessels
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
29
|
Christians JK, Beristain AG. ADAM12 and PAPP-A: Candidate regulators of trophoblast invasion and first trimester markers of healthy trophoblasts. Cell Adh Migr 2015; 10:147-53. [PMID: 26417939 DOI: 10.1080/19336918.2015.1083668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Proper placental development and function is crucial for a healthy pregnancy, and there has been substantial research to identify markers of placental dysfunction for the early detection of pregnancy complications. Low first-trimester levels of a disintegrin and metalloproteinase 12 (ADAM12) and pregnancy-associated plasma protein-A (PAPP-A) have been consistently associated with the subsequent development of preeclampsia and fetal growth restriction. These molecules are both metalloproteinases secreted by the placenta that cleave insulin-like growth factor binding proteins (IGFBPs), although ADAM12 also has numerous other substrates. Recent work has identified ADAM12, and particularly its shorter variant, ADAM12S, as a regulator of the migration and invasion of trophoblasts into the lining of the uterus, a critical step in normal placental development. While the mechanisms underlying this regulation are not yet clear, they may involve the liberation of heparin-binding EGF-like growth factor (HB-EGF) and/or IGFs from IGFBPs. In contrast, there has been relatively little functional work examining PAPP-A or the IGFBP substrates of ADAM12 and PAPP-A. Understanding the functions of these markers and the mechanisms underlying their association with disease could improve screening strategies and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexander G Beristain
- b Department of Obstetrics and Gynecology , The University of British Columbia , Vancouver , Canada.,c The Child and Family Research Institute , Vancouver , Canada
| |
Collapse
|
30
|
Crosley EJ, Dunk CE, Beristain AG, Christians JK. IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells. Reprod Biol Endocrinol 2014; 12:123. [PMID: 25475528 PMCID: PMC4271501 DOI: 10.1186/1477-7827-12-123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adverse gestational outcomes such as preeclampsia (PE) and intrauterine growth restriction (IUGR) are associated with placental insufficiency. Normal placental development relies on the insulin-like growth factors -I and -II (IGF-I and -II), in part to stimulate trophoblast proliferation and extravillous trophoblast (EVT) migration. The insulin-like growth factor binding proteins (IGFBPs) modulate the bioavailability of IGFs in various ways, including sequestration, potentiation, and/or increase in half-life. The roles of IGFBP-4 and -5 in the placenta are unknown, despite consistent associations between pregnancy complications and the levels of two IGFBP-4 and/or -5 proteases, pregnancy-associated plasma protein -A and -A2 (PAPP-A and PAPP-A2). The primary objective of this study was to elucidate the effects of IGFBP-4 and -5 on IGF-I and IGF-II in a model of EVT migration. A related objective was to determine the timing and location of IGFBP-4 and -5 expression in the placental villi. METHODS We used wound healing assays to examine the effects of IGFBP-4 and -5 on the migration of HTR-8/SVneo cells following 4 hours of serum starvation and 24 hours of treatment. Localization of IGFBP-4, -5 and PAPP-A2 was assessed by immunohistochemical staining of first trimester placental sections. RESULTS 2 nM IGF-I and -II each increased HTR-8/SVneo cell migration with IGF-I increasing migration significantly more than IGF-II. IGFBP-4 and -5 showed different levels of inhibition against IGF-I. 20 nM IGFBP-4 completely blocked the effects of 2 nM IGF-I, while 20 nM IGFBP-5 significantly reduced the effects of 2 nM IGF-I, but not to control levels. Either 20 nM IGFBP-4 or 20 nM IGFBP-5 completely blocked the effects of 2 nM IGF-II. Immunohistochemistry revealed co-localization of IGFBP-4, IGFBP-5 and PAPP-A2 in the syncytiotrophoblast layer of first trimester placental villi as early as 5 weeks of gestational age. CONCLUSIONS IGFBP-4 and -5 show different levels of inhibition on the migration-stimulating effects of IGF-I and IGF-II, suggesting different roles for PAPP-A and PAPP-A2. Moreover, co-localization of the pappalysins and their substrates within placental villi suggests undescribed roles of these molecules in early placental development.
Collapse
Affiliation(s)
- Erin J Crosley
- Biological Sciences, Simon Fraser University, V5A 1S6 Burnaby, Canada
| | - Caroline E Dunk
- Research Centre for Women’s and Infants Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Alexander G Beristain
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, Canada
- The Child and Family Research Institute, Vancouver, Canada
| | | |
Collapse
|
31
|
Chu T, Bunce K, Shaw P, Shridhar V, Althouse A, Hubel C, Peters D. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta. PLoS One 2014; 9:e107318. [PMID: 25247495 PMCID: PMC4172433 DOI: 10.1371/journal.pone.0107318] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/09/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome. METHODS We analyzed the DNA methylation status of approximately 27,000 CpG sites in placental tissues in a massively parallel fashion using an oligonucleotide microarray. Follow up analysis of DNA methylation at specific CpG loci was performed using the Epityper MassArray approach and high-throughput bisulfite sequencing. RESULTS Preeclampsia-specific DNA methylation changes were identified in placental tissue samples irrespective of gestational age of delivery. In addition, we identified a group of CpG sites within specific gene sequences that were only altered in early onset-preeclampsia (EOPET) although these DNA methylation changes did not correlate with altered mRNA transcription. We found evidence that fetal gender influences DNA methylation at autosomal loci but could find no clear association between DNA methylation and gestational age. CONCLUSION Preeclampsia is associated with altered placental DNA methylation. Fetal gender should be carefully considered during the design of future studies in which placental DNA is analyzed at the level of DNA methylation. Further large-scale analyses of preeclampsia-associated DNA methylation are necessary.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly Bunce
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patricia Shaw
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Varsha Shridhar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Althouse
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carl Hubel
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Macintire K, Tuohey L, Ye L, Palmer K, Gantier M, Tong S, Kaitu'u-Lino TJ. PAPPA2 is increased in severe early onset pre-eclampsia and upregulated with hypoxia. Reprod Fertil Dev 2014; 26:351-7. [PMID: 23484525 DOI: 10.1071/rd12384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/26/2013] [Indexed: 12/13/2022] Open
Abstract
Severe early onset pre-eclampsia is a serious pregnancy complication, believed to arise as a result of persistent placental hypoxia due to impaired placentation. Pregnancy-associated plasma protein A2 (PAPPA2) is very highly expressed in the placenta relative to all other tissues. There is some evidence that PAPPA2 mRNA and protein are increased in association with pre-eclampsia. The aim of the present study was to characterise the mRNA and protein expression, as well as localisation, of PAPPA2 in an independent cohort of severe early onset pre-eclamptic placentas. We also examined whether exposing placental explants to hypoxia (1% oxygen) changed the expression of PAPPA2. Expression of PAPPA2 mRNA and protein was upregulated in severe early onset pre-eclamptic placentas compared with preterm controls and localised to the syncytiotrophoblast. Interestingly, protein localisation was markedly reduced in term placenta. Syncytialisation of BeWo cells did not change PAPPA2 expression. However, hypoxia upregulated PAPPA2 mRNA and protein expression in primary placental explants. Together, our data suggest that PAPPA2 may be upregulated in severe pre-eclampsia and, functionally, this may be mediated via increased placental hypoxia known to occur with this pregnancy disorder.
Collapse
Affiliation(s)
- Kate Macintire
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Laura Tuohey
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Louie Ye
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Kirsten Palmer
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Michael Gantier
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| |
Collapse
|
33
|
Crosley EJ, Durland U, Seethram K, MacRae S, Gruslin A, Christians JK. First-trimester levels of pregnancy-associated plasma protein A2 (PAPP-A2) in the maternal circulation are elevated in pregnancies that subsequently develop preeclampsia. Reprod Sci 2013; 21:754-60. [PMID: 24336677 DOI: 10.1177/1933719113512532] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies have consistently found pregnancy-associated plasma protein A2 (PAPP-A2) to be upregulated in preeclamptic placentae at term. We tested whether first-trimester circulating PAPP-A2 levels differed between complicated and uncomplicated pregnancies. We measured maternal PAPP-A2 levels at 10 to 14 weeks of gestational age in 17 pregnancies resulting in small-for-gestational-age (SGA) infants, 6 which developed preeclampsia (PE), 1 which developed PE and resulted in an SGA infant, and 37 gestational age-matched controls. The concentration of the PAPP-A2 isoform corresponding to the full-length protein was significantly higher in pregnancies that developed PE (35 ng/mL) compared with those that did not (23 ng/mL; P < .044). In contrast, we found no difference in PAPP-A2 levels between pregnancies that did or did not result in an SGA infant. The upregulation of PAPP-A2 that has previously been observed in PE at term appears to begin early in pregnancy, well before the symptoms develop.
Collapse
Affiliation(s)
- Erin J Crosley
- 1Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Zhang Z, Zhang L, Jia L, Cui S, Shi Y, Chang A, Zeng X, Wang P. AP-2α suppresses invasion in BeWo cells by repression of matrix metalloproteinase-2 and -9 and up-regulation of E-cadherin. Mol Cell Biochem 2013; 381:31-9. [PMID: 23660954 DOI: 10.1007/s11010-013-1685-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/02/2013] [Indexed: 11/26/2022]
Abstract
Preeclampsia complicates 5-10% of pregnancies and is a leading cause of maternal/fetal morbidity and mortality. Although the cause is unknown, the reduced migration/invasion of extravillous trophoblasts is generally regarded as a key feature of preeclampsia genesis. The present study examined the expression of activator protein-2α (AP-2α), tissue inhibitor of metalloproteinase 2 (TIMP-2), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and E-cadherin in severe preeclamptic placentas and normal placentas using real-time PCR and immunohistochemistry. The expression levels of AP-2α, TIMP-2, and E-cadherin were elevated, while MMP-2 and MMP-9 levels were decreased in severe preeclamptic placentas when compared with normal placentas. To explore the underlying molecular mechanisms, BeWo cells were transfected with an AP-2α-expression construct as well as a siRNA against AP-2α. The over-expression of AP-2α decreased the invasive abilities of BeWo cells. AP-2α induction was followed by the induction of TIMP-2 and E-cadherin and a significant reduction of MMP-2 and MMP-9. Whereas in AP-2α-silencing BeWo cells, we observed the decreased expression of TIMP-2 and E-cadherin and the increased expression of MMP-2 and MMP-9. We presume that AP-2α may suppress trophoblast invasion by repression of MMP-2 and MMP-9 and up-regulation of E-cadherin, thus leading to shallow placentation in severe preeclampsia.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xie C, Yao MZ, Liu JB, Xiong LK. A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia. Cytokine 2011; 56:550-9. [DOI: 10.1016/j.cyto.2011.09.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/29/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
|