1
|
Moshrefiravasjani R, Kamrani A, Nazari N, Jafari F, Nasiri H, Jahanban-Esfahlan R, Akbari M. Exosome-mediated tumor metastasis: Biology, molecular targets and immuno-therapeutic options. Pathol Res Pract 2024; 254:155083. [PMID: 38277749 DOI: 10.1016/j.prp.2023.155083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Small extracellular vesicles called exosomes play a crucial part in promoting intercellular communication. They act as intermediaries for the exchange of bioactive chemicals between cells, released into the extracellular milieu by a variety of cell types. Within the context of cancer progression, metastasis is a complex process that plays a significant role in the spread of malignant cells from their main site of origin to distant anatomical locations. This complex process plays a key role in the domain of cancer-related deaths. In summary, the trajectory of current research in the field of exosome-mediated metastasis is characterized by its unrelenting quest for more profound understanding of the molecular nuances, the development of innovative diagnostic tools and therapeutic approaches, and the unwavering dedication to transforming these discoveries into revolutionary clinical applications. This unrelenting pursuit represents a shared desire to improve the prognosis for individuals suffering from metastatic cancer and to nudge the treatment paradigm in the direction of more effective and customized interventions.
Collapse
Affiliation(s)
| | - Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nazanin Nazari
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Alessandrini L, Astolfi L, Daloiso A, Sbaraglia M, Mondello T, Zanoletti E, Franz L, Marioni G. Diagnostic, Prognostic, and Therapeutic Role for Angiogenesis Markers in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Int J Mol Sci 2023; 24:10733. [PMID: 37445908 DOI: 10.3390/ijms241310733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Despite refinements to diagnostic and therapeutic approaches over the last two decades, the outcome of patients with head and neck squamous cell carcinoma (HNSCC) has not shown substantial improvements, especially regarding those with advanced-stage disease. Angiogenesis is believed to be a turning point in the development of solid tumors, being a premise for mass growth and potential distant dissemination. Cancer-induced angiogenesis is a result of increased expression of angiogenic factors, decreased expression of anti-angiogenic factors, or a combination of both. The assessment of angiogenesis has also emerged as a potentially useful biological prognostic and predictive factor in HNSCC. The aim of this review is to assess the level of current knowledge on the neo-angiogenesis markers involved in the biology, behavior, and prognosis of HNSCC. A search (between 1 January 2012 and 10 October 2022) was run in PubMed, Scopus, and Web of Science electronic databases. After full-text screening and application of inclusion/exclusion criteria, 84 articles are included. The current knowledge and debate on angiogenesis in HNSCC presented in the eligible articles are stratified as follows: (i) diagnostic markers; (ii) prognostic markers; (iii) predictive markers; and (iv) markers with a potential therapeutic role. Angiogenesis is a biological and pathological indicator of malignancies progression and has negative implications in prognosis of some solid tumors; several signals capable of tripping the "angiogenic switch" have also been identified in HNSCC. Although several studies suggested that antiangiogenic agents might be a valuable adjunct to conventional chemo-radiation of HNSCC, their long-term therapeutic value remains uncertain. Further investigations are required on combinations of antiangiogenic agents with conventional chemotherapeutic ones, immunotherapeutic and molecularly targeted agents in HNSCC. Additional data are necessary to pinpoint which patients could benefit most from these treatments.
Collapse
Affiliation(s)
- Lara Alessandrini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Laura Astolfi
- Bioacustic Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Leonardo Franz
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
| |
Collapse
|
3
|
Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment during tumor metastasis. J Biomed Sci 2022; 29:84. [PMID: 36266717 PMCID: PMC9583492 DOI: 10.1186/s12929-022-00868-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
Metastasis is a major cause of death in patients with cancer. The two main routes for cancer cell dissemination are the blood and lymphatic systems. The underlying mechanism of hematogenous metastasis has been well characterized in the past few decades. However, our understanding of the molecular basis of lymphatic metastasis remains at a premature stage. Conceptually, cancer cells invade into lymphatic capillary, passively move to collecting lymphatic vessels, migrate into sentinel lymph node (SLN;, the first lymph node to which cancer cells spread from the primary tumor), and enter the blood circulatory system via the subclavian vein. Before arriving, cancer cells release specific soluble factors to modulate the microenvironment in SLN to establish a beachhead for successful colonization. After colonization, cancer cells inhibit anti-tumor immunity by inducing the recruitment of regulatory T cell and myeloid-derived suppressor cells, suppressing the function of dendritic cell and CD8+ T cell, and promoting the release of immunosuppressive cytokines. The development of novel strategies to reverse cancer cell-triggered SLN remodeling may re-activate immunity to reduce beachhead buildup and distant metastasis. In addition to being a microanatomic location for metastasis, the SLN is also an important site for immune modulation. Nanotechnology-based approaches to deliver lymph node-tropic antibodies or drug-conjugated nanoparticles to kill cancer cells on site are a new direction for cancer treatment. Conversely, the induction of stronger immunity by promoting antigen presentation in lymph nodes provides an alternate way to enhance the efficacy of immune checkpoint therapy and cancer vaccine. In this review article, we summarize recent findings on the reprogramming of SLN during lymphatic invasion and discuss the possibility of inhibiting tumor metastasis and eliciting anti-tumor immunity by targeting SLN.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
4
|
Bekkhus T, Avenel C, Hanna S, Boger MF, Klemm A, Bacovia DV, Wärnberg F, Wählby C, Ulvmar MH. Automated detection of vascular remodeling in tumor-draining lymph nodes by the deep learning tool HEV-finder. J Pathol 2022; 258:4-11. [PMID: 35696253 PMCID: PMC9543492 DOI: 10.1002/path.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022]
Abstract
Vascular remodeling is common in human cancer and has potential as future biomarkers for prediction of disease progression and tumor immunity status. It can also affect metastatic sites, including the tumor‐draining lymph nodes (TDLNs). Dilation of the high endothelial venules (HEVs) within TDLNs has been observed in several types of cancer. We recently demonstrated that it is a premetastatic effect that can be linked to tumor invasiveness in breast cancer. Manual visual assessment of changes in vascular morphology is a tedious and difficult task, limiting high‐throughput analysis. Here we present a fully automated approach for detection and classification of HEV dilation. By using 12,524 manually classified HEVs, we trained a deep‐learning model and created a graphical user interface for visualization of the results. The tool, named the HEV‐finder, selectively analyses HEV dilation in specific regions of the lymph nodes. We evaluated the HEV‐finder's ability to detect and classify HEV dilation in different types of breast cancer compared to manual annotations. Our results constitute a successful example of large‐scale, fully automated, and user‐independent, image‐based quantitative assessment of vascular remodeling in human pathology and lay the ground for future exploration of HEV dilation in TDLNs as a biomarker. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tove Bekkhus
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden.,BioImage Informatics Facility, SciLifeLab, Uppsala, Sweden
| | - Sabella Hanna
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mathias Franzén Boger
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Klemm
- Department of Information Technology, Uppsala University, Uppsala, Sweden.,BioImage Informatics Facility, SciLifeLab, Uppsala, Sweden
| | - Daniel Vasiliu Bacovia
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden.,BioImage Informatics Facility, SciLifeLab, Uppsala, Sweden
| | - Maria H Ulvmar
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Dong D, Wang H, Chen L, Wang W, Liu T. Hormone Therapy: A Potential Risk Factor Affecting Survival and Functional Restoration of Transplanted Lymph Nodes. Front Pharmacol 2022; 13:853859. [PMID: 35431925 PMCID: PMC9008310 DOI: 10.3389/fphar.2022.853859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Transplantation of lymph nodes (LNs) is an increasingly popular option for treating lymphedema. Increasing evidence indicates an intrinsic correlation between estrogen signaling and the lymphatic system. We explored the effects of 17β estradiol and antiestrogen treatment (tamoxifen) on the survival and functional restoration of transplanted popliteal lymph nodes (PLNs). Methods: A total of forty-eight ovariectomized mice were divided into three groups of 16: OVX + E2 (treated with 17β-estradiol), OVX + TMX (treated with tamoxifen), and OVX (control; treated with olive oil as a solvent). After 2 weeks, PLNs were transplanted. Then, reconnections of lymphatic vessels were observed, and the morphology and survival of transplanted PLNs were evaluated 4 weeks after transplantation. T cells, B cells, lymphatic vessels, and high endothelial venules (HEVs) were subjected to immunofluorescence staining or immunohistochemical staining and quantified. Results: The percentage of lymphatic reconnections was 93.75% in the OVX + E2 group, 68.75% in the OVX + TMX group, and 75% in the OVX group. Surviving PLNs were observed in 16 of 16 in the OVX + E2 group, seven of 16 in the OVX + TMX group, and 13 of 16 in the OVX group. The mean size of PLNs in the largest cross section of the OVX + TMX group was significantly lower than that in the other groups. The distributions of B cells and T cells in surviving PLNs were similar to those in normal LNs. The ratio of dilated HEVs/total HEVs and density of lymphatic vessels in the OVX + E2 group were the highest among the three groups, whereas the lowest ratio and density were observed in the OVX + TMX group. Conclusion: Tamoxifen treatment might lead to cellular loss of transplanted LNs and interfere with the structural reconstruction and functional restoration, thereby inhibiting the survival of transplanted PLNs. Estrogen treatment facilitated the maintenance and regeneration of functional HEVs as well as lymphangiogenesis.
Collapse
Affiliation(s)
- Dong Dong
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Heng Wang
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Liang Chen
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Wang
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Tianyi Liu
- Department of Plastic and Aesthetic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Tianyi Liu,
| |
Collapse
|
6
|
Gao L, Lu X, Wen Q, Hou Y. Added value of spectral parameters for the assessment of lymph node metastasis of lung cancer with dual-layer spectral detector computed tomography. Quant Imaging Med Surg 2021; 11:2622-2633. [PMID: 34079728 DOI: 10.21037/qims-20-1045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Lymph node (LN) metastasis is an important factor affecting the treatment of lung cancer. The purpose of this article was to investigate the benefits of dual-layer spectral detector computed tomography (SDCT) for the evaluation of metastatic LNs in lung cancer. Methods Data from 93 patients with lung cancer who underwent dual-phase enhanced scanning with SDCT were retrospectively analyzed. According to the pathological findings, 166 LNs were grouped as metastatic (n=80) or non-metastatic (n=86). LNs in station 4 (n=80) and station 7 (n=35) accounted for the majority of the LNs (approximately 69.23%). The short-axis diameter of the LN, arterial enhancement fraction (AEF), normalized iodine concentration (NIC), and the slope of the spectral Hounsfield unit curve (λHU) during the arterial phase (AP) and venous phase (VP) were measured. The Mann-Whitney U test was used to statistically compare these quantitative parameters. Receiver operating characteristic (ROC) curves were plotted to identify the cutoff values, and decision curve analysis (DCA) was performed to determine the net benefit of each parameter. The diagnostic performance, obtained by combining the short-axis diameter with each of the above parameters, was also studied. Results The short-axis LN diameter, AEF, NIC, and λHU during the AP and VP all showed significant differences between the metastatic and non-metastatic groups (P<0.05). Of the parameters, the AEF had the greatest diagnostic efficiency for metastatic LNs [area under the ROC curve (AUC)AEF =0.885] with a threshold of 86.40%. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 95% confidence interval were 90.00%, 89.53%, 88.89%, 90.59%, and 0.830-0.944, respectively. When the quantitative parameters were combined with the short-axis diameter, the AUCs of the parameters, except the AEF, were significantly improved (P<0.05). Conclusions The iodine quantitative parameters from SDCT, such as the AEF, demonstrated high diagnostic performances in the differentiation of metastatic and non-metastatic LNs.
Collapse
Affiliation(s)
- Lu Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- CT Clinical Science, Philips Healthcare, Shenyang, China
| | - Qingyun Wen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
9
|
Jiang L, Jung S, Zhao J, Kasinath V, Ichimura T, Joseph J, Fiorina P, Liss AS, Shah K, Annabi N, Joshi N, Akama TO, Bromberg JS, Kobayashi M, Uchimura K, Abdi R. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. NANO TODAY 2021; 36:101045. [PMID: 33391389 PMCID: PMC7774643 DOI: 10.1016/j.nantod.2020.101045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cancer patients with malignant involvement of tumor-draining lymph nodes (TDLNs) and distant metastases have the poorest prognosis. A drug delivery platform that targets the primary tumor, TDLNs, and metastatic niches simultaneously, remains to be developed. Here, we generated a novel monoclonal antibody (MHA112) against peripheral node addressin (PNAd), a family of glycoproteins expressed on high endothelial venules (HEVs), which are present constitutively in the lymph nodes (LNs) and formed ectopically in the tumor stroma. MHA112 was endocytosed by PNAd-expressing cells, where it passed through the lysosomes. MHA112 conjugated antineoplastic drug Paclitaxel (Taxol) (MHA112-Taxol) delivered Taxol effectively to the HEV-containing tumors, TDLNs, and metastatic lesions. MHA112-Taxol treatment significantly reduced primary tumor size as well as metastatic lesions in a number of mouse and human tumor xenografts tested. These data, for the first time, indicate that human metastatic lesions contain HEVs and provide a platform that permits simultaneous targeted delivery of antineoplastic drugs to the three key sites of primary tumor, TDLNs, and metastases.
Collapse
Affiliation(s)
- Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew S. Liss
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard medical School, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 570-8506, Japan
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- CNRS, UMR 8576, Unit of Glycobiology Structures and Functions, University of Lille, F-59000 Lille, France
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Bekkhus T, Martikainen T, Olofsson A, Franzén Boger M, Vasiliu Bacovia D, Wärnberg F, Ulvmar MH. Remodeling of the Lymph Node High Endothelial Venules Reflects Tumor Invasiveness in Breast Cancer and is Associated with Dysregulation of Perivascular Stromal Cells. Cancers (Basel) 2021; 13:cancers13020211. [PMID: 33430113 PMCID: PMC7827313 DOI: 10.3390/cancers13020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
The tumor-draining lymph nodes (TDLNs) are primary sites for induction of tumor immunity. They are also common sites of metastasis, suggesting that tumor-induced mechanisms can subvert anti-tumor immune responses and promote metastatic seeding. The high endothelial venules (HEVs) together with CCL21-expressing fibroblastic reticular cells (FRCs) are essential for lymphocyte recruitment into the LNs. We established multicolor antibody panels for evaluation of HEVs and FRCs in TDLNs from breast cancer (BC) patients. Our data show that patients with invasive BC display extensive structural and molecular remodeling of the HEVs, including vessel dilation, thinning of the endothelium and discontinuous expression of the HEV-marker PNAd. Remodeling of the HEVs was associated with dysregulation of CCL21 in perivascular FRCs and with accumulation of CCL21-saturated lymphocytes, which we link to loss of CCL21-binding heparan sulfate in FRCs. These changes were rare or absent in LNs from patients with non-invasive BC and cancer-free organ donors and were observed independent of nodal metastasis. Thus, pre-metastatic dysregulation of core stromal and vascular functions within TDLNs reflect the primary tumor invasiveness in BC. This adds to the understanding of cancer-induced perturbation of the immune response and opens for prospects of vascular and stromal changes in TDLNs as potential biomarkers.
Collapse
Affiliation(s)
- Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Teemu Martikainen
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Anna Olofsson
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Mathias Franzén Boger
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Daniel Vasiliu Bacovia
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 41345 Gothenburg, Sweden;
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala University, 75185 Uppsala, Sweden; (T.B.); (T.M.); (A.O.); (M.F.B.); (D.V.B.)
- Correspondence: ; Tel.: +46-737834297
| |
Collapse
|
11
|
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252:117670. [PMID: 32298741 DOI: 10.1016/j.lfs.2020.117670] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis is a key reason for tumor growth and progression. Several anti-angiogenic drugs in clinical practice attempt to normalize abnormal tumor vasculature. Unfortunately, these drugs are ineffective due to the development of resistance in patients after drug holidays. A sizable literature suggests that resistance to these anti-angiogenic drugs occurs due to various compensatory mechanisms of tumor angiogenesis. Therefore, we describe different compensatory mechanisms of tumor angiogenesis, and explain why intussusceptive angiogenesis (IA), is a crucial mechanism of compensatory angiogenesis in tumors which resist anti-VEGF (vascular endothelial growth factor) therapies. IA is often overlooked due to the scarcity of experimental models. Therefore, we examine data from existing experimental models and our novel ex-ovo model of angiogenesis in chick embryos, and explain the important genes and signaling pathways driving IA. Using bio-informatic analyses of major genes regulating conventional sprouting angiogenesis (SA) and intussusceptive angiogenesis, we provide fresh insights on the 'angiogenic switch' which regulates the transition from SA to IA. Finally, we examine the interplay between molecules regulating SA, IA, and molecules known to promote tumor progression. Based on these analyses, we conclude that intussusceptive angiogenesis (IA) is a promising therapeutic target for developing effective anti-cancer treatment regimes.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Koka Pavani
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Ramesh Nikarika
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Venil N Sumantran
- Abdul Kalam Center for Innovation and Entrepreneurship, Dr. MGR Educational & Research Institute, Maduravoyal, Chennai 600095, India
| |
Collapse
|
12
|
James J, Kantere D, Enger J, Siarov J, Wennberg AM, Ericson MB. Report on fluorescence lifetime imaging using multiphoton laser scanning microscopy targeting sentinel lymph node diagnostics. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-8. [PMID: 32172545 PMCID: PMC7070082 DOI: 10.1117/1.jbo.25.7.071204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
SIGNIFICANCE Sentinel lymph node (SLN) biopsy is an important method for metastasis staging in, e.g., patients with malignant melanoma. Tools enabling prompt histopathological analysis are expected to facilitate diagnostics; optical technologies are explored for this purpose. AIM The objective of this exploratory study was to investigate the potential of adopting multiphoton laser scanning microscopy (MPM) together with fluorescence lifetime analysis (FLIM) for the examination of lymph node (LN) tissue ex vivo. APPROACH Five LN tissue samples (three metastasis positive and two negative) were acquired from a biobank comprising tissues from melanoma patients. Tissues were deparaffinized and subjected to MPM-FLIM using an experimental MPM set-up equipped with a time correlated single photon counting module enabling FLIM. RESULTS The data confirm that morphological features similar to conventional histology were observed. In addition, FLIM analysis revealed elevated morphological contrast, particularly for discriminating between metastatic cells, lymphocytes, and erythrocytes. CONCLUSIONS Taken together, the results from this investigation show promise for adopting MPM-FLIM in the context of SLN diagnostics and encourage further translational studies on fresh tissue samples.
Collapse
Affiliation(s)
- Jeemol James
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Despoina Kantere
- University of Gothenburg, Institute of Clinical Sciences, Department of Dermatology and Venereology, Gothenburg, Sweden
| | - Jonas Enger
- University of Gothenburg, Department of Physics, Gothenburg, Sweden
| | - Jan Siarov
- University of Gothenburg, Department of Pathology, Gothenburg, Sweden
| | - Ann Marie Wennberg
- University of Gothenburg, Institute of Clinical Sciences, Department of Dermatology and Venereology, Gothenburg, Sweden
| | - Marica B. Ericson
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| |
Collapse
|
13
|
Ohandjo AQ, Liu Z, Dammer EB, Dill CD, Griffen TL, Carey KM, Hinton DE, Meller R, Lillard JW. Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in the Prostate Tumor Immune Microenvironment. Sci Rep 2019; 9:14963. [PMID: 31628349 PMCID: PMC6802083 DOI: 10.1038/s41598-019-46491-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the gene-expression signature of patients with primary prostate tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, in particular “disease-free months” and “disease reoccurrence”. We tested the hypothesis that the CXCL13-CXCR5 axis is co-expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators associated with CXCL13-CXCR5 expression and function.
Collapse
Affiliation(s)
- Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Zongzhi Liu
- R & D Bioinformatics, Sema4, Stamford, CT, 06902, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Tiara L Griffen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Denise E Hinton
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
14
|
Sestito LF, Thomas SN. Biomaterials for Modulating Lymphatic Function in Immunoengineering. ACS Pharmacol Transl Sci 2019; 2:293-310. [PMID: 32259064 DOI: 10.1021/acsptsci.9b00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Immunoengineering is a rapidly growing and interdisciplinary field focused on developing tools to study and understand the immune system, then employing that knowledge to modulate immune response for the treatment of disease. Because of its roles in housing a substantial fraction of the body's lymphocytes, in facilitating immune cell trafficking, and direct immune modulatory functions, among others, the lymphatic system plays multifaceted roles in immune regulation. In this review, the potential for biomaterials to be applied to regulate the lymphatic system and its functions to achieve immunomodulation and the treatment of disease are described. Three related processes-lymphangiogenesis, lymphatic vessel contraction, and lymph node remodeling-are specifically explored. The molecular regulation of each process and their roles in pathologies are briefly outlined, with putative therapeutic targets and the lymphatic remodeling that can result from disease highlighted. Applications of biomaterials that harness these pathways for the treatment of disease via immunomodulation are discussed.
Collapse
Affiliation(s)
- Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NW, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Pilborough AE, Lambert DW, Khurram SA. Extranodal extension in oral cancer: A role for the nodal microenvironment? J Oral Pathol Med 2019; 48:863-870. [DOI: 10.1111/jop.12870] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Alice E. Pilborough
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry University of Sheffield Sheffield UK
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry University of Sheffield Sheffield UK
| | - Syed A. Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry University of Sheffield Sheffield UK
| |
Collapse
|
16
|
Ishikawa K, Funayama E, Maeda T, Hayashi T, Murao N, Osawa M, Ito R, Furukawa H, Oyama A, Yamamoto Y. Changes in high endothelial venules in lymph nodes after vascularized and nonvascularized lymph node transfer in a murine autograft model. J Surg Oncol 2019; 119:700-707. [PMID: 30636050 DOI: 10.1002/jso.25365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Vascularized lymph node transfer (LNT) is gaining popularity in the treatment of lymphedema. However, it is unclear whether the vascularization of transferred lymph nodes (LNs) contributes to functional improvement. High endothelial venules (HEVs) are specialized vessels that allow lymphocytes to enter LNs. In this study, we compared the numbers of HEVs and lymphocytes in LNs after vascularized and nonvascularized LNT. METHODS Fifty mice were divided into three groups (group 1, pedicled vascularized LNT; group 2, pedicled nonvascularized LNT; group 3, free nonvascularized LNT). Afferent lymphatic reconnection was confirmed by patent blue staining. The transferred LNs were harvested 4 weeks after surgery. HEVs, B-cells, and T-cells were subjected to immunohistochemical staining and quantified. RESULTS Afferent lymphatic reconnection was observed in 13 of 20 transferred LNs in group 1, 11 of 15 in group 2, and 7 of 15 in group 3. The ratio of dilated/total HEVs in transferred LNs with afferent lymphatic reconnection was significantly higher in group 1 than in groups 2 and 3. No significant differences in numbers of B-cells and T-cells were found in the transferred LNs. CONCLUSIONS We found that more functional HEVs were preserved in cases with successful afferent lymphatic reconnection after vascularized LNT than after nonvascularized LNT.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Hayashi
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Murao
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Osawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Riri Ito
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Furukawa
- Department of Plastic and Reconstructive Surgery, Aichi Medical University, Nagakute, Japan
| | - Akihiko Oyama
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Chai SM, Lee SY. High Endothelial Venules and Pancreatic Ductal Adenocarcinoma: A potential game changer. EBioMedicine 2018; 39:29-30. [PMID: 30527627 PMCID: PMC6354649 DOI: 10.1016/j.ebiom.2018.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Shu Ming Chai
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke - National University of Singapore (NUS) Medical School, Singapore
| | - Ser Yee Lee
- Duke - National University of Singapore (NUS) Medical School, Singapore; Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore.
| |
Collapse
|
18
|
Bahmani B, Uehara M, Ordikhani F, Li X, Jiang L, Banouni N, Ichimura T, Kasinath V, Eskandari SK, Annabi N, Bromberg JS, Shultz LD, Greiner DL, Abdi R. Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine 2018; 38:79-88. [PMID: 30497977 PMCID: PMC6306381 DOI: 10.1016/j.ebiom.2018.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).
Collapse
Affiliation(s)
- Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siawosh K Eskandari
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, USA
| | - Jonathan S Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Wirsing AM, Ervik IK, Seppola M, Uhlin-Hansen L, Steigen SE, Hadler-Olsen E. Presence of high-endothelial venules correlates with a favorable immune microenvironment in oral squamous cell carcinoma. Mod Pathol 2018; 31:910-922. [PMID: 29416107 DOI: 10.1038/s41379-018-0019-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022]
Abstract
Oral squamous cell carcinomas are associated with a poor prognosis, which may be partly due to functional impairment of the immune response. Lymphocyte recruitment to the tumor site is facilitated by high-endothelial venules, whereas expression of programmed-death ligand 1 (PD-L1) can impair T-cell function. Thus, we hypothesize that these factors are important in shaping the immune response in oral squamous cell carcinoma. In the present study, we characterized the immune infiltrate in formalin-fixed, paraffin-embedded tumor samples from 75 oral squamous cell carcinoma patients. We used immunohistochemistry to determine the distribution of immune cell subsets, high-endothelial venules, and PD-L1, as well as quantitative real-time polymerase chain reaction to assess the expression of inflammatory cytokines and chemokines associated with lymphocyte trafficking. Finally, we calculated correlations between the presence of immune cell subsets, the gene expression patterns, high-endothelial venules, PD-L1, and the clinicopathological parameters, including patient survival. The presence of high-endothelial venules correlated with increased number of CD3+ T cells and CD20+ B cells, higher levels of the chemokines CXCL12 and CCL21, and lower levels of CCL20, irrespective of the tumors' T stage. In univariate analysis, high levels of CD20+ B cells and CD68+ macrophages, positive high-endothelial venule status, and low T and N stages predicted longer patient survival. However, only the presence of high-endothelial venules and a low T stage were independent positive prognosticators. This indicates that high-endothelial venules are important mediators and a convenient marker of an antitumor immune response in oral squamous cell carcinoma. Our findings suggest that these vessels are a potential immunomodulatory target in this type of cancer. PD-L1 staining in tumor cells correlated with lower T stage, increased infiltration of CD4+ cells, and higher expression of several inflammation-related cytokines. Thus, oral squamous cell carcinomas rich in CD4+ cells may preferentially respond to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Anna Maria Wirsing
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ida Korsnes Ervik
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Marit Seppola
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, 9038, Tromsø, Norway
| | - Sonja Eriksson Steigen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, 9038, Tromsø, Norway
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, 9038, Tromsø, Norway.
| |
Collapse
|
20
|
Foust AM, Ali RM, Nguyen XV, Agrawal A, Prevedello LM, Bourekas EC, Boulter DJ. Dual-Energy CT-Derived Iodine Content and Spectral Attenuation Analysis of Metastatic Versus Nonmetastatic Lymph Nodes in Squamous Cell Carcinoma of the Oropharynx. ACTA ACUST UNITED AC 2018; 4:66-71. [PMID: 30206546 PMCID: PMC6127352 DOI: 10.18383/j.tom.2018.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The presence of a single nodal metastasis has significant prognostic and treatment implications for patients with head and neck cancer. This study aims to investigate whether dual-energy computed tomography (DECT)-derived iodine content and spectral attenuation curve analysis can improve detection of nodal metastasis in oropharyngeal carcinoma. Eight patients with newly diagnosed oropharyngeal squamous cell carcinoma and pathologically proven nodal metastatic disease (n = 13 metastatic nodes; n = 16 nonmetastatic nodes) who underwent contrast-enhanced DECT of the neck were retrospectively evaluated. DECT-derived iodine content (mg/mL) and monoenergetic attenuation values at 40 keV and 100 keV were obtained via circular regions of interest within metastatic and nonmetastatic cervical lymph nodes. Iodine content was significantly lower in metastatic nodes (0.96 ± 0.28 mg/mL) than in nonmetastatic nodes (1.65 ± 0.38 mg/mL; P = .002). Iodine spectral attenuation slope was significantly lower in metastatic nodes (1.33 ± 0.49 mg/mL) than in nonmetastatic nodes (1.91 ± 0.64 mg/mL; P = .015). A nodal iodine threshold of ≤1.3 mg/mL showed a sensitivity of 84.6% and a specificity of 75.0%, with an area under the curve of 0.839, P < .0001. At a threshold value of ≤1.95 for nodal spectral attenuation slope, an optimized specificity of 92.3% and specificity of 50.0% was achieved, with an area under the curve of 0.68 (P = .049). DECT-derived quantitative iodine data and spectral attenuation curves may improve the diagnostic accuracy of computed tomography for nodal metastasis in patients with squamous cell carcinoma of the oropharynx.
Collapse
Affiliation(s)
| | - Rukya M Ali
- The Wexner Medical Center, The Ohio State University, Columbus, OH
| | - Xuan V Nguyen
- The Wexner Medical Center, The Ohio State University, Columbus, OH
| | - Amit Agrawal
- The Wexner Medical Center, The Ohio State University, Columbus, OH
| | | | - Eric C Bourekas
- The Wexner Medical Center, The Ohio State University, Columbus, OH
| | - Daniel J Boulter
- The Wexner Medical Center, The Ohio State University, Columbus, OH
| |
Collapse
|
21
|
Ji RC. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int J Mol Sci 2016; 18:ijms18010051. [PMID: 28036019 PMCID: PMC5297686 DOI: 10.3390/ijms18010051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
22
|
Poosarla C, Rajendra Santosh AB, Gudiseva S, Meda I, Reddy Baddam VR. Histomolecular Structural Aspects of High Endothelial Vessels in Lymph Node and Its Significance in Oral Cancer and Metastasis. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2016; 7:540-6. [PMID: 26942129 PMCID: PMC4755078 DOI: 10.4103/1947-2714.172839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular cancer research studies focus on identifying diagnostic, screening, and metastatic indicators, and monitoring therapeutic responses. Migration of tumor cells and lymphocytes are important aspects in metastasis. High endothelial vessels are specialized histological structures identified in the blood vessels in lymphoid organs, which allow the migration of lymphocytes. In the recent decades, the role of high endothelial vessels is being addressed in cancer metastatic research. This review article is to highlight the histological and molecular structural aspects of high endothelial venules (HEVs) in the lymph node, and to demonstrate the role of HEVs in oral cancer metastasis, specifically oral and pharyngeal squamous cell carcinoma. The literature for the present paper were searched from the data sources such as Medline/PubMed, CINAHL plus, and gray literature sources from inception to May 2015. Searches were conducted using both free texts and medical subject headings related to the title of the present paper. Only the full text manuscripts of the search results that support the objective(s) of the paper and papers written in English were included. HEVs are unique structures that are identified in the lymphocytes and primarily assist in the lymphocytic migration from the blood stream into the lymph node. Understanding the histomolecular characteristics of HEV will allow researchers to develop novel therapeutic approaches in cancer tissues.
Collapse
Affiliation(s)
- Chandrasekar Poosarla
- Department of Oral and Maxillofacial Pathology, SIBAR Institute of Dental Sciences, Guntur, India
| | | | - Swetha Gudiseva
- Department of Oral and Maxillofacial Pathology, SIBAR Institute of Dental Sciences, Guntur, India
| | - Indira Meda
- Department of Oral and Maxillofacial Pathology, Konaseema Dental College, Amalapuram, Andhra Pradesh, India
| | | |
Collapse
|
23
|
Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. CHINESE JOURNAL OF CANCER 2016; 35:10. [PMID: 26747273 PMCID: PMC4706692 DOI: 10.1186/s40880-015-0070-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, and other essential factors. The well-known vascular endothelial growth factor (VEGF) signaling is crucial for
sprouting angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has become therapeutic targets in clinical practice. However, the survival benefits gained from targeting VEGF signaling have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the most recent findings and understanding on how solid tumors evade VEGF-targeted therapy, with a special focus on vessel co-option, vessel remodeling, and tumor cell-derived vasculature establishment. Vessel co-option may occur in tumors independently of sprouting angiogenesis, and sprouting angiogenesis is not always required for tumor growth. The differences between vessel-like structure and tubule-like structure formed by tumor cells are also introduced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer growth and metastasis.
Collapse
|
24
|
Wakisaka N, Hasegawa Y, Yoshimoto S, Miura K, Shiotani A, Yokoyama J, Sugasawa M, Moriyama-Kita M, Endo K, Yoshizaki T. Primary Tumor-Secreted Lymphangiogenic Factors Induce Pre-Metastatic Lymphvascular Niche Formation at Sentinel Lymph Nodes in Oral Squamous Cell Carcinoma. PLoS One 2015; 10:e0144056. [PMID: 26630663 PMCID: PMC4668078 DOI: 10.1371/journal.pone.0144056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The objectives of this study were to evaluate the formation of lymphvascular niches in lymph nodes of patients with oral squamous cell carcinoma (OSCC), and investigate the roles of lymphangiogenic and angiogenic factors, such as vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D, expressed in the primary tumors. MATERIALS AND METHODS Forty-four patients with previously untreated clinically late T2 or T3 OSCC of cN0 were evaluated for primary tumors and 166 sentinel lymph nodes (SLNs). Primary tumors were immunohistochemically analyzed for expressions of VEGFs. Densities of lymphatic vessels (LVDpodoplanin) and high endothelial venules (HEVD) in the SLNs were also calculated using antibodies for each marker, podoplanin and MECA-79, respectively. RESULTS In 25 patients, all lymph nodes were metastasis-negative, whereas, in 19 patients, metastasis was positive for at least one lymph node (either at SLN, non-SLN, or nodal recurrence). From the analyses of 140 SLNs without metastasis, LVDpodoplanin in 50 SLNs of metastasis-positive cases was significantly higher than that in 90 SLNs of metastasis-negative cases (p = 0.0025). HEVD was not associated with lymph node metastasis. The patients with VEGF-A-High or VEGF-D-High tumors had significantly higher LVDpodoplanin than patients with their Low counterparts (p = 0.0233 and p = 0.0209, respectively). In cases with lymph node metastasis, the VEGF-D-expression score was significantly higher than in those without lymph node metastasis (p = 0.0006). CONCLUSIONS These results suggest that lymph node lymphangiogenesis occurs before metastasis in OSCC. VEGF-A and VEGF-D play critical roles in this process. VEGF-D is a potential predictive marker of positive lymph node metastasis in cN0 patients.
Collapse
Affiliation(s)
- Naohiro Wakisaka
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kouki Miura
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Minato-ku, Tokyo, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Junkichi Yokoyama
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masashi Sugasawa
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
25
|
Song E, Seo H, Choe K, Hwang Y, Ahn J, Ahn S, Kim P. Optical clearing based cellular-level 3D visualization of intact lymph node cortex. BIOMEDICAL OPTICS EXPRESS 2015; 6:4154-64. [PMID: 26504662 PMCID: PMC4605071 DOI: 10.1364/boe.6.004154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 05/03/2023]
Abstract
Lymph node (LN) is an important immune organ that controls adaptive immune responses against foreign pathogens and abnormal cells. To facilitate efficient immune function, LN has highly organized 3D cellular structures, vascular and lymphatic system. Unfortunately, conventional histological analysis relying on thin-sliced tissue has limitations in 3D cellular analysis due to structural disruption and tissue loss in the processes of fixation and tissue slicing. Optical sectioning confocal microscopy has been utilized to analyze 3D structure of intact LN tissue without physical tissue slicing. However, light scattering within biological tissues limits the imaging depth only to superficial portion of LN cortex. Recently, optical clearing techniques have shown enhancement of imaging depth in various biological tissues, but their efficacy for LN are remained to be investigated. In this work, we established optical clearing procedure for LN and achieved 3D volumetric visualization of the whole cortex of LN. More than 4 times improvement in imaging depth was confirmed by using LN obtained from H2B-GFP/actin-DsRed double reporter transgenic mouse. With adoptive transfer of GFP expressing B cells and DsRed expressing T cells and fluorescent vascular labeling by anti-CD31 and anti-LYVE-1 antibody conjugates, we successfully visualized major cellular-level structures such as T-cell zone, B-cell follicle and germinal center. Further, we visualized the GFP expressing metastatic melanoma cell colony, vasculature and lymphatic vessels in the LN cortex.
Collapse
|
26
|
Presence of tumour high-endothelial venules is an independent positive prognostic factor and stratifies patients with advanced-stage oral squamous cell carcinoma. Tumour Biol 2015; 37:2449-59. [PMID: 26383526 DOI: 10.1007/s13277-015-4036-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022] Open
Abstract
Staging of oral squamous cell carcinoma is based on the tumour-node-metastasis (TNM) system, which has been deemed insufficient for prognostic purposes. Hence, better prognostic tools are needed to reflect the biological diversity of these cancers. Previously, high numbers of specialized blood vessels called high-endothelial venules have been reported to be associated with prolonged survival in patients with breast cancer. In this study, we analysed the prognostic value and morphological characteristics of tumour-associated high-endothelial venules in oral cancer. The presence of tumour-associated high-endothelial venules was evaluated by immunohistochemistry in 75 patients with oral squamous cell carcinoma and analysed with correlation to clinicopathological parameters, patients' survival and vessel morphology. Ten of the samples were analysed at multiple levels to evaluate intratumoural heterogeneity. The presence of tumour-associated high-endothelial venules was found to be associated with lower disease-specific death in multivariate regression analyses (P = 0.002). High-endothelial venules were present in all (n = 53) T1-T2 tumours, but only in two thirds (n = 14) of the T3-T4 tumours. The morphology of high-endothelial venules was heterogeneous and correlated with lymphocyte density. High-endothelial venules were found to be distributed homogeneously within the tumours. We found the presence of tumour-associated high-endothelial venules to be an easy-to-use, robust, and independent positive prognostic factor for patients with oral cancer. Absence of these vessels in advanced-stage tumours might identify patients with more aggressive disease. Evaluating the presence of tumour-associated high-endothelial venules might help to tailor the treatment of oral cancer patients to their individual needs.
Collapse
|
27
|
Lee E, Pandey NB, Popel AS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Rev Mol Med 2015; 17:e3. [PMID: 25634527 PMCID: PMC4352000 DOI: 10.1017/erm.2015.2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumour and organ microenvironments are crucial for cancer progression and metastasis. Crosstalk between multiple non-malignant cell types in the microenvironments and cancer cells promotes tumour growth and metastasis. Blood and lymphatic endothelial cells (BEC and LEC) are two of the components in the microenvironments. Tumour blood vessels (BV), comprising BEC, serve as conduits for blood supply into the tumour, and are important for tumour growth as well as haematogenous tumour dissemination. Lymphatic vessels (LV), comprising LEC, which are relatively leaky compared with BV, are essential for lymphogenous tumour dissemination. In addition to describing the conventional roles of the BV and LV, we also discuss newly emerging roles of these endothelial cells: their crosstalk with cancer cells via molecules secreted by the BEC and LEC (also called angiocrine and lymphangiocrine factors). This review suggests that BEC and LEC in various microenvironments can be orchestrators of tumour progression and proposes new mechanism-based strategies to discover new therapies to supplement conventional anti-angiogenic and anti-lymphangiogenic therapies.
Collapse
Affiliation(s)
- Esak Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niranjan B. Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
28
|
Walk EL, McLaughlin S, Coad J, Weed SA. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice. PLoS One 2014; 9:e100185. [PMID: 24955984 PMCID: PMC4067293 DOI: 10.1371/journal.pone.0100185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/23/2014] [Indexed: 01/19/2023] Open
Abstract
Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy.
Collapse
Affiliation(s)
- Elyse L. Walk
- Department of Neurobiology and Anatomy, West Virginia University, Morgantown, West Virginia, United States of America
- Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Sarah McLaughlin
- Animal Models and Imaging Facility, West Virginia University, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - James Coad
- Department of Pathology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Scott A. Weed
- Department of Neurobiology and Anatomy, West Virginia University, Morgantown, West Virginia, United States of America
- Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lee SY. Alterations of high endothelial venules in primary and metastatic tumors are correlated with lymph node metastasis of oral and pharyngeal carcinoma. Cancer Biol Ther 2014; 15:823-5. [PMID: 24755575 DOI: 10.4161/cbt.28884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ser Yee Lee
- Department of Surgical Oncology; National Cancer Centre; Singapore; Department of Hepatopancreatobiliary and Transplant Surgery; Singapore General Hospital; Singapore; Duke/National University of Singapore (NUS) Graduate Medical School; Singapore
| |
Collapse
|
30
|
Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Med 2013; 1:2050312113513759. [PMID: 26770691 PMCID: PMC4687778 DOI: 10.1177/2050312113513759] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine, the medical applications of devices based on nanotechnology, promises an endless range of applications from biomedical imaging to drug and gene delivery. The size range of the nanomaterials is strictly defined as 1–100 nm, although many marketed nanomedicines are in the submicron range of 100–1000 nm. The major advantages of using nanomaterials as a carrier for anticancer agents are the possibility of targeted delivery to the tumor; their physical properties such as optical and magnetic properties, which can be exploited for developing contrast agents for tumor imaging; their ability to hold thousands of molecules of a drug and deliver at the required site and also the ability to overcome solubility and stability issues. Currently, there are several nanotechnology-enabled diagnostic and therapeutic agents undergoing clinical trials and a few already approved by Food and Drug Administration. Targeted delivery of anticancer agents is achieved by exploiting a unique characteristic of the rapidly dividing tumor cells called “the enhanced permeability and retention effect.” Nanoparticles with mean diameter between 100 and 200 nm or even above 200 nm have also been reported to be taken up by tumor cells via the enhanced permeability and retention effect. In addition to this passive targeting based on size, the nanoparticle surface may be modified with a variety of carefully chosen ligands that would interact with specific receptors on the surface of the tumor cells, thus imparting additional specificity for active targeting. Regional release of a drug contained in a nanoparticulate system by the application of external stimuli such as hyperthermia to a thermosensitive device is another innovative strategy for targeted delivery. Nanoparticles protect the enclosed drug from rapid elimination from the body, keep them in circulation for prolonged periods and often evade expulsion by the efflux pump mechanisms, which also leads to avoidance of development of resistance. This review focuses on the science and technology of Food and Drug Administration–approved cancer nanomedicines such as Abraxane, Doxil, DaunoXome and those drug-delivery systems that have reached an advanced stage of clinical development utilizing liposomes, albumin nanospheres, thermosensitive devices and gold nanoshells.
Collapse
Affiliation(s)
- Gopalakrishna Pillai
- Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY, USA
| | - Maria L Ceballos-Coronel
- Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY, USA
| |
Collapse
|
31
|
Zhang Z, Procissi D, Li W, Kim DH, Li K, Han G, Huan Y, Larson AC. High resolution MRI for non-invasive mouse lymph node mapping. J Immunol Methods 2013; 400-401:23-9. [PMID: 23850992 DOI: 10.1016/j.jim.2013.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Mouse models are fundamental to the study and design of new techniques for the cancer diagnosis and treatment. The lymphatic system plays an active role in oncogenesis and metastatic disease progression. However, the in vivo identification of LNs in mice is challenging with conventional imaging modalities since the LN diameter in normal mice is 1-2 mm. Standard dissection techniques are challenging and can only provide endpoint data. Here, we describe high resolution MRI (HR-MRI) approaches for the non-invasive detection of mouse LNs in vivo. We compare in vivo non-invasive HR-MRI methods (without exogenous contrast injections) to the ex vivo dye injection methods for the identification of commonly studied LNs in both normal mice and a mouse model of pancreatic ductal adenocarcinoma (PDAC). We demonstrated the potential to use HR-MRI techniques as a non-invasive imaging assay for visualizing mouse LNs in vivo.
Collapse
Affiliation(s)
- Zhuoli Zhang
- Department of Radiology, Northwestern University, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, United States.
| | | | | | | | | | | | | | | |
Collapse
|