1
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
2
|
Kuhlman BM, Diaz JH, Simon T, Reeves KD, Walker SJ, Atala A, Almeida-Porada G, Porada CD. Simulated microgravity impairs human NK cell cytotoxic activity against space radiation-relevant leukemic cells. NPJ Microgravity 2024; 10:85. [PMID: 39143086 PMCID: PMC11324864 DOI: 10.1038/s41526-024-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
Natural killer (NK) cells are an important first-line of defense against malignant cells. Because of the potential for increased cancer risk from astronaut exposure to space radiation, we determined whether microgravity present during spaceflight affects the body's defenses against leukemogenesis. Human NK cells were cultured for 48 h under normal gravity and simulated microgravity (sμG), and cytotoxicity against K-562 (CML) and MOLT-4 (T-ALL) cells was measured using standard methodology or under continuous sμG. This brief exposure to sμG markedly reduced NK cytotoxicity against both leukemias, and these deleterious effects were more pronounced in continuous sμG. RNA-seq performed on NK cells from two additional healthy donors provided insight into the mechanism(s) by which sμG reduced cytotoxicity. Given our prior report of space radiation-induced human T-ALL in vivo, the reduced cytotoxicity against MOLT-4 is striking and raises the possibility that μG may increase astronaut risk of leukemogenesis during prolonged missions beyond LEO.
Collapse
Affiliation(s)
| | - Jonathan H Diaz
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Trang Simon
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Kimberly D Reeves
- Wake Forest Center for Precision Medicine, Winston Salem, NC, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | | | | |
Collapse
|
3
|
Porada C, Kuhlman B, Diaz J, Simon T, Reaves K, Walker S, Atala A, Almeida-Porada G. Simulated Microgravity Impairs Human NK Cell Cytotoxic Activity Against Space Radiation-Relevant Leukemic Cells. RESEARCH SQUARE 2024:rs.3.rs-3972868. [PMID: 38746365 PMCID: PMC11092860 DOI: 10.21203/rs.3.rs-3972868/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Natural killer (NK) cells are important effectors of the innate immune system. Unlike T cells, NK cells do not require antigen-priming, making them an important first-line of defense against malignant cells. Because of the potential for increased cancer risk as a result of astronaut exposure to space radiation, we performed studies to determine whether conditions of microgravity present during spaceflight affects the body's natural defenses against leukemogenesis. Human NK cells were cultured for 48 hours under normal gravity and simulated microgravity (sµG), and cytotoxicity against K-562 (CML) and MOLT-4 (T-ALL) cell lines was measured using standard methodology or under continuous conditions of sµG. Even this brief exposure to sµG markedly reduced NK cytotoxicity against both leukemic cells using standard assay procedures, and these deleterious effects were even more pronounced in continuous sµG. RNA-seq performed on NK cells from two healthy donors provided insight into the mechanism(s) by which sµG reduced cytotoxicity. Given our prior report that human HSC exposed to simulated space radiation gave rise to T-ALL in vivo , the reduced cytotoxicity against MOLT-4 is striking and raises the possibility that µG may add to astronaut risk of leukemogenesis during prolonged missions beyond LEO.
Collapse
|
4
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
6
|
Mvubu NE, Jacoby K. Mycobacterium tuberculosis complex molecular networks and their regulation: Implications of strain heterogeneity on epigenetic diversity and transcriptome regulation. Heliyon 2023; 9:e22611. [PMID: 38046135 PMCID: PMC10686871 DOI: 10.1016/j.heliyon.2023.e22611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Tuberculosis has been a public health crisis since the 1900, which has caused the highest mortalities due to a single bacterial infection worldwide, that was recently further complicated by the Coronavirus disease 2019 pandemic. The causative agent of Tuberculosis, Mycobacterium tuberculosis, belongs to a genetically well-characterized family of strains known as the Mycobacterium tuberculosis complex, which has complicated progress made towards eradicating Tuberculosis due to pathogen-specific phenotypic differences in the members of this complex. Mycobacterium tuberculosis complex strains are genetically diverse human- and animal-adapted pathogens belonging to 7 lineages (Indo-Oceanic, East-Asian, East-African Indian, Euro-American, M. africanum West Africa 1, M. africanum West Africa 2 and Ethopia), respectively and the recently identified Lineage 8 and M. africanum Lineage 9. Genomic studies have revealed that Mycobacterium tuberculosis complex members are ∼99 % similar, however, due to selective pressure and adaptation to human host, they are prone to mutations that have resulted in development of drug resistance and phenotypic heterogeneity that impact strain virulence. Furthermore, members of the Mycobacterium tuberculosis complex have preferred geographic locations and possess unique phenotypic characteristics that is linked to their pathogenicity. Due to the recent advances in development next generation sequencing platforms, several studies have revealed epigenetic changes in genomic regions combined with "unique" gene regulatory mechanisms through non-coding RNAs that are responsible for strain-specific behaviour on in vitro and in vivo infection models. The current review provides up to date epigenetic patterns, gene regulation through non-coding RNAs, together with implications of these mechanisms in down-stream proteome and metabolome, which may be responsible for "unique" responses to infection by members of the Mycobacterium tuberculosis complex. Understanding lineage-specific molecular mechanisms during infection may provide novel drug targets and disease control measures towards World Health organization END-TB strategy.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Kieran Jacoby
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
7
|
Zhang W, Zhang J, Cui Y, Zhao Y, Lei X. Stem Cells and Exosome Applications for Cutaneous Wound Healing: From Ground to Microgravity Environment. Stem Cell Rev Rep 2023; 19:2094-2108. [PMID: 37458936 DOI: 10.1007/s12015-023-10571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 10/17/2023]
Abstract
The increasing number of astronauts entering microgravity environments for long-term space missions has resulted in serious health problems, including accidental injury and trauma. Skin, as the largest organ and outermost layer of the human body, has the ability to self-renew and withstand a variety of harmful biological and environmental influences. Recent spaceflight experiments and simulated studies have begun to concern the effects of microgravity on the growth of skin cells and the process of cutaneous wound healing. However, the mechanisms of the adverse effects of microgravity on skin cells and potential intervention measures are still limited. Stem cells and their exosomes provide unique opportunities for the cutaneous wound healing as they have been used to improve skin repair. This review discusses the effects of microgravity on wound healing, from cell morphological changes to molecular level alterations. Furthermore, the current research on wound healing treatment utilizing stem cells and their exosomes on the ground is summarized. Finally, this review proposes promising therapeutic strategies using stem cells or exosomes for wound healing in the microgravity environment. Graphical Abstract.
Collapse
Affiliation(s)
- Wenya Zhang
- Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinhua Zhang
- Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, China
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, 530021, China.
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Xu L, Zhang X, Li G, Zhang L, Zhang S, Shi F, Hu Z. Inhibition of SIRT1 by miR-138-5p provides a mechanism for inhibiting osteoblast proliferation and promoting apoptosis under simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:59-69. [PMID: 36682830 DOI: 10.1016/j.lssr.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
Microgravity can inhibit osteoblast proliferation and promote apoptosis, which is related to a reduction in mechanical stress on the bones and results in disuse osteoporosis, but the detailed mechanism is still unclear. In this study, we first demonstrated that miR-138-5p was upregulated, inhibited osteoblast proliferation and induced osteoblast apoptosis under simulated microgravity. Moreover, miR-138-5p silencing partially mitigated the effects of proliferation and apoptosis of MC3T3-E1 cells. Our study further showed that sirtuin 1 (SIRT1) was downregulated and negatively correlated with the expression of miR-138-5p under simulated microgravity, which indicated that miR-138-5p inhibited osteoblast proliferation and promoted osteoblast apoptosis by targeting SIRT1. Thus, the miR-138-5p/SIRT1 pathway should be considered for preventative treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Vahlensieck C, Thiel CS, Pöschl D, Bradley T, Krammer S, Lauber B, Polzer J, Ullrich O. Post-Transcriptional Dynamics is Involved in Rapid Adaptation to Hypergravity in Jurkat T Cells. Front Cell Dev Biol 2022; 10:933984. [PMID: 35859900 PMCID: PMC9289288 DOI: 10.3389/fcell.2022.933984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptome of human immune cells rapidly reacts to altered gravity in a highly dynamic way. We could show in previous experiments that transcriptional patterns show profound adaption after seconds to minutes of altered gravity. To gain further insight into these transcriptional alteration and adaption dynamics, we conducted a highly standardized RNA-Seq experiment with human Jurkat T cells exposed to 9xg hypergravity for 3 and 15 min, respectively. We investigated the frequency with which individual exons were used during transcription and discovered that differential exon usage broadly appeared after 3 min and became less pronounced after 15 min. Additionally, we observed a shift in the transcript pool from coding towards non-coding transcripts. Thus, adaption of gravity-sensitive differentially expressed genes followed a dynamic transcriptional rebound effect. The general dynamics were compatible with previous studies on the transcriptional effects of short hypergravity on human immune cells and suggest that initial up-regulatory changes mostly result from increased elongation rates. The shift correlated with a general downregulation of the affected genes. All chromosome bands carried homogenous numbers of gravity-sensitive genes but showed a specific tendency towards up- or downregulation. Altered gravity affected transcriptional regulation throughout the entire genome, whereby the direction of differential expression was strongly dependent on the structural location in the genome. A correlation analysis with potential mediators of the early transcriptional response identified a link between initially upregulated genes with certain transcription factors. Based on these findings, we have been able to further develop our model of the transcriptional response to altered gravity.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| | - Daniel Pöschl
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sonja Krammer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| |
Collapse
|
11
|
Dhar S, Kaeley DK, Kanan MJ, Yildirim-Ayan E. Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells. Life (Basel) 2021; 11:life11101043. [PMID: 34685414 PMCID: PMC8537592 DOI: 10.3390/life11101043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Of the most prevalent issues surrounding long-term spaceflight, the sustainability of human life and the maintenance of homeostasis in an extreme environment are of utmost concern. It has been observed that the human immune system is dysregulated in space as a result of gravitational unloading at the cellular level, leading to potential complications in astronaut health. A plethora of studies demonstrate intracellular changes that occur due to microgravity; however, these ultimately fall short of identifying the underlying mechanisms and dysfunctions that cause such changes. This comprehensive review covers the changes in human adaptive immunity due to microgravity. Specifically, there is a focus on uncovering the gravisensitive steps in T cell signaling pathways. Changes in gravitational force may lead to interrupted immune signaling cascades at specific junctions, particularly membrane and surface receptor-proximal molecules. Holistically studying the interplay of signaling with morphological changes in cytoskeleton and other cell components may yield answers to what in the T cell specifically experiences the consequences of microgravity. Fully understanding the nature of this problem is essential in order to develop proper countermeasures before long-term space flight is conducted.
Collapse
Affiliation(s)
- Sarit Dhar
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Dilpreet Kaur Kaeley
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Mohamad Jalal Kanan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-530-8257; Fax: +1-419-530-8030
| |
Collapse
|
12
|
Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells. Int J Mol Sci 2021; 22:ijms22179426. [PMID: 34502336 PMCID: PMC8430767 DOI: 10.3390/ijms22179426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying mechanisms, we compared gene expression and three-dimensional (3D) chromosomal conformational changes in human Jurkat T cells during the short-term gravitational changes in parabolic flight and suborbital ballistic rocket flight experiments. We found that differential gene expression in gravity-responsive chromosomal regions, but not differentially regulated single genes, are highly conserved between different real altered gravity comparisons. These coupled gene expression effects in chromosomal regions could be explained by underlying chromatin structures. Based on a high-throughput chromatin conformation capture (Hi-C) analysis in altered gravity, we found that small chromosomes (chr16–22, with the exception of chr18) showed increased intra- and interchromosomal interactions in altered gravity, whereby large chromosomes showed decreased interactions. Finally, we detected a nonrandom overlap between Hi-C-identified chromosomal interacting regions and gravity-responsive chromosomal regions (GRCRs). We therefore demonstrate the first evidence that gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. We propose a general model of cellular sensitivity to gravitational forces, where gravitational forces acting on the cellular membrane are rapidly and mechanically transduced through the cytoskeleton into the nucleus, moving chromosome territories to new conformation states and their genes into more expressive or repressive environments, finally resulting in region-specific differential gene expression.
Collapse
|
13
|
Rapid Transient Transcriptional Adaptation to Hypergravity in Jurkat T Cells Revealed by Comparative Analysis of Microarray and RNA-Seq Data. Int J Mol Sci 2021; 22:ijms22168451. [PMID: 34445156 PMCID: PMC8395121 DOI: 10.3390/ijms22168451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular responses to micro- and hypergravity are rapid and complex and appear within the first few seconds of exposure. Transcriptomic analyses are a valuable tool to analyze these genome-wide cellular alterations. For a better understanding of the cellular dynamics upon altered gravity exposure, it is important to compare different time points. However, since most of the experiments are designed as endpoint measurements, the combination of cross-experiment meta-studies is inevitable. Microarray and RNA-Seq analyses are two of the main methods to study transcriptomics. In the field of altered gravity research, both methods are frequently used. However, the generation of these data sets is difficult and time-consuming and therefore the number of available data sets in this research field is limited. In this study, we investigated the comparability of microarray and RNA-Seq data and applied the results to a comparison of the transcriptomics dynamics between the hypergravity conditions during two real flight platforms and a centrifuge experiment to identify temporal adaptation processes. We performed a comparative study on an Affymetrix HTA2.0 microarray and a paired-end RNA-Seq data set originating from the same Jurkat T cell RNA samples from a short-term hypergravity experiment. The overall agreeability was high, with better sensitivity of the RNA-Seq analysis. The microarray data set showed weaknesses on the level of single upregulated genes, likely due to its normalization approach. On an aggregated level of biotypes, chromosomal distribution, and gene sets, both technologies performed equally well. The microarray showed better performance on the detection of altered gravity-related splicing events. We found that all initially altered transcripts fully adapted after 15 min to hypergravity and concluded that the altered gene expression response to hypergravity is transient and fully reversible. Based on the combined multiple-platform meta-analysis, we could demonstrate rapid transcriptional adaptation to hypergravity, the differential expression of the ATPase subunits ATP6V1A and ATP6V1D, and the cluster of differentiation (CD) molecules CD1E, CD2AP, CD46, CD47, CD53, CD69, CD96, CD164, and CD226 in hypergravity. We could experimentally demonstrate that it is possible to develop methodological evidence for the meta-analysis of individual data.
Collapse
|
14
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
15
|
Thiel CS, Vahlensieck C, Bradley T, Tauber S, Lehmann M, Ullrich O. Metabolic Dynamics in Short- and Long-Term Microgravity in Human Primary Macrophages. Int J Mol Sci 2021; 22:ijms22136752. [PMID: 34201720 PMCID: PMC8269311 DOI: 10.3390/ijms22136752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity acts on cellular systems on several levels. Cells of the immune system especially react rapidly to changes in gravity. In this study, we performed a correlative metabolomics analysis on short-term and long-term microgravity effects on primary human macrophages. We could detect an increased amino acid concentration after five minutes of altered gravity, that was inverted after 11 days of microgravity. The amino acids that reacted the most to changes in gravity were tightly clustered. The observed effects indicated protein degradation processes in microgravity. Further, glucogenic and ketogenic amino acids were further degraded to Glucose and Ketoleucine. The latter is robustly accumulated in short-term and long-term microgravity but not in hypergravity. We detected highly dynamic and also robust adaptative metabolic changes in altered gravity. Metabolomic studies could contribute significantly to the understanding of gravity-induced integrative effects in human cells.
Collapse
Affiliation(s)
- Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| | - Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
| | - Martin Lehmann
- Biocenter LMU Muenchen, Department of Biology I–Botany, Großhaderner Strasse 2–4, 82152 Planegg-Martinsried, Germany;
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), 505 Odyssey Way, Exploration Park, FL 32953, USA
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
16
|
Villacampa A, Sora L, Herranz R, Medina FJ, Ciska M. Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip. PLANTS (BASEL, SWITZERLAND) 2021; 10:734. [PMID: 33918741 PMCID: PMC8070489 DOI: 10.3390/plants10040734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Clinorotation was the first method designed to simulate microgravity on ground and it remains the most common and accessible simulation procedure. However, different experimental settings, namely angular velocity, sample orientation, and distance to the rotation center produce different responses in seedlings. Here, we compare A. thaliana root responses to the two most commonly used velocities, as examples of slow and fast clinorotation, and to vertical and horizontal clinorotation. We investigate their impact on the three stages of gravitropism: statolith sedimentation, asymmetrical auxin distribution, and differential elongation. We also investigate the statocyte ultrastructure by electron microscopy. Horizontal slow clinorotation induces changes in the statocyte ultrastructure related to a stress response and internalization of the PIN-FORMED 2 (PIN2) auxin transporter in the lower endodermis, probably due to enhanced mechano-stimulation. Additionally, fast clinorotation, as predicted, is only suitable within a very limited radius from the clinorotation center and triggers directional root growth according to the direction of the centrifugal force. Our study provides a full morphological picture of the stages of graviresponse in the root tip, and it is a valuable contribution to the field of microgravity simulation by clarifying the limitations of 2D-clinostats and proposing a proper use.
Collapse
Affiliation(s)
- Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| | - Ludovico Sora
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
- Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| | - Francisco-Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| | - Malgorzata Ciska
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| |
Collapse
|
17
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
18
|
Green MJ, Aylott JW, Williams P, Ghaemmaghami AM, Williams PM. Immunity in Space: Prokaryote Adaptations and Immune Response in Microgravity. Life (Basel) 2021; 11:life11020112. [PMID: 33540536 PMCID: PMC7912908 DOI: 10.3390/life11020112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Immune dysfunction has long been reported by medical professionals regarding astronauts suffering from opportunistic infections both during their time in space and a short period afterwards once back on Earth. Various species of prokaryotes onboard these space missions or cultured in a microgravity analogue exhibit increased virulence, enhanced formation of biofilms, and in some cases develop specific resistance for specific antibiotics. This poses a substantial health hazard to the astronauts confined in constant proximity to any present bacterial pathogens on long space missions with a finite number of resources including antibiotics. Furthermore, some bacteria cultured in microgravity develop phenotypes not seen in Earth gravity conditions, providing novel insights into bacterial evolution and avenues for research. Immune dysfunction caused by exposure to microgravity may increase the chance of bacterial infection. Immune cell stimulation, toll-like receptors and pathogen-associated molecular patterns can all be altered in microgravity and affect immunological crosstalk and response. Production of interleukins and other cytokines can also be altered leading to immune dysfunction when responding to bacterial infection. Stem cell differentiation and immune cell activation and proliferation can also be impaired and altered by the microgravity environment once more adding to immune dysfunction in microgravity. This review elaborates on and contextualises these findings relating to how bacteria can adapt to microgravity and how the immune system subsequently responds to infection.
Collapse
Affiliation(s)
- Macauley J. Green
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
| | - Paul Williams
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (P.W.); (A.M.G.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.G.); (J.W.A.)
- Correspondence:
| |
Collapse
|
19
|
Changes in Nuclear Shape and Gene Expression in Response to Simulated Microgravity Are LINC Complex-Dependent. Int J Mol Sci 2020; 21:ijms21186762. [PMID: 32942630 PMCID: PMC7555797 DOI: 10.3390/ijms21186762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Microgravity is known to affect the organization of the cytoskeleton, cell and nuclear morphology and to elicit differential expression of genes associated with the cytoskeleton, focal adhesions and the extracellular matrix. Although the nucleus is mechanically connected to the cytoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, the role of this group of proteins in these responses to microgravity has yet to be defined. In our study, we used a simulated microgravity device, a 3-D clinostat (Gravite), to investigate whether the LINC complex mediates cellular responses to the simulated microgravity environment. We show that nuclear shape and differential gene expression are both responsive to simulated microgravity in a LINC-dependent manner and that this response changes with the duration of exposure to simulated microgravity. These LINC-dependent genes likely represent elements normally regulated by the mechanical forces imposed by gravity on Earth.
Collapse
|
20
|
Jin X, He Y, Liu Z, Zhou Y, Chen X, Wang G, Sun Z, Zhao J, Zhang H, Chen W. Lactic acid bacteria exhibit similar antioxidant capacities in Caenorhabditis elegans- and Campylobacter jejuni-infected mice. RSC Adv 2020; 10:3329-3342. [PMID: 35497738 PMCID: PMC9048812 DOI: 10.1039/c9ra06105c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) is increasingly used as a model organism to screen probiotics for ageing research. In this study, a C. elegans lifespan analysis model exposed to H2O2 and juglone (for chronic and acute assays) was used to preselect lactic acid bacteria (LAB) with resistance to oxidative stress. The mechanism of oxidative stress protection was analyzed. Seven out of ten LAB strains screened for namely 427, X13, 9-5, 422, Z5, G14 and H29M-8M demonstrated higher levels of protection to C. elegans, ranging from 70% to 85% survival rate, in comparison to the inactive strains 408, 13-7 and 430 (35% to 45% survival rate). The survival rates of the seven oxidative stress tolerant strains were correlated to increase in catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA) levels and decrease in reactive oxygen species (ROS) expression in C. elegans during H2O2 and juglone exposure. In addition, the transcription of mitogen-activated protein kinase (MAPK) and Nrf2-Keap1-ARE pathway related genes was elevated in the oxidative stress protection of LAB isolates. Finally, a significant correlation was found between the ability of these LAB strains to protect C. elegans from H2O2 or juglone exposure and their antioxidative ability in Campylobacter jejuni-infected mice. Thus the results indicated that the oxidative stress-based lifespan model of C. elegans is useful for screening of LAB with antioxidant efficacy in pathogen-infected mammals.
Collapse
Affiliation(s)
- Xing Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China +86-510-85912155 +86-510-85912155
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China +86-510-85912155 +86-510-85912155
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd. Shanghai 200436 P. R. China
| | - Yonghua Zhou
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases Wuxi 214064 P. R. China
| | - Xiaohua Chen
- College of Life Sciences and Environment, Hengyang Normal University Hengyang 421008 P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China +86-510-85912155 +86-510-85912155
- School of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China
- International Joint Research Laboratory for Probiotics, Jiangnan University Wuxi 214122 P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University Yangzhou 225004 P. R. China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Inner Mongolia Agricultural University Inner Mongolia 010018 P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China +86-510-85912155 +86-510-85912155
- School of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University Yangzhou 225004 P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China +86-510-85912155 +86-510-85912155
- School of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University Yangzhou 225004 P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University Wuxi 214122 P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch Wuxi 214122 P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China +86-510-85912155 +86-510-85912155
- School of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University Wuxi 214122 P. R. China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU) Beijing 100048 P. R. China
| |
Collapse
|
21
|
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics 2019; 111:1956-1965. [DOI: 10.1016/j.ygeno.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
22
|
Moser D, Sun SJ, Li N, Biere K, Hoerl M, Matzel S, Feuerecker M, Buchheim JI, Strewe C, Thiel CS, Gao YX, Wang CZ, Ullrich O, Long M, Choukèr A. Cells´ Flow and Immune Cell Priming under alternating g-forces in Parabolic Flight. Sci Rep 2019; 9:11276. [PMID: 31375732 PMCID: PMC6677797 DOI: 10.1038/s41598-019-47655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Gravitational stress in general and microgravity (µg) in particular are regarded as major stress factors responsible for immune system dysfunction in space. To assess the effects of alternating µg and hypergravity (hyper-g) on immune cells, the attachment of peripheral blood mononuclear cells (PBMCs) to adhesion molecules under flow conditions and the antigen-induced immune activation in whole blood were investigated in parabolic flight (PF). In contrast to hyper-g (1.8 g) and control conditions (1 g), flow and rolling speed of PBMCs were moderately accelerated during µg-periods which were accompanied by a clear reduction in rolling rate. Whole blood analyses revealed a "primed" state of monocytes after PF with potentiated antigen-induced pro-inflammatory cytokine responses. At the same time, concentrations of anti-inflammatory cytokines were increased and monocytes displayed a surface molecule pattern that indicated immunosuppression. The results suggest an immunologic counterbalance to avoid disproportionate immune responses. Understanding the interrelation of immune system impairing and enhancing effects under different gravitational conditions may support the design of countermeasures to mitigate immune deficiencies in space.
Collapse
Affiliation(s)
- D Moser
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - S J Sun
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - N Li
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - K Biere
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - M Hoerl
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - S Matzel
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - M Feuerecker
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - J-I Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - C Strewe
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - C S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development (IMK), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Y X Gao
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - C Z Wang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - O Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development (IMK), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - M Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - A Choukèr
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
23
|
Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4894083. [PMID: 31073526 PMCID: PMC6470427 DOI: 10.1155/2019/4894083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
With the rapid development of modern medical technology and the deterioration of living environments, cancer, the most important disease that threatens human health, has attracted increasing concerns. Although remarkable achievements have been made in tumor research during the past several decades, a series of problems such as tumor metastasis and drug resistance still need to be solved. Recently, relevant physiological changes during space exploration have attracted much attention. Thus, space exploration might provide some inspiration for cancer research. Using on ground different methods in order to simulate microgravity, structure and function of cancer cells undergo many unique changes, such as cell aggregation to form 3D spheroids, cell-cycle inhibition, and changes in migration ability and apoptosis. Although numerous better experiments have been conducted on this subject, the results are not consistent. The reason might be that different methods for simulation have been used, including clinostats, random positioning machine (RPM) and rotating wall vessel (RWV) and so on. Therefore, we review the relevant research and try to explain novel mechanisms underlying tumor cell changes under weightlessness.
Collapse
|
24
|
Kamal KY, Herranz R, van Loon JJWA, Medina FJ. Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. PLANT, CELL & ENVIRONMENT 2019; 42:480-494. [PMID: 30105864 DOI: 10.1111/pce.13422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/22/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Zero gravity is an environmental challenge unknown to organisms throughout evolution on Earth. Nevertheless, plants are sensitive to altered gravity, as exemplified by changes in meristematic cell proliferation and growth. We found that synchronized Arabidopsis-cultured cells exposed to simulated microgravity showed a shortened cell cycle, caused by a shorter G2/M phase and a slightly longer G1 phase. The analysis of selected marker genes and proteins by quantitative polymerase chain reaction and flow cytometry in synchronic G1 and G2 subpopulations indicated changes in gene expression of core cell cycle regulators and chromatin-modifying factors, confirming that microgravity induced misregulation of G2/M and G1/S checkpoints and chromatin remodelling. Changes in chromatin-based regulation included higher DNA methylation and lower histone acetylation, increased chromatin condensation, and overall depletion of nuclear transcription. Estimation of ribosome biogenesis rate using nucleolar parameters and selected nucleolar genes and proteins indicated reduced nucleolar activity under simulated microgravity, especially at G2/M. These results expand our knowledge of how meristematic cells are affected by real and simulated microgravity. Counteracting this cellular stress is necessary for plant culture in space exploration.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Agronomy Department, Zagazig University, Zagazig, Egypt
| | - Raúl Herranz
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, Noordwijk, The Netherlands
| | - F Javier Medina
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
25
|
Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity. Int J Mol Sci 2019; 20:ijms20020436. [PMID: 30669540 PMCID: PMC6358763 DOI: 10.3390/ijms20020436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk management, monitoring and development of countermeasures. T lymphocytes and cells of the monocyte-macrophage system are highly migratory cell types that frequently encounter a wide range of oxygen tensions in human tissues and in hypoxic areas, even under homeostatic conditions. Hypoxia-inducible factor 1 and 2 (HIF's) might have an important role in activation of T cells and cells of the monocyte-macrophages system. Thus, we investigated the regulation of HIF-dependent and, therefore, hypoxia-signaling systems in both cell types in altered gravity and performed transcript and protein analysis from parabolic flight and suborbital ballistic rocket experiments. We found that HIF-1α and HIF-1-dependent transcripts were differently regulated in altered gravity, whereas HIF-1α-dependent gene expression adapted after 5 min microgravity. Inter-platform comparisons identified PDK1 as highly responsive to gravitational changes in human U937 myelomonocytic cells and in Jurkat T cells. We suggest HIF-1 as a potential pharmacological target for counteracting immune system deterioration during space flight.
Collapse
|
26
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
27
|
Tauber S, Christoffel S, Thiel CS, Ullrich O. Transcriptional Homeostasis of Oxidative Stress-Related Pathways in Altered Gravity. Int J Mol Sci 2018; 19:E2814. [PMID: 30231541 PMCID: PMC6164947 DOI: 10.3390/ijms19092814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
28
|
Thiel CS, Tauber S, Christoffel S, Huge A, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Raig C, Layer LE, Ullrich O. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8:13267. [PMID: 30185876 PMCID: PMC6125427 DOI: 10.1038/s41598-018-31596-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The gravitational force has been constant throughout Earth's evolutionary history. Since the cell nucleus is subjected to permanent forces induced by Earth's gravity, we addressed the question, if gene expression homeostasis is constantly shaped by the gravitational force on Earth. We therefore investigated the transcriptome in force-free conditions of microgravity, determined the time frame of initial gravitational force-transduction to the transcriptome and assessed the role of cation channels. We combined a parabolic flight experiment campaign with a suborbital ballistic rocket experiment employing the human myelomonocytic cell line U937 and analyzed the whole gene transcription by microarray, using rigorous controls for exclusion of effects not related to gravitational force and cross-validation through two fully independent research campaigns. Experiments with the wide range ion channel inhibitor SKF-96365 in combination with whole transcriptome analysis were conducted to study the functional role of ion channels in the transduction of gravitational forces at an integrative level. We detected profound alterations in the transcriptome already after 20 s of microgravity or hypergravity. In microgravity, 99.43% of all initially altered transcripts adapted after 5 min. In hypergravity, 98.93% of all initially altered transcripts adapted after 75 s. Only 2.4% of all microgravity-regulated transcripts were sensitive to the cation channel inhibitor SKF-96365. Inter-platform comparison of differentially regulated transcripts revealed 57 annotated gravity-sensitive transcripts. We assume that gravitational forces are rapidly and constantly transduced into the nucleus as omnipresent condition for nuclear and chromatin structure as well as homeostasis of gene expression.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, 48149, Muenster, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
- Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | | | | | - Christiane Raig
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
29
|
Makedonas G, Chouker A, Mehta S, Simpson R, Stowe R, Sams C, Pierson D, Crucian B. Mechanistic Clues to Overcome Spaceflight-Induced Immune Dysregulation. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0178-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Gaignier F, Legrand-Frossi C, Stragier E, Mathiot J, Merlin JL, Cohen-Salmon C, Lanfumey L, Frippiat JP. A Model of Chronic Exposure to Unpredictable Mild Socio-Environmental Stressors Replicates Some Spaceflight-Induced Immunological Changes. Front Physiol 2018; 9:514. [PMID: 29867558 PMCID: PMC5954118 DOI: 10.3389/fphys.2018.00514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 02/02/2023] Open
Abstract
During spaceflight, astronauts face radiations, mechanical, and socio-environmental stressors. To determine the impact of chronic socio-environmental stressors on immunity, we exposed adult male mice to chronic unpredictable mild psychosocial and environmental stressors (CUMS model) for 3 weeks. This duration was chosen to simulate a long flight at the human scale. Our data show that this combination of stressors induces an increase of serum IgA, a reduction of normalized splenic mass and tends to reduce the production of pro-inflammatory cytokines, as previously reported during or after space missions. However, CUMS did not modify major splenic lymphocyte sub-populations and the proliferative responses of splenocytes suggesting that these changes could be due to other factors such as gravity changes. Thus, CUMS, which is an easy to implement model, could contribute to deepen our understanding of some spaceflight-associated immune alterations and could be useful to test countermeasures.
Collapse
Affiliation(s)
- Fanny Gaignier
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christine Legrand-Frossi
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Emilien Stragier
- INSERM UMR894, Centre de Psychiatrie et Neuroscience, Paris, France
| | - Julianne Mathiot
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie and CNRS UMR 7039 CRAN, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Charles Cohen-Salmon
- INSERM U1141, PROTECT, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | | | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
31
|
Kamal KY, Herranz R, van Loon JJWA, Medina FJ. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci Rep 2018; 8:6424. [PMID: 29686401 PMCID: PMC5913308 DOI: 10.1038/s41598-018-24942-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt. .,Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.,ESA-ESTEC, TEC-MMG, Keplerlaan 1, NL-2200 AG, Noordwijk, The Netherlands
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
32
|
Thiel CS, Huge A, Hauschild S, Tauber S, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Layer LE, Ullrich O. Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4. NPJ Microgravity 2017; 3:22. [PMID: 28868355 PMCID: PMC5579209 DOI: 10.1038/s41526-017-0028-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5, GAPDH, HPRT1, PLA2G4A, and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10-4 and 9 g), 20-40% remained unchanged in microgravity (between 10-4 and 10-2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, D-48149 Muenster, Germany
| | - Swantje Hauschild
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany.,Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Burkhard Schmitz
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Andreas Schütte
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Space Life Sciences, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
33
|
Dynamic gene expression response to altered gravity in human T cells. Sci Rep 2017; 7:5204. [PMID: 28701719 PMCID: PMC5507981 DOI: 10.1038/s41598-017-05580-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Collapse
|
34
|
Abstract
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.
Collapse
|
35
|
Di Tomaso MV, Gregoire E, Martínez-López W. Effects of Valproic Acid on Radiation-Induced Chromosomal Aberrations in Human Lymphocytes. Genome Integr 2017; 8:4. [PMID: 28250911 PMCID: PMC5320781 DOI: 10.4103/2041-9414.198909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of the most widely employed histone deacetylases inhibitors in the clinic is the valproic acid (VA), proving to have a good tolerance and low side effects on human health. VA induces changes in chromatin structure making DNA more susceptible to damage induction and influence DNA repair efficiency. VA is also proposed as a radiosensitizing agent. To know if VA is suitable to sensitize human lymphocytes γ-irradiation in vitro, different types of chromosomal aberrations in the lymphocytes, either in the absence or presence of VA, were analyzed. For this purpose, blood samples from four healthy donors were exposed to γ-rays at a dose of 1.5 Gy and then treated with two different doses of VA (0.35 or 0.70 mM). Unstable and stable chromosomal aberrations were analyzed by means of fluorescence in situ hybridization. Human lymphocytes treated with VA alone did not show any increase in the frequency of chromosomal aberrations. However, a moderate degree of sensitization was observed, through the increase of chromosomal aberrations, when 0.35 mM VA was employed after γ-irradiation, whereas 0.70 mM VA did not modify chromosomal aberration frequencies. The lower number of chromosomal aberrations obtained when VA was employed at higher dose after γ-irradiation, could be related to the induction of a cell cycle arrest, a fact that should be taken into consideration when VA is employed in combination with physical or chemical agents.
Collapse
Affiliation(s)
- María Vittoria Di Tomaso
- Clemente Estable Biological Research Institute, Montevideo, Uruguay; Laboratoire de Dosimétrie Biologique, Institut de Radiobiologie et de Sureté Nucléaire, Fontenay-Aux-Roses, France; Department of Genetics, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| | - Eric Gregoire
- Laboratoire de Dosimétrie Biologique, Institut de Radiobiologie et de Sureté Nucléaire, Fontenay-Aux-Roses, France
| | - Wilner Martínez-López
- Clemente Estable Biological Research Institute, Montevideo, Uruguay; Epigenetics and Genomic Instability Laboratory, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| |
Collapse
|
36
|
|
37
|
Frippiat JP, Crucian BE, de Quervain DJF, Grimm D, Montano N, Praun S, Roozendaal B, Schelling G, Thiel M, Ullrich O, Choukèr A. Towards human exploration of space: The THESEUS review series on immunology research priorities. NPJ Microgravity 2016; 2:16040. [PMID: 28725745 PMCID: PMC5515533 DOI: 10.1038/npjmgrav.2016.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.
Collapse
Affiliation(s)
- Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Nancy, France
| | | | | | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Nicola Montano
- Cardiovascular Neuroscience Laboratory, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gustav Schelling
- Department of Anaesthesiology, 'Stress and Immunity' Laboratory, University of Munich, Munich, Germany
| | - Manfred Thiel
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Alexander Choukèr
- Department of Anaesthesiology, 'Stress and Immunity' Laboratory, University of Munich, Munich, Germany
| |
Collapse
|
38
|
Kamal KY, Hemmersbach R, Medina FJ, Herranz R. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. LIFE SCIENCES IN SPACE RESEARCH 2015; 5:47-52. [PMID: 26177849 DOI: 10.1016/j.lssr.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Understanding the physical and biological effects of the absence of gravity is necessary to conduct operations on space environments. It has been previously shown that the microgravity environment induces the dissociation of cell proliferation from cell growth in young seedling root meristems, but this source material is limited to few cells in each row of meristematic layers. Plant cell cultures, composed by a large and homogeneous population of proliferating cells, are an ideal model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of Arabidopsis thaliana cell line (MM2d) were exposed to 2D-clinorotation in a pipette clinostat for 3.5 or 14 h, respectively, and were then processed either by quick freezing, to be used in flow cytometry, or by chemical fixation, for microscopy techniques. After long-term clinorotation, the proportion of cells in G1 phase was increased and the nucleolus area, as revealed by immunofluorescence staining with anti-nucleolin, was decreased. Despite the compatibility of these results with those obtained in real microgravity on seedling meristems, we provide a technical discussion in the context of clinorotation and proper 1 g controls with respect to suspension cultures. Standard 1 g procedure of sustaining the cell suspension is achieved by continuously shaking. Thus, we compare the mechanical forces acting on cells in clinorotated samples, in a control static sample and in the standard 1 g conditions of suspension cultures in order to define the conditions of a complete and reliable experiment in simulated microgravity with corresponding 1 g controls.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, DLR (German Aerospace Center), Köln, Germany
| | | | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
39
|
Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2015; 99:4409-22. [DOI: 10.1007/s00253-015-6386-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
|
40
|
Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:538786. [PMID: 25654110 PMCID: PMC4309248 DOI: 10.1155/2015/538786] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.
Collapse
|
41
|
Phipps WS, Yin Z, Bae C, Sharpe JZ, Bishara AM, Nelson ES, Weaver AS, Brown D, McKay TL, Griffin D, Chan EY. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology. J Vis Exp 2014:e51743. [PMID: 25490614 PMCID: PMC4354048 DOI: 10.3791/51743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.
Collapse
|
42
|
Luo H, Wang C, Feng M, Zhao Y. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int J Med Sci 2014; 11:87-96. [PMID: 24396290 PMCID: PMC3880995 DOI: 10.7150/ijms.7651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decline immune function is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. Though T cell immune response was inhibited by microgravity, it is not clearly whether activation would be inhibited after a pre-exposure of microgravity on T lymphocytes at the resting state. METHODS We herein investigated the response ability of resting CD4⁺ and CD8⁺ T cells experiencing pre-exposure of modeled microgravity (MMg) for 0, 8, 16 and 24 hrs to concanavalin A (ConA) stimulation. The phenotypes and subsets of immune cells were determined by flow cytometry. RESULTS Both CD4⁺ and CD8⁺ T cells with an MMg pre-exposure exhibited decreased expressions of activation-markers including CD25, CD69 and CD71, inflammatory cytokine secretion and cell proliferation in response to ConA compared with T cells with 1g controls in an MMg exposure time- dependent manner. Moreover, short term MMg treatment caused more severe decreased proliferation in CD4⁺ T cells than in CD8⁺ T cells. CONCLUSIONS MMg can directly impact on resting T cell subsets. CD4⁺ T cells were more sensitive to the microgravity inhibition than CD8⁺ T cells in respect of cell proliferation. These results offered new insights for the MMg-caused T cell functional defects.
Collapse
Affiliation(s)
- Haiying Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongzhen Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meifu Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:113-119. [PMID: 23926886 DOI: 10.1111/plb.12067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
The German Aerospace Center (DLR) enabled German participation in the joint space campaign on the unmanned Shenzhou 8 spacecraft in November 2011. In this report, the effect of microgravity on Euglena gracilis cells is described. Custom-made dual compartment cell fixation units (containing cells in one chamber and fixative - RNA lysis buffer - in another one) were enclosed in a small container and placed in the Simbox incubator, which is an experiment support system. Cells were fixed by injecting them with fixative at different time intervals. In addition to stationary experiment slots, Simbox provides a 1 g reference centrifuge. Cell fixation units were mounted in microgravity and 1 g reference positions of Simbox. Two Simbox incubators were used, one for space flight and the other as ground reference. Cells were fixed soon after launch and shortly before return of the spaceship. Due to technical problems, only early in-flight samples (about 40 min after launch microgravity and corresponding 1 g reference) were fully mixed with fixative, therefore only data from those samples are presented. Transcription of several genes involved in signal transduction, oxidative stress defence, cell cycle regulation and heat shock responses was investigated with quantitative PCR. The data indicate that Euglena cells suffer stress upon short-term exposure to microgravity; various stress-induced genes were up-regulated. Of 32 tested genes, 18 were up-regulated, one down-regulated and the rest remained unaltered. These findings are in a good agreement with results from other research groups using other organisms.
Collapse
Affiliation(s)
- A Nasir
- Department of Biology, Cell Biology Division, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Adrian A, Schoppmann K, Sromicki J, Brungs S, von der Wiesche M, Hock B, Kolanus W, Hemmersbach R, Ullrich O. The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 2013; 11:98. [PMID: 24359439 PMCID: PMC3880029 DOI: 10.1186/1478-811x-11-98] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/13/2013] [Indexed: 01/03/2023] Open
Abstract
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Ullrich
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| |
Collapse
|
45
|
Contribution of the urodele amphibian Pleurodeles waltl to the analysis of spaceflight-associated immune system deregulation. Mol Immunol 2013; 56:434-41. [DOI: 10.1016/j.molimm.2013.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
|
46
|
Tauber S, Hauschild S, Crescio C, Secchi C, Paulsen K, Pantaleo A, Saba A, Buttron I, Thiel CS, Cogoli A, Pippia P, Ullrich O. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission. Cell Commun Signal 2013; 11:32. [PMID: 23651740 PMCID: PMC3653714 DOI: 10.1186/1478-811x-11-32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/18/2013] [Indexed: 01/03/2023] Open
Abstract
We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation / dephosphorylation of signal molecules and surface receptor dynamics.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252-63. [PMID: 23493145 DOI: 10.1038/nrmicro2990] [Citation(s) in RCA: 846] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
|
48
|
Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJ, Hemmersbach R. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. ASTROBIOLOGY 2013; 13:1-17. [PMID: 23252378 PMCID: PMC3549630 DOI: 10.1089/ast.2012.0876] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/13/2012] [Indexed: 05/20/2023]
Abstract
Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.
Collapse
Affiliation(s)
- Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ralf Anken
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | - Johannes Boonstra
- Department of Biology, Faculty of Science, University of Utrecht, Utrecht, the Netherlands
| | - Markus Braun
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Peter C.M. Christianen
- High Field Magnet Laboratory (HFML), Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Maarten de Geest
- Department of Biology, Faculty of Science, University of Utrecht, Utrecht, the Netherlands
| | - Jens Hauslage
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Reinhard Hilbig
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | - Richard J.A. Hill
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Michael Lebert
- Biology Department, Cell Biology, University of Erlangen, Erlangen, Germany
| | | | - Nicole Vagt
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jack J.W.A. van Loon
- Dutch Experiment Support Center (DESC) @ ACTA, University of Amsterdam & VU University Amsterdam, Amsterdam; Department of Oral Cell Biology, Research Institute MOVE, Amsterdam; European Space Agency (ESA), TEC-MMG, ESTEC, Noordwijk, the Netherlands
| | - Ruth Hemmersbach
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| |
Collapse
|