1
|
Shamsul Kamal AA, Fakiruddin KS, Bobbo KA, Ling KH, Vidyadaran S, Abdullah S. Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges. Malays J Med Sci 2024; 31:56-82. [PMID: 39416732 PMCID: PMC11477465 DOI: 10.21315/mjms2024.31.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 10/19/2024] Open
Abstract
The insufficient and unspecific target of classical chemotherapies often leads to therapy resistance and cancer recurrence. Over the past decades, discoveries about mesenchymal stem cell (MSC) biology have provided new potential approaches to improve cancer therapy. Researchers have utilised the multipotent, regenerative and immunosuppressive qualities of MSCs and tropisms towards inflammatory, hypoxic and malignant sites in various therapeutic applications. Although MSC-based therapies have generally been demonstrated safe, their effectiveness remains limited when these cells are used alone. However, through genetic engineering, researchers have proven that MSCs can be modified to have specialised delivery roles to increase their therapeutic efficacy in cancer treatment. They can be made to overexpress therapeutic proteins through viral or non-viral genetic modification, which enhances their innate properties. Nevertheless, these engineering strategies must be optimised to increase therapeutic efficacy and targeting effectiveness while minimising any loss of MSC function. This review underscores the cutting-edge methods for engineering MSCs, discusses their promise and the difficulties in translating them into clinical settings, and offers some prospective suggestions for the future on achieving their full therapeutic potential.
Collapse
Affiliation(s)
- Aishah Amirah Shamsul Kamal
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Shaik Fakiruddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Khadijat Abubakar Bobbo
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - King Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
2
|
Arcambal A, Septembre-Malaterre A, Pesnel S, Morel AL, Gasque P, Begue M, Slama Y. The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study. Cancers (Basel) 2024; 16:3239. [PMID: 39335210 PMCID: PMC11430180 DOI: 10.3390/cancers16183239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metallic nanoparticles (NPs) exhibit interesting radiosensitizing effects, and finding a way to accurately deliver them appears to be crucial. Due to their tumor tropism, mesenchymal stem cells (MSCs) represent a strategic approach. Therefore, we aimed to evaluate the impact of core-shell Fe3O4@Au NPs on the functionality of human pulmonary MSCs (HPMSCs). METHODS/RESULTS The results showed that 100 µg/mL Fe3O4@Au NPs, accumulated in HPMSCs (revealed by Prussian blue staining), did not alter cell viability as assessed by cell counting, MTT, and LDH assays. However, caspase 9 and Bcl2 gene expression, evaluated by RT-qPCR, was regulated 72 h after exposure to the NPs. Moreover, the NPs also decreased proinflammatory cytokine/chemokine secretions, except for CXCL8 (ELISA). These modulations were associated with the downregulation of AMPK gene expression at 24 h. In contrast, the NPs did not modulate VEGF, PI3K, or PDGF gene expression. Nevertheless, a decrease in VEGF secretion was observed after 24 h of exposure to the NPs. Interestingly, the Fe3O4@Au NPs did not modulate Nrf2 gene expression, but they did regulate the expression of the genes encoding Nox4 and HMOX-1. Additionally, the NPs increased ROS production, suggesting a redox imbalance. CONCLUSIONS Finally, the Fe3O4@Au NPs did not affect the HPMSCs' viability or proangiogenic/tumorigenic markers. These findings are encouraging for investigating the effects of Fe3O4@Au NPs delivered by HPMSCs to tumor sites in combination with radiation.
Collapse
Affiliation(s)
- Angélique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Axelle Septembre-Malaterre
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Sabrina Pesnel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Anne-Laure Morel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Mickael Begue
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Youssef Slama
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| |
Collapse
|
3
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
5
|
Zhu J, Ma J, Huang M, Deng H, Shi G. Emerging delivery strategy for oncolytic virotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200809. [PMID: 38845744 PMCID: PMC11153257 DOI: 10.1016/j.omton.2024.200809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Oncolytic virotherapy represents a promising approach in cancer immunotherapy. The primary delivery method for oncolytic viruses (OVs) is intratumoral injection, which apparently limits their clinical application. For patients with advanced cancer with disseminated metastasis, systemic administration is considered the optimal approach. However, the direct delivery of naked viruses through intravenous injection presents challenges, including rapid clearance by the immune system, inadequate accumulation in tumors, and significant side effects. Consequently, the development of drug delivery strategies has led to the emergence of various bio-materials serving as viral vectors, thereby improving the anti-tumor efficacy of oncolytic virotherapy. This review provides an overview of innovative strategies for delivering OVs, with a focus on nanoparticle-based or cell-based delivery systems. Recent pre-clinical and clinical studies are examined to highlight the enhanced efficacy of systemic delivery using these novel platforms. In addition, prevalent challenges in current research are briefly discussed, and potential solutions are proposed.
Collapse
Affiliation(s)
- Jiao Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed Pharmacother 2023; 167:115505. [PMID: 37716113 DOI: 10.1016/j.biopha.2023.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157993313, Iran; Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia 57157993313, Islamic Republic of Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, Mohammed NM, Mustafa YF, Darvishi M, Akhavan-Sigari R. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal 2023; 21:43. [PMID: 36829187 PMCID: PMC9960453 DOI: 10.1186/s12964-022-01012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/26/2023] Open
Abstract
Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Anna I Gilmanova
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Angelina O Zekiy
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Saif A J Al-Shalah
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Darvishi
- Department of Aerospace and Subaquatic Medicine, Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany.,Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
8
|
Complexing the Oncolytic Adenoviruses Ad∆∆ and Ad-3∆-A20T with Cationic Nanoparticles Enhances Viral Infection and Spread in Prostate and Pancreatic Cancer Models. Int J Mol Sci 2022; 23:ijms23168884. [PMID: 36012152 PMCID: PMC9408166 DOI: 10.3390/ijms23168884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAd) can be employed to efficiently eliminate cancer cells through multiple mechanisms of action including cell lysis and immune activation. Our OAds, AdΔΔ and Ad-3∆-A20T, selectively infect, replicate in, and kill adenocarcinoma cells with the added benefit of re-sensitising drug-resistant cells in preclinical models. Further modifications are required to enable systemic delivery in patients due to the rapid hepatic elimination and neutralisation by blood factors and antibodies. Here, we show data that support the use of coating OAds with gold nanoparticles (AuNPs) as a possible new method of virus modification to help augment tumour uptake. The pre-incubation of cationic AuNPs with AdΔΔ, Ad-3∆-A20T and wild type adenovirus (Ad5wt) was performed prior to infection of prostate/pancreatic cancer cell lines (22Rv, PC3, Panc04.03, PT45) and a pancreatic stellate cell line (PS1). Levels of viral infection, replication and cell viability were quantified 24–72 h post-infection in the presence and absence of AuNPs. Viral spread was assessed in organotypic cultures. The presence of AuNPs significantly increased the uptake of Ad∆∆, Ad-3∆-A20T and Ad5wt in all the cell lines tested (ranging from 1.5-fold to 40-fold), compared to virus alone, with the greatest uptake observed in PS1, a usually adenovirus-resistant cell line. Pre-coating the AdΔΔ and Ad-3∆-A20T with AuNPs also increased viral replication, leading to enhanced cell killing, with maximal effect in the most virus-insensitive cells (from 1.4-fold to 5-fold). To conclude, the electrostatic association of virus with cationic agents provides a new avenue to increase the dose in tumour lesions and potentially protect the virus from detrimental blood factor binding. Such an approach warrants further investigation for clinical translation.
Collapse
|
9
|
Wang X, Jiang L, Liu Q. miR-18a-5p derived from mesenchymal stem cells-extracellular vesicles inhibits ovarian cancer cell proliferation, migration, invasion, and chemotherapy resistance. J Transl Med 2022; 20:258. [PMID: 35672774 PMCID: PMC9172103 DOI: 10.1186/s12967-022-03422-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is a major threat to women's health. Mesenchymal stem cells (MSCs) are key regulators in cellular communication by secreting extracellular vesicles (EVs) that are involved in OC. This study probed into the mechanism of human MSCs derived-EVs (hMSC-EVs) in regulating OC cell growth and chemotherapy resistance. METHODS hMSCs and EVs were isolated and identified. After adding EVs, the uptake of EVs by OC CAOV3/ES2 cells (for in vitro studies), and cell proliferation, migration, and invasion were detected. Downregulated miRNAs in hMSC-EVs were screened and miR-18a-5p expression in OC patients was detected. The prognosis of OC patients was analyzed. Binding sites of miR-18a-5p and NACC1 were predicted and validated. NACC1 expression in OC tissues was measured by RT-qPCR, and its correlation with miR-18a-5p was analyzed by Pearson method. AKT/mTOR pathway activation was assessed by WB. The cisplatin sensitivity of EVs-treated CAOV3 cells was evaluated via MTT assay and tested by tumor formation assay in nude mice. RESULTS hMSC-EVs suppressed OC cell proliferation, migration, and invasion. miR-18a-5p was downregulated in OC and miR-18a-5p low expression was associated with a poor prognosis. EV-encapsulated miR-18a-5p targeted NACC1. NACC1 was upregulated in OC tissues. miR-18a-5p knockdown and NACC1 overexpression both annulled the inhibition of hMSC-EVs on OC cell growth. AKT and mTOR were elevated in OC and NACC1 activated the AKT/mTOR pathway in OC cells. hMSC-EVs promoted cisplatin sensitivity of OC cells by carrying miR-18a-5p. CONCLUSION hMSC-EVs-derived miR-18a-5p inhibits OC cell proliferation, migration, invasion, and chemotherapy resistance.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Qifang Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
10
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Paggi CA, Dudakovic A, Fu Y, Garces CG, Hevesi M, Galeano Garces D, Dietz AB, van Wijnen AJ, Karperien M. Autophagy Is Involved in Mesenchymal Stem Cell Death in Coculture with Chondrocytes. Cartilage 2021; 13:969S-979S. [PMID: 32693629 PMCID: PMC8721613 DOI: 10.1177/1947603520941227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Cartilage formation is stimulated in mixtures of chondrocytes and human adipose-derived mesenchymal stromal cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the mechanism by which adipose tissue-derived MSC cell death occurs in the presence of chondrocytes. METHODS Human primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, and P62. RESULTS RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the autophagic machinery with no substantial activation of the apoptotic pathway. CONCLUSION In cocultures of human MSCs with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death may contribute to the trophic effects of MSCs on cartilage formation.
Collapse
Affiliation(s)
- Carlo Alberto Paggi
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Yao Fu
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands
| | | | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | | | - Allan B. Dietz
- Department of Laboratory Medicine and
Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA,Andre J. van Wijnen, Department of
Orthopedic Surgery, Mayo Clinic, 200 First Street SW, MedSci 3-69, Rochester, MN
5590, USA.
| | - Marcel Karperien
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Marcel Karperien, Department of
Developmental BioEngineering, University of Twente, 7522 NB, Enschede,
Netherlands.
| |
Collapse
|
12
|
Lewallen EA, Trousdale WH, Thaler R, Yao JJ, Xu W, Denbeigh JM, Nair A, Kocher JP, Dudakovic A, Berry DJ, Cohen RC, Abdel MP, Lewallen DG, van Wijnen AJ. Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells. Tissue Eng Part A 2021; 27:1503-1516. [PMID: 33975459 PMCID: PMC8742309 DOI: 10.1089/ten.tea.2020.0369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Metal orthopedic implants are largely biocompatible and generally achieve long-term structural fixation. However, some orthopedic implants may loosen over time even in the absence of infection. In vivo fixation failure is multifactorial, but the fundamental biological defect is cellular dysfunction at the host-implant interface. Strategies to reduce the risk of short- and long-term loosening include surface modifications, implant metal alloy type, and adjuvant substances such as polymethylmethacrylate cement. Surface modifications (e.g., increased surface rugosity) can increase osseointegration and biological ingrowth of orthopedic implants. However, the localized responses of cells to implant surface modifications need to be better characterized. As an in vitro model for investigating cellular responses to metallic orthopedic implants, we cultured mesenchymal stromal/stem cells on clinical-grade titanium disks (Ti6Al4V) that differed in surface roughness as high (porous structured), medium (grit blasted), and low (bead blasted). Topological characterization of clinically relevant titanium (Ti) materials combined with differential mRNA expression analyses (RNA-seq and real-time quantitative polymerase chain reaction) revealed alterations to the biological phenotype of cells cultured on titanium structures that favor early extracellular matrix production and observable responses to oxidative stress and heavy metal stress. These results provide a descriptive model for the interpretation of cellular responses at the interface between native host tissues and three-dimensionally printed modular orthopedic implants, and will guide future studies aimed at increasing the long-term retention of such materials after total joint arthroplasty. Impact statement Using an in vitro model of implant-to-cell interactions by culturing mesenchymal stromal cells (MSCs) on clinically relevant titanium materials of varying topological roughness, we identified mRNA expression patterns consistent with early extracellular matrix (ECM) production and responses to oxidative/heavy metal stress. Implants with high surface roughness may delay the differentiation and ECM formation of MSCs and alter the expression of genes sensitive to reactive oxygen species and protein kinases. In combination with ongoing animal studies, these results will guide future studies aimed at increasing the long-term retention of widely used titanium materials after total joint arthroplasty.
Collapse
Affiliation(s)
- Eric A. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biological Sciences, Hampton University, Hampton, Virginia, USA
| | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie J. Yao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Wei Xu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet M. Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asha Nair
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean-Pierre Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C. Cohen
- Digital, Robotics, and Enabling Technologies, Stryker Orthopedics, Mahwah, New Jersey, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David G. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
13
|
Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M, Drzyzga A, Matuszczak S, Szala S, Smolarczyk R. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 2021; 11:18335. [PMID: 34526531 PMCID: PMC8443548 DOI: 10.1038/s41598-021-97435-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.
Collapse
Affiliation(s)
- Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
14
|
Storti G, Scioli MG, Kim BS, Terriaca S, Fiorelli E, Orlandi A, Cervelli V. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity? Cells 2021; 10:cells10082117. [PMID: 34440886 PMCID: PMC8392703 DOI: 10.3390/cells10082117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-23188514; Fax: +39-06-23188466
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
| |
Collapse
|
15
|
Takayama Y, Kusamori K, Nishikawa M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin Drug Deliv 2021; 18:1627-1642. [PMID: 34311638 DOI: 10.1080/17425247.2021.1960309] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Drug delivery to solid tumors remains a significant therapeutic challenge. Mesenchymal stem/stromal cells (MSCs) home to tumor tissues and can be employed as tumor targeted drug/gene delivery vehicles. Reportedly, therapeutic gene- or anti-cancer drug-loaded MSCs have shown remarkable anti-tumor effects in preclinical studies, and some clinical trials for assessing therapeutic MSCs in patients with cancer have been registered. AREAS COVERED In the present review, we first discuss the source and interdonor heterogeneity of MSCs, their tumor-homing mechanism, and the route of MSC administration in MSC-based cancer therapy. We then summarize the therapeutic applications of MSCs as a drug delivery vehicle for therapeutic genes or anti-cancer drugs and the drug delivery mechanism from drug-loaded MSCs to cancer cells. EXPERT OPINION Although numerous preclinical studies have revealed significant anti-tumor effects, several clinical trials assessing MSC-based cancer gene therapy have failed to demonstrate corroborative results, documenting limited therapeutic effects. Notably, a successful clinical outcome with MSC-based cancer therapy would require the interdonor heterogeneity of administered MSCs to be resolved, along with improved tumor-homing efficiency and optimized drug delivery efficiency from MSCs to cancer cells.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| |
Collapse
|
16
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
17
|
Oncolytic Foamy Virus - generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells. J Virol 2021; 95:JVI.00015-21. [PMID: 33692205 PMCID: PMC8139661 DOI: 10.1128/jvi.00015-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonpathogenic retroviruses of the Spumaretrovirinae subfamily can persist long-term in the cytoplasm of infected cells, completing their lifecycle only after the nuclear membrane dissolves at the time of cell division. Since the targeting of slowly dividing cancer cells remains an unmet need in oncolytic virotherapy we constructed a replication competent Foamy Virus vector (oFV) from the genomes of two chimpanzee Simian Foamy Viruses (PAN1 and PAN2) and inserted a GFP transgene in place of the bel-2 open reading frame. oFV-GFP infected and propagated with slow kinetics in multiple human tumor cell lines, inducing a syncytial cytopathic effect. Infection of growth arrested MRC5 cells was not productive, but oFV genomes persisted in the cytoplasm and the productive viral lifecycle resumed when cell division was later restored. In vivo, the virus propagated extensively in intraperitoneal ovarian cancer xenografts, slowing tumor growth, significantly prolonging survival of the treated mice and sustaining GFP transgene expression for at least 45 days. Our data indicate that oFV is a promising new replication-competent viral and gene delivery platform for efficient targeting of the most fundamental trait of cancer cells, their ability to sustain chronic proliferation.Significance:The infectivity of certain retroviruses is limited to dividing cells, which makes them attractive tools for targeting cancer cell proliferation. Previously developed replication-competent gammaretroviral vectors spread efficiently in rapidly dividing cancer cells, but not in cancer cells that divide more slowly. In contrast to rapidly proliferating transplantable mouse tumors, slow proliferation is a hallmark of human cancers and may have contributed to the clinical failure of the preclinically promising Murine Leukemia Virus vector Toca511 which failed to show efficacy in a phase 3 clinical trial in patients with glioblastoma. The studies presented in our manuscript show that oncolytic Foamy Virus (oFV) vectors are capable of persisting unintegrated in quiescent cells and resuming their life cycle once the cells start dividing again. This property of oFVs, together with their lack of pathogenicity and their ability to catalyze the fusion of infected cancer cells, makes them an attractive platform for further investigation.
Collapse
|
18
|
Zhang CD, Wang YL, Zhou DM, Zhu MY, Lv Y, Hao XQ, Qu CF, Chen Y, Gu WZ, Wu BQ, Chen PC, Zhao ZY. A recombinant Chinese measles virus vaccine strain rMV-Hu191 inhibits human colorectal cancer growth through inducing autophagy and apoptosis regulating by PI3K/AKT pathway. Transl Oncol 2021; 14:101091. [PMID: 33848808 PMCID: PMC8063909 DOI: 10.1016/j.tranon.2021.101091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The recombinant Chinese measles virus vaccine strain rMV-Hu191 induced efficient infection and oncolytic effects in human CRC both in vitro and in vivo. rMV-Hu191 induced the caspase-dependent apoptosis and complete autophagy in CRC cells. Autophagy served as a protective role in human CRC cells’ apoptosis induced by rMV-Hu191. rMV-Hu191-induced autophagy and apoptosis were regulated by the PI3K/AKT signaling pathway in human CRC.
The potential therapeutic effects of oncolytic measles virotherapy have been verified against plenty of malignancies. However, the oncolytic effects and underlying mechanisms of the recombinant Chinese measles virus vaccine strain Hu191 (rMV-Hu191) against human colorectal cancer (CRC) remain elusive. In this study, the antitumor effects of rMV-Hu191 were evaluated in CRC both in vitro and in vivo. From our data, rMV-Hu191 induced remarkably caspase-dependent apoptosis and complete autophagy in vitro. In mice bearing CRC xenografts, tumor volume was remarkably suppressed and median survival was prolonged significantly with intratumoral treatment of rMV-Hu191. To gain further insight into the relationship of rMV-Hu191-induced apoptosis and autophagy, we utilized Rapa and shATG7 to regulate autophagy. Our data suggested that autophagy was served as a protective role in rMV-Hu191-induced apoptosis in CRC. PI3K/AKT signaling pathway as one of the common upstream pathways of apoptosis and autophagy was activated in CRC after treatment with rMV-Hu191. And inhibition of PI3K/AKT pathway using LY294002 was accompanied by enhanced apoptosis and decreased autophagy which suggested that PI3K/AKT pathway promoted rMV-Hu191-induced autophagy and inhibited rMV-Hu191-induced apoptosis. This is the first study to demonstrate that rMV-Hu191 could be used as a potentially effective therapeutic agent in CRC treatment. As part of the underlying cellular mechanisms, apoptosis and autophagy were involved in the oncolytic effects generated by rMV-Hu191. And the cross-talk between these two processes and the PI3K/AKT signaling pathway was well identified.
Collapse
Affiliation(s)
- Chu-di Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Yi-Long Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Meng-Ying Zhu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Yao Lv
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Xiao-Qiang Hao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Chu-Fan Qu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Yi Chen
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| | - Wei-Zhong Gu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China.
| | - Ben-Qing Wu
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen 518000, China.
| | - Pei-Chun Chen
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen 518000, China.
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang. China; Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang. China.
| |
Collapse
|
19
|
Mooney R, Abidi W, Batalla-Covello J, Ngai HW, Hyde C, Machado D, Abdul-Majid A, Kang Y, Hammad M, Flores L, Copeland G, Dellinger T, Han E, Berlin J, Aboody KS. Allogeneic human neural stem cells for improved therapeutic delivery to peritoneal ovarian cancer. Stem Cell Res Ther 2021; 12:205. [PMID: 33761999 PMCID: PMC7992793 DOI: 10.1186/s13287-021-02226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immortalized, clonal HB1.F3.CD 21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. METHODS To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. RESULTS Here, we report efficient tumor tropism of HB1.F3.CD 21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. CONCLUSIONS Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.
Collapse
Affiliation(s)
- Rachael Mooney
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Wafa Abidi
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jennifer Batalla-Covello
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hoi Wa Ngai
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Caitlyn Hyde
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Diana Machado
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Asma Abdul-Majid
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Yanan Kang
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.,Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Mohamed Hammad
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Linda Flores
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Greg Copeland
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Thanh Dellinger
- Division of Gynecologic Surgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Ernest Han
- Division of Gynecologic Surgery, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jacob Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Karen S Aboody
- City of Hope Familian Sciences 1014A, Department of Developmental and Stem Cell Biology, Beckman Research Institute at City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| |
Collapse
|
20
|
Krull AA, Setter DO, Gendron TF, Hrstka SCL, Polzin MJ, Hart J, Dudakovic A, Madigan NN, Dietz AB, Windebank AJ, van Wijnen AJ, Staff NP. Alterations of mesenchymal stromal cells in cerebrospinal fluid: insights from transcriptomics and an ALS clinical trial. Stem Cell Res Ther 2021; 12:187. [PMID: 33736701 PMCID: PMC7977179 DOI: 10.1186/s13287-021-02241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02241-9.
Collapse
Affiliation(s)
- Ashley A Krull
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Deborah O Setter
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sybil C L Hrstka
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Michael J Polzin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joseph Hart
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicolas N Madigan
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony J Windebank
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
The Potential of Mesenchymal Stromal Cells in Neuroblastoma Therapy for Delivery of Anti-Cancer Agents and Hematopoietic Recovery. J Pers Med 2021; 11:jpm11030161. [PMID: 33668854 PMCID: PMC7996318 DOI: 10.3390/jpm11030161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric cancers and a major cause of cancer-related death in infancy. Conventional therapies including high-dose chemotherapy, stem cell transplantation, and immunotherapy approach a limit in the treatment of high-risk neuroblastoma and prevention of relapse. In the last two decades, research unraveled a potential use of mesenchymal stromal cells in tumor therapy, as tumor-selective delivery vehicles for therapeutic compounds and oncolytic viruses and by means of supporting hematopoietic stem cell transplantation. Based on pre-clinical and clinical advances in neuroblastoma and other malignancies, we assess both the strong potential and the associated risks of using mesenchymal stromal cells in the therapy for neuroblastoma. Furthermore, we examine feasibility and safety aspects and discuss future directions for harnessing the advantageous properties of mesenchymal stromal cells for the advancement of therapy success.
Collapse
|
22
|
Monie DD, Bhandarkar AR, Parney IF, Correia C, Sarkaria JN, Vile RG, Li H. Synthetic and systems biology principles in the design of programmable oncolytic virus immunotherapies for glioblastoma. Neurosurg Focus 2021; 50:E10. [PMID: 33524942 DOI: 10.3171/2020.12.focus20855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Oncolytic viruses (OVs) are a class of immunotherapeutic agents with promising preclinical results for the treatment of glioblastoma (GBM) but have shown limited success in recent clinical trials. Advanced bioengineering principles from disciplines such as synthetic and systems biology are needed to overcome the current challenges faced in developing effective OV-based immunotherapies for GBMs, including off-target effects and poor clinical responses. Synthetic biology is an emerging field that focuses on the development of synthetic DNA constructs that encode networks of genes and proteins (synthetic genetic circuits) to perform novel functions, whereas systems biology is an analytical framework that enables the study of complex interactions between host pathways and these synthetic genetic circuits. In this review, the authors summarize synthetic and systems biology concepts for developing programmable, logic-based OVs to treat GBMs. Programmable OVs can increase selectivity for tumor cells and enhance the local immunological response using synthetic genetic circuits. The authors discuss key principles for developing programmable OV-based immunotherapies, including how to 1) select an appropriate chassis, a vector that carries a synthetic genetic circuit, and 2) design a synthetic genetic circuit that can be programmed to sense key signals in the GBM microenvironment and trigger release of a therapeutic payload. To illustrate these principles, some original laboratory data are included, highlighting the need for systems biology studies, as well as some preliminary network analyses in preparation for synthetic biology applications. Examples from the literature of state-of-the-art synthetic genetic circuits that can be packaged into leading candidate OV chassis are also surveyed and discussed.
Collapse
Affiliation(s)
- Dileep D Monie
- Departments of1Immunology.,6Mayo Clinic Alix School of Medicine.,7Mayo Clinic Graduate School of Biomedical Sciences; and Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Cristina Correia
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | | - Hu Li
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| |
Collapse
|
23
|
Moreno R. Mesenchymal stem cells and oncolytic viruses: joining forces against cancer. J Immunother Cancer 2021; 9:e001684. [PMID: 33558278 PMCID: PMC7871674 DOI: 10.1136/jitc-2020-001684] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
The development of oncolytic viruses (OVs) has increased significantly in the past 20 years, with many candidates entering clinical trials and three of them receiving approval for some indications. Recently, OVs have also gathered interest as candidates to use in combination with immunotherapies for cancer due to their immunogenic properties, which include immunogenic cell death and the possibility to carry therapeutic transgenes in their genomes. OVs transform non-immunogenic 'cold' tumors into inflamed immunogenic 'hot' tumors, where immunotherapies show the highest efficacy. However, in monotherapy or in combination with immunotherapy, OVs face numerous challenges that limit their successful application, in particular upon systemic administration, such as liver sequestration, neutralizing interactions in blood, physical barriers to infection, and fast clearance by the immune system. In this regard, the use of mesenchymal stem cells (MSCs) as cells carrier for OV delivery addresses many of these obstacles acting as virus carriers and factories, expressing additional transgenes, and modulating the immune system. Here, I review the current progress of OVs-loaded MSCs in cancer, focusing on their interaction with the immune system, and discuss new strategies to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Rafael Moreno
- Virotherapy and immunotherapy group, ProCURE Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Cancer Virotherapy group, Oncobell Program, Institutd'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
24
|
Mathot F, Rbia N, Thaler R, Dietz AB, van Wijnen AJ, Bishop AT, Shin AY. Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides. Neural Regen Res 2021; 16:1613-1621. [PMID: 33433492 PMCID: PMC8323683 DOI: 10.4103/1673-5374.303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was hypothesized that mesenchymal stem cells (MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance® Nerve Grafts or NeuraGen® Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance® Nerve Grafts and 30 NeuraGen® Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), pleiotrophin (PTN), growth associated protein 43 (GAP43) and brain-derived neurotrophic factor (BDNF)], myelination [peripheral myelin protein 22 (PMP22) and myelin protein zero (MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1 (PECAM1/CD31) and vascular endothelial cell growth factor alpha (VEGFA)], extracellular matrix (ECM) [collagen type alpha I (COL1A1), collagen type alpha III (COL3A1), Fibulin 1 (FBLN1) and laminin subunit beta 2 (LAMB2)] and cell surface marker cluster of differentiation 96 (CD96) gene expression was quantified. Unseeded Avance® Nerve Grafts and NeuraGen® Nerve Guides were used to evaluate the baseline gene expression, and unseeded MSCs provided the baseline gene expression of MSCs. The interaction of MSCs with the Avance® Nerve Grafts led to a short-term upregulation of neurotrophic (NGF, GDNF and BDNF), myelination (PMP22 and MPZ) and angiogenic genes (CD31 and VEGFA) and a long-term upregulation of BDNF, VEGFA and COL1A1. The interaction between MSCs and the NeuraGen® Nerve Guide led to short term upregulation of neurotrophic (NGF, GDNF and BDNF) myelination (PMP22 and MPZ), angiogenic (CD31 and VEGFA), ECM (COL1A1) and cell surface (CD96) genes and long-term upregulation of neurotrophic (GDNF and BDNF), angiogenic (CD31 and VEGFA), ECM genes (COL1A1, COL3A1, and FBLN1) and cell surface (CD96) genes. Analysis demonstrated MSCs seeded onto NeuraGen® Nerve Guides expressed significantly higher levels of neurotrophic (PTN), angiogenic (VEGFA) and ECM (COL3A1, FBLN1) genes in the long term period compared to MSCs seeded onto Avance® Nerve Grafts. Overall, the interaction between human MSCs and both nerve graft substitutes resulted in a significant upregulation of the expression of numerous genes important for nerve regeneration over time. The in vitro interaction of MSCs with the NeuraGen® Nerve Guide was more pronounced, particularly in the long term period (> 14 days after seeding). These results suggest that MSC-seeding has potential to be applied in a clinical setting, which needs to be confirmed in future in vitro and in vivo research.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
NSCs are permissive to oncolytic Myxoma virus and provide a delivery method for targeted ovarian cancer therapy. Oncotarget 2020; 11:4693-4698. [PMID: 33473255 PMCID: PMC7771716 DOI: 10.18632/oncotarget.27845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Despite the development of many anticancer agents over the past 20 years, ovarian cancer remains the most lethal gynecologic malignancy. Due to a lack of effective screening, the majority of patients with ovarian cancer are diagnosed at an advanced stage, and only ~20% of patients are cured. Thus, in addition to improved screening methods, there is an urgent need for novel anticancer agents that are effective against late-stage, metastatic disease. Oncolytic virotherapy is a promising approach; unfortunately, systemic delivery of viruses to tumors remains a major challenge. In this regard, neural stem/progenitor cells (NSCs) with well-established tumor-homing properties may serve as an effective delivery platform for oncolytic viruses. In this study, we tested the efficacy of myxoma virus (MYXV), a rabbit-specific poxvirus that has demonstrated efficacy against a variety of tumors, using human and mouse ovarian cancer cell lines. We showed that MYXV effectively lysed ovarian cancer cells in vitro, reducing their viability. We also demonstrated that MYXV can infect human NSCs, specifically the clonal HB1.F3.CD21 NSC line. Taken together, these results suggest that NSC-mediated delivery of MYXV may be a promising strategy for achieving more selectively targeted anti-tumor efficacy.
Collapse
|
26
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
A Potential Theragnostic Regulatory Axis for Arthrofibrosis Involving Adiponectin (ADIPOQ) Receptor 1 and 2 (ADIPOR1 and ADIPOR2), TGFβ1, and Smooth Muscle α-Actin (ACTA2). J Clin Med 2020; 9:jcm9113690. [PMID: 33213041 PMCID: PMC7698546 DOI: 10.3390/jcm9113690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Arthrofibrosis is a common cause of patient debility and dissatisfaction after total knee arthroplasty (TKA). The diversity of molecular pathways involved in arthrofibrosis disease progression suggest that effective treatments for arthrofibrosis may require a multimodal approach to counter the complex cellular mechanisms that direct disease pathogenesis. In this study, we leveraged RNA-seq data to define genes that are suppressed in arthrofibrosis patients and identified adiponectin (ADIPOQ) as a potential candidate. We hypothesized that signaling pathways activated by ADIPOQ and the cognate receptors ADIPOR1 and ADIPOR2 may prevent fibrosis-related events that contribute to arthrofibrosis. (2) Methods: Therefore, ADIPOR1 and ADIPOR2 were analyzed in a TGFβ1 inducible cell model for human myofibroblastogenesis by both loss- and gain-of-function experiments. (3) Results: Treatment with AdipoRon, which is a small molecule agonist of ADIPOR1 and ADIPOR2, decreased expression of collagens (COL1A1, COL3A1, and COL6A1) and the myofibroblast marker smooth muscle α-actin (ACTA2) at both mRNA and protein levels in basal and TGFβ1-induced cells. (4) Conclusions: Thus, ADIPOR1 and ADIPOR2 represent potential drug targets that may attenuate the pathogenesis of arthrofibrosis by suppressing TGFβ-dependent induction of myofibroblasts. These findings also suggest that AdipoRon therapy may reduce the development of arthrofibrosis by mediating anti-fibrotic effects in joint capsular tissues.
Collapse
|
28
|
Personalized Oncolytic Therapy: The Next Step Toward the Successful Clinical Application of Vaccine-Strain Measles Viruses for Cancer Therapy? J Thorac Oncol 2020; 15:689-691. [PMID: 32340675 DOI: 10.1016/j.jtho.2020.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022]
|
29
|
Hammad M, Cornejo YR, Batalla-Covello J, Majid AA, Burke C, Liu Z, Yuan YC, Li M, Dellinger TH, Lu J, Chen NG, Fong Y, Aboody KS, Mooney R. Neural Stem Cells Improve the Delivery of Oncolytic Chimeric Orthopoxvirus in a Metastatic Ovarian Cancer Model. Mol Ther Oncolytics 2020; 18:326-334. [PMID: 32775617 PMCID: PMC7394740 DOI: 10.1016/j.omto.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy represents a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance, which reduces viral delivery to the tumor. Patient-derived mesenchymal stem cells that home to tumors have been used as viral delivery tools, but variability associated with autologous cell isolations limits the clinical applicability of this approach. We previously developed an allogeneic, clonal neural stem cell (NSC) line (HB1.F3.CD21) that can be used to deliver viral cargo. Here, we demonstrate that this NSC line can improve the delivery of a thymidine kinase gene-deficient conditionally replication-competent orthopoxvirus, CF33, in a preclinical cisplatin-resistant peritoneal ovarian metastases model. Overall, our findings provide the basis for using off-the-shelf allogeneic cell-based delivery platforms for oncolytic viruses, thus providing a more efficient delivery alternative compared with the free virus administration approach.
Collapse
Affiliation(s)
- Mohamed Hammad
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Yvonne R. Cornejo
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School for Biological Sciences at the Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jennifer Batalla-Covello
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School for Biological Sciences at the Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Asma Abdul Majid
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Connor Burke
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Zheng Liu
- Translational Bioinformatics Division, Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Translational Bioinformatics Division, Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Min Li
- Department of Information Sciences, Division of Biostatistics at the Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Thanh H. Dellinger
- Division of Gynecologic Surgery, Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Nanhai G. Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
- Center for Gene Therapy, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
- Center for Gene Therapy, City of Hope, Duarte, CA 91010, USA
| | - Karen S. Aboody
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Division of Neurosurgery, City of Hope, Duarte, CA 91010, USA
| | - Rachael Mooney
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
30
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
31
|
Jazowiecka-Rakus J, Sochanik A, Rusin A, Hadryś A, Fidyk W, Villa N, Rahman MM, Chmielik E, Franco LS, McFadden G. Myxoma Virus-Loaded Mesenchymal Stem Cells in Experimental Oncolytic Therapy of Murine Pulmonary Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:335-350. [PMID: 32775618 PMCID: PMC7398944 DOI: 10.1016/j.omto.2020.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses can target neoplasms, triggering oncolytic and immune effects. Their delivery to melanoma lesions remains challenging. Bone-marrow-derived mesenchymal stem cells (MSCs) were shown to be permissive for oncolytic myxoma virus (MYXV), allowing its transfer to melanoma cells, leading to their killing. Involvement of progeny virus was demonstrated in the transfer from MSCs to co-cultured melanoma cells. The inhibitory effect of virus on melanoma foci formation in murine lungs was revealed using melanoma cells previously co-cultured with MYXV-infected MSCs. Virus accumulation and persistence in lungs of lesion-bearing mice were shown following intravenous administration of MSC-shielded MYXV construct encoding luciferase. Therapy of experimentally induced lung melanoma in mice with interleukin (IL)-15-carrying MYXV construct delivered by MSCs led to marked regression of lesions and could increase survival. Elevated natural killer (NK) cell percentages in blood indicated robust innate responses against unshielded virus only. Lung infiltration by NK cells was followed by inflow of CD8+ T lymphocytes into melanoma lesions. Elevated expression of genes involved in adaptive immune response following oncolytic treatment was confirmed using RT-qPCR. No adverse pathological effects related to MSC-mediated oncolytic therapy with MYXV were observed. MSCs allow for safe and efficient ferrying of therapeutic MYXV to pulmonary melanoma foci triggering immune effects.
Collapse
Affiliation(s)
- Joanna Jazowiecka-Rakus
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
- Corresponding author: Joanna Jazowiecka-Rakus, Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland.
| | - Aleksander Sochanik
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Aleksandra Rusin
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Agata Hadryś
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Wojciech Fidyk
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Nancy Villa
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | - Ewa Chmielik
- Maria Skłodowska-Curie Memorial National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Lina S. Franco
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
32
|
Mathot F, Rbia N, Thaler R, Bishop AT, van Wijnen AJ, Shin AY. Introducing human adipose-derived mesenchymal stem cells to Avance Ⓡ nerve grafts and NeuraGen Ⓡ nerve guides. J Plast Reconstr Aesthet Surg 2020; 73:1473-1481. [PMID: 32418840 DOI: 10.1016/j.bjps.2020.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND When direct nerve coaptation is impossible after peripheral nerve injury, autografts, processed allografts, or conduits are used to bridge the nerve gap. The purpose of this study was to examine if human adipose-derived Mesenchymal Stromal/Stem Cells (MSCs) could be introduced to commercially available nerve graft substitutes and to determine cell distribution and the seeding efficiency of a dynamic seeding strategy. METHODS MTS assays examined the viability of human MSCs after introduction to the AvanceⓇ Nerve Graft and the NeuraGenⓇ Nerve Guide. MSCs were dynamically seeded on nerve substitutes for either 6, 12, or 24 h. Cell counts, live/dead stains, Hoechst stains, and Scanning Electron Microscopy (SEM) revealed the seeding efficiency and the distribution of MSCs after seeding. RESULTS The viability of MSCs was not affected by nerve substitutes. Dynamic seeding led to uniformly distributed MSCs over the surface of both nerve substitutes and revealed MSCs on the inner surface of the NeuraGenⓇ Nerve Guides. The maximal seeding efficiency of NeuraGenⓇ Nerve Guides (94%), obtained after 12 h was significantly higher than that of AvanceⓇ Nerve Grafts (66%) (p = 0.010). CONCLUSION Human MSCs can be dynamically seeded on AvanceⓇ Nerve Grafts and NeuraGenⓇ Nerve Guides. The optimal seeding duration was 12 h. MSCs were distributed in a uniform fashion on exposed surfaces. This study demonstrates that human MSCs can be effectively and efficiently seeded onto commercially available nerve autograft substitutes in a timely fashion and sets the stage for the clinical application of MSC-seeded nerve graft substitutes clinically.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roman Thaler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
33
|
Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19:463-479. [PMID: 32612263 DOI: 10.1038/s41573-020-0064-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Naturally occurring stem cells isolated from humans have been used therapeutically for decades. This has primarily involved the transplantation of primary cells such as haematopoietic and mesenchymal stem cells and, more recently, derivatives of pluripotent stem cells. However, the advent of cell-engineering approaches is ushering in a new generation of stem cell-based therapies, greatly expanding their therapeutic utility. These next-generation stem cells are being used as 'Trojan horses' to improve the delivery of drugs and oncolytic viruses to intractable tumours and are also being engineered with angiogenic, neurotrophic and anti-inflammatory molecules to accelerate the repair of injured or diseased tissues. Moreover, gene therapy and gene editing technologies are being used to create stem cell derivatives with improved functionality, specificity and responsiveness compared with their natural counterparts. Here, we review these engineering approaches and areas in which they will help broaden the utility and clinical applicability of stem cells.
Collapse
|
34
|
Cobalt and Chromium Ion Release in Metal-on-Polyethylene and Ceramic-on-Polyethylene THA: A Simulator Study With Cellular and Microbiological Correlations. J Arthroplasty 2020; 35:1123-1129. [PMID: 31852609 PMCID: PMC7085456 DOI: 10.1016/j.arth.2019.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The aims of this study were to determine the levels of cobalt (Co) and chromium (Cr) ions generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs. Furthermore, we aimed to investigate the cytotoxic effect of these ion levels on native tissues and their potential to modify periprosthetic joint infection risk. METHODS We used in vitro culture of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis cultures, respectively. Ten hip simulator constructs (5 MoP and 5 CoP) were assembled and run for 1,000,000 cycles in bovine serum and evaluated for CoCr concentration. Cytotoxicity and growth impact on AMSCs and S. epidermidis was compared between CoCr and inert silicon dioxide. RESULTS After 1,000,000 cycles, mean MoP and CoP Co concentration was 2264 and 0.6 ng/mL, respectively (P < .001). Mean MoP and CoP Cr concentration was 217 and 4.3 ng/mL, respectively (P < .001). Mean MoP Co:Cr ratio was 10:1. Co ions were significantly more toxic to human AMSCs than control silicon dioxide in a dose-response manner (P < .001). S. epidermidis growth was not significantly impacted by Co concentrations observed in the simulators. CONCLUSION MoP constructs built in ideal conditions generated substantial CoCr debris, highlighting a baseline risk with these implants that may be exacerbated by host factors or imperfect surgical technique. Evaluation of impact on AMSCs suggests that debris levels produced under simulator conditions can be cytotoxic. In addition, these concentrations did not potentiate or inhibit S. epidermidis growth, suggesting that elevated periprosthetic joint infection rates with adverse local tissue reaction are related to other factors potentially associated with tissue necrosis.
Collapse
|
35
|
Mathot F, Rbia N, Bishop AT, Hovius SER, Shin AY. Adipose derived mesenchymal stem cells seeded onto a decellularized nerve allograft enhances angiogenesis in a rat sciatic nerve defect model. Microsurgery 2020; 40:585-592. [PMID: 32233045 DOI: 10.1002/micr.30579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Adipose derived mesenchymal stem cells (MSCs) are hypothesized to supplement tissues with growth factors essential for regeneration and neovascularization. The purpose of this study was to determine the effect of MSCs with respect to neoangiogenesis when seeded onto a decellularized nerve allograft in a rat sciatic nerve defect model. METHODS Allograft nerves were harvested from Sprague-Dawley rats and decellularized. MSCs were obtained from Lewis rats. 10 mm sciatic nerve defects in Lewis rats were reconstructed with reversed autograft nerves, decellularized allografts, decellularized allografts seeded with undifferentiated MSC or decellularized allografts seeded with differentiated MSCs. At 16 weeks, the vascular surface area and volume were evaluated. RESULTS The vascular surface area in normal nerves (34.9 ± 5.7%), autografts (29.5 ± 8.7%), allografts seeded with differentiated (38.9 ± 7.0%) and undifferentiated MSCs (29.2 ± 3.4%) did not significantly differ from each other. Unseeded allografts (21.2 ± 6.2%) had a significantly lower vascular surface area percentage than normal nonoperated nerves (13.7%, p = .001) and allografts seeded with differentiated MSCs (17.8%, p = .001). Although the vascular surface area was significantly correlated to the vascular volume (r = .416; p = .008), no significant differences were found between groups concerning vascular volumes. The vascularization pattern in allografts seeded with MSCs consisted of an extensive nonaligned network of microvessels with a centripetal pattern, while the vessels in autografts and normal nerves were more longitudinally aligned with longitudinal inosculation patterns. CONCLUSIONS Neoangiogenesis of decellularized allograft nerves was enhanced by stem cell seeding, in particular by differentiated MSCs. The pattern of vascularization was different between decellularized allograft nerves seeded with MSCs compared to autograft nerves.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven E R Hovius
- Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands.,Xpert Clinic, Hand and Wrist Surgery, Eindhoven, The Netherlands
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, Thanh VV, Truong DT, Dinh TC. Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells 2020; 9:cells9030563. [PMID: 32121074 PMCID: PMC7140431 DOI: 10.3390/cells9030563] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The insufficient and unspecific target of traditional therapeutic approaches in cancer treatment often leads to therapy resistance and cancer recurrence. Over the past decades, accumulating discoveries about stem cell biology have provided new potential approaches to cure cancer patients. Stem cells possess unique biological actions, including self-renewal, directional migration, differentiation, and modulatory effects on other cells, which can be utilized as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. In this review, we emphasize the mechanisms underlying the use of various types of stem cells in cancer treatment. In addition, we summarize recent progress in the clinical applications of stem cells, as well as common risks of this therapy. We finally give general directions for future studies, aiming to improve overall outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Department of Human and Animal Physiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- Correspondence: (D.-T.C.); (T.C.D.); Tel.: +84966409783 (D.-T.C.)
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541, Korea; (T.T.N.); (J.-H.J.)
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang-Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541, Korea; (T.T.N.); (J.-H.J.)
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Dang Tien Truong
- Department of Anatomy, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (D.-T.C.); (T.C.D.); Tel.: +84966409783 (D.-T.C.)
| |
Collapse
|
37
|
Hadryś A, Sochanik A, McFadden G, Jazowiecka-Rakus J. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. Eur J Pharmacol 2020; 874:172991. [PMID: 32044323 DOI: 10.1016/j.ejphar.2020.172991] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Progress in genetic engineering led to the emergence of some viruses as potent anticancer therapeutics. These oncolytic viruses combine self-amplification with dual antitumor action: oncolytic (destruction of cancer cells) and immunostimulatory (eliciting acquired antitumor response against cancer epitopes). As any other viruses, they trigger antiviral response upon systemic administration. Mesenchymal stem cells are immature cells capable of self-renewing and differentiating into many cell types that belong to three germinal layers. Due to their inherent tumor tropism mesenchymal stem cells loaded with oncolytic virus can improve delivery of the therapeutic cargo to cancer sites. Shielding of oncolytic viral construct from antiviral host immune response makes these cells prospective delivery vehicles to even hard-to-reach metastatic neoplastic foci. Use of mesenchymal stem cells has been criticized by some investigators as limiting proliferative abilities of primary cells and increasing the risk of malignant transformation, as well as attenuating therapeutic responses. However, majority of preclinical studies indicate safety and efficacy of mesenchymal stem cells used as carriers of oncolytic viruses. In view of contradictory postulates, the debate continues. The review discusses mesenchymal stem cells as carriers for delivery of genetically engineered oncolytic constructs and focuses on systemic approach to oncoviral treatment of some deadly neoplasms.
Collapse
Affiliation(s)
- Agata Hadryś
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Institute of Chemistry, University of Silesia, Poland.
| | - Aleksander Sochanik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|
38
|
Functional expression of ZNF467 and PCBP2 supports adipogenic lineage commitment in adipose-derived mesenchymal stem cells. Gene 2020; 737:144437. [PMID: 32032745 DOI: 10.1016/j.gene.2020.144437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 01/13/2023]
Abstract
Bone marrow-derived mesenchymal stromal/stem cells (BMSCs) have the potential to be employed in many different skeletal therapies. A major limitation to utilizing BMSCs as a therapeutic strategy in human disease and tissue regeneration is the low cell numbers obtained from initial isolation necessitating multiple cell passages that can lead to decreased cell quality. Adipose-derived mesenchymal stromal/stem cells (AMSCs) have been proposed as an alternative cell source for regenerative therapies; however the differentiation capacity of these cells differs from BMSCs. To understand the differences between BMSCs and AMSCs, we compared the global gene expression profiles of BMSCs and AMSCs and identified two genes, PCBP2 and ZNF467 that were differentially expressed between AMSCs and BMSCs. We demonstrate that PCBP2 and ZNF467 impact adipogenic but not osteogenic differentiation, further supporting evidence that AMSCs and BMSCs appear to be adapted to their microenvironment.
Collapse
|
39
|
Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci Rep 2020; 10:425. [PMID: 31949228 PMCID: PMC6965634 DOI: 10.1038/s41598-019-57240-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/21/2019] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) loaded with oncolytic viruses are presently being investigated as a new modality of advanced/metastatic tumors treatment and enhancement of virotherapy. MSCs can, however, either promote or suppress tumor growth. To address the critical question of how MSCs loaded with oncolytic viruses affect virotherapy outcomes and tumor growth patterns in a tumor microenvironment, we developed and analyzed an integrated mathematical-experimental model. We used the model to describe both the growth dynamics in our experiments of firefly luciferase-expressing Hep3B tumor xenografts and the effects of the immune response during the MSCs-based virotherapy. We further employed it to explore the conceptual clinical feasibility, particularly, in evaluating the relative significance of potential immune promotive/suppressive mechanisms induced by MSCs loaded with oncolytic viruses. We were able to delineate conditions which may significantly contribute to the success or failure of MSC-based virotherapy as well as generate new hypotheses. In fact, one of the most impactful outcomes shown by this investigation, not inferred from the experiments alone, was the initially counter-intuitive fact that using tumor-promoting MSCs as carriers is not only helpful but necessary in achieving tumor control. Considering the fact that it is still currently a controversial debate whether MSCs exert a pro- or anti-tumor action, mathematical models such as this one help to quantitatively predict the consequences of using MSCs for delivering virotherapeutic agents in vivo. Taken together, our results show that MSC-mediated systemic delivery of oncolytic viruses is a promising strategy for achieving synergistic anti-tumor efficacy with improved safety profiles.
Collapse
|
40
|
Li L, Pan J, Cai X, Gong E, Xu C, Zheng H, Cao Z, Yin Z. Human umbilical cord mesenchymal stem cells suppress lung cancer via TLR4/NF-κB signalling pathway. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1712257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lu Li
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Jiongwei Pan
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Xiaoping Cai
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Enhui Gong
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Cunlai Xu
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Hao Zheng
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Zhuo Cao
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Zhangyong Yin
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| |
Collapse
|
41
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
42
|
Russell SJ, Babovic-Vuksanovic D, Bexon A, Cattaneo R, Dingli D, Dispenzieri A, Deyle DR, Federspiel MJ, Fielding A, Galanis E, Lacy MQ, Leibovich BC, Liu MC, Muñoz-Alía M, Miest TC, Molina JR, Mueller S, Okuno SH, Packiriswamy N, Peikert T, Raffel C, Van Rhee F, Ungerechts G, Young PR, Zhou Y, Peng KW. Oncolytic Measles Virotherapy and Opposition to Measles Vaccination. Mayo Clin Proc 2019; 94:1834-1839. [PMID: 31235278 PMCID: PMC6800178 DOI: 10.1016/j.mayocp.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Recent measles epidemics in US and European cities where vaccination coverage has declined are providing a harsh reminder for the need to maintain protective levels of immunity across the entire population. Vaccine uptake rates have been declining in large part because of public misinformation regarding a possible association between measles vaccination and autism for which there is no scientific basis. The purpose of this article is to address a new misinformed antivaccination argument-that measles immunity is undesirable because measles virus is protective against cancer. Having worked for many years to develop engineered measles viruses as anticancer therapies, we have concluded (1) that measles is not protective against cancer and (2) that its potential utility as a cancer therapy will be enhanced, not diminished, by prior vaccination.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN.
| | | | | | | | - David Dingli
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - David R Deyle
- Division of Medical Genetics, Mayo Clinic, Rochester, MN
| | | | - Adele Fielding
- Department of Hematology, UCL Cancer Institute, London, UK
| | - Eva Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN; Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | | | - Minetta C Liu
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | | | | | - Sabine Mueller
- Department of Neurology, University of California, San Francisco
| | - Scott H Okuno
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Corey Raffel
- Department of Neurology, University of California, San Francisco
| | - Frits Van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock
| | - Guy Ungerechts
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul R Young
- Department of Urology, Mayo Clinic, Jacksonville, FL
| | - Yumei Zhou
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
43
|
Nie H, Kubrova E, Wu T, Denbeigh JM, Hunt C, Dietz AB, Smith J, Qu W, van Wijnen AJ. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11:1218-1227. [PMID: 30784215 DOI: 10.1002/pmrj.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the biologic effects of lidocaine on the viability, proliferation, and function of human adipose tissue-derived mesenchymal stromal/stem cells (MSCs) in vitro. METHODS Adipose-derived MSCs from three donors were exposed to lidocaine at various dilutions (2 mg/mL to 8 mg/mL) and exposure times (0.5 to 4 hours). Cell number and viability, mitochondrial activity, and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) were analyzed at 0 (immediate effects) or 24 and 48 hours (recovery effects) after treatment with lidocaine. RESULTS Trypan blue staining showed that increasing concentrations of lidocaine decreased the number of observable viable cells. 3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium (MTS) assays revealed a concentration- and time- dependent decline of mitochondrial activity and proliferative ability. Gene expression analysis by RT-qPCR revealed that adipose-derived MSCs exposed to lidocaine express robust levels of stress response/cytoprotective genes. However, higher concentrations of lidocaine caused a significant downregulation of these genes. No significant differences were observed in expression of extracellular matrix (ECM) markers COL1A1 and DCN except for COL3A1 (P < .05). Levels of messenger RNA (mRNA) for proliferation markers (CCNB2, HIST2H4A, P < .001) and MKI67 (P < .001) increased at 24 and 48 hours. Expression levels of several transcription factors- including SP1, PRRX1, and ATF1-were modulated in the same manner. MSC surface markers CD44 and CD105 demonstrated decreased expression immediately after treatment, but at 24 and 48 hours postexposure, the MSC markers showed no significant difference among groups. CONCLUSION Lidocaine is toxic to MSCs in a dose- and time- dependent manner. MSC exposure to high (4-8 mg/mL) concentrations of lidocaine for prolonged periods can affect their biologic functions. Although the exposure time in vivo is short, it is essential to choose safe concentrations when applying lidocaine along with MSCs to avoid compromising the viability and potency of the stem cell therapy.
Collapse
Affiliation(s)
- Hai Nie
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Eva Kubrova
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Tao Wu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Janet M Denbeigh
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Christine Hunt
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
44
|
Guo Y, Zhang Z, Xu X, Xu Z, Wang S, Huang D, Li Y, Mou X, Liu F, Xiang C. Menstrual Blood-Derived Stem Cells as Delivery Vehicles for Oncolytic Adenovirus Virotherapy for Colorectal Cancer. Stem Cells Dev 2019; 28:882-896. [PMID: 30991894 DOI: 10.1089/scd.2018.0222] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic adenoviruses (Ads) have potential applications in cancer therapy due to their ability to replicate and induce tumor cell death. However, their clinical application has been limited by the lack of efficient cell-based delivery systems that can provide protection from immune attack and prevent virus clearance by neutralizing antibodies. We previously demonstrated that menstrual blood-derived mesenchymal stem cells (MenSCs) can specifically target tumor cells and serve as a novel drug delivery platform. We engineered CRAd5/F11 chimeric oncolytic Ads that can infect MenSCs and preserve their tumor targeting ability in vitro. MenSCs loaded with these Ads were transplanted in a mouse tumor model. We found that a large number of the CRAd5/F11 viruses were accumulated in tumor site and mediated marked inhibitory effects against colorectal cancer (CRC). Thus, we concluded that MenSC-cloaked oncolytic Ads hold great potential as a novel virus-delivery platform for the therapy of various cancers, including CRC.
Collapse
Affiliation(s)
- Yang Guo
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenzhen Zhang
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaogang Xu
- 2 Zhejiang Hospital and Zhejiang Provincial Key Lab of Geriatrics, Hangzhou, China
| | - Zhenyu Xu
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibing Wang
- 3 Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,4 Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Dongsheng Huang
- 3 Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,4 Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Yifei Li
- 5 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhou Mou
- 3 Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,4 Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Fanlong Liu
- 6 Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,5 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Rbia N, Bulstra LF, Lewallen EA, Hovius SER, van Wijnen AJ, Shin AY. Seeding decellularized nerve allografts with adipose-derived mesenchymal stromal cells: An in vitro analysis of the gene expression and growth factors produced. J Plast Reconstr Aesthet Surg 2019; 72:1316-1325. [PMID: 31175032 DOI: 10.1016/j.bjps.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/07/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022]
Abstract
Mesenchymal stromal cells (MSCs) secrete many soluble growth factors and have previously been shown to stimulate nerve regeneration. MSC-seeded processed nerve allografts could potentially be a promising method for large segmental motor nerve injuries. Further progress in our understanding of how the functions of MSCs can be leveraged for peripheral nerve repair is required before making clinical translation. The present study, therefore, investigated whether interactions of adipose-derived MSCs with decellularized nerve allografts can improve gene and protein expression of growth factors that may support nerve regeneration. Human nerve allografts (n = 30) were decellularized and seeded with undifferentiated human adipose-derived MSCs. Subsequently, the MSCs and MSC-seeded grafts were isolated on days 3, 7, 14, and 21 in culture for RNA expression analysis by qRT-PCR. Evaluated genes included NGF, BDNF, PTN, GAP43, MBP, PMP22, VEGF, and CD31. Growth factor production was evaluated and quantified using enzyme-linked immunosorbent assay (ELISA). On day 21, semi-quantitative RT-PCR analysis showed that adherence of MSCs to nerve allografts significantly enhances mRNA expression of neurotrophic, angiogenic, endothelial, and myelination markers (e.g., BDNF, VEGF, CD31, and MBP). ELISA results revealed an upregulation of BDNF and reduction of both VEGF and NGF protein levels. This study demonstrates that seeding of undifferentiated adipose-derived MSCs onto processed nerve allografts permits the secretion of neurotrophic and angiogenic factors that can stimulate nerve regeneration. These favorable molecular changes suggest that MSC supplementation of nerve allografts may have potential in improving nerve regeneration.
Collapse
Affiliation(s)
- Nadia Rbia
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - Liselotte F Bulstra
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | - Eric A Lewallen
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA; Department of Biological Sciences, Hampton University, 100 E Queen St, Hampton, VA 23668, USA
| | - Steven E R Hovius
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands; Xpert Clinic, Hand and Wrist Surgery, Jan Leentvaarlaan 14-24, 3065 DC Rotterdam, the Netherlands
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA.
| |
Collapse
|
46
|
Bai Y, Hui P, Du X, Su X. Updates to the antitumor mechanism of oncolytic virus. Thorac Cancer 2019; 10:1031-1035. [PMID: 30900824 PMCID: PMC6501037 DOI: 10.1111/1759-7714.13043] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are promising new therapeutic agents in the field of malignant tumor treatment. OVs can achieve the goal of targeted therapy by selectively killing tumor cells and inducing specific antitumor immunity. The key roles of OVs are tumor targeting and tumor killing mechanisms. Recently, molecular biotechnology has been used to optimize the transformation of wild virus strains in order to ensure a stronger oncolytic effect and lower adverse reactions, to enable testing in clinical trials as an antitumor drug. The main purpose of this review is to provide a description of oncolytic mechanisms, clinical studies, combination therapies, current challenges, and future prospects of OVs.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Hui
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Martinez-Quintanilla J, Seah I, Chua M, Shah K. Oncolytic viruses: overcoming translational challenges. J Clin Invest 2019; 129:1407-1418. [PMID: 30829653 DOI: 10.1172/jci122287] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in which WT or engineered viruses selectively replicate and destroy tumor cells while sparing normal ones. In the last two decades, different oncolytic viruses (OVs) have been modified and tested in a number of preclinical studies, some of which have led to clinical trials in cancer patients. These clinical trials have revealed several critical limitations with regard to viral delivery, spread, resistance, and antiviral immunity. Here, we focus on promising research strategies that have been developed to overcome the aforementioned obstacles. Such strategies include engineering OVs to target a broad spectrum of tumor cells while evading the immune system, developing unique delivery mechanisms, combining other immunotherapeutic agents with OVT, and using clinically translatable mouse tumor models to potentially translate OVT more readily into clinical settings.
Collapse
Affiliation(s)
| | - Ivan Seah
- Center for Stem Cell Therapeutics and Imaging and
| | - Melissa Chua
- Center for Stem Cell Therapeutics and Imaging and.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging and.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
A Simple Dynamic Strategy to Deliver Stem Cells to Decellularized Nerve Allografts. Plast Reconstr Surg 2019; 142:402-413. [PMID: 29889737 DOI: 10.1097/prs.0000000000004614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The addition of adipose-derived mesenchymal stromal cells to decellularized nerve allografts may improve outcomes of nerve reconstruction. Prior techniques used for cell seeding are traumatic to both the mesenchymal stromal cells and nerve graft. An adequate, reliable, and validated cell seeding technique is an essential step for evaluating the translational utility of mesenchymal stromal cell-enhanced decellularized nerve grafts. The purpose of this study was to develop a simple seeding strategy with an optimal seeding duration. METHODS A dynamic bioreactor was used to seed rat and human mesenchymal stromal cells separately onto rat and human decellularized nerve allografts. Cell viability was evaluated by MTS assays and cellular topology after seeding was determined by scanning electron microscopy. Cell density and distribution were determined by Live/Dead assays and Hoechst staining at four different time points (6, 12, 24, and 72 hours). The validity and reliability of the seeding method were calculated. RESULTS Cells remained viable at all time points, and mesenchymal stromal cells exhibited exponential growth in the first 12 hours of seeding. Seeding efficiency increased significantly from 79.5 percent at 6 hours to 89.2 percent after 12 hours of seeding (p = 0.004). Both intrarater reliability (r = 0.97) and interrater reliability (r = 0.92) of the technique were high. CONCLUSIONS This study describes and validates a new method of effectively seeding decellularized nerve allografts with mesenchymal stromal cells. This method is reproducible, distributes cells homogenously over the graft, and does not traumatize the intraneural architecture of the allograft. Use of this validated seeding technique will permit critical comparison of graft outcomes.
Collapse
|
49
|
Mooney R, Majid AA, Batalla-Covello J, Machado D, Liu X, Gonzaga J, Tirughana R, Hammad M, Lesniak MS, Curiel DT, Aboody KS. Enhanced Delivery of Oncolytic Adenovirus by Neural Stem Cells for Treatment of Metastatic Ovarian Cancer. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:79-92. [PMID: 30719498 PMCID: PMC6350263 DOI: 10.1016/j.omto.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
Oncolytic virotherapy is a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance or neutralization of the virus, which reduces viral access to tumor foci. To overcome this barrier, patient-derived mesenchymal stem cells have been used to deliver virus to tumors, but variability associated with autologous cell isolations prevents this approach from being broadly clinically applicable. Here, we demonstrate the ability of an allogeneic, clonal neural stem cell (NSC) line (HB1.F3.CD21) to protect oncolytic viral cargo from neutralizing antibodies within patient ascites fluid and to deliver it to tumors within preclinical peritoneal ovarian metastases models. The viral payload used is a conditionally replication-competent adenovirus driven by the survivin promoter (CRAd-S-pk7). Because the protein survivin is highly expressed in ovarian cancer, but not in normal differentiated cells, viral replication should occur selectively in ovarian tumor cells. We found this viral agent was effective against cisplatin-resistant ovarian tumors and could be used as an adjunct treatment with cisplatin to decrease tumor burden without increasing toxicity. Collectively, our data suggest NSC-delivered CRAd-S-pk7 virotherapy holds promise for improving clinical outcome, reducing toxicities, and improving quality of life for patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Asma Abdul Majid
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jennifer Batalla-Covello
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Diana Machado
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xueli Liu
- Department of Information Sciences, Division of Biostatistics at the Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Joanna Gonzaga
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Revathiswari Tirughana
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Mohamed Hammad
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - David T Curiel
- Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA
| | - Karen S Aboody
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.,Division of Neurosurgery, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
50
|
Fleifel D, Rahmoon MA, AlOkda A, Nasr M, Elserafy M, El-Khamisy SF. Recent advances in stem cells therapy: A focus on cancer, Parkinson's and Alzheimer's. J Genet Eng Biotechnol 2018; 16:427-432. [PMID: 30733756 PMCID: PMC6354001 DOI: 10.1016/j.jgeb.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Stem cells serve as potential therapeutics due to their high proliferative capacity, low immunogenic reactivity and their differentiating capabilities. Several pre-clinical and early-stage clinical studies are carried out to treat genetic diseases, cancers and neurodegenerative disorders with promising preliminary results. However, there are still many challenges that scientists are trying to overcome such as the unclear expression profile of stem cells in vivo, the homing of stem cells to the site of injury and their potential immune-reactivity. Prospective research lies in gene editing of autologous stem cells in vitro and safe injection of these modified cells back into patients. Here, we review the clinical trials executed using stem cell therapy in an attempt to cure challenging diseases like cancer, Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Dalia Fleifel
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mai Atef Rahmoon
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Abdelrahman AlOkda
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mostafa Nasr
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Sherif F. El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza 12578, Egypt
- Krebs Institute, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 2TN Sheffield, UK
| |
Collapse
|