1
|
Turek I, Wong A, Domingo G, Vannini C, Bracale M, Irving H, Gehring C. Moonlighting Crypto-Enzymes and Domains as Ancient and Versatile Signaling Devices. Int J Mol Sci 2024; 25:9535. [PMID: 39273482 PMCID: PMC11394779 DOI: 10.3390/ijms25179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.
Collapse
Affiliation(s)
- Ilona Turek
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, VIC 3220, Australia
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
| | - Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Helen Irving
- La Trobe Institute of Molecular Sciences, La Trobe University, Bendigo, VIC 3552, Australia
- Holsworth Initiative for Medical Research, Rural People, Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy
| |
Collapse
|
2
|
Kwiatkowski M, Wong A, Fiderewicz A, Gehring C, Jaworski K. A SNF1-related protein kinase regulatory subunit functions as a molecular tuner. PHYTOCHEMISTRY 2024; 224:114146. [PMID: 38763313 DOI: 10.1016/j.phytochem.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Metabolic processes in prokaryotic and eukaryotic organisms are often modulated by kinases which are in turn, dependent on Ca2+ and the cyclic mononucleotides cAMP and cGMP. It has been established that some proteins have both kinase and cyclase activities and that active cyclases can be embedded within the kinase domains. Here, we identified phosphodiesterase (PDE) sites, enzymes that hydrolyse cAMP and cGMP, to AMP and GMP, respectively, in some of these proteins in addition to their kinase/cyclase twin-architecture. As an example, we tested the Arabidopsis thaliana KINγ, a subunit of the SnRK2 kinase, to demonstrate that all three enzymatic centres, adenylate cyclase (AC), guanylate cyclase (GC) and PDE, are catalytically active, capable of generating and hydrolysing cAMP and cGMP. These data imply that the signal output of the KINγ subunit modulates SnRK2, consequently affecting the downstream kinome. Finally, we propose a model where a single protein subunit, KINγ, is capable of regulating cyclic mononucleotide homeostasis, thereby tuning stimulus specific signal output.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, Zhejiang Province, China; Research Center for Integrative Plant Sciences, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, Zhejiang Province, China.
| | - Adam Fiderewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100, Toruń, Poland.
| |
Collapse
|
3
|
Turek I, Gehring C. Peptide-Mediated Cyclic Nucleotide Signaling in Plants: Identification and Characterization of Interactor Proteins with Nucleotide Cyclase Activity. Methods Mol Biol 2024; 2731:179-204. [PMID: 38019435 DOI: 10.1007/978-1-0716-3511-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
During the last decades, an increasing number of plant signaling peptides have been discovered and it appears that many of them are specific ligands for interacting receptor molecules. These receptors can enable the formation of second messengers which in turn transmit the ligand-induced stimuli into complex and tunable downstream responses. In order to perform such complex tasks, receptor proteins often contain several distinct domains such as a kinase and/or adenylate cyclase (AC) or guanylate cyclase (GC) domains. ACs catalyze the conversion of ATP to 3',5'-cyclic adenosine monophosphate (cAMP) while GCs catalyze the reaction of GTP to 3',5'-cyclic guanosine monophosphate (cGMP). Both cAMP and cGMP are now recognized as essential components of many plant responses, including responses to peptidic hormones. Here we describe the approach that led to the discovery of the Plant Natriuretic Peptide Receptor (PNP receptor), including a protocol for the identification of currently undiscovered peptidic interactions, and the subsequent application of computational methods for the identification of AC and/or GC domains in such interacting receptor candidates.
Collapse
Affiliation(s)
- Ilona Turek
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia.
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Yuan Y, Liu Y, Chen S, Wang L, Wang L, Niu Y, Zhao X, Zhao Z, Liu Z, Liu M. A triphosphate tunnel metalloenzyme from pear (PbrTTM1) moonlights as an adenylate cyclase. FRONTIERS IN PLANT SCIENCE 2023; 14:1183931. [PMID: 37426988 PMCID: PMC10324617 DOI: 10.3389/fpls.2023.1183931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
Adenylyl cyclase (AC) is the vital enzyme for generating 3',5'-cyclic adenosine monophosphate, an important signaling molecule with profound nutritional and medicinal values. However, merely, a dozen of AC proteins have been reported in plants so far. Here, a protein annotated as triphosphate tunnel metalloenzyme (PbrTTM1) in pear, the important worldwide fruit plant, was firstly identified to possess AC activity with both in vivo and in vitro methods. It exhibited a relatively low AC activity but was capable of complementing AC functional deficiencies in the E. coli SP850 strain. Its protein conformation and potential catalytic mechanism were analyzed by means of biocomputing. The active site of PbrTTM1 is a closed tunnel constructed by nine antiparallel β-folds surrounded with seven helices. Inside the tunnel, the charged residues were possibly involved in the catalytic process by coordinating with divalent cation and ligand. The hydrolysis activity of PbrTTM1 was tested as well. Compared to the much higher capacity of hydrolyzing, the AC activity of PbrTTM1 tends to be a moonlight function. Through a comparison of protein structures in various plant TTMs, it is reasonable to speculate that many plant TTMs might possess AC activity as a form of moonlighting enzyme function.
Collapse
Affiliation(s)
- Ye Yuan
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Yuye Liu
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Shuangjiang Chen
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Yahong Niu
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Hebei, China
| |
Collapse
|
5
|
Miras-Moreno B, Zhang L, Senizza B, Lucini L. A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110955. [PMID: 34134851 DOI: 10.1016/j.plantsci.2021.110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Cyclic Nucleotides Monophosphate (cNMP) are key signalling compounds whose role in plant cell signal transduction is still poorly understood. In this work we used sildenafil, a phosphodiesterase (PDE) inhibitor used in human, to amplify the signal cascade triggered by cNMP using tomato as model plant. Metabolomics was then used, together with plant growth and root architecture parameters, to unravel the changes elicited by PDE inhibition either under non-stress and 100 mM NaCl salinity conditions. The PDE inhibitor elicited a significant increase in biomass (+62 %) and root length (+56 %) under no stress conditions, and affected root architecture in terms of distribution over diameter classes. Together with cGMP, others cNMP were modulated by the treatment. Moreover, PDE inhibition triggered a broad metabolic reprogramming involving photosynthesis and secondary metabolism. A complex crosstalk network of phytohormones and other signalling compounds could be observed in treated plants. Nonetheless, metabolites related to redox imbalance processes and NO signalling could be highlighted in tomato following PDE application. Despite salinity damped down the growth-promoting effects of sildenafil, interesting implications in plant mitigation to stress-related detrimental effects could be observed.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| |
Collapse
|
6
|
Duszyn M, Świeżawska-Boniecka B, Wong A, Jaworski K, Szmidt-Jaworska A. In Vitro Characterization of Guanylyl Cyclase BdPepR2 from Brachypodium distachyon Identified through a Motif-Based Approach. Int J Mol Sci 2021; 22:ijms22126243. [PMID: 34200573 PMCID: PMC8228174 DOI: 10.3390/ijms22126243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, cyclic guanosine 3′,5′-cyclic monophosphate (cGMP) and guanylyl cyclases (GCs), which catalyze the formation of cGMP, were implicated in a growing number of plant processes, including plant growth and development and the responses to various stresses. To identify novel GCs in plants, an amino acid sequence of a catalytic motif with a conserved core was designed through bioinformatic analysis. In this report, we describe the performed analyses and consider the changes caused by the introduced modification within the GC catalytic motif, which eventually led to the description of a plasma membrane receptor of peptide signaling molecules—BdPepR2 in Brachypodium distachyon. Both in vitro GC activity studies and structural and docking analyses demonstrated that the protein could act as a GC and contains a highly conserved 14-aa GC catalytic center. However, we observed that in the case of BdPepR2, this catalytic center is altered where a methionine instead of the conserved lysine or arginine residues at position 14 of the motif, conferring higher catalytic activity than arginine and alanine, as confirmed through mutagenesis studies. This leads us to propose the expansion of the GC motif to cater for the identification of GCs in monocots. Additionally, we show that BdPepR2 also has in vitro kinase activity, which is modulated by cGMP.
Collapse
Affiliation(s)
- Maria Duszyn
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, PL 87-100 Torun, Poland; (B.Ś.-B.); (K.J.); (A.S.-J.)
- Correspondence:
| | - Brygida Świeżawska-Boniecka
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, PL 87-100 Torun, Poland; (B.Ś.-B.); (K.J.); (A.S.-J.)
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou 325060, China;
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou 325060, China
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, PL 87-100 Torun, Poland; (B.Ś.-B.); (K.J.); (A.S.-J.)
| | - Adriana Szmidt-Jaworska
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, PL 87-100 Torun, Poland; (B.Ś.-B.); (K.J.); (A.S.-J.)
| |
Collapse
|
7
|
Zhou W, Chi W, Shen W, Dou W, Wang J, Tian X, Gehring C, Wong A. Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. FRONTIERS IN BIOINFORMATICS 2021; 1:652286. [PMID: 36303732 PMCID: PMC9581015 DOI: 10.3389/fbinf.2021.652286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In proteins, functional centers consist of the key amino acids required to perform molecular functions such as catalysis, ligand-binding, hormone- and gas-sensing. These centers are often embedded within complex multi-domain proteins and can perform important cellular signaling functions that enable fine-tuning of temporal and spatial regulation of signaling molecules and networks. To discover hidden functional centers, we have developed a protocol that consists of the following sequential steps. The first is the assembly of a search motif based on the key amino acids in the functional center followed by querying proteomes of interest with the assembled motif. The second consists of a structural assessment of proteins that harbor the motif. This approach, that relies on the application of computational tools for the analysis of data in public repositories and the biological interpretation of the search results, has to-date uncovered several novel functional centers in complex proteins. Here, we use recent examples to describe a step-by-step guide that details the workflow of this approach and supplement with notes, recommendations and cautions to make this protocol robust and widely applicable for the discovery of hidden functional centers.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanting Shen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Aloysius Wong
| |
Collapse
|
8
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
9
|
Sun J, Ning Y, Wang L, Wilkins KA, Davies JM. Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? FRONTIERS IN PLANT SCIENCE 2021; 12:788514. [PMID: 34925428 PMCID: PMC8675005 DOI: 10.3389/fpls.2021.788514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine-threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of "moonlighting" receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible.
Collapse
Affiliation(s)
- Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Youzheng Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katie A. Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
10
|
Rahman H, Wang XY, Xu YP, He YH, Cai XZ. Characterization of tomato protein kinases embedding guanylate cyclase catalytic center motif. Sci Rep 2020; 10:4078. [PMID: 32139792 PMCID: PMC7057975 DOI: 10.1038/s41598-020-61000-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Guanylate cyclases (GCs) are enzymes that catalyze the reaction to produce cyclic GMP (cGMP), a key signaling molecule in eukaryotes. Nevertheless, systemic identification and functional analysis of GCs in crop plant species have not yet been conducted. In this study, we systematically identified GC genes in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of two putative tomato GC genes in disease resistance. Ninety-nine candidate GCs containing GC catalytic center (GC-CC) motif were identified in tomato genome. Intriguingly, all of them were putative protein kinases embedding a GC-CC motif within the protein kinase domain, which was thus tentatively named as GC-kinases here. Two homologs of Arabidopsis PEPRs, SlGC17 and SlGC18 exhibited in vitro GC activity. Co-silencing of SlGC17 and SlGC18 genes significantly reduced resistance to tobacco rattle virus, fungus Sclerotinia sclerotiorum, and bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Moreover, co-silencing of these two genes attenuated PAMP and DAMP-triggered immunity as shown by obvious decrease of flg22, chitin and AtPep1-elicited Ca2+ and H2O2 burst in SlGC-silenced plants. Additionally, silencing of these genes altered the expression of a set of Ca2+ signaling genes. Furthermore, co-silencing of these GC-kinase genes exhibited stronger effects on all above regulations in comparison with individual silencing. Collectively, our results suggest that GC-kinases might widely exist in tomato and the two SlPEPR-GC genes redundantly play a positive role in resistance to diverse pathogens and PAMP/DAMP-triggered immunity in tomato. Our results provide insights into composition and functions of GC-kinases in tomato.
Collapse
Affiliation(s)
- Hafizur Rahman
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yao Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Han He
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Su B, Qian Z, Li T, Zhou Y, Wong A. PlantMP: a database for moonlighting plant proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5476724. [PMID: 31032837 PMCID: PMC6482322 DOI: 10.1093/database/baz050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 03/28/2019] [Indexed: 11/15/2022]
Abstract
Moonlighting proteins are single polypeptide chains capable of executing two or more distinct biochemical and/or biological functions. Here, we describe the development of PlantMP, which is a manually curated online-based database of plant proteins that are known to `moonlight’. The database contains searchable UniProt IDs and names, canonical and moonlighting functions, gene ontology numbers, plant species as well as links to the PubMed indexed articles. Proteins homologous to experimentally confirmed moonlighting proteins from the model plant Arabidopsis thaliana are provided as a separate list of `likely moonlighters’. Additionally, we also provide a list of predicted Arabidopsis moonlighting proteins reported in the literature. Currently, PlantMP contains 110 plant moonlighting proteins, 10 `likely moonlighters’ and 27 `predicted moonlighters’. Organizing plant moonlighting proteins in one platform enables researchers to conveniently harvest plant-specific raw and processed data such as the molecular functions, biological roles and structural features essential for hypothesis formulation in basic research and for biotechnological innovations.
Collapse
Affiliation(s)
- Bo Su
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China
| | - Zhuang Qian
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China
| | - Tianshu Li
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China
| | - Yuwei Zhou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
12
|
Ruzvidzo O, Gehring C, Wong A. New Perspectives on Plant Adenylyl Cyclases. Front Mol Biosci 2019; 6:136. [PMID: 31850369 PMCID: PMC6901789 DOI: 10.3389/fmolb.2019.00136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
It is increasingly clear that plant genomes encode numerous complex multidomain proteins that harbor functional adenylyl cyclase (AC) centers. These AC containing proteins have well-documented roles in development and responses to the environment. However, it is only for a few of these proteins that we are beginning to understand the intramolecular mechanisms that govern their cellular and biological functions, as detailed characterizations are biochemically and structurally challenging given that these poorly conserved AC centers typically constitute only a small fraction (<10%) of complex plant proteins. Here, we offer fresh perspectives on their seemingly cryptic activities specifically showing evidence for the presence of multiple functional AC centers in a single protein and linking their catalytic strengths to the Mg2+/Mn2+-binding amino acids. We used a previously described computational approach to identify candidate multidomain proteins from Arabidopsis thaliana that contain multiple AC centers and show, using an Arabidopsis leucine-rich repeat containing protein (TAIR ID: At3g14460; AtLRRAC1) as example, biochemical evidence for multienzymatic activities. Importantly, all AC-containing fragments of this protein can complement the AC-deficient mutant cyaA in Escherichia coli, while structural modeling coupled with molecular docking simulations supports catalytic feasibility albeit to varying degrees as determined by the frequency of suitable substrate binding poses predicted for the AC sites. This statistic correlates well with the enzymatic assays, which implied that the greatly reduced AC activities is due to the absence of the negatively charged [DE] amino acids previously assigned to cation-, in particular Mg2+/Mn2+-binding roles in ACs.
Collapse
Affiliation(s)
- Oziniel Ruzvidzo
- Department of Botany, School of Biological Sciences, North-West University, Mmabatho, South Africa
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| |
Collapse
|
13
|
Freihat LA, Wheeler JI, Wong A, Turek I, Manallack DT, Irving HR. IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity. Sci Rep 2019; 9:15468. [PMID: 31664109 PMCID: PMC6820782 DOI: 10.1038/s41598-019-51913-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Interleukin-1 receptor associated kinase 3 (IRAK3) is a cytoplasmic homeostatic mediator of inflammatory responses and is potentially useful as a prognostic marker in inflammation. IRAK3 inhibits signalling cascades downstream of myddosome complexes associated with toll like receptors. IRAK3 contains a death domain that interacts with other IRAK family members, a pseudokinase domain and a C-terminus domain involved with tumour necrosis factor receptor associated factor 6 (TRAF6). Previous bioinformatic studies revealed that IRAK3 contained a guanylate cyclase centre in its pseudokinase domain but its role in IRAK3 action is unresolved. We demonstrate that wildtype IRAK3 is capable of producing cGMP. Furthermore, we show that a specific point mutation in the guanylate cyclase centre reduced cGMP production. Cells containing toll like receptor 4 and a nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB) reporter system were transfected with IRAK3 or mutant IRAK3 proteins. Cell-permeable cGMP treatment of untransfected control cells suppresses downstream signalling through modulation of the NFĸB in the presence of lipopolysaccharides. Cells transfected with wildtype IRAK3 also suppress lipopolysaccharide induced NFĸB activity in the absence of exogenous cGMP. Lipopolysaccharide induced NFĸB activity was not suppressed in cells transfected with the IRAK3 mutant with reduced cGMP-generating capacity. Whereas in the presence of exogenously applied cell-permeable cGMP the IRAK3 mutant was able to retain its function by suppressing lipopolysaccharide induced NFĸB activity. Furthermore, increasing the amount of membrane permeable cGMP did not affect IRAK3's ability to reduce NFĸB activity. These results suggest that cGMP generated by IRAK3 may be involved in regulatory function of the protein where the presence of cGMP may selectively affect downstream signalling pathway(s) by modulating binding and/or activity of nearby proteins that interact in the inflammatory signalling cascade.
Collapse
Affiliation(s)
- L A Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia
| | - J I Wheeler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- AgriBio, La Trobe University, Bundoora, VIC, 3083, Australia
| | - A Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - I Turek
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia
| | - D T Manallack
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - H R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia.
| |
Collapse
|
14
|
Discovery of a Nitric Oxide-Responsive Protein in Arabidopsis thaliana. Molecules 2019; 24:molecules24152691. [PMID: 31344907 PMCID: PMC6696476 DOI: 10.3390/molecules24152691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
In plants, much like in animals, nitric oxide (NO) has been established as an important gaseous signaling molecule. However, contrary to animal systems, NO-sensitive or NO-responsive proteins that bind NO in the form of a sensor or participating in redox reactions have remained elusive. Here, we applied a search term constructed based on conserved and functionally annotated amino acids at the centers of Heme Nitric Oxide/Oxygen (H-NOX) domains in annotated and experimentally-tested gas-binding proteins from lower and higher eukaryotes, in order to identify candidate NO-binding proteins in Arabidopsis thaliana. The selection of candidate NO-binding proteins identified from the motif search was supported by structural modeling. This approach identified AtLRB3 (At4g01160), a member of the Light Response Bric-a-Brac/Tramtrack/Broad Complex (BTB) family, as a candidate NO-binding protein. AtLRB3 was heterologously expressed and purified, and then tested for NO-response. Spectroscopic data confirmed that AtLRB3 contains a histidine-ligated heme cofactor and importantly, the addition of NO to AtLRB3 yielded absorption characteristics reminiscent of canonical H-NOX proteins. Furthermore, substitution of the heme iron-coordinating histidine at the H-NOX center with a leucine strongly impaired the NO-response. Our finding therefore established AtLRB3 as a NO-interacting protein and future characterizations will focus on resolving the nature of this response.
Collapse
|
15
|
Bianchet C, Wong A, Quaglia M, Alqurashi M, Gehring C, Ntoukakis V, Pasqualini S. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:12-22. [PMID: 30530199 DOI: 10.1016/j.jplph.2018.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/21/2023]
Abstract
Adenylyl cyclases (ACs) catalyze the formation of the second messenger cAMP from ATP. Here we report the characterization of an Arabidopsis thaliana leucine-rich repeat (LRR) protein (At3g14460; AtLRRAC1) as an adenylyl cyclase. Using an AC-specific search motif supported by computational assessments of protein models we identify an AC catalytic center within the N-terminus and demonstrate that AtLRRAC1 can generate cAMP in vitro. Knock-out mutants of AtLRRAC1 have compromised immune responses to the biotrophic fungus Golovinomyces orontii and the hemibiotrophic bacteria Pseudomonas syringae, but not against the necrotrophic fungus Botrytis cinerea. These findings are consistent with a role of cAMP-dependent pathways in the defense against biotrophic and hemibiotrophic plant pathogens.
Collapse
Affiliation(s)
- Chantal Bianchet
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Aloysius Wong
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Mara Quaglia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - May Alqurashi
- Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy; Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK; Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy.
| |
Collapse
|
16
|
Al-Younis I, Wong A, Lemtiri-Chlieh F, Schmöckel S, Tester M, Gehring C, Donaldson L. The Arabidopsis thaliana K +-Uptake Permease 5 (AtKUP5) Contains a Functional Cytosolic Adenylate Cyclase Essential for K + Transport. FRONTIERS IN PLANT SCIENCE 2018; 9:1645. [PMID: 30483296 PMCID: PMC6243130 DOI: 10.3389/fpls.2018.01645] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the most abundant cation in plants, and its uptake and transport are key to growth, development and responses to the environment. Here, we report that Arabidopsis thaliana K+ uptake permease 5 (AtKUP5) contains an adenylate cyclase (AC) catalytic center embedded in its N-terminal cytosolic domain. The purified recombinant AC domain generates cAMP in vitro; and when expressed in Escherichia coli, increases cAMP levels in vivo. Both the AC domain and full length AtKUP5 rescue an AC-deficient E. coli mutant, cyaA, and together these data provide evidence that AtKUP5 functions as an AC. Furthermore, full length AtKUP5 complements the Saccharomyces cerevisiae K+ transport impaired mutant, trk1 trk2, demonstrating its function as a K+ transporter. Surprisingly, a point mutation in the AC center that impairs AC activity, also abolishes complementation of trk1 trk2, suggesting that a functional catalytic AC domain is essential for K+ uptake. AtKUP5-mediated K+ uptake is not affected by cAMP, the catalytic product of the AC, but, interestingly, causes cytosolic cAMP accumulation. These findings are consistent with a role for AtKUP5 as K+ flux sensor, where the flux-dependent cAMP increases modulate downstream components essential for K+ homeostasis, such as cyclic nucleotide gated channels.
Collapse
Affiliation(s)
- Inas Al-Younis
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aloysius Wong
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Fouad Lemtiri-Chlieh
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sandra Schmöckel
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mark Tester
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Irving HR, Cahill DM, Gehring C. Moonlighting Proteins and Their Role in the Control of Signaling Microenvironments, as Exemplified by cGMP and Phytosulfokine Receptor 1 (PSKR1). FRONTIERS IN PLANT SCIENCE 2018; 9:415. [PMID: 29643865 PMCID: PMC5883070 DOI: 10.3389/fpls.2018.00415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
Signal generating and processing complexes and changes in concentrations of messenger molecules such as calcium ions and cyclic nucleotides develop gradients that have critical roles in relaying messages within cells. Cytoplasmic contents are densely packed, and in plant cells this is compounded by the restricted cytoplasmic space. To function in such crowded spaces, scaffold proteins have evolved to keep key enzymes in the correct place to ensure ordered spatial and temporal and stimulus-specific message generation. Hence, throughout the cytoplasm there are gradients of messenger molecules that influence signaling processes. However, it is only recently becoming apparent that specific complexes involving receptor molecules can generate multiple signal gradients and enriched microenvironments around the cytoplasmic domains of the receptor that regulate downstream signaling. Such gradients or signal circuits can involve moonlighting proteins, so called because they can enable fine-tune signal cascades via cryptic additional functions that are just being defined. This perspective focuses on how enigmatic activity of moonlighting proteins potentially contributes to regional intracellular microenvironments. For instance, the proteins associated with moonlighting proteins that generate cyclic nucleotides may be regulated by cyclic nucleotide binding directly or indirectly. In this perspective, we discuss how generation of cyclic nucleotide-enriched microenvironments can promote and regulate signaling events. As an example, we use the phytosulfokine receptor (PSKR1), discuss the function of its domains and their mutual interactions and argue that this complex architecture and function enhances tuning of signals in microenvironments.
Collapse
Affiliation(s)
- Helen R. Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - David M. Cahill
- Faculty of Science Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Abstract
Cyclic nucleotides such as 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.
Collapse
|
19
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
20
|
Kwezi L, Wheeler JI, Marondedze C, Gehring C, Irving HR. Intramolecular crosstalk between catalytic activities of receptor kinases. PLANT SIGNALING & BEHAVIOR 2018; 13:e1430544. [PMID: 29355445 PMCID: PMC5846547 DOI: 10.1080/15592324.2018.1430544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 05/21/2023]
Abstract
Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.
Collapse
Affiliation(s)
- Lusisizwe Kwezi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Biosciences, Council For Scientific and Industrial Research, Brummeria, Pretoria, South Africa
| | - Janet I. Wheeler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Claudius Marondedze
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, Grenoble Cedex 9, France
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia, Umbria, Italy
| | - Helen R. Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Pharmacy & Applied Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo VIC, Australia
- CONTACT Helen R. Irving La Trobe Institute for Molecular Science, La Trobe University, PO Box 199, Bendigo VIC 3552,Australia
| |
Collapse
|
21
|
Świeżawska B, Duszyn M, Jaworski K, Szmidt-Jaworska A. Downstream Targets of Cyclic Nucleotides in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1428. [PMID: 30327660 PMCID: PMC6174285 DOI: 10.3389/fpls.2018.01428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 05/04/2023]
Abstract
Efficient integration of various external and internal signals is required to maintain adaptive cellular function. Numerous distinct signal transduction systems have evolved to allow cells to receive these inputs, to translate their codes and, subsequently, to expand and integrate their meanings. Two of these, cyclic AMP and cyclic GMP, together referred to as the cyclic nucleotide signaling system, are between them. The cyclic nucleotides regulate a vast number of processes in almost all living organisms. Once synthesized by adenylyl or guanylyl cyclases, cyclic nucleotides transduce signals by acting through a number of cellular effectors. Because the activities of several of these effectors are altered simultaneously in response to temporal changes in cyclic nucleotide levels, agents that increase cAMP/cGMP levels can trigger multiple signaling events that markedly affect numerous cellular functions. In this mini review, we summarize recent evidence supporting the existence of cNMP effectors in plant cells. Specifically, we highlight cAMP-dependent protein kinase A (PKA), cGMP-dependent kinase G (PKG), and cyclic nucleotide phosphodiesterases (PDEs). Essentially this manuscript documents the progress that has been achieved in recent decades in improving our understanding of the regulation and function of cNMPs in plants and emphasizes the current gaps and unanswered questions in this field of plant signaling research.
Collapse
|
22
|
Marondedze C, Wong A, Thomas L, Irving H, Gehring C. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling. Handb Exp Pharmacol 2017; 238:87-103. [PMID: 26721677 DOI: 10.1007/164_2015_35] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide monophosphates (cNMPs) and the enzymes that can generate them are of increasing interest in the plant sciences. Arguably, the major recent advance came with the release of the complete Arabidopsis thaliana genome that has enabled the systematic search for adenylate (ACs) or guanylate cyclases (GCs) and did eventually lead to the discovery of a number of GCs in higher plants. Many of these proteins have complex domain architectures with AC or GC centers moonlighting within cytosolic kinase domains. Recent reports indicated the presence of not just the canonical cNMPs (i.e., cAMP and cGMP), but also the noncanonical cCMP, cUMP, cIMP, and cdTMP in plant tissues, and this raises several questions. Firstly, what are the functions of these cNMPs, and, secondly, which enzymes can convert the substrate triphosphates into the respective noncanonical cNMPs? The first question is addressed here by comparing the reactive oxygen species (ROS) response of cAMP and cGMP to that elicited by the noncanonical cCMP or cIMP. The results show that particularly cIMP can induce significant ROS production. To answer, at least in part, the second question, we have evaluated homology models of experimentally confirmed plant GCs probing the substrate specificity by molecular docking simulations to determine if they can conceivably catalytically convert substrates other than ATP or GTP. In summary, molecular modeling and substrate docking simulations can contribute to the evaluation of cyclases for noncanonical cyclic mononucleotides and thereby further our understanding of the molecular mechanism that underlie cNMP-dependent signaling in planta.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ludivine Thomas
- Proteomics Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Helen Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
23
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
24
|
Wheeler JI, Wong A, Marondedze C, Groen AJ, Kwezi L, Freihat L, Vyas J, Raji MA, Irving HR, Gehring C. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:590-600. [PMID: 28482142 DOI: 10.1111/tpj.13589] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/24/2023]
Abstract
The brassinosteroid receptor brassinosteroid insensitive 1 (BRI1) is a member of the leucine-rich repeat receptor-like kinase family. The intracellular kinase domain of BRI1 is an active kinase and also encapsulates a guanylate cyclase catalytic centre. Using liquid chromatography tandem mass spectrometry, we confirmed that the recombinant cytoplasmic domain of BRI1 generates pmol amounts of cGMP per μg protein with a preference for magnesium over manganese as a co-factor. Importantly, a functional BRI1 kinase is essential for optimal cGMP generation. Therefore, the guanylate cyclase activity of BRI1 is modulated by the kinase while cGMP, the product of the guanylate cyclase, in turn inhibits BRI1 kinase activity. Furthermore, we show using Arabidopsis root cell cultures that cGMP rapidly potentiates phosphorylation of the downstream substrate brassinosteroid signaling kinase 1 (BSK1). Taken together, our results suggest that cGMP acts as a modulator that enhances downstream signaling while dampening signal generation from the receptor.
Collapse
Affiliation(s)
- Janet I Wheeler
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
- AgriBio, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- College of Natural, Applied and Health Sciences, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China, 325060
| | - Claudius Marondedze
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Arnoud J Groen
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lusisizwe Kwezi
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
- Council for Scientific and Industrial Research, Biosciences, Brummeria, Pretoria, 0001, South Africa
| | - Lubna Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Jignesh Vyas
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Misjudeen A Raji
- Analytical Chemistry Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helen R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Harkenrider M, Sharma R, De Vleesschauwer D, Tsao L, Zhang X, Chern M, Canlas P, Zuo S, Ronald PC. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens. PLoS One 2016; 11:e0147310. [PMID: 26795719 PMCID: PMC4721673 DOI: 10.1371/journal.pone.0147310] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus.
Collapse
Affiliation(s)
- Mitch Harkenrider
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Rita Sharma
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | | | - Li Tsao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xuting Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology and Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology and Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
|
27
|
Gross I, Durner J. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:576. [PMID: 27200049 PMCID: PMC4858519 DOI: 10.3389/fpls.2016.00576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/14/2016] [Indexed: 05/07/2023]
Abstract
In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants.
Collapse
Affiliation(s)
- Inonge Gross
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- *Correspondence: Inonge Gross,
| | - Jörg Durner
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- Chair of Biochemical Plant Pathology, Technische Universität München, FreisingGermany
| |
Collapse
|
28
|
The Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Lett 2015; 589:3848-52. [PMID: 26638082 DOI: 10.1016/j.febslet.2015.11.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/21/2023]
Abstract
Adenylate cyclases (ACs) catalyse the formation of the second messenger cyclic adenosine 3',5'-monophosphate (cAMP) from adenosine 5'-triphosphate (ATP). Although cAMP is increasingly recognised as an important signalling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP7(1-100) is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP7(1-100) generates cAMP in vitro.
Collapse
|
29
|
Abstract
Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity.
Collapse
Affiliation(s)
- Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany
| |
Collapse
|
30
|
Abstract
Over 30 receptor-like kinases contain a guanylate cyclase (GC) catalytic centre embedded within the C-terminal region of their kinase domain in the model plant Arabidopsis. A number of the kinase GCs contain both functional kinase and GC activity in vitro and the natural ligands of these receptors stimulate increases in cGMP within isolated protoplasts. The GC activity could be described as a minor or moonlighting activity. We have also identified mammalian proteins that contain the novel GC centre embedded within kinase domains. One example is the interleukin 1 receptor-associated kinase 3 (IRAK3). We compare the GC functionality of the mammalian protein IRAK3 with the cytoplasmic domain of the plant prototype molecule, the phytosulfokine receptor 1 (PSKR1). We have developed homology models of these molecules and have undertaken in vitro experiments to compare their functionality and structural features. Recombinant IRAK3 produces cGMP at levels comparable to those produced by PSKR1, suggesting that IRAK3 contains GC activity. Our findings raise the possibility that kinase-GCs may switch between downstream kinase-mediated or cGMP-mediated signalling cascades to elicit desired outputs to particular stimuli. The challenge now lies in understanding the interaction between the GC and kinase domains and how these molecules utilize their dual functionality within cells.
Collapse
|
31
|
Wong A, Gehring C, Irving HR. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites. Front Bioeng Biotechnol 2015; 3:82. [PMID: 26106597 PMCID: PMC4460814 DOI: 10.3389/fbioe.2015.00082] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.
Collapse
Affiliation(s)
- Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Helen R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
32
|
Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M. Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. THE PLANT CELL 2015; 27:1718-29. [PMID: 26071421 PMCID: PMC4498212 DOI: 10.1105/tpc.15.00306] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 05/17/2023]
Abstract
Phytosulfokine (PSK) is perceived by the leucine-rich repeat receptor kinase PSKR1 and promotes growth in Arabidopsis thaliana. PSKR1 is coexpressed with the CYCLIC NUCLEOTIDE-GATED CHANNEL gene CNGC17. PSK promotes protoplast expansion in the wild type but not in cngc17. Protoplast expansion is likewise promoted by cGMP in a CNGC17-dependent manner. Furthermore, PSKR1-deficient protoplasts do not expand in response to PSK but are still responsive to cGMP, suggesting that cGMP acts downstream of PSKR1. Mutating the guanylate cyclase center of PSKR1 impairs seedling growth, supporting a role for PSKR1 signaling via cGMP in planta. While PSKR1 does not interact directly with CNGC17, it interacts with the plasma membrane-localized H(+)-ATPases AHA1 and AHA2 and with the BRI-associated receptor kinase 1 (BAK1). CNGC17 likewise interacts with AHA1, AHA2, and BAK1, suggesting that PSKR1, BAK1, CNGC17, and AHA assemble in a functional complex. Roots of deetiolated bak1-3 and bak1-4 seedlings were unresponsive to PSK, and bak1-3 and bak1-4 protoplasts expanded less in response to PSK but were fully responsive to cGMP, indicating that BAK1 acts in the PSK signal pathway upstream of cGMP. We hypothesize that CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes.
Collapse
Affiliation(s)
- Friederike Ladwig
- Universität Tübingen, ZMBP, Plant Physiology, D-72076 Tübingen, Germany
| | - Renate I Dahlke
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| | - Nils Stührwohldt
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| | - Jens Hartmann
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| | - Klaus Harter
- Universität Tübingen, ZMBP, Plant Physiology, D-72076 Tübingen, Germany
| | - Margret Sauter
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| |
Collapse
|
33
|
Muleya V, Wheeler JI, Ruzvidzo O, Freihat L, Manallack DT, Gehring C, Irving HR. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1. Cell Commun Signal 2014. [PMID: 25245092 DOI: 10.1186/preaccept-3431251013169955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. FINDINGS Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. CONCLUSIONS Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.
Collapse
|
34
|
Muleya V, Wheeler JI, Ruzvidzo O, Freihat L, Manallack DT, Gehring C, Irving HR. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1. Cell Commun Signal 2014; 12:60. [PMID: 25245092 PMCID: PMC4180545 DOI: 10.1186/s12964-014-0060-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/11/2014] [Indexed: 11/11/2022] Open
Abstract
Background A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0060-z) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Hartmann J, Fischer C, Dietrich P, Sauter M. Kinase activity and calmodulin binding are essential for growth signaling by the phytosulfokine receptor PSKR1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:192-202. [PMID: 24495073 DOI: 10.1111/tpj.12460] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
The cell growth-promoting peptide phytosulfokine (PSK) is perceived by leucine-rich repeat (LRR) receptor kinases. To elucidate PSK receptor function we analyzed PSKR1 kinase activity and binding to Ca(2+) sensors and evaluated the contribution of these activities to growth control in planta. Ectopically expressed PSKR1 was capable of auto- and transphosphorylation. Replacement of a conserved lysine within the ATP-binding region by a glutamate resulted in the inhibition of auto- and transphosphorylation kinase activities. Expression of the kinase-inactive PSKR1(K762E) receptor in the pskr null background did not restore root or shoot growth. Instead, the mutant phenotype was enhanced suggesting that the inactive receptor protein exerts growth-inhibitory activity. Bioinformatic analysis predicted a putative calmodulin (CaM)-binding site within PSKR1 kinase subdomain VIa. Bimolecular fluorescence complementation analysis demonstrated that PSKR1 binds to all isoforms of CaM, more weakly to the CaM-like protein CML8 but apparently not to CML9. Mutation of a conserved tryptophan (W831S) within the predicted CaM-binding site strongly reduced CaM binding. Expression of PSKR1(W831S) in the pskr null background resulted in growth inhibition that was similar to that of the kinase-inactive receptor. We conclude that PSK signaling requires Ca(2+) /CaM binding and kinase activity of PSKR1 in planta. We further propose that the inactivated kinase interferes with other growth-promoting signaling pathway(s).
Collapse
Affiliation(s)
- Jens Hartmann
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, Am Botanischen Garten 5, Kiel, 24118, Germany
| | | | | | | |
Collapse
|
36
|
Nan W, Wang X, Yang L, Hu Y, Wei Y, Liang X, Mao L, Bi Y. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1571-83. [PMID: 24591051 PMCID: PMC3967089 DOI: 10.1093/jxb/eru019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.
Collapse
Affiliation(s)
- Wenbin Nan
- * These authors contributed equally to this work
| | - Xiaomin Wang
- * These authors contributed equally to this work
| | | | | | | | | | | | - Yurong Bi
- † To whom correspondence should be addressed. E-mail:
| |
Collapse
|