1
|
Park Y, Guan X, Han SJ. N-Myc and STAT Interactor is an Endometriosis Suppressor. Int J Mol Sci 2024; 25:8145. [PMID: 39125716 PMCID: PMC11312104 DOI: 10.3390/ijms25158145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In patients with endometriosis, refluxed endometrial fragments evade host immunosurveillance, developing into endometriotic lesions. However, the mechanisms underlying this evasion have not been fully elucidated. N-Myc and STAT Interactor (NMI) have been identified as key players in host immunosurveillance, including interferon (IFN)-induced cell death signaling pathways. NMI levels are markedly reduced in the stromal cells of human endometriotic lesions due to modulation by the Estrogen Receptor beta/Histone Deacetylase 8 axis. Knocking down NMI in immortalized human endometrial stromal cells (IHESCs) led to elevated RNA levels of genes involved in cell-to-cell adhesion and extracellular matrix signaling following IFNA treatment. Furthermore, NMI knockdown inhibited IFN-regulated canonical signaling pathways, such as apoptosis mediated by Interferon Stimulated Gene Factor 3 and necroptosis upon IFNA treatment. In contrast, NMI knockdown with IFNA treatment activated non-canonical IFN-regulated signaling pathways that promote proliferation, including β-Catenin and AKT signaling. Moreover, NMI knockdown in IHESCs stimulated ectopic lesions' growth in mouse endometriosis models. Therefore, NMI is a novel endometriosis suppressor, enhancing apoptosis and inhibiting proliferation and cell adhesion of endometrial cells upon IFN exposure.
Collapse
Affiliation(s)
- Yuri Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Kim JT, Bresson-Tan G, Zack JA. Current Advances in Humanized Mouse Models for Studying NK Cells and HIV Infection. Microorganisms 2023; 11:1984. [PMID: 37630544 PMCID: PMC10458594 DOI: 10.3390/microorganisms11081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human immunodeficiency virus (HIV) has infected millions of people worldwide and continues to be a major global health problem. Scientists required a small animal model to study HIV pathogenesis and immune responses. To this end, humanized mice were created by transplanting human cells and/or tissues into immunodeficient mice to reconstitute a human immune system. Thus, humanized mice have become a critical animal model for HIV researchers, but with some limitations. Current conventional humanized mice are prone to death by graft versus host disease induced by the mouse signal regulatory protein α and CD47 signaling pathway. In addition, commonly used humanized mice generate low levels of human cytokines required for robust myeloid and natural killer cell development and function. Here, we describe recent advances in humanization procedures and transgenic and knock-in immunodeficient mice to address these limitations.
Collapse
Affiliation(s)
- Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Karnik I, Her Z, Neo SH, Liu WN, Chen Q. Emerging Preclinical Applications of Humanized Mouse Models in the Discovery and Validation of Novel Immunotherapeutics and Their Mechanisms of Action for Improved Cancer Treatment. Pharmaceutics 2023; 15:1600. [PMID: 37376049 DOI: 10.3390/pharmaceutics15061600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapeutics have undergone immense research over the past decade. While chemotherapies remain the mainstay treatments for many cancers, the advent of new molecular techniques has opened doors for more targeted modalities towards cancer cells. Although immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy in treating cancer, adverse side effects related to excessive inflammation are often reported. There is a lack of clinically relevant animal models to probe the human immune response towards ICI-based interventions. Humanized mouse models have emerged as valuable tools for pre-clinical research to evaluate the efficacy and safety of immunotherapy. This review focuses on the establishment of humanized mouse models, highlighting the challenges and recent advances in these models for targeted drug discovery and the validation of therapeutic strategies in cancer treatment. Furthermore, the potential of these models in the process of uncovering novel disease mechanisms is discussed.
Collapse
Affiliation(s)
- Isha Karnik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shu Hui Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| |
Collapse
|
4
|
Brunetti JE, Kitsera M, Muñoz-Fontela C, Rodríguez E. Use of Hu-PBL Mice to Study Pathogenesis of Human-Restricted Viruses. Viruses 2023; 15:228. [PMID: 36680271 PMCID: PMC9866769 DOI: 10.3390/v15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Different humanized mouse models have been developed to study human diseases such as autoimmune illnesses, cancer and viral infections. These models are based on the use of immunodeficient mouse strains that are transplanted with human tissues or human immune cells. Among the latter, mice transplanted with hematopoietic stem cells have been widely used to study human infectious diseases. However, mouse models built upon the transplantation of donor-specific mature immune cells are still under development, especially in the field of viral infections. These models can retain the unique immune memory of the donor, making them suitable for the study of correlates of protection upon natural infection or vaccination. Here, we will review some of these models and how they have been applied to virology research. Moreover, the future applications and the potential of these models to design therapies against human viral infections are discussed.
Collapse
Affiliation(s)
| | - Maksym Kitsera
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| | - Estefanía Rodríguez
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Jugniot N, Dahl JJ, Paulmurugan R. Immunotheranostic microbubbles (iMBs) - a modular platform for dendritic cell vaccine delivery applied to breast cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:299. [PMID: 36224614 PMCID: PMC9555090 DOI: 10.1186/s13046-022-02501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Therapeutic strategies engaging the immune system against malignant cells have revolutionized the field of oncology. Proficiency of dendritic cells (DCs) for antigen presentation and immune response has spurred interest on DC-based vaccines for anti-cancer therapy. However, despite favorable safety profiles in patients, current DC-vaccines have not yet presented significant outcome due to technical barriers in active DC delivery, tumor progression, and immune dysfunction. To maximize the therapeutic response, we present here a unique cell-free DC-based vaccine capable of lymphoid organ targeting and eliciting T-cell-mediated anti-tumor effect. METHODS We developed this novel immunotheranostic platform using plasma membranes derived from activated DCs incorporated into ultrasound contrast microbubbles (MBs), thereby offering real-time visualization of MBs' trafficking and homing in vivo. Human PBMC-derived DCs were cultured ex vivo for controlled maturation and activation using cell membrane antigens from breast cancer cells. Following DC membrane isolation, immunotheranostic microbubbles, called DC-iMBs, were formed for triple negative breast cancer treatment in a mouse model harboring a human reconstituted immune system. RESULTS Our results demonstrated that DC-iMBs can accumulate in lymphoid organs and induce anti-tumor immune response, which significantly reduced tumor growth via apoptosis while increasing survival length of the treated animals. The phenotypic changes in immune cell populations upon DC-iMBs delivery further confirmed the T-cell-mediated anti-tumor effect. CONCLUSION These early findings strongly support the potential of DC-iMBs as a novel immunotherapeutic cell-free vaccine for anti-cancer therapy.
Collapse
Affiliation(s)
- Natacha Jugniot
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA ,grid.168010.e0000000419368956Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304 USA
| | - Jeremy J. Dahl
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA
| | - Ramasamy Paulmurugan
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA ,grid.168010.e0000000419368956Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304 USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The clinical activity of new immunotherapies in cancer, such as anti-Programmed cell death 1 (PD-1)/Programmed death-ligand 1, has revealed the importance of the patient's immune system in controlling tumor development. As in infectious diseases, dendritic cells (DCs) are critical for inducing immune responses in cancer. Unfortunately, autologous DC-based vaccines have not yet demonstrated their clinical benefit. Here, we review recent research using allogeneic DCs as alternatives to autologous DCs to develop innovative therapeutic cancer vaccines. RECENT FINDINGS A novel approach using an allogeneic plasmacytoid dendritic cell (PDC) line as an antigen presentation platform showed great potency when used to prime and expand antitumor-specific CD8+ T cells in vitro and in vivo in a humanized mouse model. This PDC platform, named PDC∗vac, was first evaluated in the treatment of melanoma with encouraging results and is currently being evaluated in the treatment of lung cancer in combination with anti-PD-1 immunotherapy. SUMMARY Therapeutic cancer vaccines are of particular interest because they aim to help patients, to mount effective antitumor responses, especially those who insufficiently respond to immune checkpoint inhibitors. The use of an allogeneic plasmacytoid DC-based platform such as PDC∗vac could greatly potentiate the efficacy of these new immunotherapies.
Collapse
Affiliation(s)
- Joël Plumas
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes
- Research and Development Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes
- PDC∗line Pharma SAS, Grenoble, France
- PDC∗line Pharma SA, Liège, Belgium
| |
Collapse
|
7
|
Man F, Koers A, Karagiannis P, Josephs DH, Bax HJ, Gilbert AE, Dodev TS, Mele S, Chiarruttini G, Crescioli S, Chauhan J, Blower JE, Cooper MS, Spicer J, Karagiannis SN, Blower PJ. In vivo trafficking of a tumor-targeting IgE antibody: molecular imaging demonstrates rapid hepatobiliary clearance compared to IgG counterpart. Oncoimmunology 2021; 10:1966970. [PMID: 34513315 PMCID: PMC8425638 DOI: 10.1080/2162402x.2021.1966970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
IgE antibodies elicit powerful immune responses, recruiting effector cells to tumors more efficiently and with greater cytotoxicity than IgG antibodies. Consequently, IgE antibodies are a promising alternative to conventional IgG-based therapies in oncology (AllergoOncology). As the pharmacokinetics of IgE antibodies are less well understood, we used molecular imaging in mice to compare the distribution and elimination of IgE and IgG antibodies targeting the human tumor-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4). Anti-CSPG4 IgE and IgG1 antibodies with human Fc domains were radiolabeled with 111In. CSPG4-expressing A375 human melanoma xenografts implanted in NOD-scid IL2rg-/- mice were also engrafted with human immune cells by intravenous administration. 111In-anti-CSPG4 antibodies were administered intravenously. Their distribution was determined by single-photon emission computed tomography (SPECT) and ex vivo gamma-counting over 120 h. SPECT imaging was conducted from 0 to 60 min after antibody administration to precisely measure the early phase of IgE distribution. 111In-labeled anti-CSPG4 IgG and IgE showed serum stability in vitro of >92% after 5 days. In A375 xenograft-bearing mice, anti-CSPG4 IgE showed much faster blood clearance and higher accumulation in the liver compared to anti-CSPG4 IgG. However, tumor-to-blood and tumor-to-muscle ratios were similar between the antibody isotypes and higher compared with a non-tumor-targeting isotype control IgE. IgE excretion was much faster than IgG. In non-tumor-bearing animals, early SPECT imaging revealed a blood clearance half-life of 10 min for IgE. Using image-based quantification, we demonstrated that the blood clearance of IgE is much faster than that of IgG while the two isotypes showed comparable tumor-to-blood ratios.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Alexander Koers
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Panagiotis Karagiannis
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Debra H. Josephs
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Heather J. Bax
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Amy E. Gilbert
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Tihomir S. Dodev
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
- School of Basic and Medical Biosciences, Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
- Allergic Mechanisms in Asthma, Asthma UK Centre, King’s College London, London, UK
| | - Silvia Mele
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Giulia Chiarruttini
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Silvia Crescioli
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Jitesh Chauhan
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Julia E. Blower
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Margaret S. Cooper
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
- Cancer Centre at Guy’s, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sophia N. Karagiannis
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Breast Cancer Now Research Unit, King’s College London, Guy’s Hospital, London, UK
| | - Philip J. Blower
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
8
|
Verma B, Wesa A. Establishment of Humanized Mice from Peripheral Blood Mononuclear Cells or Cord Blood CD34+ Hematopoietic Stem Cells for Immune-Oncology Studies Evaluating New Therapeutic Agents. ACTA ACUST UNITED AC 2021; 89:e77. [PMID: 32453514 DOI: 10.1002/cpph.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The clinical success of immune checkpoint modulators and the development of next-generation immune-oncology (IO) agents underscore the need for robust preclinical models to evaluate novel IO therapeutics. Human immune system (HIS) mouse models enable in vivo studies in the context of the HIS via a human tumor. The immunodeficient mouse strains NOG (Prkdcscid Il2rgtm1Sug ) and triple-transgenic NOG-EXL [Prkdcscid Il2rgtm1Sug Tg (SV40/HTLV-IL3, CSF2)], which expresses human IL-3 and GM-CSF, allow for human CD34+ hematopoietic stem cell (huCD34+ HSC) engraftment and multilineage immune cell development by 12 to 16 weeks post-transplant and facilitate studies of immunomodulatory agents. A more rapid model of human immune engraftment utilizes peripheral blood mononuclear cells (PBMCs) transplanted into immunodeficient murine hosts, permitting T-cell engraftment within 2 to 3 weeks without outgrowth of other human immune cells. The PBMC-HIS model can be limited due to onset of xenogeneic graft-versus-host disease (xGVHD) within 3 to 5 weeks post-implantation. Host deficiency in MHC class I, as occurs in beta-2 microglobulin knockout in either NOG or NSG mice, results in resistance to xGVHD, which permits a longer therapeutic window. In this article, detailed processes for generating humanized mice by transplantation of HSCs from cord blood-derived huCD34+ HSCs or PBMCs into immunodeficient mouse strains to respectively generate HSC-HIS and PBMC-HIS mouse models are provided. In addition, the co-engraftment and growth kinetics of patient-derived and cell line-derived xenograft tumors in humanized mice and recovery of tumor-infiltrating lymphocytes from growing tumors to evaluate immune cell subsets by flow cytometry are described. © 2020 The Authors. Basic Protocol 1: Establishment of patient-derived xenograft tumors in CD34+ hematopoietic stem cell-humanized mice Basic Protocol 2: Establishment of patient-derived xenograft tumors in peripheral blood mononuclear cell-humanized mice Support Protocol 1: Flow cytometry assessment of humanization in mice Support Protocol 2: Flow cytometry assessment of tumor-infiltrating lymphocytes in tumor-bearing humanized mouse models.
Collapse
Affiliation(s)
| | - Amy Wesa
- Champions Oncology, Rockville, Maryland
| |
Collapse
|
9
|
McCann CD, van Dorp CH, Danesh A, Ward AR, Dilling TR, Mota TM, Zale E, Stevenson EM, Patel S, Brumme CJ, Dong W, Jones DS, Andresen TL, Walker BD, Brumme ZL, Bollard CM, Perelson AS, Irvine DJ, Jones RB. A participant-derived xenograft model of HIV enables long-term evaluation of autologous immunotherapies. J Exp Med 2021; 218:212105. [PMID: 33988715 PMCID: PMC8129803 DOI: 10.1084/jem.20201908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-specific CD8+ T cells partially control viral replication and delay disease progression, but they rarely provide lasting protection, largely due to immune escape. Here, we show that engrafting mice with memory CD4+ T cells from HIV+ donors uniquely allows for the in vivo evaluation of autologous T cell responses while avoiding graft-versus-host disease and the need for human fetal tissues that limit other models. Treating HIV-infected mice with clinically relevant HIV-specific T cell products resulted in substantial reductions in viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an IL-15 superagonist, but it was ultimately limited by the pervasive selection of a diverse array of escape mutations, recapitulating patterns seen in humans. By applying mathematical modeling, we show that the kinetics of the CD8+ T cell response have a profound impact on the emergence and persistence of escape mutations. This “participant-derived xenograft” model of HIV provides a powerful tool for studying HIV-specific immunological responses and facilitating the development of effective cell-based therapies.
Collapse
Affiliation(s)
- Chase D McCann
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY.,Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | | | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Adam R Ward
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC.,PhD Program in Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Thomas R Dilling
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Elizabeth Zale
- Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Eva M Stevenson
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC.,George Washington University Cancer Center, George Washington University, Washington, DC
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | | | | | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA.,Institute for Medical and Engineering Sciences, Massachusetts Institute of Technology, Cambridge, MA.,Howard Hughes Medical Institute, Chevy Chase, MD
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC.,George Washington University Cancer Center, George Washington University, Washington, DC
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - Darrell J Irvine
- Howard Hughes Medical Institute, Chevy Chase, MD.,Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY.,Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
10
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
11
|
Majc B, Novak M, Kopitar-Jerala N, Jewett A, Breznik B. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells 2021; 10:265. [PMID: 33572835 PMCID: PMC7912469 DOI: 10.3390/cells10020265] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common brain malignant tumor in the adult population, and immunotherapy is playing an increasingly central role in the treatment of many cancers. Nevertheless, the search for effective immunotherapeutic approaches for glioblastoma patients continues. The goal of immunotherapy is to promote tumor eradication, boost the patient's innate and adaptive immune responses, and overcome tumor immune resistance. A range of new, promising immunotherapeutic strategies has been applied for glioblastoma, including vaccines, oncolytic viruses, immune checkpoint inhibitors, and adoptive cell transfer. However, the main challenges of immunotherapy for glioblastoma are the intracranial location and heterogeneity of the tumor as well as the unique, immunosuppressive tumor microenvironment. Owing to the lack of appropriate tumor models, there are discrepancies in the efficiency of various immunotherapeutic strategies between preclinical studies (with in vitro and animal models) on the one hand and clinical studies (on humans) on the other hand. In this review, we summarize the glioblastoma characteristics that drive tolerance to immunotherapy, the currently used immunotherapeutic approaches against glioblastoma, and the most suitable tumor models to mimic conditions in glioblastoma patients. These models are improving and can more precisely predict patients' responses to immunotherapeutic treatments, either alone or in combination with standard treatment.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
- International Postgraduate School Jozef Stefan, 39 Jamova ulica, SI-1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 39 Jamova ulica, SI-1000 Ljubljana, Slovenia;
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
| |
Collapse
|
12
|
Liu G, Fan X, Cai Y, Fu Z, Gao F, Dong J, Li K, Cai J. Efficacy of dendritic cell-based immunotherapy produced from cord blood in vitro and in a humanized NSG mouse cancer model. Immunotherapy 2020; 11:599-616. [PMID: 30943862 DOI: 10.2217/imt-2018-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To produce dendritic cells (DCs) from CD34+ stem cells from cord blood and explore their prophylactic and curative effect against tumors by vaccinating humanized NSG mice. MATERIALS & METHODS Separated CD34+ stem cells from cord blood were cultured for 30 days, and the resultant DCs (CD34-DCs) were collected. The basic function of the CD34-DCs and the cytotoxicity of CD34-cytotoxic-T lymphocytes (CTLs) were tested in vitro, and tumor inhibition in a humanized NSG mouse tumor model was observed. RESULTS The number of CD34-DCs reached approximately 9 log. These cells performed functions similar to those of DCs derived from monocytes from peripheral blood (PBMC-DCs). The CTLs of the CD34-DCs (CD34-CTLs) presented a better antitumor effect in vitro. The obvious prophylactic and therapeutic antitumor effects of the CD34-DC vaccine were observed in the humanized NSG mouse models. CONCLUSION CD34-DCs from cord blood were sufficient in quantity and quality as a vaccine agent against tumors in vitro and in vivo.
Collapse
Affiliation(s)
- Gang Liu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.,Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Ying Cai
- Department of Research and Development, Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Corporation Ltd, 238 Changjiang Aveneu, Shijiazhuang 500350, China
| | - Zexian Fu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Fei Gao
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jiantao Dong
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.,Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Kang Li
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.,Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China.,Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| |
Collapse
|
13
|
Lichtenegger FS, Schnorfeil FM, Rothe M, Deiser K, Altmann T, Bücklein VL, Köhnke T, Augsberger C, Konstandin NP, Spiekermann K, Moosmann A, Boehm S, Boxberg M, Heemskerk MH, Goerlich D, Wittmann G, Wagner B, Hiddemann W, Schendel DJ, Kvalheim G, Bigalke I, Subklewe M. Toll-like receptor 7/8-matured RNA-transduced dendritic cells as post-remission therapy in acute myeloid leukaemia: results of a phase I trial. Clin Transl Immunology 2020; 9:e1117. [PMID: 32153780 PMCID: PMC7053229 DOI: 10.1002/cti2.1117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Innovative post‐remission therapies are needed to eliminate residual AML cells. DC vaccination is a promising strategy to induce anti‐leukaemic immune responses. Methods We conducted a first‐in‐human phase I study using TLR7/8‐matured DCs transfected with RNA encoding the two AML‐associated antigens WT1 and PRAME as well as CMVpp65. AML patients in CR at high risk of relapse were vaccinated 10× over 26 weeks. Results Despite heavy pretreatment, DCs of sufficient number and quality were generated from a single leukapheresis in 11/12 cases, and 10 patients were vaccinated. Administration was safe and resulted in local inflammatory responses with dense T‐cell infiltration. In peripheral blood, increased antigen‐specific CD8+ T cells were seen for WT1 (2/10), PRAME (4/10) and CMVpp65 (9/10). For CMVpp65, increased CD4+ T cells were detected in 4/7 patients, and an antibody response was induced in 3/7 initially seronegative patients. Median OS was not reached after 1057 days; median RFS was 1084 days. A positive correlation was observed between clinical benefit and younger age as well as mounting of antigen‐specific immune responses. Conclusions Administration of TLR7/8‐matured DCs to AML patients in CR at high risk of relapse was feasible and safe and resulted in induction of antigen‐specific immune responses. Clinical benefit appeared to occur more likely in patients <65 and in patients mounting an immune response. Our observations need to be validated in a larger patient cohort. We hypothesise that TLR7/8 DC vaccination strategies should be combined with hypomethylating agents or checkpoint inhibition to augment immune responses. Trial registration The study was registered at https://clinicaltrials.gov on 17 October 2012 (NCT01734304) and at https://www.clinicaltrialsregister.eu (EudraCT‐Number 2010‐022446‐24) on 10 October 2013.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany.,Present address: Roche Innovation Center Munich Penzberg Germany
| | - Frauke M Schnorfeil
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg Germany.,Present address: Medigene AG Planegg Germany
| | - Maurine Rothe
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Katrin Deiser
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Torben Altmann
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Veit L Bücklein
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Thomas Köhnke
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Christian Augsberger
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | | | | | - Andreas Moosmann
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR) Helmholtz Zentrum München Munich Germany
| | - Stephan Boehm
- Max von Pettenkofer Institute LMU Munich Munich Germany
| | - Melanie Boxberg
- Institute of Pathology Technical University of Munich Munich Germany
| | - Mirjam Hm Heemskerk
- Department of Hematology Leiden University Medical Center Leiden The Netherlands
| | - Dennis Goerlich
- Institute of Biostatistics and Clinical Research University of Muenster Muenster Germany
| | - Georg Wittmann
- Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology University Hospital LMU Munich Munich Germany
| | - Beate Wagner
- Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology University Hospital LMU Munich Munich Germany
| | - Wolfgang Hiddemann
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg Germany
| | | | - Gunnar Kvalheim
- Department of Cellular Therapy The Norwegian Radium Hospital Oslo University Hospital Oslo Norway
| | - Iris Bigalke
- Department of Cellular Therapy The Norwegian Radium Hospital Oslo University Hospital Oslo Norway.,Present address: BioNTech IMFS Idar-Oberstein Germany
| | - Marion Subklewe
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
14
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
15
|
Funda DP, Palová-Jelínková L, Goliáš J, Kroulíková Z, Fajstová A, Hudcovic T, Špíšek R. Optimal Tolerogenic Dendritic Cells in Type 1 Diabetes (T1D) Therapy: What Can We Learn From Non-obese Diabetic (NOD) Mouse Models? Front Immunol 2019; 10:967. [PMID: 31139178 PMCID: PMC6527741 DOI: 10.3389/fimmu.2019.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Zuzana Kroulíková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Alena Fajstová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
16
|
Bucher CH, Schlundt C, Wulsten D, Sass FA, Wendler S, Ellinghaus A, Thiele T, Seemann R, Willie BM, Volk HD, Duda GN, Schmidt-Bleek K. Experience in the Adaptive Immunity Impacts Bone Homeostasis, Remodeling, and Healing. Front Immunol 2019; 10:797. [PMID: 31031773 PMCID: PMC6474158 DOI: 10.3389/fimmu.2019.00797] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Bone formation as well as bone healing capacity is known to be impaired in the elderly. Although bone formation is outpaced by bone resorption in aged individuals, we hereby present a novel path that considerably impacts bone formation and architecture: Bone formation is substantially reduced in aged individual owing to the experience of the adaptive immunity. Thus, immune-aging in addition to chronological aging is a potential risk factor, with an experienced immune system being recognized as more pro-inflammatory. The role of the aging immune system on bone homeostasis and on the bone healing cascade has so far not been considered. Within this study mice at different age and immunological experience were analyzed toward bone properties. Healing was assessed by introducing an osteotomy, immune cells were adoptively transferred to disclose the difference in biological vs. chronological aging. In vitro studies were employed to test the interaction of immune cell products (cytokines) on cells of the musculoskeletal system. In metaphyseal bone, immune-aging affects bone homeostasis by impacting bone formation capacity and thereby influencing mass and microstructure of bone trabeculae leading to an overall reduced mechanical competence as found in bone torsional testing. Furthermore, bone formation is also impacted during bone regeneration in terms of a diminished healing capacity observed in young animals who have an experienced human immune system. We show the impact of an experienced immune system compared to a naïve immune system, demonstrating the substantial differences in the healing capacity and bone homeostasis due to the immune composition. We further showed that in vivo mechanical stimulation changed the immune system phenotype in young mice toward a more naïve composition. While this rescue was found to be significant in young individuals, aged mice only showed a trend toward the reconstitution of a more naïve immune phenotype. Considering the immune system's experience level in an individual, will likely allow one to differentiate (stratify) and treat (immune-modulate) patients more effectively. This work illustrates the relevance of including immune diagnostics when discussing immunomodulatory therapeutic strategies for the progressively aging population of the industrial countries.
Collapse
Affiliation(s)
- Christian H Bucher
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Schlundt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dag Wulsten
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F Andrea Sass
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wendler
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Thiele
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ricarda Seemann
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Department of Pediatric Surgery, Faculty of Medicine, McGill University, Shriners Hospital for Children, Montreal, QC, Canada
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance. Front Immunol 2019; 10:93. [PMID: 30774630 PMCID: PMC6367268 DOI: 10.3389/fimmu.2019.00093] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Graft-vs.-host disease (GVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Significant progresses have been made in defining the dichotomous role of dendritic cells (DCs) in the development of GVHD. Host-derived DCs are important to elicit allogeneic T cell responses, whereas certain donor-types of DCs derived from newly engrafted hematopoietic stem/progenitor cells (HSPCs) can amply this graft-vs.-host reaction. In contrast, some DCs also play non-redundant roles in mediating immune tolerance. They induce apoptotic deletion of host-reactive donor T cells while promoting expansion and function of regulatory T cells (Treg). Unfortunately, this tolerogenic effect of DCs is impaired during GVHD. Severe GVHD in patients subject to allo-HSCT is associated with significantly decreased number of circulating peripheral blood DCs during engraftment. Existing studies reveal that GVHD causes delayed reconstitution of donor DCs from engrafted HSPCs, impairs the antigen presentation function of newly generated DCs and reduces the capacity of DCs to regulate Treg. The present review will discuss the importance of DCs in alloimmunity and the mechanism underlying DC reconstitution after allo-HSCT.
Collapse
Affiliation(s)
- Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Shin Mineishi
- Department of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, United States,*Correspondence: Yi Zhang
| |
Collapse
|
19
|
Whitney JB, Brad Jones R. In Vitro and In Vivo Models of HIV Latency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:241-263. [DOI: 10.1007/978-981-13-0484-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses. Cell Mol Immunol 2017; 15:953-962. [PMID: 29151581 PMCID: PMC6207709 DOI: 10.1038/cmi.2017.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
Immunodeficient mice engrafted with human peripheral blood cells are promising tools for in vivo analysis of human patient individual immune responses. However, when human peripheral blood mononuclear cells (PBMCs) are transferred into NOG (NOD/Shi-scid, IL-2rgnull) mice, severe graft versus host disease (GVHD) hinders long term detailed analysis. Administration of human PBMCs into newly developed murine MHC class I- and class II-deficient NOG (NOG-dKO; NOG- Iab, B2m-double-knockout) mice showed sufficient engraftment of human immune cells with little sign of GVHD. Immunization with influenza vaccine resulted in an increase in influenza-specific human IgG Ab, indicating induction of antigen-specific B cells in the NOG-dKO mice. Immunization with human dendritic cells pulsed with HLA-A2 restricted cytomegalovirus peptide induced specific cytotoxic T cells, indicating the induction of antigen-specific T cells in the NOG-dKO mice. Adoptive cell therapies (ACTs) using melanoma antigen recognized by T cells (MART-1)-specific TCR-transduced activated T cells showed strong tumor growth inhibition in NOG-dKO mice without any sign of GVHD accompanied by preferential expansion of the transferred MART-1-specific T cells. ACTs using cultured human melanoma infiltrating T cells also showed anti-tumor effects against autologous melanoma cells in NOG-dKO mice, in which changes in human cancer phenotypes by immune intervention, such as increased CD271 expression, could be evaluated. Therefore, NOG-dKO mice are useful tools for more detailed analysis of both the induction and effector phases of T-cell and B-cell responses for a longer period than regular NOG mice.
Collapse
|
21
|
Abstract
Immune tolerance induction (ITI) with aggressive infusion of factor VIII (FVIII) is the current strategy used to eradicate FVIII inhibitors and restore normal FVIII pharmacokinetics in inhibitor patients. Whether the use of FVIII products containing von Willebrand factor (VWF) will affect the efficacy of ITI is still controversial. In this study, we explored the impact of VWF on FVIII memory immune responses in hemophilia A (HA) mice. A T-cell proliferation assay and cytokine profile analysis were used to study FVIII-primed CD4+ T cells. When CD4+ T cells from primed FVIIInull mice were restimulated with recombinant human FVIII (rhF8) plus recombinant human VWF (rhVWF) in vitro, the percentages of daughter CD4+ T cells were significantly decreased compared with the groups cultured with rhF8 only. Levels of interferon-γ and interleukin 10 were significantly lower in the rhF8 plus rhVWF groups than in the rhF8 groups. When memory B-cell pools from primed FVIIInull mice were cultured with rhF8 with or without rhVWF to induce differentiation of memory B cells into antibody-secreting cells (ASCs), the number of ASCs was significantly lower in the rhF8 plus VWF group than in the rhF8 group. When memory B-cell pools were transferred into NSGF8KO mice followed by rhF8 immunization with or without rhVWF, the titers of anti-F8 inhibitors and total immunoglobulin G were significantly higher in the rhF8 group than in the rhF8 plus rhVWF group, with an average difference of 2.23- and 2.04-fold. Together, our data demonstrate that VWF attenuates FVIII memory immune responses in HA mice.
Collapse
|
22
|
Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human immunity after transfer of HLA-matched human cells. PLoS One 2017; 12:e0173754. [PMID: 28399128 PMCID: PMC5388326 DOI: 10.1371/journal.pone.0173754] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
Research on human immunology has been hindered by the lack of optimal small animal models, given that the protective immune responses of human and non-human species show significant differences. However, due to ethical constraints[1] and the high cost of clinical trials, it is urgent to improve the current animal models that can mimic faithfully human physiology, particularly the human immune system (HIS). HIS mice had been generated recently by engrafting human hematopoietic stem cells (hHSCs) or human peripheral mononuclear cells (hPBMCs) into highly immuno-deficient mice such as NSG, NOG or NRG mice. However, a major experimental drawback for studies using these models is the rapid onset of Graft-versus-Host Disease (GvHD). In the present study, we overcome this limitation by generating new immuno-deficient mice named "HUMAMICE" (HLA-A2+/+/DR1+/+/H-2-β2m-/-/IAβ-/-/Rag2-/-/IL2rγ-/-/Perf-/- mice), which expressed human HLA molecules instead of mouse MHC molecules (H-2), and whose immuno-deficient status was reversed by transferring functional HLA-matched PBMCs thus producing mice with an immuno-competent status with a functional human immune system. We showed that in this HLA-matched context, the hPBMC-transfer led to high lymphocytes engraftment rates without GvHD over three months in this novel mouse model. Furthermore, to evaluate the utility of the hPBMC-HUMAMICE, we immunized them with commercial vaccine of Hepatitis B virus (HBsAg, Hepvac@) which resulted in robust and reproducible production of high levels of HBsAg-specific antibodies, implying that both transferred T and B lymphocytes were functional in HUMAMICE. These responses are comparable to those observed in human clinical trials with this identical vaccine. In conclusion, these findings indicated that the HLA-matched-hPBMC-HUMAMICE represents a promising model for dissecting human immune responses in various human diseases, including infectious diseases, cancers and tumors, and to facilitate the development of novel vaccines and cellular therapies.
Collapse
|
23
|
Nithichanon A, Gourlay LJ, Bancroft GJ, Ato M, Takahashi Y, Lertmemongkolchai G. Boosting of post-exposure human T-cell and B-cell recall responses in vivo by Burkholderia pseudomallei-related proteins. Immunology 2017; 151:98-109. [PMID: 28066900 DOI: 10.1111/imm.12709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease with high incidence and mortality in South East Asia and northern Australia. To date there is no protective vaccine and antibiotic treatment is prolonged and not always effective. Most people living in endemic areas have been exposed to the bacteria and have developed some immunity, which may have helped to prevent disease. Here, we used a humanized mouse model (hu-PBL-SCID), reconstituted with human peripheral blood mononuclear cells from seropositive donors, to illustrate the potential of three known antigens (FliC, OmpA and N-PilO2) for boosting both T-cell and B-cell immune responses. All three antigens boosted the production of specific antibodies in vivo, and increased the number of antibody and interferon-γ-secreting cells, and induced antibody affinity maturation. Moreover, antigen-specific antibodies isolated from either seropositive individuals or boosted mice, were found to enhance phagocytosis and oxidative burst activities from human polymorphonuclear cells. Our study demonstrates that FliC, OmpA and N-PilO2 can stimulate human memory T and B cells and highlight the potential of the hu-PBL-SCID system for screening and evaluation of novel protein antigens for inclusion in future vaccine trials against melioidosis.
Collapse
Affiliation(s)
- Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ganjana Lertmemongkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
24
|
The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol 2017; 39:225-239. [PMID: 28138787 DOI: 10.1007/s00281-016-0616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
In this review, we focus on the biologic advantages of dendritic cell-based vaccinations as a therapeutic strategy for cancer as well as preclinical and emerging clinical data associated with such approaches for glioblastoma patients.
Collapse
|
25
|
Kyte JA, Aamdal S, Dueland S, Sæbøe-Larsen S, Inderberg EM, Madsbu UE, Skovlund E, Gaudernack G, Kvalheim G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 2016; 5:e1232237. [PMID: 27999747 DOI: 10.1080/2162402x.2016.1232237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients. The first cohort (n = 22) received the vaccine without any adjuvant; the next cohort (n = 9) received adjuvant IL2. Each subject received four weekly intranodal or intradermal injections, followed by optional monthly vaccines. Immune response was evaluated by delayed-type hypersensitivity (DTH), T cell proliferation and cytokine assays. Data were collected for 10 y after inclusion of the last patient. No serious adverse events were detected. In the intention-to-treat-cohort, we demonstrated significantly superior survival compared to matched controls from a benchmark meta-analysis (1 y survival 43% vs. 24%, 2 y 23% vs. 6.6%). A tumor-specific immune response was demonstrated in 16/31 patients. The response rate was higher after intradermal than intranodal vaccination (80% vs. 38%). Immune responders had improved survival compared to non-responders (median 14 mo vs. 6 mo; p = 0.030), and all eight patients surviving >20 mo were immune responders. In addition to the tumor-specific response, most patients developed a response against autologous DC antigens. The cytokine profile was polyfunctional and did not follow a Th1/Th2 dichotomy. We conclude that the favorable safety profile and evidence of a possible survival benefit warrant further studies of the RNA/DC vaccine. The vaccine appears insufficient as monotherapy, but there is a strong rationale for combination with checkpoint modulators.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway; The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital, Oslo, Norway; Department of Immunology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Steinar Aamdal
- The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Svein Dueland
- The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Stein Sæbøe-Larsen
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Else Marit Inderberg
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Ulf Erik Madsbu
- Department for Radiology, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and General Practice, NTNU , Trondheim, Norway
| | - Gustav Gaudernack
- Department of Immunology, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Gunnar Kvalheim
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| |
Collapse
|
26
|
Pizzurro GA, Tapia IJ, Sganga L, Podhajcer OL, Mordoh J, Barrio MM. Cytokine-enhanced maturation and migration to the lymph nodes of a human dying melanoma cell-loaded dendritic cell vaccine. Cancer Immunol Immunother 2015; 64:1393-406. [PMID: 26197849 PMCID: PMC11028647 DOI: 10.1007/s00262-015-1743-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DCs) are professional APCs used for the development of cancer vaccines because of their ability to activate adaptive immune responses. Previously, we designed the DC/Apo-Nec vaccine using human DCs loaded with dying melanoma cells that primed Ag-specific cytotoxic T cells. Here, we evaluate the effect of a standard pro-inflammatory cytokine cocktail (CC) and adjuvants on DC/Apo-Nec maturation and migration. CC addition to the vaccine coculture allowed efficient Ag uptake while attaining strong vaccine maturation with an immunostimulatory profile. The use of CC not only increased CCR7 expression and the vaccine chemokine responsiveness but also upregulated matrix metalloproteinase-9 secretion, which regulated its invasive migration in vitro. Neither IL-6 nor prostaglandin E2 had a negative effect on vaccine preparation. In fact, all CC components were necessary for complete vaccine maturation. Subcutaneously injected DC/Apo-Nec vaccine migrated rapidly to draining LNs in nude mice, accumulating regionally after 48 h. The migrating cells of the CC-matured vaccine augmented in proportion and range of distribution, an effect that increased further with the topical administration of imiquimod cream. The migrating proportion of human DCs was detected in draining LNs for at least 9 days after injection. The addition of CC during DC/Apo-Nec preparation enhanced vaccine performance by improving maturation and response to LN signals and by conferring a motile and invasive vaccine phenotype both in vitro and in vivo. More importantly, the vaccine could be combined with different adjuvants. Therefore, this DC-based vaccine design shows great potential value for clinical translation.
Collapse
Affiliation(s)
- Gabriela A Pizzurro
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina
| | - Ivana J Tapia
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina
| | - Leonardo Sganga
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina
- Laboratorio de Cancerología, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - María M Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer (FUCA), Cramer 1180, CP 1426, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Abstract
INTRODUCTION Moraxella catarrhalis is a prominent pathogen that causes acute otitis media in children and lower respiratory tract infections in adults, resulting in a significant socioeconomic burden on healthcare systems globally. No vaccine is currently available for M. catarrhalis. Promising M. catarrhalis target antigens have been characterized in animal models and should soon enter human clinical trials. AREAS COVERED This review discusses the detailed features and research status of current candidate target antigens for an M. catarrhalis vaccine. The approaches for assessing M. catarrhalis vaccine efficacy are also discussed. EXPERT OPINION Targeting the key molecules contributing to serum resistance may be a viable strategy to identify effective vaccine targets among M. catarrhalis antigens. Elucidating the role and mechanisms of the serum and mucosal immune responses to M. catarrhalis is significant for vaccine target selection, testing and evaluation. Developing animal models closely simulating M. catarrhalis-caused human respiratory diseases is of great benefit in better understanding pathogenesis and evaluating vaccine efficacy. Carrying out clinical trials will be a landmark in the progress of M. catarrhalis vaccine research. Combined multicomponent vaccines will be a focus of future M. catarrhalis vaccine studies.
Collapse
Affiliation(s)
- Dabin Ren
- a 1 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA +1 585 922 3706 ;
| | - Michael E Pichichero
- b 2 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA
| |
Collapse
|
28
|
Koboziev I, Jones-Hall Y, Valentine JF, Webb CR, Furr KL, Grisham MB. Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases. Inflamm Bowel Dis 2015; 21:1652-73. [PMID: 26035036 PMCID: PMC4466023 DOI: 10.1097/mib.0000000000000446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient's bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human. Indeed, it is well known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation, and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system to address important human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hematolymphoid cells in mice would provide investigators with a relatively inexpensive small animal model to study clinically relevant mechanisms and facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss the use of these unique mouse models to define the human-specific immunopathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation.
Collapse
Affiliation(s)
- Iurii Koboziev
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907-2027
| | - John F. Valentine
- Department of Internal Medicine, Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, UT 84132-2410
| | - Cynthia Reinoso Webb
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
29
|
Mac Keon S, Ruiz MS, Gazzaniga S, Wainstok R. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models. Front Immunol 2015; 6:243. [PMID: 26042126 PMCID: PMC4438595 DOI: 10.3389/fimmu.2015.00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina
| | - María Sol Ruiz
- Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA) , Buenos Aires , Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Rosa Wainstok
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina ; Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
30
|
Subklewe M, Geiger C, Lichtenegger FS, Javorovic M, Kvalheim G, Schendel DJ, Bigalke I. New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia. Cancer Immunol Immunother 2014; 63:1093-103. [PMID: 25186611 PMCID: PMC11028838 DOI: 10.1007/s00262-014-1600-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023]
Abstract
Dendritic cell (DC)-based immunotherapy is a promising strategy for the elimination of minimal residual disease in patients with acute myeloid leukemia (AML). Particularly, patients with a high risk of relapse who are not eligible for hematopoietic stem cell transplantation could benefit from such a therapeutic approach. Here, we review our extensive studies on the development of a protocol for the generation of DCs with improved immunogenicity and optimized for the use in cell-based immunotherapy. This new generation DC vaccine combines the production of DCs in only 3 days with Toll-like receptor-signaling-induced cell maturation. These mature DCs are then loaded with RNA encoding the leukemia-associated antigens Wilm's tumor protein 1 and preferentially expressed antigen in melanoma in order to stimulate an AML-specific T-cell-based immune response. In vitro as well as in vivo studies demonstrated the enhanced capacity of these improved DCs for the induction of tumor-specific immune responses. Finally, a proof-of-concept Phase I/II clinical trial is discussed for post-remission AML patients with high risk for disease relapse.
Collapse
Affiliation(s)
- Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany
| | - Christiane Geiger
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
- Trianta Immunotherapies GmbH, A subsidiary of Medigene AG, Lochhamer Str. 11, 82152 Planegg-Martinsried, Germany
| | - Felix S. Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany
| | - Miran Javorovic
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Dolores J. Schendel
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
- Trianta Immunotherapies GmbH, A subsidiary of Medigene AG, Lochhamer Str. 11, 82152 Planegg-Martinsried, Germany
| | - Iris Bigalke
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Kallen KJ, Theß A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:10-31. [PMID: 24757523 DOI: 10.1177/2051013613508729] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances strongly suggest that mRNA rather than DNA will be the nucleotide basis for a new class of vaccines and drugs. Therapeutic cancer vaccines against a variety of targets have been developed on this basis and initial clinical experience suggests that preclinical activity can be successfully translated to human application. Likewise, prophylactic vaccines against viral pathogens and allergens have demonstrated their activity in animal models. These successes could be extended preclinically to mRNA protein and gene replacement therapy as well as the induction of pluripotent stem cells by mRNA encoded transcription factors. The production of mRNA-based vaccines and drugs is highly flexible, scalable and cost competitive, and eliminates the requirement of a cold chain. mRNA-based drugs and vaccines offer all the advantages of a nucleotide-based approach at reduced costs and represent a truly disruptive technology that may start a revolution in medicine.
Collapse
|
32
|
Orson FM, Wang R, Brimijoin S, Kinsey BM, Singh RA, Ramakrishnan M, Wang HY, Kosten TR. The future potential for cocaine vaccines. Expert Opin Biol Ther 2014; 14:1271-83. [PMID: 24835496 DOI: 10.1517/14712598.2014.920319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine's pharmacodynamic effects. AREAS COVERED This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. EXPERT OPINION Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes.
Collapse
Affiliation(s)
- Frank M Orson
- Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Department of Medicine , Bldg. 109, Rm. 234, 2002 Holcombe Blvd, Houston, TX 77030 , USA +1 713 794 7960 ; +1 713 794 7938 ;
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chang JJ, Altfeld M. Immune activation and the role of TLRs and TLR agonists in the pathogenesis of HIV-1 infection in the humanized mouse model. J Infect Dis 2013; 208 Suppl 2:S145-9. [PMID: 24151321 DOI: 10.1093/infdis/jit402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immune activation plays a critical role in HIV-1 pathogenesis, but the pathways that are responsible for HIV-1-associated immune activation are not well understood. Recent advances in the development of a humanized mouse model for HIV-1 infection might provide new approaches to study the mechanisms of HIV-1 associated immune activation, and to test interventions aimed at reducing HIV-1 pathogenesis.
Collapse
Affiliation(s)
- J Judy Chang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Harvard Medical School, Boston
| | | |
Collapse
|
34
|
Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells. Blood 2013; 123:395-403. [PMID: 24269957 DOI: 10.1182/blood-2013-08-520478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies have demonstrated that platelet FVIII (2bF8) gene therapy can improve hemostasis in hemophilia A mice, even in the presence of inhibitory antibodies, but none of our studies has targeted human cells. Here, we evaluated the feasibility for lentivirus (LV)-mediated human platelet gene therapy of hemophilia A. Human platelet FVIII expression was introduced by 2bF8LV-mediated transduction of human cord blood (hCB) CD34(+) cells followed by xenotransplantation into immunocompromised NSG mice or NSG mice in an FVIII(null) background (NSGF8KO). Platelet FVIII was detected in all recipients that received 2bF8LV-transduced hCB cells as long as human platelet chimerism persisted. All NSGF8KO recipients (n = 7) that received 2bF8LV-transduced hCB cells survived tail clipping if animals had greater than 2% of platelets derived from 2bF8LV-transduced hCB cells, whereas 5 of 7 survived when human platelets were 0.3% to 2%. Whole blood clotting time analysis confirmed that hemostasis was improved in NSGF8KO mice that received 2bF8LV-transduced hCB cells. We demonstrate, for the first time, the feasibility of 2bF8LV gene delivery to human hematopoietic stem cells to introduce FVIII expression in human platelets and that human platelet-derived FVIII can improve hemostasis in hemophilia A.
Collapse
|
35
|
Diken M, Attig S, Grunwitz C, Kranz L, Simon P, van de Roemer N, Vascotto F, Kreiter S. CIMT 2013: advancing targeted therapies--report on the 11th Annual Meeting of the Association for Cancer Immunotherapy, May 14-16 2013, Mainz, Germany. Hum Vaccin Immunother 2013; 9:2025-32. [PMID: 23877042 PMCID: PMC3906376 DOI: 10.4161/hv.25768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 11th Annual Meeting of Association for Cancer Immunotherapy (CIMT) welcomed more than 700 scientists around the world to Mainz, Germany and continued to be the largest immunotherapy meeting in Europe. Renowned speakers from various fields of cancer immunotherapy gave lectures under CIMT2013’s tag: “Advancing targeted therapies” the highlights of which are summarized in this meeting report.
Collapse
Affiliation(s)
- Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University; Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lichtenegger FS, Schnorfeil FM, Hiddemann W, Subklewe M. Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy 2013; 5:63-78. [PMID: 23256799 DOI: 10.2217/imt.12.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prognosis of acute myeloid leukemia, particularly when associated with adverse chromosomal or molecular aberrations, is poor due to a high relapse rate after induction chemotherapy. Postremission therapy for elimination of minimal residual disease remains a major challenge. Allogeneic hematopoietic stem cell transplantation has proven to provide a potent antileukemic effect. Novel strategies are needed for patients ineligible for this treatment. Here current immunotherapeutic concepts in acute myeloid leukemia in a nonallogeneic hematopoietic stem cell transplantation setting are reviewed. Data gathered with different monoclonal antibodies are discussed. Adoptive transfer of NK and T cells is reviewed, including evolving data on T-cell engineering. Results of systemic cytokine administration and of therapeutic vaccinations with peptides, modified leukemic cells and dendritic cells are presented. One particular focus of this review is the integration of currently running clinical trials. Recent immunotherapeutic studies have been encouraging and further interesting results are to be expected.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | |
Collapse
|