1
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
2
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Li X, Zuo Z, Wang Y, Hegemann JH, He C. Polymorphic Membrane Protein 17G of Chlamydia psittaci Mediated the Binding and Invasion of Bacteria to Host Cells by Interacting and Activating EGFR of the Host. Front Immunol 2022; 12:818487. [PMID: 35173712 PMCID: PMC8841347 DOI: 10.3389/fimmu.2021.818487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Chlamydia psittaci (C. psittaci) is an obligate intracellular, gram-negative bacterium, and mainly causes systemic disease in psittacine birds, domestic poultry, and wild fowl. The pathogen is threating to human beings due to closely contacted to employees in poultry industry. The polymorphic membrane proteins (Pmps) enriched in C. psittaci includes six subtypes (A, B/C, D, E/F, G/I and H). Compared to that of the 1 pmpG gene in Chlamydia trachomatis (C. trachomatis), the diverse pmpG gene-coding proteins of C. psittaci remain elusive. In the present study, polymorphic membrane protein 17G (Pmp17G) of C. psittaci mediated adhesion to different host cells. More importantly, expression of Pmp17G in C. trachomatis upregulated infections to host cells. Afterwards, crosstalk between Pmp17G and EGFR was screened and identified by MALDI-MS and Co-IP. Subsequently, EGFR overexpression in CHO-K1 cells and EGFR knockout in HeLa 229 cells were assessed to determine whether Pmp17G directly correlated with EGFR during Chlamydial adhesion. Finally, the EGFR phosphorylation was recognized by Grb2, triggering chlamydial invasion. Based on above evidence, Pmp17G possesses adhesive property that serves as an adhesin and activate intracellular bacterial internalization by recognizing EGFR during C. psittaci infection
Collapse
Affiliation(s)
- Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Johannes H. Hegemann
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Cheng He,
| |
Collapse
|
4
|
Abstract
Commensal microbial communities have immense effects on their vertebrate hosts, contributing to a number of physiological functions, as well as host fitness. In particular, host immunity is strongly linked to microbiota composition through poorly understood bi-directional links. Gene expression may be a potential mediator of these links between microbial communities and host function. However, few studies have investigated connections between microbiota composition and expression of host immune genes in complex systems. Here, we leverage a large study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined stickleback) to document correlations between gene expression and microbiome composition. First, we examined correlations between microbiome alpha diversity and gene expression. Our results demonstrate robust positive associations between microbial alpha diversity and expression of host immune genes. Next, we examined correlations between host gene expression and abundance of microbial taxa. We identified 15 microbial families that were highly correlated with host gene expression. These families were all tightly correlated with host expression of immune genes and processes, falling into one of three categories—those positively correlated, negatively correlated, and neutrally related to immune processes. Furthermore, we highlight several important immune processes that are commonly associated with the abundance of these taxa, including both macrophage and B cell functions. Further functional characterization of microbial taxa will help disentangle the mechanisms of the correlations described here. In sum, our study supports prevailing hypotheses of intimate links between host immunity and gut microbiome composition.
Collapse
|
5
|
Generation of a novel affibody molecule targeting Chlamydia trachomatis MOMP. Appl Microbiol Biotechnol 2021; 105:1477-1487. [PMID: 33521848 PMCID: PMC7880956 DOI: 10.1007/s00253-021-11128-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Abstract Chlamydia trachomatis (C. trachomatis) is the leading cause of preventable blindness worldwide and the most prevalent cause of bacterial sexually transmitted diseases. At present, there is no available vaccine, and recurrences after antibiotics treatment are substantial problems. Major outer membrane protein (MOMP) accounts for 60% of the outer mass of C. trachomatis, functioning as trimeric porin, and it is highly antigenic. Therefore, MOMP is the most promising candidate for vaccine developing and target therapy of Chlamydia. Affibody, a new class of affinity ligands derived from the Z-domain in the binding region of Staphylococcus aureus protein A, has been the focus of researchers as a viable alternative to antibodies. In this study, the MOMP-targeted affibody molecule (ZMOMP:461) was screened by phage-displayed peptide library. Further, the affinity and specificity were characterized by surface plasmon resonance (SPR) and Western blot. Immunofluorescence assay (IFA) indicated that the MOMP-binding affibody could recognize native MOMP in HeLa229 cells infected C. trachomatis. Immunoprecipitation assay confirmed further that ZMOMP:461 molecule specifically recognizes the epitope on relaxed trimer MOMP. Our findings provide strong evidence that affibody molecule (ZMOMP:461) serves as substitute for MOMP antibody for biological applications and has a great potential for delivering drugs for target therapy. Key points • We screened a novel affibody molecule ZMOMP:461 targeting Chlamydia trachomatis MOMP. • ZMOMP:461 recognizes the recombinant and native MOMP with high affinity and specificity. • ZMOMP:461 could be internalized into live target cells. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11128-x.
Collapse
|
6
|
Peyrusson F, Nguyen TK, Buyck JM, Lemaire S, Wang G, Seral C, Tulkens PM, Van Bambeke F. In Vitro Models for the Study of the Intracellular Activity of Antibiotics. Methods Mol Biol 2021; 2357:239-251. [PMID: 34590263 DOI: 10.1007/978-1-0716-1621-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intracellular bacteria are poorly responsive to antibiotic treatment. Pharmacological studies are thus needed to determine the antibiotics which are the most potent or effective against intracellular bacteria as well as to explore the reasons for poor bacterial responsiveness. An in vitro pharmacodynamic model is described, consisting of (1) phagocytosis of preopsonized bacteria by eukaryotic cells, (2) elimination of noninternalized bacteria with gentamicin, (3) incubation of infected cells with antibiotics, and (4) determination of surviving bacteria by viable cell counting and normalization of the counts based on sample protein content. The use of strains expressing fluorescent proteins under the control of an inducible promoter allows to follow intracellular bacterial division at the individual level and therefore to monitor bacterial persisters that do not multiply anymore.
Collapse
Affiliation(s)
- Frédéric Peyrusson
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Tiep K Nguyen
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Julien M Buyck
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,INSERM U1070 "Pharmacology of Anti-infective Agents", Université de Poitiers, Poitiers, France
| | - Sandrine Lemaire
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,GSK Biologicals, Rixensart, Belgium
| | - Gang Wang
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Cristina Seral
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Department of Microbiology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Paul M Tulkens
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
7
|
Zhong W, Darville T, Zheng X, Fine J, Li Y. Generalized multi-SNP mediation intersection-union test. Biometrics 2020; 78:364-375. [PMID: 33316078 DOI: 10.1111/biom.13418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide association studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union test approach combined with the likelihood ratio test to detect mediation effect of multiple genetic variants via some mediator (e.g., the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed methods and substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia trachomatis infection further showcase advantages of our methods. We believe our proposed methods will be of value and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype for new drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Wujuan Zhong
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaojing Zheng
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason Fine
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yun Li
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Pagliarani S, Johnston SD, Beagley KW, Dief H, Palmieri C. The occurrence and pathology of chlamydiosis in the male reproductive tract of non-human mammals: A review. Theriogenology 2020; 154:152-160. [PMID: 32622195 DOI: 10.1016/j.theriogenology.2020.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
Organisms belonging to the Family Chlamydiaceae are responsible for a broad range of diseases in humans, livestock, companion animals and non-domestic species. Infection of the reproductive organs can cause a range of syndromes of which sub- and infertility are the most frequently observed clinical manifestations. While the gross and histological lesions associated with the isolation of Chlamydiaceae from the non-human female reproductive tract are well documented, little attention has been given to the pathological effects of this infection in the male genital system. As such, the occurrence and importance of Chlamydia-associated disease in male non-human mammalian species is less well documented. In order to improve our understanding of the significance of chlamydiosis in domestic, laboratory and wild animals, this review provides an up-to-date summary of Chlamydia-associated male reproductive pathology, whether that infection occurs naturally or experimentally. Although most lesions in males are described as incidental and of minor significance, results of recent studies suggest that infection with Chlamydiaceae can adversely impact male fertility and/or be instrumental in disease transmission. Although in humans, bulls and mice Chlamydia infection has been associated with morphological and functional abnormalities of the spermatozoa, this review will focus on the gross and histological findings linked to the colonisation of the genital system by this pathogen. Advances in our understanding of male reproductive chlamydiosis are necessary for diagnostic and therapeutic strategies, as well as epidemiological and conservation studies.
Collapse
Affiliation(s)
- Sara Pagliarani
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia; School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia.
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4001, Australia
| | - Hamdy Dief
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
9
|
Wang JY, Zhu B, Patterson LL, Rogan MR, Kibler CE, McBride JW. Ehrlichia chaffeensis TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection. PLoS Pathog 2020; 16:e1008541. [PMID: 32353058 PMCID: PMC7217479 DOI: 10.1371/journal.ppat.1008541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/12/2020] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) exploits evolutionarily conserved Notch and Wnt host cell signaling pathways to downregulate innate immune host defenses and promote infection. The multifunctional E. chaffeensis TRP120 effector which has HECT E3 ubiquitin ligase activity, interacts with the host nuclear tumor suppressor F-BOX and WD domain repeating-containing 7 (FBW7). FBW7 is the substrate recognition subunit of the Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex (SCF) known to negatively regulate a network of oncoproteins (Notch, cyclin E, c-Jun, MCL1 and cMYC). In this study, we demonstrate that TRP120 and FBW7 colocalize strongly in the nucleus by confocal immunofluorescent microscopy and interactions between TRP120 and FBW7 FBOX and WD40 domains were demonstrated by ectopic expression and co-immunoprecipitation. Although FBW7 gene expression increased during E. chaffeensis infection, FBW7 levels significantly decreased (>70%) by 72 h post infection. Moreover, an iRNA knockdown of FBW7 coincided with increased E. chaffeensis infection and levels of Notch intracellular domain (NICD), phosphorylated c-Jun, MCL-1 and cMYC, which are negatively regulated by FBW7. An increase in FBW7 K48 ubiquitination was detected during infection by co-IP, and FBW7 degradation was inhibited in infected cells treated with the proteasomal inhibitor bortezomib. Direct TRP120 ubiquitination of native and recombinant FBW7 was demonstrated in vitro and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. This study identifies the tumor suppressor, FBW7, as a TRP120 HECT E3 Ub ligase substrate, and demonstrates that TRP120 ligase activity promotes ehrlichial infection by degrading FBW7 to maintain stability of Notch and other oncoproteins involved in cell survival and apoptosis.
Collapse
Affiliation(s)
- Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Clayton E. Kibler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
10
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Fischer A, Rudel T. Safe haven under constant attack-The Chlamydia-containing vacuole. Cell Microbiol 2018; 20:e12940. [PMID: 30101516 DOI: 10.1111/cmi.12940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Chlamydia belong to the group of obligate intracellular bacteria that reside in a membrane bound vacuole during the entire intracellular phase of their life cycle. This vacuole called inclusion shields the bacteria from adverse influences in the cytosol of the host cell like the destructive machinery of the cell-autonomous defence system. The inclusion thereby prevents the digestion and eradication in specialised compartments of the intact and viable cell called phagolysosomes or autophagolysosomes. It is becoming more and more evident that keeping the inclusion intact also prevents the onset of cell intrinsic cell death programmes that are activated upon damage of the inclusion and direct the cell to destruct itself and the pathogen inside. Chlamydia secrete numerous proteins into the inclusion membrane to protect and stabilise their unique niche inside the host cell. We will focus in this review on the diverse attack strategies of the host aiming at the destruction of the Chlamydia-containing inclusion and will summarise the current knowledge on the protection mechanisms elaborated by the bacteria to maintain the integrity of their replication niche.
Collapse
Affiliation(s)
- Annette Fischer
- Department of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| |
Collapse
|
13
|
Sessa R, Di Pietro M, Filardo S, Bressan A, Mastromarino P, Biasucci AV, Rosa L, Cutone A, Berlutti F, Paesano R, Valenti P. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog Dis 2018; 75:3828106. [PMID: 28505248 DOI: 10.1093/femspd/ftx054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 11/14/2022] Open
Abstract
In the cervicovaginal microenvironment, lactobacilli are known to protect against genital infections and, amongst the host defence compounds, lactoferrin has recently acquired importance for its anti-microbial and anti-inflammatory properties. An abnormal genital microenvironment facilitates the acquisition of pathogens like Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections worldwide. The aim of our study is to investigate the effects of Lactobacillus crispatus, Lactobacillus brevis and bovine lactoferrin on chlamydial infection, in order to shed light on the complex interplay between host defence mechanisms and C. trachomatis. We have also evaluated the effect of these defence factors to modulate the chlamydia-mediated inflammatory state. To this purpose, we have determined the infectivity and progeny production of C. trachomatis as well as interleukin-8 and interleukin-6 synthesis. The main result of our study is that the combination of L. brevis and bovine lactoferrin is the most effective in inhibiting the early phases (adhesion and invasion) of C. trachomatis infection of cervical epithelial cells and in decreasing the levels of both cytokines. In conclusion, the interaction between L. brevis and lactoferrin seems to play a role in the protection against C. trachomatis, reducing the infection and regulating the immunomodulatory activity, thus decreasing the risk of severe complications.
Collapse
Affiliation(s)
- Rosa Sessa
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Alessia Bressan
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Francesca Berlutti
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome 'Sapienza', 00185 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| |
Collapse
|
14
|
Banhart S, Rose L, Aeberhard L, Koch-Edelmann S, Heuer D. Chlamydia trachomatis and its interaction with the cellular retromer. Int J Med Microbiol 2017; 308:197-205. [PMID: 29122514 DOI: 10.1016/j.ijmm.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis is an important human pathogen. This obligate intracellular bacterium grows inside the eukaryotic cell in a membrane-bound compartment, the inclusion. Recent global approaches describe the interactions of C. trachomatis with its host cell and indicate the inclusion is an intracellular trafficking hub embedded into the cellular vesicular trafficking pathways recruiting subunits of the retromer protein complex of the host cell. Here we review these recent developments in deciphering Chlamydia-host cell interactions with emphasis on the role of the retromer complex.
Collapse
Affiliation(s)
- Sebastian Banhart
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Laura Rose
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Lukas Aeberhard
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Sophia Koch-Edelmann
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Dagmar Heuer
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
15
|
Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance. PLoS One 2017; 12:e0178786. [PMID: 28575080 PMCID: PMC5456371 DOI: 10.1371/journal.pone.0178786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum) vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Membrane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated koalas. A mucosal immune response was also observed, with an increase in Chlamydia-specific mucosal IgG and/or IgA antibodies in some koalas post-vaccination. Both vaccines elicited a cell-mediated immune response as measured by the production of the cytokines IFN-γ and IL-17 post-vaccination. To determine the level of protection provided by the vaccines under natural conditions we assessed C. pecorum infection loads and chlamydial disease status of all vaccinated koalas pre- and post-vaccination, compared to a non-vaccinated cohort from the same habitat. The MOMP vaccinated koalas that were infected on the day of vaccination showed significant clearance of their infection at 6 months post-vaccination. In contrast, the number of new infections in the PMP vaccine was similar to the control group, with some koalas progressing to disease. Genotyping of the ompA gene from the C. pecorum strains infecting the vaccinated animals, identified genetic variants of ompA-F genotype and a new genotype ompA-O. We found that those animals that were the least well protected became infected with strains of C. pecorum not covered by the vaccine. In conclusion, a single dose vaccine formulated with either recombinant PmpG or MOMP can elicit both cell-mediated and humoral (systemic and mucosal) immune responses, with the MOMP vaccine showing clearance of infection in all infected koalas. Although the capability of our vaccines to stimulate an adaptive response and be protective needs to be fully evaluated, this work illustrates the necessity to combine epitopes most relevant to a large panel of variable strains with an efficient adjuvant.
Collapse
|
16
|
John Von Freyend S, Kwok-Schuelein T, Netter HJ, Haqshenas G, Semblat JP, Doerig C. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens. Pathogens 2017; 6:pathogens6020017. [PMID: 28430160 PMCID: PMC5488651 DOI: 10.3390/pathogens6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Collapse
Affiliation(s)
- Simona John Von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Terry Kwok-Schuelein
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| | - Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
17
|
Carter JD, Hudson AP. Recent advances and future directions in understanding and treating Chlamydia-induced reactive arthritis. Expert Rev Clin Immunol 2016; 13:197-206. [PMID: 27627462 DOI: 10.1080/1744666x.2017.1233816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Reactive arthritis (ReA) is an inflammatory disease that can follow gastrointestinal or genitourinary infections. The primary etiologic agent for post-venereal ReA is the bacterium Chlamydia trachomatis; its relative, C pneumoniae, has also been implicated in disease induction although to a lesser degree. Studies have indicated that the arthritis is elicited by chlamydiae infecting synovial tissue in an unusual biologic state designated persistence. We review clinical aspects, host-pathogen interactions, and treatments for the disease. Areas covered: We briefly discuss both the historic and,more extensively, the current medical literature describing ReA, and we provide a discussion of the biology of the chlamydiae as it relates to elicitation of the disease. A summary of clinical aspects of Chlamydia-induced ReA is included to give context for approaches to treatment of the arthritis. Expert commentary: Basic research into the biology and host-pathogen interactions characteristic of C trachomatis has provided a wealth of information that underlies our current understanding of the pathogenic processes occurring in the ReA synovium. Importantly, a promising approach to cure of the disease is at hand. However, both basic and clinical research into Chlamydia-induced ReA has lagged over the last 5 years, including required studies relating to cure of the disease.
Collapse
Affiliation(s)
- John D Carter
- a Department of Internal Medicine, Division of Rheumatology , University of South Florida School of Medicine , Tampa , FL , USA
| | - Alan P Hudson
- b Department of Immunology and Microbiology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
18
|
Abstract
Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.
Collapse
|
19
|
Stallmann S, Hegemann JH. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell Microbiol 2016; 18:761-75. [PMID: 26597572 DOI: 10.1111/cmi.12549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Abstract
Infection of human cells by the obligate intracellular bacterium Chlamydia trachomatis requires adhesion and internalization of the infectious elementary body (EB). This highly complex process is poorly understood. Here, we characterize Ctad1 (CT017) as a new adhesin and invasin from C. trachomatis serovar E. Recombinant Ctad1 (rCtad1) binds to human cells via two bacterial SH3 domains located in its N-terminal half. Pre-incubation of host cells with rCtad1 reduces subsequent adhesion and infectivity of bacteria. Interestingly, protein-coated latex beads revealed Ctad1 being an invasin. rCtad1 interacts with the integrin β1 subunit on human epithelial cells, and induces clustering of integrins at EB attachment sites. Receptor activation induces ERK1/2 phosphorylation. Accordingly, rCtad1 binding to integrin β1-negative cells is significantly impaired, as is the chlamydial infection. Thus interaction of C. trachomatis Ctad1 with integrin β1 mediates EB adhesion and induces signaling processes that promote host-cell invasion.
Collapse
Affiliation(s)
- Sonja Stallmann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Universitätsstrasse 1, Geb. 25.02.U1.23, 40225, Düsseldorf, Germany
| | - Johannes H Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Universitätsstrasse 1, Geb. 25.02.U1.23, 40225, Düsseldorf, Germany
| |
Collapse
|
20
|
Buyck JM, Lemaire S, Seral C, Anantharajah A, Peyrusson F, Tulkens PM, Van Bambeke F. In Vitro Models for the Study of the Intracellular Activity of Antibiotics. Methods Mol Biol 2016; 1333:147-157. [PMID: 26468107 DOI: 10.1007/978-1-4939-2854-5_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intracellular bacteria are poorly responsive to antibiotic treatment. Pharmacological studies are thus needed to determine which antibiotics are most potent or effective against intracellular bacteria as well as to explore the reasons for poor bacterial responsiveness. An in vitro pharmacodynamic model is described, consisting of (1) phagocytosis of pre-opsonized bacteria by eukaryotic cells; (2) elimination of non-internalized bacteria with gentamicin; (3) incubation of infected cells with antibiotics; and (4) determination of surviving bacteria by viable cell counting and normalization of the counts based on sample protein content.
Collapse
Affiliation(s)
- Julien M Buyck
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Sandrine Lemaire
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- GSK Biologicals, Rixensart, Belgium
| | - Cristina Seral
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Microbiology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Ahalieyah Anantharajah
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Peyrusson
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
- Pharmacologie cellulaire et molÕculaire, Louvain Drug Research Institute, Avenue E. Mounier 73 B1.73.05, Brussels, 1200, Belgium.
| |
Collapse
|
21
|
Van Nhieu GT, Romero S. Common Themes in Cytoskeletal Remodeling by Intracellular Bacterial Effectors. Handb Exp Pharmacol 2016; 235:207-235. [PMID: 27807696 DOI: 10.1007/164_2016_42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial pathogens interact with various types of tissues to promote infection. Because it controls the formation of membrane extensions, adhesive processes, or the junction integrity, the actin cytoskeleton is a key target of pathogens during infection. We will highlight common and specific functions of the actin cytoskeleton during bacterial infections, by first reviewing the mechanisms of intracellular motility of invasive Shigella, Listeria, and Rickettsia. Through the models of EPEC/EHEC, Shigella, Salmonella, and Chlamydia spp., we will illustrate various strategies of diversion of actin cytoskeletal processes used by these bacteria to colonize or breach epithelial/endothelial barriers.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France. .,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France. .,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France.
| | - Stéphane Romero
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France.,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France
| |
Collapse
|
22
|
Thwaites TR, Pedrosa AT, Peacock TP, Carabeo RA. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Front Cell Infect Microbiol 2015; 5:88. [PMID: 26649283 PMCID: PMC4663276 DOI: 10.3389/fcimb.2015.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway.
Collapse
Affiliation(s)
- Tristan R Thwaites
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Antonio T Pedrosa
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| | - Thomas P Peacock
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Rey A Carabeo
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| |
Collapse
|
23
|
Karunakaran K, Subbarayal P, Vollmuth N, Rudel T. Chlamydia-infected cells shed Gp96 to prevent chlamydial re-infection. Mol Microbiol 2015; 98:694-711. [PMID: 26235316 DOI: 10.1111/mmi.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 12/29/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen with a biphasic developmental life cycle. The infectious elementary bodies (EBs) enter a host cell where they transform into reticulate bodies (RBs) that use cellular metabolites to multiply. Re-infection of an infected cell during the replicative phase of chlamydial development may prevent formation of infectious EBs, interrupting the infectious cycle. Here, we report that Glucose Regulated Protein 96 (Gp96), a chaperone for cell surface receptors, binds to and facilitates adherence and entry of C. trachomatis. Gp96 expression was increased early in infection in a MAP kinase-dependent way, thereby increasing chlamydial adherence and invasion. Gp96 co-precipitated with Protein Disulphide Isomerase (PDI), known to be involved in chlamydial host cell entry. During the replicative phase, Gp96 was depleted from infected cells and shed into the supernatant by activation of metalloproteinase TACE (ADAM17). Loss of Gp96 also reduced the activity of PDI on the cell surface. Reduced surface display of Gp96 prevented chlamydial re-infection in a TACE-dependent manner in cell lines but also in primary cells derived from human fimbriae, the natural site of chlamydial infection. Our data suggest a role of infection-induced Gp96 shedding in the protection of the chlamydial replicative niche.
Collapse
Affiliation(s)
- Karthika Karunakaran
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| | - Prema Subbarayal
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| | - Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| |
Collapse
|
24
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
25
|
Knittler MR, Sachse K. Chlamydia psittaci: update on an underestimated zoonotic agent. Pathog Dis 2014; 73:1-15. [PMID: 25853998 DOI: 10.1093/femspd/ftu007] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2014] [Indexed: 12/16/2022] Open
Abstract
Chlamydia (C.) psittaci is an economically relevant pathogen in poultry and pet birds, where it causes psittacosis/ornithosis, and also a human pathogen causing atypical pneumonia after zoonotic transmission. Despite its well-documented prevalence, the agent has received less attention by researchers than other Chlamydia spp. in the last decades. In the present paper, we review recently published data on C. psittaci infection and attempt to single out characteristic features distinguishing it from related chlamydial agents. It is remarkable that C. psittaci is particularly efficient in disseminating in the host organism causing systemic disease, which occasionally can take a fulminant course. At the cellular level, the pathogen's broad host cell spectrum (from epithelial cells to macrophages), its rapid entry and fast replication, proficient use of intracellular transport routes to mitochondria and the Golgi apparatus, the pronounced physical association of chlamydial inclusions with energy-providing cell compartments, as well as the subversive regulation of host cell survival during productive and persistent states facilitate the characteristic efficient growth and successful host-to-host spread of C. psittaci. At the molecular level, the pathogen was shown to upregulate essential chlamydial genes when facing the host immune response. We hypothesize that this capacity, in concert with expression of specific effectors of the type III secretion system and efficient suppression of selected host defense signals, contributes to successful establishment of the infection in the host. Concerning the immunology of host-pathogen interactions, C. psittaci has been shown to distinguish itself by coping more efficiently than other chlamydiae with pro-inflammatory mediators during early host response, which can, to some extent, explain the effective evasion and adaptation strategies of this bacterium. We conclude that thorough analysis of the large number of whole-genome sequences already available will be essential to identify genetic markers of the species-specific features and trigger more in-depth studies in cellular and animal models to address such vital topics as treatment and vaccination.
Collapse
Affiliation(s)
- Michael R Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Isle of Riems, 07743 Jena, Germany
| | - Konrad Sachse
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| |
Collapse
|