1
|
Ratto MH, Paiva L, Carrasco R, Silva ME, Ulloa-Leal C, Ratto VF, Goicochea J. Review: Unveiling the effect of beta-nerve growth factor on the reproductive function in llamas and cows. Animal 2023; 17 Suppl 1:100754. [PMID: 37567661 DOI: 10.1016/j.animal.2023.100754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 08/13/2023] Open
Abstract
The actions of the beta-nerve growth factor (β-NGF) on the neuroendocrine and reproductive system have challenged classical views on the control of reproductive function. After endometrial absorption, β-NGF triggers ovulation and promotes the development of functional corpora lutea in camelids. In this article, we review evidence showing that, in camelids, β-NGF exerts its actions by acting in both the hypothalamus and the ovary. In the hypothalamus, β-NGF may induce gonadotropin-releasing hormone (GnRH) release by interacting with neurons or glial cells expressing receptors for β-NGF. The LH surge occurs under the influence of ovarian estradiol and requires the release of GnRH into the portal vessels to reach the pituitary gland. In the ovary, β-NGF may be promoting the differentiation of follicular to luteal cells by modifying the steroidogenic profile of ovarian follicular cells in both camelids and ruminants. Although the mechanisms for these actions are largely undetermined, we aim to offer an update on the current understanding of the effects of β-NGF controlling reproductive function in camelids and ruminants.
Collapse
Affiliation(s)
- Marcelo H Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Paiva
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Carrasco
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada
| | - Mauricio E Silva
- Departamento de Medicina Veterinaria y Salud Publica, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cesar Ulloa-Leal
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Vicente F Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Goicochea
- Departamento de Cirugía y Biotecnología Reproductiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
| |
Collapse
|
2
|
Paiva L, Silva M, Carrasco R, Ratto V, Goicochea J, Ratto M. Seminal plasma nerve growth factor signaling on the reproductive physiology of female llamas. Anim Reprod 2023; 19:e20220116. [PMID: 36819481 PMCID: PMC9924769 DOI: 10.1590/1984-3143-ar2022-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
The ovulation mechanism is one of the fascinating physiological processes in reproductive biology in mammals. From the reproductive point of view, the species have been classified as spontaneous or induced ovulators. Although the release of GnRH followed by the preovulatory LH surge is shared between both types of ovulation, the stimulus to initiate GnRH release varies between both categories. In spontaneous ovulators, ovulation depends on the systemic concentration of ovarian steroids, however, in induced ovulators, different stimuli such as copulation, environmental, and social cues can facilitate or induce ovulation regardless of the increases in systemic estradiol concentration. In this review, we document evidence that a male-derived protein is the main factor responsible for inducing ovulation and also modulating the ovarian function in the domestic South American camelid, the llama. The neurotrophin beta-Nerve Growth Factor (β-NGF) is the principal factor present in the semen of llamas responsible for inducing ovulation in this species. After the intrauterine deposit of semen during mating, β-NGF is absorbed through the endometrium to reach the circulatory system, where it reaches the hypothalamus and stimulates GnRH release. The potential site of action of this neurotrophin at the brain has not been elucidated, however, hypotheses are raised that the factor may cross the blood-brain barrier and stimulate upstream neuronal networks that lead to the stimulation of GnRH-secreting neurons. It is possible that β-NGF could be sensed at the median eminence without crossing the blood-brain barrier. Finally, it has been observed that this factor is not only a powerful stimulator of ovulation but also has a luteotrophic effect, resulting in the development of a corpus luteum capable of secreting more progesterone when compared to other ovulation-stimulating analogues.
Collapse
Affiliation(s)
- Luis Paiva
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Silva
- Departamento de Medicina Veterinaria y Salud Publica, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Rodrigo Carrasco
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada
| | - Vicente Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - José Goicochea
- Departamento de Cirugía y Biotecnología Reproductiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
| | - Marcelo Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile,Corresponding author:
| |
Collapse
|
3
|
Paiva L, Silva M, Carrasco R, Ratto MH. The ovulatory and luteotropic actions of the male-derived beta-nerve growth factor in South American camelids. Anim Front 2022; 12:87-94. [PMID: 35974784 PMCID: PMC9374510 DOI: 10.1093/af/vfac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Luis Paiva
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Silva
- Departamento de Medicina Veterinaria y Salud Pública, Núcleo de Investigación en Producción Agroalimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Rodrigo Carrasco
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK,Canada
| | - Marcelo Héctor Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol 2022; 34:e13094. [PMID: 35107859 PMCID: PMC9948945 DOI: 10.1111/jne.13094] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The concept that different systems control episodic and surge secretion of gonadotropin-releasing hormone (GnRH) was well established by the time that GnRH was identified and formed the framework for studies of the physiological roles of GnRH, and later kisspeptin. Here, we focus on recent studies identifying the neural mechanisms underlying these two modes of secretion, with an emphasis on their core components. There is now compelling data that kisspeptin neurons in the arcuate nucleus that also contain neurokinin B (NKB) and dynorphin (i.e., KNDy cells) and their projections to GnRH dendrons constitute the GnRH pulse generator in mice and rats. There is also strong evidence for a similar role for KNDy neurons in sheep and goats, and weaker data in monkeys and humans. However, whether KNDy neurons act on GnRH dendrons and/or GnRH soma and dendrites that are found in the mediobasal hypothalamus (MBH) of these species remains unclear. The core components of the GnRH/luteinising hormone surge consist of an endocrine signal that initiates the process and a neural trigger that drives GnRH secretion during the surge. In all spontaneous ovulators, the core endocrine signal is a rise in estradiol secretion from the maturing follicle(s), with the site of estrogen positive feedback being the rostral periventricular kisspeptin neurons in rodents and neurons in the MBH of sheep and primates. There is considerable species variations in the neural trigger, with three major classes. First, in reflex ovulators, this trigger is initiated by coitus and carried to the hypothalamus by neural or vascular pathways. Second, in rodents, there is a time of day signal that originates in the suprachiasmatic nucleus and activates rostral periventricular kisspeptin neurons and GnRH soma and dendrites. Finally, in sheep nitric oxide-producing neurons in the ventromedial nucleus, KNDy neurons and rostral kisspeptin neurons all appear to participate in driving GnRH release during the surge.
Collapse
Affiliation(s)
- Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Allan E. Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael N. Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School and Department of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Villamayor PR, Gullón J, Yáñez U, Sánchez M, Sánchez-Quinteiro P, Martínez P, Quintela L. Assessment of Biostimulation Methods Based on Chemical Communication in Female Doe Reproduction. Animals (Basel) 2022; 12:308. [PMID: 35158632 PMCID: PMC8833788 DOI: 10.3390/ani12030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biostimulation is an animal management practice that helps improve reproductive parameters by modulating animal sensory systems. Chemical signals, mostly known as pheromones, have a great potential in this regard. This study was conducted to determine the influence of short-term female rabbit exposure to different conditions, mainly pheromone-mediated, on reproductive parameters of inseminated does. Groups of 60 females/each were exposed to (1) female urine, (2) male urine, (3) seminal plasma and (4) female-female (F-F) separated, just before artificial insemination, and compared to a 'golden method' female-female interaction. The following reproductive parameters were analyzed for each group: receptivity (vulvar color), fertility (kindling rate), prolificacy and number of born alive and dead kits/litter. Our results showed that the biostimulation methods employed in this experiment did not significantly improve any of the analyzed parameters. However, female doe exposure to urine, especially to male urine, showed no significant higher fertility values (95.4%) when compared to the rest of the experimental conditions (on average 92.4%). Female-female interaction before artificial insemination, which is a common practice in rabbit farms, showed similar results as not establishing social interaction (F-F separated), which suggests that F-F interaction could be replaced by F-F separated, therefore avoiding unnecessary animal management and time cost. On the other hand, fertility ranges were lower for animals with a pale vulvar color whereas no differences were noticed among the other three colors which measure receptivity (pink, red, purple), thus suggesting that these three colors could be grouped together. Future studies should aim at determining potential chemical cues/pheromones released through bodily secretions that influence reproduction in rabbits, therefore contributing to animal welfare and to a natural image of animal production.
Collapse
Affiliation(s)
- Paula R. Villamayor
- Department of Genetics, Veterinary Faculty, Universidade de Santiago de Compostela (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
- Department of Anatomy, Animal Production and Veterinary Clinic Science, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
| | - Julián Gullón
- COGAL SL, Cuniculture Company, 36530 Rodeiro, Spain; (J.G.); (M.S.)
| | - Uxía Yáñez
- Unit of Reproduction, Department of Animal Pathology, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain; (U.Y.); (L.Q.)
| | - María Sánchez
- COGAL SL, Cuniculture Company, 36530 Rodeiro, Spain; (J.G.); (M.S.)
| | - Pablo Sánchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinic Science, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
| | - Paulino Martínez
- Department of Genetics, Veterinary Faculty, Universidade de Santiago de Compostela (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
| | - Luis Quintela
- Unit of Reproduction, Department of Animal Pathology, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain; (U.Y.); (L.Q.)
| |
Collapse
|
6
|
Wang Q, Zhang Q, Li Y, Zhao X, Zhang Y. Screening and Identification of Differential Ovarian Proteins before and after Induced Ovulation via Seminal Plasma in Bactrian Camels. Animals (Basel) 2021; 11:ani11123512. [PMID: 34944287 PMCID: PMC8698062 DOI: 10.3390/ani11123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Camelidae are induced ovulators whose ovulation is tightly regulated by multiple factors. Understanding the biological mechanisms underlying follicular development, hormone secretion, and ovulation requires investigating the potential molecular pathways involved in these mechanisms. However, little is known about these molecular pathways in Bactrian camels. To screen and identify candidate biomarkers after seminal plasma (SP)-induced ovulation in the ovaries, we performed comprehensive proteomic and molecular biological analyses of the ovaries from camels that were intramuscularly injected with either seminal plasma or phosphate-buffered saline. Identification of these candidate biomarkers will enable a better understanding of reproduction in Bactrian camels. Our findings suggest candidate proteins for further studies on the molecular mechanisms of induced ovulation. Abstract Camelidae are induced ovulators whose ovulation is tightly regulated by multiple factors. Understanding the biological mechanisms underlying follicular development, hormone secretion, and ovulation requires investigating the potential molecular pathways involved. However, little is known about these pathways in Bactrian camels. To screen and identify candidate biomarkers after inducing ovulation, this study performed comprehensive proteomic and molecular biological analyses of the ovaries from two camel groups (n = 6). We identified 5075 expressed ovarian proteins, of which 404 were differentially expressed (264 upregulated, 140 downregulated) (p < 0.05 or p < 0.01), in samples from plasma-induced versus control camels. Gene ontology annotation identified the potential functions of the differentially expressed proteins (DEPs). These results validated the differential expression for a subset of these proteins using Western blot (p < 0.05) and immunofluorescence staining. Three DEPs (FST, NR5A1, and PRL) were involved in neurochemical signal transduction, as well as endocrine and reproductive hormone regulatory processes. The Kyoto Encyclopedia of Genes and Genomes analysis indicated the involvement of several pathways, including the calcium, cAMP, gonadotropin-releasing hormone, MAPK, and neuroactive ligand–receptor signaling pathways, suggesting that induced ovulation depends on the hypothalamic–pituitary–ovarian axis. Identifying these candidate biomarkers enables a better understanding of Bactrian camel reproduction. Ovarian proteomic profiling and the measurement of selected proteins using more targeted methods is a promising approach for studying induced-ovulation mechanisms.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
| | - Yina Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
- Correspondence: (X.Z.); (Y.Z.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (Q.W.); (Y.L.)
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
- Correspondence: (X.Z.); (Y.Z.)
| |
Collapse
|
7
|
Gajardo G, Ulloa-Leal C, Valderrama X, Paiva L, Ratto MH. Heterologous beta-nerve growth factor (β-NGF) given at the LH surge enhances luteal function in dairy heifers. Domest Anim Endocrinol 2021; 77:106645. [PMID: 34186420 DOI: 10.1016/j.domaniend.2021.106645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 01/12/2023]
Abstract
Genetic selection for high yield milk production has led to a decline in dairy cattle's reproductive performance over the last 40 years. Low progesterone (P4) plasma content following ovulation is associated with suboptimal fertility in dairy cattle. Several pieces of evidence indicate that the protein beta-nerve growth factor (β-NGF) that is present in the male seminal plasma exerts potent ovulatory and luteotrophic effects following systemic administration in camelids but also in other species. In this study, we determine whether systemic administration of purified llama β-NGF given at the induced preovulatory luteinizing hormone (LH) peak improves corpus luteum (CL) function in dairy heifers subjected to an estradiol (E2) / P4 estrus-synchronization protocol. To achieve this, we first determined plasma E2 and LH hormone profiles to establish the timing of the estradiol benzoate (EB)-induced LH peak in estrus-synchronized heifers. Then, we tested whether the administration of β-NGF given at the end of this peak affects the CL and its function by analyzing diameter, vascular area, and P4 output. Our results show that, with the estrus-synchronization protocol applied, plasma LH concentrations peaked (P < 0.01) 40-h and 16-h after removal of the bovine intravaginal device (DIB; containing 1.0 g of P4) plus cloprostenol injection and subsequent EB administration, respectively; after peaking, plasma LH concentrations remained stable for the next 8-h to then return to basal levels. Heifers synchronized with this protocol and receiving a dose of 1 mg of β-NGF at the end of the LH peak (ie, 48-h after DIB removal) did not show significant differences in CL diameter, but these exhibited a greater CL vascular area (P = 0.01) than the observed in vehicle-injected heifers. Furthermore, plasma P4 concentration in β-NGF-treated heifers was higher (P = 0.001) than those quantified in vehicle-injected heifers. These results support the use of β-NGF in estrus-synchronization protocols to improve the early luteal function in dairy heifers.
Collapse
Affiliation(s)
- G Gajardo
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile
| | - C Ulloa-Leal
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile
| | - X Valderrama
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias (INIA), Casilla 24-0 - Osorno, Chile
| | - L Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile
| | - M H Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5110566 - Valdivia, Chile.
| |
Collapse
|
8
|
Carrasco RA, Leonardi CE, Hutt K, Singh J, Adams GP. Kisspeptin induces LH release and ovulation in an induced ovulator†. Biol Reprod 2021; 103:49-59. [PMID: 32307518 DOI: 10.1093/biolre/ioaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/14/2022] Open
Abstract
Kisspeptin has been implicated in the ovulatory process of several species of spontaneous ovulators but in only one induced ovulator. In contrast, NGF in semen is the principal trigger of ovulation in other species of induced ovulators-camelids. We tested the hypotheses that kisspeptin induces luteinizing hormone (LH) secretion in llamas through a hypothalamic mechanism, and kisspeptin neurons are the target of NGF in its ovulation-inducing pathway. In Experiment 1, llamas were given either NGF, kisspeptin, or saline intravenously, and LH secretion and ovulation were compared among groups. All llamas treated with NGF (5/5) or kisspeptin (5/5) had an elevation of LH blood concentrations after treatment and ovulated, whereas none of the saline group did (0/5). In Experiment 2, llamas were either pretreated with a gonadotropin-releasing hormone (GnRH) receptor antagonist or saline and treated 2 h later with kisspeptin. Llamas pretreated with saline had elevated plasma LH concentrations and ovulated (6/6) whereas llamas pretreated with cetrorelix did not (0/6). In Experiment 3, we evaluated the hypothalamic kisspeptin-GnRH neuronal network by immunohistochemistry. Kisspeptin neurons were detected in the arcuate nucleus, the preoptic area, and the anterior hypothalamus, establishing synaptic contacts with GnRH neurons. We found no colocalization between kisspeptin and NGF receptors by double immunofluorescence. Functional and morphological findings support the concept that kisspeptin is a mediator of the LH secretory pathway in llamas; however, the role of kisspeptins in the NGF ovulation-inducing pathway in camelids remains unclear since NGF receptors were not detected in kisspeptin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Carlos E Leonardi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kylie Hutt
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
9
|
Carrasco RA, Ratto MH, Adams GP. Differential Effects of Estradiol on Reproductive Function in Camelids. Front Vet Sci 2021; 8:646700. [PMID: 33681337 PMCID: PMC7929994 DOI: 10.3389/fvets.2021.646700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Marcelo H Ratto
- Department of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Berland M, Paiva L, Santander LA, Ratto MH. Distribution of GnRH and Kisspeptin Immunoreactivity in the Female Llama Hypothalamus. Front Vet Sci 2021; 7:597921. [PMID: 33604362 PMCID: PMC7884347 DOI: 10.3389/fvets.2020.597921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Llamas are induced non-reflex ovulators, which ovulate in response to the hormonal stimulus of the male protein beta-nerve growth factor (β-NGF) that is present in the seminal plasma; this response is dependent on the preovulatory gonadotrophin-releasing hormone (GnRH) release from the hypothalamus. GnRH neurones are vital for reproduction, as these provide the input that controls the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary gland. However, in spontaneous ovulators, the activity of GnRH cells is regulated by kisspeptin neurones that relay the oestrogen signal arising from the periphery. Here, we investigated the organisation of GnRH and kisspeptin systems in the hypothalamus of receptive adult female llamas. We found that GnRH cells exhibiting different shapes were distributed throughout the ventral forebrain and some of these were located in proximity to blood vessels; sections of the mediobasal hypothalamus (MBH) displayed the highest number of cells. GnRH fibres were observed in both the organum vasculosum laminae terminalis (OVLT) and median eminence (ME). We also detected abundant kisspeptin fibres in the MBH and ME; kisspeptin cells were found in the arcuate nucleus (ARC), but not in rostral areas of the hypothalamus. Quantitative analysis of GnRH and kisspeptin fibres in the ME revealed a higher innervation density of kisspeptin than of GnRH fibres. The physiological significance of the anatomical findings reported here for the ovulatory mechanism in llamas is still to be determined.
Collapse
Affiliation(s)
- Marco Berland
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Luis Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Lig Alondra Santander
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Marcelo Héctor Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
Carrasco RA, Pezo S, Adams GP. Evidence for the LH-releasing pathway of seminal plasma NGF in male camelids. Theriogenology 2021; 164:100-104. [PMID: 33582512 DOI: 10.1016/j.theriogenology.2021.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
In the female camelid, systemic administration of NGF induces a preovulatory LH surge that results in ovulation, but the effects of seminal NGF in the male are unknown. In the present study, we tested the hypothesis that the LH-releasing pathway of NGF is present in male camelids. In Experiment 1, male llamas and alpacas were treated with NGF or GnRH (n = 2 llamas and 3 alpacas) and blood samples were collected from 1 h before to 3 h after treatment. Plasma LH concentrations increased after treatment in a surge-like fashion in both GnRH- and NGF-treated groups, but concentrations reached a maximum 2.5 times higher and remained elevated for at least 2 h longer in the NGF-treated group (treatment-by-time interaction, P = 0.01). In Experiment 2, we evaluated the LH and testosterone response to NGF vs saline treatment (n = 3 llamas and 3 alpacas). The LH response to NGF was similar to that in Experiment 1, and plasma testosterone concentrations were higher in the NGF group than in the saline group at 2, 4 and 6 h after treatment (P < 0.05). Results support the hypothesis that the LH-releasing pathway for NGF exists in male South American camelids. The LH response to NGF sustained circulating testosterone concentrations in llamas, suggesting a moderate role of NGF in testosterone secretion.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus drive, Saskatoon, S7N5B4, Canada
| | - Sergio Pezo
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus drive, Saskatoon, S7N5B4, Canada
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus drive, Saskatoon, S7N5B4, Canada.
| |
Collapse
|
12
|
Carrasco RA, Singh J, Ratto MH, Adams GP. Neuroanatomical basis of the nerve growth factor ovulation-induction pathway in llamas†. Biol Reprod 2020; 104:578-588. [PMID: 33331645 DOI: 10.1093/biolre/ioaa223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022] Open
Abstract
The objective of the study was to characterize the anatomical framework and sites of action of the nerve growth factor (NGF)-mediated ovulation-inducing system of llamas. The expression patterns of NGF and its receptors in the hypothalamus of llamas (n = 5) were examined using single and double immunohistochemistry/immunofluorescence. We also compare the expression pattern of the P75 receptor in the hypothalamus of llama and a spontaneous ovulator species (sheep, n = 5). Both NGF receptors (TrkA and P75) were highly expressed in the medial septum and diagonal band of Broca, and populations of TrkA cells were observed in the periventricular and dorsal hypothalamus. Unexpectedly, we found NGF immunoreactive cell bodies with widespread distribution in the hypothalamus but not in areas endowed with NGF receptors. The organum vasculosum of the lamina terminalis (OVLT) and the median eminence displayed immunoreactivity for P75. Double immunofluorescence using vimentin, a marker of tanycytes, confirmed that tanycytes were immunoreactive to P75 in the median eminence and in the OVLT. Additionally, tanycytes were in close association with GnRH and kisspeptin in the arcuate nucleus and median eminence of llamas. The choroid plexus of llamas contained TrkA and NGF immunoreactivity but no P75 immunoreactivity. Results of the present study demonstrate sites of action of NGF in the llama hypothalamus, providing support for the hypothesis of a central effect of NGF in the ovulation-inducing mechanism in llamas.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marcelo H Ratto
- Department of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Valderrama X, Ulloa-Leal C, Silva ME, Goicochea J, Apichela S, Argañaraz M, Sari L, Paiva L, Ratto VF, Ratto MH. β-NGF Stimulates Steroidogenic Enzyme and VEGFA Gene Expression, and Progesterone Secretion via ERK 1/2 Pathway in Primary Culture of Llama Granulosa Cells. Front Vet Sci 2020; 7:586265. [PMID: 33195615 PMCID: PMC7645075 DOI: 10.3389/fvets.2020.586265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
The beta-nerve growth factor (β-NGF) from llama seminal plasma exerts ovulatory and luteotrophic effects following intramuscular or intrauterine infusion in llamas and alpacas. In this study, we investigate the in vitro effect of llama β-NGF on the expression of genes involved in angiogenesis and progesterone synthesis as well as progesterone release in preovulatory llama granulosa cells; we also determine whether these changes are mediated via the ERK1/2 signaling pathway. From adult female llamas, we collected granulosa cells from preovulatory follicles by transvaginal ultrasound-guided follicle aspiration; these cells were pooled and incubated. After 80% confluence, the cultured granulosa cells were treated with β-NGF, β-NGF plus the MAPK inhibitor U0126, or luteinizing hormone, and the abundance of angiogenic and steroidogenic enzyme mRNA transcripts were quantified after 10 and 20 h by RT-qPCR. We also quantified the progesterone concentration in the media after 48 h by radioimmunoassay. We found that application of β-NGF increases the abundance of mRNA transcripts of the vascular endothelial growth factor (VEGFA) and the steroidogenic enzymes cytochrome P450 side-chain cleavage (P450scc/CYP11A1), steroidogenic acute regulatory protein (STAR), and 3β-hydroxysteroid dehydrogenase (HSD3B1) at 10 and 20 h of treatment. Application of the MAPK inhibitor U0126 resulted in downregulation of the genes encoding these enzymes. β-NGF also enhanced progesterone synthesis, which was prevented by the prior application of the MAPK inhibitor U0126. Finally, western blot analysis confirmed that β-NGF activates the ERK1/2 signaling pathway. In conclusion, our results indicate that β-NGF exerts direct luteotropic effects on llama ovarian tissue via the ERK 1/2 pathway.
Collapse
Affiliation(s)
| | - Cesar Ulloa-Leal
- Institute of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Erciario Silva
- Department of Veterinary Sciences and Public Health, Faculty of Natural Resources, Universidad Catolica de Temuco, Temuco, Chile
| | - Jose Goicochea
- Department of Surgery and Reproductive Biotechnology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Hermilio Valdizán, Huánuco, Peru
| | - Silvana Apichela
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Facultad de Bioquímica, Instituto de Biología "Dr. Francisco D. Barbieri," Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Martin Argañaraz
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Facultad de Bioquímica, Instituto de Biología "Dr. Francisco D. Barbieri," Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Luciana Sari
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Facultad de Bioquímica, Instituto de Biología "Dr. Francisco D. Barbieri," Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Luis Paiva
- Institute of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Vicente Francisco Ratto
- Institute of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Hector Ratto
- Institute of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
14
|
Pinet-Charvet C, Fleurot R, Derouin-Tochon F, de Graaf S, Druart X, Tsikis G, Taragnat C, Teixeira-Gomes AP, Labas V, Moreau T, Cayla X, Duittoz AH. Beta-nerve growth factor stimulates spontaneous electrical activity of in vitro embryonic mouse GnRH neurons through a P75 mediated-mechanism. Sci Rep 2020; 10:10654. [PMID: 32606357 PMCID: PMC7326925 DOI: 10.1038/s41598-020-67665-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/11/2020] [Indexed: 02/04/2023] Open
Abstract
The control of ovulation helps guarantee the success of reproduction and as such, contributes to the fitness of a species. In mammals, two types of ovulation are observed: induced and spontaneous ovulation. Recent work on camelids, that are induced ovulators, highlighted the role of a factor present in seminal plasma, beta Nerve Growth Factor (β-NGF), as the factor that triggers ovulation in a GnRH dependent manner. In the present work, we characterized alpaca β-NGF (aβ-NGF) and its 3D structure and compared it with human recombinant β-NGF (hβ-NGF). We showed that the β-NGF enriched fraction of alpaca semen and the human recombinant protein, both stimulated spontaneous electrical activity of primary GnRH neurons derived from mouse embryonic olfactory placodes. This effect was dose-dependent and mediated by p75 receptor signaling. P75 receptors were found expressed in vitro by olfactory ensheathing cells (OEC) in close association with GnRH neurons and in vivo by tanycytes in close vicinity to GnRH fibers in adult mouse. Altogether, these results suggested that β-NGF induced ovulation through an increase in GnRH secretion provoked by a glial dependent P75 mediated mechanism.
Collapse
Affiliation(s)
- Caroline Pinet-Charvet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
- Physiologie de la Reproduction et des Comportements (PRC), ComUE Centre-Val de Loire, Centre INRA Val de Loire, Université de Poitiers, 37380, Nouzilly, France
| | - Renaud Fleurot
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Flavie Derouin-Tochon
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Simon de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Catherine Taragnat
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Infectiologie et Santé Publique (ISP) UMR1282, INRA, Centre INRA Val de Loire, Université de Tours, 37380, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Thierry Moreau
- Biologie des Oiseaux et Aviculture (BOA) UMR Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Xavier Cayla
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France.
| |
Collapse
|
15
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Ratto MH, Berland M, Silva ME, Adams GP. New insights of the role of β-NGF in the ovulation mechanism of induced ovulating species. Reproduction 2020; 157:R199-R207. [PMID: 30763273 DOI: 10.1530/rep-18-0305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
The type of stimuli triggering GnRH secretion has been used to classify mammalian species into two categories: spontaneous or induced ovulators. In the former, ovarian steroids produced by a mature follicle elicit the release of GnRH from the hypothalamus, but in the latter, GnRH secretion requires coital stimulation. However, the mechanism responsible for eliciting the preovulatory LH surge in induced ovulators is still not well understood and seems to vary among species. The main goal of this review is to offer new information regarding the mechanism that regulates coitus-induced ovulation. Analysis of several studies documenting the discovery of β-NGF in seminal plasma and its role in the control of ovulation in the llama and rabbit will be described. We also propose a working hypothesis regarding the sites of action of β-NGF in the llama hypothalamus. Finally, we described the presence of β-NGF in the semen of species categorized as spontaneous ovulators, mainly cattle, and its potential role in ovarian function. The discovery of this seminal molecule and its ovulatory effect in induced ovulators challenges previous concepts about the neuroendocrinology of reflex ovulation and has provided a new opportunity to examine the mechanism(s) involved in the cascade of events leading to ovulation. The presence of the factor in the semen of induced as well as spontaneous ovulators highlights the importance of understanding its signaling pathways and mechanism of action and may have broad implications in mammalian fertility.
Collapse
Affiliation(s)
- Marcelo H Ratto
- Department of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - Marco Berland
- Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile
| | - Mauricio E Silva
- Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, WCVM, Saskatoon, Canada
| |
Collapse
|
17
|
Stewart JL, Stella S, Cunha LL, Dias NW, Canisso IF, Mercadante VRG, Cardoso RC, Williams GL, Pohler KG, Lima FS. Administration of nerve growth factor-β to heifers with a pre-ovulatory follicle enhanced luteal formation and function and promoted LH release. Theriogenology 2020; 148:37-47. [PMID: 32126394 DOI: 10.1016/j.theriogenology.2020.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/13/2023]
Abstract
The objective of this study was to determine the effects of bovine nerve growth factor-β (NGF) on pre-ovulatory follicle vascular area, LH release, ovulation, and luteal function when administered systemically to heifers. Post-pubertal Holstein heifers (n = 12) received an intravaginal progesterone-releasing device (CIDR) and GnRH agonist (100 μg IM). The CIDR was removed 5 d later, and heifers were given dinoprost (25 mg IM) at CIDR removal and 24 h later, followed by a second dose of GnRH agonist 48 h later. Heifers were randomly assigned to treatments using a cross-over design. For example, heifers assigned to NGF (250 μg reconstituted in 12 mL PBS IM) in replicate 1 were assigned to control (12 mL PBS IM) in replicate 2. Transrectal ultrasonography was performed before treatment and repeated every 4 h up to 32 h to determine the pre-ovulatory follicle diameter, vascular area, and ovulation. Serum samples were obtained to assess LH concentrations during the periovulatory period and every 2 d post-ovulation for measuring progesterone concentrations. A subset of heifers had luteal biopsies performed on days 9 (n = 6 per treatment) and 14 (n = 6 per treatment) post-ovulation to count luteal cell numbers and measure relative mRNA abundance for steroidogenic and angiogenic enzymes and LH receptor. Treatment with NGF increased pre-ovulatory follicle diameter (P = 0.02) and serum LH concentrations (P = 0.03) but did not affect time to ovulation (P = 0.42). Heifers treated with NGF had increased serum progesterone concentrations in the subsequent luteal phase (P = 0.03), but no change in vascular area of the follicle (P = 0.16) or CL (P = 0.20). Heifers treated with NGF had a greater number of small luteal cells (P < 0.01) and a tendency for increased LH receptor (LHR) mRNA abundance in the CL (P = 0.10). There was also increased steroidogenic acute regulatory protein (STAR; P = 0.05) and a tendency for increased cytochrome P450 family 11 (CYP11A1; P = 0.10) mRNA abundance in the CL of NGF-treated heifers. There was decreased prostaglandin E2 synthase (PGES; P = 0.03) and its receptor (PGER; P = 0.05) mRNA abundance and a tendency for decreased cytochrome P450 family 17 subfamily A member 1 (CYP17A1; P = 0.08) and hydroxysteroid 17-beta dehydrogenase (HSD17B; P = 0.06) mRNA abundance in the CL of NGF-treated heifers. Administration of NGF improved CL function in heifers potentially as a result of increased LH release.
Collapse
Affiliation(s)
- Jamie L Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Stephanie Stella
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Laís L Cunha
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Nicholas W Dias
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Vitor R G Mercadante
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rodolfo C Cardoso
- Department of Animal Sciences, Texas A & M University, College Station, TX, USA
| | - Gary L Williams
- Department of Animal Sciences, Texas A & M University, College Station, TX, USA
| | - Ky G Pohler
- Department of Animal Sciences, Texas A & M University, College Station, TX, USA
| | - Fabio S Lima
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
18
|
Lima FS, Stewart JL, Canisso IF. Insights into nerve growth factor-β role in bovine reproduction - Review. Theriogenology 2020; 150:288-293. [PMID: 32088043 DOI: 10.1016/j.theriogenology.2020.01.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor-β (NGF), initially recognized as a neurotrophin involved in regulating neuronal survival and differentiation, was also later revealed as a ubiquitous seminal plasma protein in mammals. In South American camelids, NGF was initially named ovulation-inducing factor and a dose-dependent luteotropic effect was also reported in llamas. Although NGF was present in the seminal plasma of bulls, the first studies only indicated a potential role on regulation of sperm physiology. The breakthrough discovery of NGF ability to induce ovulation in camelids led to a series of studies investigating the potential functions of NGF within the female reproductive system. In the bovine, a potential luteotropic effect of NGF was perceived as potential tool to overcome the current issues with early embryonic losses attributed at least in part to luteal insufficiency and failed maternal recognition of pregnancy. The aims of this review are to discuss recent advancements in the understanding of the biological roles of NGF in the bovine species. The insights of recent studies with NGF administered in cattle include enhancement of steroidogenesis, luteal formation, and function through increased release of LH, and downstream effect of increased expression of interferon-stimulated genes. In addition, a positive association with sire conception rates; the determination that is produced in the ampulla and vesicular glands of bulls and that is secreted into the sperm-rich fraction of the ejaculate; and the absence of improved post-thaw sperm motility, viability, acrosome integrity, or chromatin stability in ejaculated or epididymal derived sperm supplemented with purified NGF is also discussed.
Collapse
Affiliation(s)
- Fabio S Lima
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| | - Jamie L Stewart
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
19
|
Silva M, Paiva L, Ratto MH. Ovulation mechanism in South American Camelids: The active role of β-NGF as the chemical signal eliciting ovulation in llamas and alpacas. Theriogenology 2020; 150:280-287. [PMID: 32088046 DOI: 10.1016/j.theriogenology.2020.01.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022]
Abstract
The ovulation-inducing effect of seminal plasma was first suggested in Bactrian camels over 30 years ago, initiating a long search to identify the 'ovulation-inducing factor' (OIF) present in camelids semen. During the last decade, primarily in llamas and alpacas, this molecule has been intensively studied characterizing its biological and chemical properties and ultimately identifying it as β-Nerve Growth Factor (β-NGF). The high concentration of OIF/β-NGF in seminal plasma of llamas and alpacas, and the striking effects of seminal fluid on ovarian function strongly support the notion of an endocrine mode of action. Also, have challenged the dogma of mating induced ovulation in camelid species, questioning the classical definition of reflex ovulators, which at the light of new evidence should be revised and updated. On the other hand, the presence of OIF/β-NGF and its ovulatory effect in camelids confirm the notion that seminal plasma is not only a transport and survival medium for sperm but also, a signaling agent targeting female tissues after insemination, generating relevant physiological and reproductive consequences. The presence of this molecule, conserved among induced as well as spontaneous ovulating species, clearly suggests that the potential impacts of this reproductive feature extend beyond the camelid species and may have broad implications in mammalian fertility. The aim of the present review is to provide a brief summary of all research efforts undertaken to isolate and identify the ovulation inducing factor present in the seminal plasma of camelids. Also to give an update of the current understanding of the mechanism of action of seminal β-NGF, at central and ovarian level; finally suggesting possible brain targets for this molecule.
Collapse
Affiliation(s)
- Mauricio Silva
- Department of Veterinary Sciences and Public Health, Chile; Nucleus of Research on Agrifood Production, Universidad Católica de Temuco, Temuco, Chile
| | - Luis Paiva
- Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo H Ratto
- Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
20
|
Maranesi M, Petrucci L, Leonardi L, Piro F, Rebollar PG, Millán P, Cocci P, Vullo C, Parillo F, Moura A, Mariscal GG, Boiti C, Zerani M. New insights on a NGF-mediated pathway to induce ovulation in rabbits (Oryctolagus cuniculus). Biol Reprod 2019; 98:634-643. [PMID: 29438491 DOI: 10.1093/biolre/ioy041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the ovulatory mechanisms triggered by raw semen (RS) in rabbits, we examined the expression of nerve growth factor (NGF)-a supposed ovulation-inducing factor (OIF)-and cognate receptors in anterior pituitary, ovary, and cervix as well as plasma NGF and luteinizing hormone (LH) concentrations. Six does/group were sham-inseminated with sterile saline (PBS), naturally mated (NM), inseminated with RS alone or after lumbar anesthesia (ARS), or treatment with COX inhibitors (CIRS). Immunohistochemistry revealed positive signals for NGF and receptors in all tissues. RT-PCR confirmed the presence of the target transcripts in the same tissues, except NTRK1 in the cervix. Circulating NGF concentrations rose 3- to 6-fold (P < 0.01) 15 min after semen deposition into the genital tract of NM, RS, and ARS rabbits and remained sustained thereafter. Circulating NGF was 4-fold lower (P < 0.01) in CIRS than in RS does indicating that NGF is mainly synthesized by the uterus. A concomitant rise of LH and NGF concentrations was found in 83.3%, 50.0%, and 16.7% of NM, RS, and CIRS does, respectively, but not in ARS (despite high NGF circulating levels). Seminal plasma NGF concentration was 151.9 ± 9.25 μg/mL. The ovulatory responses were 0%, 83.3%, 66.7%, 16.7%, and 0% in PBS, NM, RS, ARS, and CIRS groups, respectively. Present data confirm that, although RS may induce ovulation via endocrine mechanisms through binding to NGF receptors in the ovary, a novel OIF-mediated neural mechanism facilitates ovulation in rabbits.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Linda Petrucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Leonardo Leonardi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Federica Piro
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | | | - Pilar Millán
- Departamento de Fisiología (Fisiología animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paolo Cocci
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| | - Cecilia Vullo
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Francesco Parillo
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| | - Arlindo Moura
- Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Gabriela Gonzalez Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy.,Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| |
Collapse
|
21
|
Valderrama XP, Goicochea JF, Silva ME, Ratto MH. The effect of seminal plasma β-NGF on follicular fluid hormone concentration and gene expression of steroidogenic enzymes in llama granulosa cells. Reprod Biol Endocrinol 2019; 17:60. [PMID: 31331332 PMCID: PMC6647067 DOI: 10.1186/s12958-019-0504-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nerve growth factor (β-NGF) from llama seminal plasma has been described as a potent ovulatory and luteotrophic molecule after intramuscular or intrauterine infusion in llamas and alpacas. We tested the hypothesis that systemic administration of purified β-Nerve Growth Factor (β-NGF) during the preovulatory stage will up-regulate steroidogenic enzymes and Vascular Endothelial Growth Factor (VEGF) gene expression in granulosa cells inducing a change in the progesterone/estradiol ratio in the follicular fluid in llamas. METHODS Experiment I: Female llamas (n = 64) were randomly assigned to receive an intramuscular administration of: a) 50 μg gonadorelin acetate (GnRH, Ovalyse, Pfizer Chile SA, Santiago, Chile, n = 16), b) 1.0 mg of purified llama β-NGF (n = 16), or c) 1 ml phosphate buffered saline (PBS, negative control group, n = 16). An additional group of llamas (n = 16) were mated with a fertile male. Follicular fluid and granulosa cells were collected from the preovulatory follicle at 10 or 20 h after treatment (Time 0 = administration of treatment, n = 8/treatment/time point) to determine progesterone/estradiol concentration and steroidogenic enzymes and VEGF gene expression at both time points. Experiment II: Granulosa cells were collected from preovulatory follicles from llamas (n = 24) using ultrasound-guided transvaginal follicle aspiration for in vitro culture to determine mRNA relative expression of Steroidogenic Acute Regulatory Protein (StAR) and VEGF at 10 or 20 h (n = 4 replicates) and progesterone secretion at 48 h (n = 4 replicates) after LH or β-NGF treatment. RESULTS Experiment I: There was a significant increase in the progesterone/estradiol ratio in mated llamas or treated with GnRH or purified β-NGF. There was a significant downregulation in the mRNA expression of Aromatase (CYP19A1/P450 Arom) for both time points in llamas mated or treated with GnRH or llama purified β-NGF with respect to the control group. All treatments except β-NGF (20 h) significantly up regulated the mRNA expression of 3-beta-hydroxysteroid dehydrogenase (HSD3B) whereas the expression of StAR and Side-Chain cleavage enzyme (CYP11A1/P450scc) where significantly up regulated only by mating (20 h), or β-NGF at 10 or 20 h after treatment. VEGF was up regulated only in those llamas submitted to mating (10 h) or treated with purified β-NGF (10 and 20 h). Experiment II: Only β-NGF treatment induced an increase of mRNA abundance of StAR from llama granulosa cells at 20 h of in vitro culture. There was a significant increase on mRNA abundance of VEGF at 10 and 20 h of in vitro culture from granulosa cells treated with β-NGF whereas LH treatment increases VEGF mRNA abundance only at 20 h of in vitro culture. In addition, there was a significant increase on progesterone secretion from llama granulosa cells 48 h after LH or β-NGF treatment. CONCLUSIONS Systemic administration of purified β-NGF from llama seminal fluid induced a rapid shift from estradiol to progesterone production in the preovulatory follicle. Differences in gene expression patterns of steroidogenic enzymes between GnRH and mated or β-NGF-treated llamas suggest local effects of seminal components on the preovulatory follicle.
Collapse
Affiliation(s)
- Ximena P Valderrama
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Jose F Goicochea
- Department of Animal Reproduction and Surgery, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Hermilio Valdizán, Huánuco, Peru
| | - Mauricio E Silva
- College of Veterinary Medicine, Faculty of Natural Resources, Universidad Catolica de Temuco, Temuco, Chile
| | - Marcelo H Ratto
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
22
|
Evaluation of the effect of mating, intrauterine deposition of raw seminal plasma or seminal plasma purified β-NGF on endometrial vascularization in llamas. Theriogenology 2018; 125:18-23. [PMID: 30368128 DOI: 10.1016/j.theriogenology.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/06/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the endometrial vascularization area (EVA) of both uterine horns in llamas subjected to different intrauterine treatments resembling physiological conditions after a single mating. Llamas with a growing follicle (≥8 mm) were randomly assigned to: a) single mating with a fertile male (mating; positive control; n = 6); b) intramuscular administration of 50 μg of gonadorelin acetate plus an intrauterine infusion of 4 ml of PBS (GnRH; negative control; n = 4); c) intrauterine infusion of 4 ml of raw llama seminal plasma (SP; n = 4) or d) intrauterine infusion of 10 mg of β-NGF purified from llama semen diluted in 4 ml of PBS (spβ-NGF; n = 6). Females in GnRH, SP and NGF group received 50% of treatment volume into each horn by guiding an insemination pipet through the cervix. Ovaries were examined by ultrasonography every 12 h until Day2 (Day 0 = Day of treatment) to determine ovulation. Power-Doppler ultrasonography evaluation of EVA in a cross-section of the middle segment of each horn was conducted at 1 h before and 1, 3, 6, 12 and 24 h (intensive evaluation) and 2, 4, 6 and 8 days (long-term evaluation) after treatment administration. Serial EVA data was analyzed as a 2-by-2 factorial design for repeated measures using the MIXED procedure. The analysis included main effects of treatment (mating, SP, spβ-NGF or GnRH), uterine horn (left vs right), time, and their interactions. According to the 2 by 2 analysis there was no effect of uterine horn on EVA during the first 24 h and from Day 2 to Day 8 after treatment; therefore, data were grouped based on treatment type regardless of uterine horn for both periods of observation. Thus, EVA was affected by time (P < 0.04) and treatment by time interaction (P < 0.02) and tended (P = 0.07) to be influenced by type of treatment during the intensive evaluation period. Females on mating and spβ-NGF group showed a significant increase in EVA at 3 and 12 h after treatment compared to GnRH and SP groups. However, no effect of treatment, time or their interaction was observed during the long-term evaluation period. In spite of the limited number of animals used in this study, our results allow us to concluded that natural mating and intrauterine deposition of 10 mg of spβ-NGF induce a symmetrical increase in endometrial vascularization of both uterine horns during the first 24 h post treatment administration in llamas; however, this effect did not persist beyond that period.
Collapse
|
23
|
Carrasco RA, Singh J, Adams GP. The relationship between gonadotropin releasing hormone and ovulation inducing factor/nerve growth factor receptors in the hypothalamus of the llama. Reprod Biol Endocrinol 2018; 16:83. [PMID: 30170607 PMCID: PMC6119247 DOI: 10.1186/s12958-018-0402-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A molecule identical to nerve growth factor, with ovulation-inducing properties has been discovered in the seminal plasma of South American camelids (ovulation-inducing factor/nerve growth factor; OIF/NGF). We hypothesize that the ovulatory effect of OIF/NGF is initiated at the level of the hypothalamus, presumably by GnRH neurons. The objective of the present study was to determine the structural relationship between GnRH neurons and neurons expressing high- and low-affinity receptors for NGF (i.e., TrkA and p75, respectively) in the hypothalamus. METHODS Mature llamas (n = 4) were euthanized and their hypothalamic tissue was fixed, sectioned, and processed for immunohistochemistry on free-floating sections. Ten equidistant sections per brain were double stained for immunofluorescence detection of TrkA and GnRH, or p75 and GnRH. RESULTS Cells immunoreactive to TrkA were detected in most hypothalamic areas, but the majority of cells were detected in the diagonal band of Broca (part of the ventral forebrain) and the supraoptic nuclei and periventricular area. The number of cells immunoreactive to p75 was highest in the diagonal band of Broca and lateral preoptic areas and least in more caudal areas of the hypothalamus (p < 0.05) in a pattern similar to that of TrkA. A low proportion of GnRH neurons were immunoreactive to TrkA (2.5% of total GnRH cells), and no co-localization between GnRH and p75 was detected. GnRH neuron fibers were detected only occasionally in proximity to TrkA immunopositive neurons. CONCLUSIONS Results do not support the hypothesis that the effect of OIF/NGF is driven by a direct interaction with GnRH neurons, but rather provide rationale for the hypothesis that interneurons exist in the hypothalamus that mediate OIF/NGF-induced ovulation.
Collapse
Affiliation(s)
- Rodrigo A. Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 campus drive, Saskatoon, Saskatchewan S7N5B4 Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 campus drive, Saskatoon, Saskatchewan S7N5B4 Canada
| | - Gregg P. Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 campus drive, Saskatoon, Saskatchewan S7N5B4 Canada
| |
Collapse
|
24
|
Carrasco RA, Singh J, Adams GP. Distribution and morphology of gonadotropin-releasing hormone neurons in the hypothalamus of an induced ovulator - The llama (Lama glama). Gen Comp Endocrinol 2018; 263:43-50. [PMID: 29656045 DOI: 10.1016/j.ygcen.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/23/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide involved in the regulation of reproduction in all mammals, but the distribution of GnRH neurons within the brain varies widely among species. The objective of the present study was to characterize the number and distribution of GnRH neurons in the hypothalamus and preoptic area of llamas, an induced ovulator. The brains of female llamas (n = 4) were fixed, frozen and sectioned serially every 50 µm in the transverse (coronal) plane. Every 10th section was stained for immunohistochemical detection of GnRH-positive neuron cell bodies and fibers by incubation with 3,3'-diaminobenzidine. The number of counted immunoreactive cells ranged from 222 to 250 (≈241 ± 13 cells in the preoptic area and hypothalamus per animal) and were localized in the medio-basal hypothalamus (44.3%), anterior hypothalamus (27%), preoptic area (14.9%), diagonal band of Broca/medial septum (13.4%), and mammillary area (0.5%). The immunoreactive cells were not localized in specific hypothalamic nuclei, but rather appeared to be distributed diffusely. The highest concentration of immunoreactive neuron fibers was in the median eminence (P < 0.05), but fibers were identified in most of the areas analyzed, including the neurohypophysis. The GnRH neurons within the hypothalamus displayed monopolar (33%), bipolar (39%), and multipolar (28%) morphologies. The bipolar type was most common in the medio-basal region (40%; P < 0.05). We conclude that GnRH neurons and fibers form a network within the anterior and medio-basal hypothalamus of llamas, suggesting the central location of mechanisms controlling reproductive processes in llamas (i.e., induced ovulation).
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
25
|
Stewart JL, Mercadante VR, Dias NW, Canisso IF, Yau P, Imai B, Lima FS. Nerve Growth Factor-Beta, purified from bull seminal plasma, enhances corpus luteum formation and conceptus development in Bos taurus cows. Theriogenology 2018; 106:30-38. [DOI: 10.1016/j.theriogenology.2017.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/09/2023]
|
26
|
Silva M, Ulloa-Leal C, Valderrama XP, Bogle OA, Adams GP, Ratto MH. Nerve growth factor from seminal plasma origin (spβ-NGF) increases CL vascularization and level of mRNA expression of steroidogenic enzymes during the early stage of Corpus Luteum development in llamas. Theriogenology 2017; 103:69-75. [PMID: 28779611 DOI: 10.1016/j.theriogenology.2017.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 11/29/2022]
Abstract
The objectives of the study were to determine the effect of seminal plasma β-NGF on Corpus Luteum morphology and function and level of mRNA expression of steroidogenic enzymes. Llamas were assigned (n = 12/per group) to receive an intramuscular dose of: (a) 1 ml phosphate buffered saline (PBS), (b) 5 μg gonadorelin acetate (GnRH), or (c) 1.0 mg of purified llama spβ-NGF. Ovaries were examined by transrectal B-mode ultrasonography from treatment to ovulation (Day 0 = treatment). B mode/Power Doppler ultrasonography and blood samples collection were performed at Days 4, 8 and 10 (n = 3 llamas per treatment group/per time point) to determine CL diameter, vascularization and plasma progesterone concentration respectively. Plasma progesterone concentration was analyzed in all llamas at Day 0. Then females were submitted to ovariectomy at Days 4, 8 and 10 (n = 3 llamas/treatment/time), CL was removed to determine vascular area, proportion of luteal cells and CYP11A1/P450scc and STAR expression by RT-PCR. Ovulation was similar between llamas treated with GnRH or spβ-NGF and CL diameter did not differ between GnRH or spβ-NGF groups by Day 4, 8 or 10. Vascularization area of the CL was higher (P < 0.01) in llamas from the spβ-NGF than GnRH-treated group by Day 4 and 8. Plasma progesterone concentration was higher (P < 0.05) in llamas from the spβ-NGF compared to females of GnRH group by Day 4 and 8. The proportion of small and large luteal cells did not differ between GnRH or spβ-NGF groups by Day 8. CYP11A1/P450scc was upregulated 3 folds at day 4 and 10 by spβ-NGF compared to GnRH. STAR transcription was 3 folds higher at day 4 in females treated with spβ-NGF. In conclusion, the luteotrophic effect of spβ-NGF could be related to an increase of vascularization and up regulation of CYP11A1/P450scc and STAR transcripts enhancing progesterone secretion.
Collapse
Affiliation(s)
- M Silva
- Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - C Ulloa-Leal
- Universidad de Las Fuerzas Armadas, ESPE, Sangolqui, Ecuador
| | - X P Valderrama
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - O A Bogle
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - G P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - M H Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
27
|
Kumar A, Pareek V, Faiq MA, Kumar P, Raza K, Prasoon P, Dantham S, Mochan S. Regulatory role of NGFs in neurocognitive functions. Rev Neurosci 2017; 28:649-673. [DOI: 10.1515/revneuro-2016-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry 609602, India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, Haryana 122051, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
28
|
El Allali K, El Bousmaki N, Ainani H, Simonneaux V. Effect of the Camelid's Seminal Plasma Ovulation-Inducing Factor/β-NGF: A Kisspeptin Target Hypothesis. Front Vet Sci 2017; 4:99. [PMID: 28713816 PMCID: PMC5491598 DOI: 10.3389/fvets.2017.00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023] Open
Abstract
Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents) occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids), ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF). In camelids, intramuscular or intrauterine administration of seminal plasma (SP) was shown to induce the preovulatory luteinizing hormone (LH) surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the β subunit of nerve growth factor (β-NGF). β-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, β-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of β-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus.
Collapse
Affiliation(s)
- Khalid El Allali
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Najlae El Bousmaki
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Hassan Ainani
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Norambuena MC, Hernández F, Maureira J, Rubilar C, Alfaro J, Silva G, Silva M, Ulloa-Leal C. Effects of leptin administration on development, vascularization and function of Corpus luteum in alpacas submitted to pre-ovulatory fasting. Anim Reprod Sci 2017; 182:28-34. [PMID: 28495018 DOI: 10.1016/j.anireprosci.2017.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/20/2017] [Indexed: 10/19/2022]
Abstract
The objective of this study was to determine the effect of leptin administration on the development, vascularization and function of Corpus luteum (CL) in alpacas submitted to pre-ovulatory fasting. Fourteen alpacas were kept in fasting conditions for 72h and received five doses of o-leptin (2μg/kg e.v.; Leptin group) or saline (Control group) every 12h. Ovulation was induced with a GnRH dose (Day 0). The ovaries were examined every other day by trans-rectal ultrasonography (7.5MHz; mode B and power Doppler) from Day 0 to 13 to determine the pre-ovulatory follicle diameter and ovulation, and then to monitor CL diameter and vascularization until the regression phase. Serial blood samples were taken after GnRH treatment to determine plasma LH concentration; and every other day from Days 1 to 13 to determine plasma progesterone and leptin concentrations. The pre-ovulatory follicle and CL diameter, LH, progesterone and leptin plasma concentrations were not affected by treatment (P>0.05). The vascularization area of the CL was, nevertheless, affected by the treatment (P<0.01) with significant differences between groups at Days 3, 7 and 9 (P<0.05). The Leptin group had a larger maximum vascularization area (0.67±0.1 compared with 0.35±0.1cm2; P<0.05). In addition, there was a positive correlation between CL vascularization, CL diameter and plasma progesterone. The exogenous administration of leptin during pre-ovulatory fasting increased the vascularization of the CL in alpacas in vivo.
Collapse
Affiliation(s)
- María Cecilia Norambuena
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile; Núcleo de Investigación en Producción Alimentaria (NIPA), Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile.
| | - Francisca Hernández
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile
| | - Jonathan Maureira
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile
| | - Carolina Rubilar
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile
| | - Jorge Alfaro
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile
| | - Gonzalo Silva
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile
| | - Mauricio Silva
- School of Veterinary Medicine, Faculty of Natural Resources, Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile; Núcleo de Investigación en Producción Alimentaria (NIPA), Universidad Católica de Temuco, Manuel Montt 056, Temuco, PC 4780000, Chile
| | - César Ulloa-Leal
- Universidad de las Fuerzas Armadas ESPE, IASA II, Sangolqui, PC170501, Ecuador
| |
Collapse
|
30
|
Silva M, Urra F, Ulloa-Leal C, Ratto MH. A comparative study of the effects of intramuscular administration of gonadorelin, mating and intrauterine infusion of either raw seminal plasma or seminal plasma purified β-NGF on luteal development in llamas. Reprod Domest Anim 2017; 52:625-631. [DOI: 10.1111/rda.12958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 12/01/2022]
Affiliation(s)
- M Silva
- Universidad Católica de Temuco; Temuco Chile
| | - F Urra
- Universidad Austral de Chile; Valdivia Chile
| | - C Ulloa-Leal
- Universidad de las fuerzas Armadas ESPE; IASA I; Sangolquí Ecuador
| | - MH Ratto
- Universidad Austral de Chile; Valdivia Chile
| |
Collapse
|
31
|
Adams GP, Ratto MH, Silva ME, Carrasco RA. Ovulation-inducing factor (OIF/NGF) in seminal plasma: a review and update. Reprod Domest Anim 2016; 51 Suppl 2:4-17. [DOI: 10.1111/rda.12795] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- GP Adams
- Veterinary Biomedical Sciences; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon SK Canada
| | - MH Ratto
- Faculty of Veterinary Sciences; Universidad Austral de Chile; Valdivia Chile
| | - ME Silva
- School of Veterinary Medicine; Núcleo de Investigación en Producción Alimentaria; Universidad Católica de Temuco; Temuco Chile
| | - RA Carrasco
- Veterinary Biomedical Sciences; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
32
|
Berland MA, Ulloa-Leal C, Barría M, Wright H, Dissen GA, Silva ME, Ojeda SR, Ratto MH. Seminal Plasma Induces Ovulation in Llamas in the Absence of a Copulatory Stimulus: Role of Nerve Growth Factor as an Ovulation-Inducing Factor. Endocrinology 2016; 157:3224-32. [PMID: 27355492 PMCID: PMC4967124 DOI: 10.1210/en.2016-1310] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Llamas are considered to be reflex ovulators. However, semen from these animals is reported to be rich in ovulation-inducing factor(s), one of which has been identified as nerve growth factor (NGF). These findings suggest that ovulation in llamas may be elicited by chemical signals contained in semen instead of being mediated by neural signals. The present study examines this notion. Llamas displaying a preovulatory follicle were assigned to four groups: group 1 received an intrauterine infusion (IUI) of PBS; group 2 received an IUI of seminal plasma; group 3 was mated to a male whose urethra had been surgically diverted (urethrostomized male); and group 4 was mated to an intact male. Ovulation (detected by ultrasonography) occurred only in llamas mated to an intact male or given an IUI of seminal plasma and was preceded by a surge in plasma LH levels initiated within an hour after coitus or IUI. In both ovulatory groups, circulating β-NGF levels increased within 15 minutes after treatment, reaching values that were greater and more sustained in llamas mated with an intact male. These results demonstrate that llamas can be induced to ovulate by seminal plasma in the absence of copulation and that copulation alone cannot elicit ovulation in the absence of seminal plasma. In addition, our results implicate β-NGF as an important mediator of seminal plasma-induced ovulation in llamas because ovulation does not occur if β-NGF levels do not increase in the bloodstream, a change that occurs promptly after copulation with an intact male or IUI of seminal plasma.
Collapse
Affiliation(s)
- Marco A Berland
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Cesar Ulloa-Leal
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Miguel Barría
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Hollis Wright
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Gregory A Dissen
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Mauricio E Silva
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Sergio R Ojeda
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| | - Marcelo H Ratto
- Escuela de Medicina Veterinaria (M.A.B., M.E.S.), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile; Universidad de las Fuerzas Armadas (ESPE) (C.U.-L.), Quito, Ecuador; Instituto de Inmunología (M.B.), Facultad de Medicina, and Department of Animal Science (M.A.B., M.H.R.), Universidad Austral de Chile, Valdivia, Chile; and Division of Neuroscience (H.W., G.A.D., S.R.O.), Oregon National Primate Research Center, Beaverton, Oregon 97006
| |
Collapse
|
33
|
Fernández A, Ulloa-Leal C, Silva M, Norambuena C, Adams G, Guerra M, Ratto M. The effect of repeated administrations of llama ovulation-inducing factor (OIF/NGF) during the peri-ovulatory period on corpus luteum development and function in llamas. Anim Reprod Sci 2014; 149:345-52. [DOI: 10.1016/j.anireprosci.2014.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
|
34
|
Silva M, Ulloa-Leal C, Norambuena C, Fernández A, Adams G, Ratto M. Ovulation-inducing factor (OIF/NGF) from seminal plasma origin enhances Corpus Luteum function in llamas regardless the preovulatory follicle diameter. Anim Reprod Sci 2014; 148:221-7. [DOI: 10.1016/j.anireprosci.2014.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
35
|
Luteotrophic effect of ovulation-inducing factor/nerve growth factor present in the seminal plasma of llamas. Theriogenology 2014; 81:1101-1107.e1. [PMID: 24582374 DOI: 10.1016/j.theriogenology.2014.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 11/23/2022]
Abstract
The hypothesis that ovulation-inducing factor/nerve growth factor (OIF/NGF) isolated from llama seminal plasma exerts a luteotrophic effect was tested by examining changes in circulating concentrations of LH and progesterone, and the vascular perfusion of the ovulatory follicle and developing CL. Female llamas with a growing follicle of 8 mm or greater in diameter were assigned randomly to one of three groups (n = 10 llamas per group) and given a single intramuscular dose of PBS (1 mL), GnRH (50 μg), or purified OIF/NGF (1.0 mg). Cineloops of ultrasonographic images of the ovary containing the dominant follicle were recorded in brightness and power Doppler modalities. Llamas were examined every 4 hours from the day of treatment (Day 0) until ovulation, and every other day thereafter to Day 16. Still frames were extracted from cineloops for computer-assisted analysis of the vascular area of the preovulatory follicle from treatment to ovulation and of the growing and regressing phases of subsequent CL development. Blood samples were collected for the measurement of plasma LH and progesterone concentrations. The diameter of the dominant follicle at the time of treatment did not differ among groups (P = 0.48). No ovulations were detected in the PBS group but were detected in all llamas given GnRH or OIF/NGF (0/10, 10/10, and 10/10, respectively; P < 0.0001). No difference was detected between the GnRH and OIF/NGF groups in the interval from treatment to ovulation (32.0 ± 1.9 and 30.4 ± 5.7 hours, respectively; P = 0.41) or in maximum CL diameter (13.1 ± 0.4 and 13.5 ± 0.3 mm, respectively; P = 0.44). The preovulatory follicle of llamas treated with OIF/NGF had a greater vascular area at 4 hours after treatment than that of the GnRH group (P < 0.001). Similarly, the luteal tissue of llamas treated with purified OIF/NGF had a greater vascular area than that of the GnRH group on Day 6 after treatment (P < 0.001). The preovulatory surge in plasma LH concentration began, and peaked 1 to 2 hours later in the OIF/NGF group than in the GnRH group (P < 0.05). Plasma progesterone concentration was higher on Day 6 in the OIF/NGF group than in the GnRH group (P < 0.001). Results support the hypothesis that OIF/NGF exerts a luteotrophic effect by altering the secretion pattern of LH and enhancing tissue vascularization during the periovulatory period and early stages of CL development.
Collapse
|
36
|
Norambuena M, Silva M, Urra F, Ulloa-Leal C, Fernández A, Adams G, Huanca W, Ratto M. Effects of nutritional restriction on metabolic, endocrine, and ovarian function in llamas (Lama glama). Anim Reprod Sci 2013; 138:252-60. [DOI: 10.1016/j.anireprosci.2013.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/12/2012] [Accepted: 01/28/2013] [Indexed: 11/24/2022]
|
37
|
|
38
|
Abstract
A component in seminal fluid elicits an ovulatory response and has been discovered in every species examined thus far. The existence of an ovulation-inducing factor (OIF) in seminal plasma has broad implications and evokes questions about identity, tissue sources, mechanism of action, role among species, and clinical relevance in infertility. Most of these questions remain unanswered. The goal of this study was to determine the identity of OIF in support of the hypothesis that it is a single distinct and widely conserved entity. Seminal plasma from llamas and bulls was used as representative of induced and spontaneous ovulators, respectively. A fraction isolated from llama seminal plasma by column chromatography was identified as OIF by eliciting luteinizing hormone (LH) release and ovulation in llamas. MALDI-TOF revealed a molecular mass of 13,221 Da, and 12-23 aa sequences of OIF had homology with human, porcine, bovine, and murine sequences of β nerve growth factor (β-NGF). X-ray diffraction data were used to solve the full sequence and structure of OIF as β-NGF. Neurite development and up-regulation of trkA in phaeochromocytoma (PC(12)) cells in vitro confirmed NGF-like properties of OIF. Western blot analysis of llama and bull seminal plasma confirmed immunorecognition of OIF using polyclonal mouse anti-NGF, and administration of β-NGF from mouse submandibular glands induced ovulation in llamas. We conclude that OIF in seminal plasma is β-NGF and that it is highly conserved. An endocrine route of action of NGF elucidates a previously unknown pathway for the direct influence of the male on the hypothalamo-pituitary-gonadal axis of the inseminated female.
Collapse
|
39
|
Ovulation-inducing factor (OIF) induces LH secretion from pituitary cells. Anim Reprod Sci 2012; 133:117-22. [PMID: 22770553 DOI: 10.1016/j.anireprosci.2012.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/04/2012] [Accepted: 06/09/2012] [Indexed: 11/24/2022]
Abstract
A substance in the seminal plasma of llamas and alpacas has been discovered that induces ovulation and growth of the corpus luteum (CL) in the female of the same species. The ovarian effects of the ovulation-inducing factor (OIF) are associated with a surge release of LH into circulation. We hypothesize that OIF stimulates LH release from gonadotroph cells in the anterior pituitary gland. Four experiments were done to determine if purified OIF isolated from llama seminal plasma stimulates LH secretion in pituitary cells using tissue from an induced ovulator (llama) and spontaneous ovulator (cattle). Anterior pituitary cells were cultured in vitro for two days, and on the third day, wells were incubated for 2 h with media containing no treatment (control), GnRH or OIF. Concentrations of LH in the culture medium were measured using radioimmunoassay and compared among groups by analysis of variance. In all experiments, GnRH and OIF treatments induced more LH secretion than untreated controls (P<0.05). A dose-related effect was evident in the llama pituitary cell cultures in that mean LH concentrations were greater (P<0.05) in wells treated with a higher dose of OIF (5.41 ± 0.28 ng/mL) compared to wells treated with a lower dose (2.70 ± 0.50 ng/mL), both of which were higher (P<0.05) than in wells with no treatment (0.87 ± 0.18 ng/mL). Although OIF stimulated LH release in bovine cell cultures, a dose-related effect was not detected. We conclude that OIF stimulates LH secretion from pituitary gonadotrophs in vitro.
Collapse
|
40
|
Silva M, Recabarren M, Recabarren S, Adams G, Ratto M. Ovarian estradiol modulates the stimulatory effect of ovulation-inducing factor (OIF) on pituitary LH secretion in llamas. Theriogenology 2012; 77:1873-82. [DOI: 10.1016/j.theriogenology.2012.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/02/2011] [Accepted: 01/06/2012] [Indexed: 10/28/2022]
|
41
|
Silva ME, Colazo MG, Ratto MH. GnRH dose reduction decreases pituitary LH release and ovulatory response but does not affect corpus luteum (CL) development and function in llamas. Theriogenology 2012; 77:1802-10. [PMID: 22365705 DOI: 10.1016/j.theriogenology.2011.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/25/2011] [Accepted: 12/24/2011] [Indexed: 10/28/2022]
Abstract
Gonadotrophin releasing hormone (GnRH) is commonly used in llamas to induce ovulation; however, the consequence of reduced doses of GnRH on luteinizing hormone (LH) release, ovulatory response, and subsequent corpus luteum (CL) development and function have apparently not been investigated. Hence, we examined the effect of gradual reduction of gonadorelin acetate (GnRH) dosage on pituitary LH release, ovulatory response, CL development, and plasma progesterone concentrations in llamas. Non-pregnant, non-lactating adult llamas were examined once daily by transrectal ultrasonography, and those with a follicle ≥8 mm in diameter that had grown for three consecutive days were randomly assigned to receive 50 (GnRH50, n = 23), 25 (GnRH25, n = 29), 12.5 (GnRH12.5, n = 29), or 6.25 μg (GnRH6.25, n = 29) of GnRH, or 0.5 mL of PBS (Control group, n = 16) im. In a subset (7 or 8 animals/group), intense blood sampling was done to measure LH concentrations. All females were examined by ultrasonography every 12 h from treatment (Day 0) to Day 2 to determinate ovulation, and thereafter on alternate days until Day 16 to evaluate CL development (9-13 animals/group). Also, blood samples for progesterone determination were taken (9 or 10 animals/group) on alternate days from Days 0-16. Ovulatory response (%) was highest (P < 0.05) in the GnRH50 (82.6), intermediate in the GnRH25 (72.3) and GnRH12.5 (75.9) groups, and lowest in the GnRH6.25 group (48.3). No ovulations were detected in the Control group. Mean peak LH concentrations (ng/mL) were highest (P < 0.05) for GnRH50 (6.2), intermediate for GnRH25 (4.4) and GnRH12.5 (2.9), and lowest for GnRH6.25 (2.2) groups. In addition, based on regression analysis, llamas with an LH peak <4 ng/mL were less likely to ovulate. Llamas given 50 μg of GnRH released more (P < 0.05) pituitary LH and had an LH surge of longer duration than those given 25, 12.5, or 6.25 μg. However, in those that ovulated, neither GnRH treatment nor treatment by time interaction affected (P > 0.05) CL diameter or plasma progesterone concentrations. In summary, reducing the dose of GnRH gradually decreased the magnitude of the preovulatory LH surge and ovulatory response; however, subsequent CL development and plasma progesterone concentrations were not affected.
Collapse
Affiliation(s)
- M E Silva
- Escuela de Medicina, Veterinaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | | | | |
Collapse
|