1
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Chai D, Wang X, Neeli P, Zhou S, Yu X, Sabapathy K, Li Y. DNA-delivered monoclonal antibodies targeting the p53 R175H mutant epitope inhibit tumor development in mice. Genes Dis 2024; 11:100994. [PMID: 38560504 PMCID: PMC10980946 DOI: 10.1016/j.gendis.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 04/04/2024] Open
Abstract
The tumor suppressor p53 is the most common mutated gene in cancer, with the R175H as the most frequent p53 missense mutant. However, there are currently no approved targeted therapies or immunotherapies against mutant p53. Here, we characterized and investigated a monoclonal antibody (mAb) that recognizes the mutant p53-R175H for its affinity, specificity, and activity against tumor cells in vitro. We then delivered DNA plasmids expressing the anti-R175H mAb or a bispecific antibody (BsAb) into mice to evaluate their therapeutic effects. Our results showed that the anti-R175H mAb specifically bound to the p53-R175H antigen with a high affinity and recognized the human mutant p53-R175H antigen expressed on HEK293T or MC38 cells, with no cross-reactivity with wild-type p53. In cultured cells, the anti-R175H mAb showed higher cytotoxicity than the control but did not induce antibody-dependent cellular cytotoxicity. We made a recombinant MC38 mouse cell line (MC38-p53-R175H) that overexpressed the human p53-R175H after knocking out the endogenous mutant p53 alleles. In vivo, administration of the anti-R175H mAb plasmid elicited a robust anti-tumor effect against MC38-p53-R175H in mice. The administration of the anti-R175H BsAb plasmid showed no therapeutic effects, yet potent anti-tumor activity was observed in combination with the anti-PD-1 antibody. These results indicate that targeting specific mutant epitopes using DNA-delivered mAbs or BsAbs presents a form of improved natural immunity derived from tumor-infiltrating B cells and plasma cells against intracellular tumor antigens.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shan Zhou
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
4
|
Hartnett EG, Knight J, Radolec M, Buckanovich RJ, Edwards RP, Vlad AM. Immunotherapy Advances for Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123733. [PMID: 33322601 PMCID: PMC7764119 DOI: 10.3390/cancers12123733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The overall five-year survival rate in epithelial ovarian cancer is 44% and has only marginally improved in the past two decades. Despite an initial response to standard treatment consisting of chemotherapy and surgical removal of tumor, the lesions invariably recur, and patients ultimately die of chemotherapy resistant disease. New treatment modalities are needed in order to improve the prognosis of women diagnosed with ovarian cancer. One such modality is immunotherapy, which aims to boost the capacity of the patient’s immune system to recognize and attack the tumor cells. We performed a retrospective study to identify some of the most promising immune therapies for epithelial ovarian cancer. Special emphasis was given to immuno-oncology clinical trials. Abstract New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.
Collapse
Affiliation(s)
- Erin G. Hartnett
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Julia Knight
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mackenzy Radolec
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Ronald J. Buckanovich
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Robert P. Edwards
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
- Correspondence:
| |
Collapse
|
5
|
Development of Therapeutic Vaccines for Ovarian Cancer. Vaccines (Basel) 2020; 8:vaccines8040657. [PMID: 33167428 PMCID: PMC7711901 DOI: 10.3390/vaccines8040657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer remains the deadliest of all gynecologic malignancies. Our expanding knowledge of ovarian cancer immunology has allowed the development of therapies that generate systemic anti-tumor immune responses. Current immunotherapeutic strategies include immune checkpoint blockade, cellular therapies, and cancer vaccines. Vaccine-based therapies are designed to induce both adaptive and innate immune responses directed against ovarian cancer associated antigens. Tumor-specific effector cells, in particular cytotoxic T cells, are activated to recognize and eliminate ovarian cancer cells. Vaccines for ovarian cancer have been studied in various clinical trials over the last three decades. Despite evidence of vaccine-induced humoral and cellular immune responses, the majority of vaccines have not shown significant anti-tumor efficacy. Recently, improved vaccine development using dendritic cells or synthetic platforms for antigen presentation have shown promising clinical benefits in patients with ovarian cancer. In this review, we provide an overview of therapeutic vaccine development in ovarian cancer, discuss proposed mechanisms of action, and summarize the current clinical experience.
Collapse
|
6
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
7
|
Mahalaxmi I, Santhy K. An overview about mitochondrial DNA mutations in ovarian cancer. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Iyer Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, India
| | | |
Collapse
|
8
|
Chavan DM, Huang Z, Song K, Parimi LRH, Yang XS, Zhang X, Liu P, Jiang J, Zhang Y, Kong B, Li L. Incidence of venous thromboembolism following the neoadjuvant chemotherapy regimen for epithelial type of ovarian cancer. Medicine (Baltimore) 2017; 96:e7935. [PMID: 29049188 PMCID: PMC5662354 DOI: 10.1097/md.0000000000007935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aims to analyze the risk of venous thromboembolism (VTE) in patients receiving neoadjuvant chemotherapy (NACT) for epithelial ovarian cancer (EOC).A retrospective audit was conducted examining 147 patients treated for EOC. Surgical treatment with curative intent, with or without NACT and adjuvant chemotherapy, is the treatment approach, which was modified according to the patient's condition. The incidence of VTE with the most commonly used chemotherapy regimen, carboplatin, cisplatin, paclitaxel, docetaxel, and others were evaluated.This study found a 13.6% incidence of VTE in patients undergoing therapy with curative intent for EOC. No association was seen between NACT and VTE compared to VTE after standard treatment: 2/16 (12.5%) vs 5/131 (3.8%) (P = .16). Univariate and multivariate analyses also demonstrated that NACT has no risk for VTE with odds ratio (OR) = 0.89 (95% CI = 0.18-4.28) and P = 1. Results did not vary significantly with the type of chemotherapy used. Furthermore, increased incidence of VTE as an incidental finding supports the well-established role of malignancy in VTE occurrence. Univariate and multivariate analyses demonstrated that VTE occurred more frequently in menopausal women than nonmenopausal women (17.9% vs 5.8%) with OR = 3.55 (95% CI = 0.99-12.78) and P = .04 in patients aged ≥60 (19.3% vs 10%) with OR = 2.15 (95% CI = 0.83-5.57) and P = .13 but is not statistically significant.We conclude that NACT has no association with VTE and the currently used common chemotherapeutic drug combinations for ovarian cancer carry the minimal risk of thromboembolic events.
Collapse
Affiliation(s)
- Devendra Manik Chavan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen Huang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | | | - Xing Sheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | - Xiangning Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| | - Li Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University
| |
Collapse
|
9
|
Li D, Bentley C, Anderson A, Wiblin S, Cleary KLS, Koustoulidou S, Hassanali T, Yates J, Greig J, Nordkamp MO, Trenevska I, Ternette N, Kessler BM, Cornelissen B, Cragg MS, Banham AH. Development of a T-cell Receptor Mimic Antibody against Wild-Type p53 for Cancer Immunotherapy. Cancer Res 2017; 77:2699-2711. [PMID: 28363997 DOI: 10.1158/0008-5472.can-16-3247] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 is widely dysregulated in cancer and represents an attractive target for immunotherapy. Because of its intracellular localization, p53 is inaccessible to classical therapeutic monoclonal antibodies, an increasingly successful class of anticancer drugs. However, peptides derived from intracellular antigens are presented on the cell surface in the context of MHC I and can be bound by T-cell receptors (TCR). Here, we report the development of a novel antibody, T1-116C, that acts as a TCR mimic to recognize an HLA-A*0201-presented wild-type p53 T-cell epitope, p5365-73(RMPEAAPPV). The antibody recognizes a wide range of cancers, does not bind normal peripheral blood mononuclear cells, and can activate immune effector functions to kill cancer cells in vitroIn vivo, the antibody targets p5365-73 peptide-expressing breast cancer xenografts, significantly inhibiting tumor growth. This represents a promising new agent for future cancer immunotherapy. Cancer Res; 77(10); 2699-711. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunophenotyping
- Immunotherapy
- Mice
- Molecular Mimicry
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Protein Binding
- Protein Multimerization
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Burden/drug effects
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Carol Bentley
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Amanda Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sarah Wiblin
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Kirstie L S Cleary
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Sofia Koustoulidou
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tasneem Hassanali
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenna Yates
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenny Greig
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Marloes Olde Nordkamp
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Iva Trenevska
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
10
|
Garcia-Soto AE, Schreiber T, Strbo N, Ganjei-Azar P, Miao F, Koru-Sengul T, Simpkins F, Nieves-Neira W, Lucci J, Podack ER. Cancer-testis antigen expression is shared between epithelial ovarian cancer tumors. Gynecol Oncol 2017; 145:413-419. [PMID: 28392126 DOI: 10.1016/j.ygyno.2017.03.512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cancer-testis (CT) antigens have been proposed as potential targets for cancer immunotherapy. Our objective was to evaluate the expression of a panel of CT antigens in epithelial ovarian cancer (EOC) tumor specimens, and to determine if antigen sharing occurs between tumors. METHODS RNA was isolated from EOC tumor specimens, EOC cell lines and benign ovarian tissue specimens. Real time-PCR analysis was performed to determine the expression level of 20 CT antigens. RESULTS A total of 62 EOC specimens, 8 ovarian cancer cell lines and 3 benign ovarian tissues were evaluated for CT antigen expression. The majority of the specimens were: high grade (62%), serous (68%) and advanced stage (74%). 58 (95%) of the EOC tumors analyzed expressed at least one of the CT antigens evaluated. The mean number of CT antigen expressed was 4.5 (0-17). The most frequently expressed CT antigen was MAGE A4 (65%). Antigen sharing analysis showed the following: 9 tumors shared only one antigen with 62% of the evaluated specimens, while 37 tumors shared 4 or more antigens with 82%. 5 tumors expressed over 10 CT antigens, which were shared with 90% of the tumor panel. CONCLUSION CT antigens are expressed in 95% of EOC tumor specimens. However, not a single antigen was universally expressed across all samples. The degree of antigen sharing between tumors increased with the total number of antigens expressed. These data suggest a multi-epitope approach for development of immunotherapy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Arlene E Garcia-Soto
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Taylor Schreiber
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Parvin Ganjei-Azar
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Feng Miao
- Department of Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Tulay Koru-Sengul
- Department of Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Fiona Simpkins
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Wilberto Nieves-Neira
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Joseph Lucci
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
11
|
Merkel O, Taylor N, Prutsch N, Staber PB, Moriggl R, Turner SD, Kenner L. When the guardian sleeps: Reactivation of the p53 pathway in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:1-13. [PMID: 28927521 DOI: 10.1016/j.mrrev.2017.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/22/2022]
Abstract
The p53 tumor suppressor is inactivated in most cancers, thus suggesting that loss of p53 is a prerequisite for tumor growth. Therefore, its reintroduction through different means bears great clinical potential. After a brief introduction to current knowledge of p53 and its regulation by the ubiquitin-ligases MDM2/MDMX and post-translational modifications, we will discuss small molecules that are able to reactivate specific, frequently observed mutant forms of p53 and their applicability for clinical purposes. Many malignancies display amplification of MDM genes encoding negative regulators of p53 and therefore much effort to date has concentrated on the development of molecules that inhibit MDM2, the most advanced of which are being tested in clinical trials for sarcoma, glioblastoma, bladder cancer and lung adenocarcinoma. These will be discussed as will recent findings of MDMX inhibitors: these are of special importance as it has been shown that cancers that become resistant to MDM2 inhibitors often amplify MDM4. Finally, we will also touch on gene therapy and vaccination approaches; the former of which aims to replace mutated TP53 and the latter whose goal is to activate the body's immune system toward mutant p53 expressing cells. Besides the obvious importance of MDM2 and MDMX expression for regulation of p53, other regulatory factors should not be underestimated and are also described. Despite the beauty of the concept, the past years have shown that many obstacles have to be overcome to bring p53 reactivation to the clinic on a broad scale, and it is likely that in most cases it will be part of a combined therapeutic approach. However, improving current p53 targeted molecules and finding the best therapy partners will clearly impact the future of cancer therapy.
Collapse
Affiliation(s)
- Olaf Merkel
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Ninon Taylor
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory of Immunological and Molecular Cancer Research Laboratory of Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
| | - Nicole Prutsch
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine 1, Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna and Medical University of Vienna, Austria
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB20QQ, UK
| | - Lukas Kenner
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, Austria.
| |
Collapse
|
12
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
13
|
Jandrlić DR, Lazić GM, Mitić NS, Pavlović MD. Software tools for simultaneous data visualization and T cell epitopes and disorder prediction in proteins. J Biomed Inform 2016; 60:120-31. [PMID: 26851400 DOI: 10.1016/j.jbi.2016.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
We have developed EpDis and MassPred, extendable open source software tools that support bioinformatic research and enable parallel use of different methods for the prediction of T cell epitopes, disorder and disordered binding regions and hydropathy calculation. These tools offer a semi-automated installation of chosen sets of external predictors and an interface allowing for easy application of the prediction methods, which can be applied either to individual proteins or to datasets of a large number of proteins. In addition to access to prediction methods, the tools also provide visualization of the obtained results, calculation of consensus from results of different methods, as well as import of experimental data and their comparison with results obtained with different predictors. The tools also offer a graphical user interface and the possibility to store data and the results obtained using all of the integrated methods in the relational database or flat file for further analysis. The MassPred part enables a massive parallel application of all integrated predictors to the set of proteins. Both tools can be downloaded from http://bioinfo.matf.bg.ac.rs/home/downloads.wafl?cat=Software. Appendix A includes the technical description of the created tools and a list of supported predictors.
Collapse
Affiliation(s)
- Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| | - Goran M Lazić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16/IV, Belgrade, Serbia.
| | - Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16/IV, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| |
Collapse
|
14
|
Schuler PJ, Harasymczuk M, Visus C, DeLeo A, Trivedi S, Lei Y, Argiris A, Gooding W, Butterfield LH, Whiteside TL, Ferris RL. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res 2014; 20:2433-44. [PMID: 24583792 PMCID: PMC4017234 DOI: 10.1158/1078-0432.ccr-13-2617] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. EXPERIMENTAL METHODS Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. RESULTS No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. CONCLUSION Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy.
Collapse
MESH Headings
- Adult
- Aged
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/immunology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Cytokines/biosynthesis
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/mortality
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Humans
- Immunophenotyping
- Immunotherapy/adverse effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Middle Aged
- Neoplasm Staging
- Peptide Fragments/immunology
- Phenotype
- Squamous Cell Carcinoma of Head and Neck
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/immunology
- Vaccination
Collapse
Affiliation(s)
- Patrick J. Schuler
- Cancer Immunology Program, University of Pittsburgh Cancer Institute
- Department of Otolaryngology, University of Ulm, Germany
| | | | - Carmen Visus
- Department of Pathology, University of Pittsburgh School of Medicine
| | - Albert DeLeo
- Department of Pathology, University of Pittsburgh School of Medicine
| | - Sumita Trivedi
- Cancer Immunology Program, University of Pittsburgh Cancer Institute
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - Yu Lei
- Cancer Immunology Program, University of Pittsburgh Cancer Institute
| | - Athanassios Argiris
- Department of Medicine, Hematology /Oncology, University of Texas-San Antonio Cancer Center
| | - William Gooding
- Biostatistics Facility, University of Pittsburgh Cancer Institute
| | - Lisa H. Butterfield
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh
| | - Theresa L. Whiteside
- Cancer Immunology Program, University of Pittsburgh Cancer Institute
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - Robert L. Ferris
- Cancer Immunology Program, University of Pittsburgh Cancer Institute
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| |
Collapse
|
15
|
Khandakar B, Mathur SR, Kumar L, Kumar S, Datta Gupta S, Iyer VK, Kalaivani M. Tissue biomarkers in prognostication of serous ovarian cancer following neoadjuvant chemotherapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:401245. [PMID: 24864239 PMCID: PMC4016870 DOI: 10.1155/2014/401245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/31/2014] [Indexed: 01/10/2023]
Abstract
Serous ovarian cancer (SOC) is a significant cause of morbidity and mortality in females with poor prognosis because of advanced stage at presentation. Recently, neoadjuvant chemotherapy (NACT) is being used for management of advanced SOC, but role of tissue biomarkers in prognostication following NACT is not well established. The study was conducted on advanced stage SOC patients (n = 100) that were treated either conventionally (n = 50) or with NACT (n = 50), followed by surgery. In order to evaluate the expression of tissue biomarkers (p53, MIB1, estrogen and progesterone receptors, Her-2/neu, E-cadherin, and Bcl2), immunohistochemistry and semiquantitative scoring were done following morphological examination. Following NACT, significant differences in tumor histomorphology were observed as compared to the native neoplasms. MIB 1 was significantly lower in cases treated with NACT and survival outcome was significantly better in cases with low MIB 1. ER expression was associated with poor overall survival. No other marker displayed any significant difference in expression or correlation with survival between the two groups. Immunophenotype of SOC does not differ significantly in samples from cases treated with NACT, compared to upfront surgically treated cases. The proliferating capacity of the residual tumor cells is less, depicted by low mean MIB1 LI. MIB 1 and ER inversely correlate with survival.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Cell Shape
- Female
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Middle Aged
- Neoadjuvant Therapy
- Neoplasm Proteins/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neoplasms, Cystic, Mucinous, and Serous/therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Prognosis
Collapse
Affiliation(s)
- Binny Khandakar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sandeep R. Mathur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr. B.R. Ambedkar Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sunesh Kumar
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Venkateswaran K. Iyer
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M. Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
16
|
Vermeij R, Leffers N, Hoogeboom BN, Hamming ILE, Wolf R, Reyners AKL, Molmans BHW, Hollema H, Bart J, Drijfhout JW, Oostendorp J, van der Zee AGJ, Melief CJ, van der Burg SH, Daemen T, Nijman HW. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: a single-arm phase II study. Int J Cancer 2012; 131:E670-80. [PMID: 22139992 DOI: 10.1002/ijc.27388] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/21/2011] [Indexed: 01/21/2023]
Abstract
The purpose of the current phase II single-arm clinical trial was to evaluate whether pretreatment with low-dose cyclophosphamide improves immunogenicity of a p53-synthetic long peptide (SLP) vaccine in patients with recurrent ovarian cancer. Patients with ovarian cancer with elevated serum levels of CA-125 after primary treatment were immunized four times with the p53-SLP vaccine. Each immunization was preceded by administration of 300 mg/m2 intravenous cyclophosphamide as a means to affect regulatory T cells (Tregs). Vaccine-induced p53-specific interferon-gamma (IFN-γ)-producing T cells evaluated by IFN-γ ELISPOT were observed in 90% (9/10) and 87.5% (7/8) of evaluable patients after two and four immunizations, respectively. Proliferative p53-specific T cells, observed in 80.0% (8/10) and 62.5% (5/8) of patients, produced both T-helper 1 and T-helper-2 cytokines. Cyclophosphamide induced neither a quantitative reduction of Tregs determined by CD4+ FoxP3+ T cell levels nor a demonstrable qualitative difference in Treg function tested in vitro. Nonetheless, the number of vaccine-induced p53-specific IFN-γ-producing T cells was higher in our study compared to a study in which a similar patient group was treated with p53-SLP monotherapy (p≤0.012). Furthermore, the strong reduction in the number of circulating p53-specific T cells observed previously after four immunizations was currently absent. Stable disease was observed in 20.0% (2/10) of patients, and the remainder of patients (80.0%) showed clinical, biochemical and/or radiographic evidence of progressive disease. The outcome of this phase II trial warrants new studies on the use of low-dose cyclophosphamide to potentiate the immunogenicity of the p53-SLP vaccine or other antitumor vaccines.
Collapse
Affiliation(s)
- Renee Vermeij
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Athar M, Elmets CA, Kopelovich L. Pharmacological activation of p53 in cancer cells. Curr Pharm Des 2011; 17:631-9. [PMID: 21391904 DOI: 10.2174/138161211795222595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/25/2022]
Abstract
Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-translationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss-of-function or gain-of-function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of activated p53 on neoplastic progression.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, The University of Alabama at Birmingham, Volker Hall, Room 509, 1530 3rd Avenue South, Birmingham, Alabama 35294-0019, USA.
| | | | | |
Collapse
|
18
|
Leffers N, Daemen T, Boezen HM, Melief KJM, Nijman HW. Vaccine-based clinical trials in ovarian cancer. Expert Rev Vaccines 2011; 10:775-84. [PMID: 21692699 DOI: 10.1586/erv.11.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ovarian cancer vaccines are one of the new treatment strategies under investigation in epithelial ovarian cancer. This article discusses the results of different immunization strategies, points out potential pitfalls in study designs and provides possible solutions for augmentation of clinical efficacy. Most ovarian cancer vaccines have not yet evolved beyond Phase I/II studies, which do not primarily evaluate clinical efficacy. Although different approaches of antigen-specific immunization generally result in antigen-specific immune responses, clinical benefit is not consistently observed. Based on the currently available results, we emphasize the necessity of multimodal treatment of ovarian cancer, combining classical cytoreductive surgery, (neo)adjuvant chemotherapy, immunotherapy and/or targeted therapy.
Collapse
Affiliation(s)
- Ninke Leffers
- Department of Gynaecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Tsuji T, Matsuzaki J, Ritter E, Miliotto A, Ritter G, Odunsi K, Old LJ, Gnjatic S. Split T cell tolerance against a self/tumor antigen: spontaneous CD4+ but not CD8+ T cell responses against p53 in cancer patients and healthy donors. PLoS One 2011; 6:e23651. [PMID: 21858191 PMCID: PMC3155555 DOI: 10.1371/journal.pone.0023651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/22/2011] [Indexed: 12/20/2022] Open
Abstract
Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Erika Ritter
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Gerd Ritter
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lloyd J. Old
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: .
| |
Collapse
|
20
|
Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol 2011; 2011:702146. [PMID: 21541192 PMCID: PMC3085500 DOI: 10.1155/2011/702146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/13/2010] [Accepted: 01/18/2011] [Indexed: 12/20/2022] Open
Abstract
Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL) and CD4+ T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and p53-specific CTLs can be detected in cancer patients, indicating that p53 is immunogenic. Based on these results, clinical trials were initiated. In this paper, we review immunological and clinical responses observed in cancer patients vaccinated with p53 targeting vaccines. In most trials, p53-specific vaccine-induced immunological responses were observed. Unfortunately, no clinical responses with significant reduction of tumor-burden have occurred. We will elaborate on possible explanations for this lack of clinical effectiveness. In the second part of this paper, we summarize several immunopotentiating combination strategies suitable for clinical use. In our opinion, future p53-vaccine studies should focus on addition of these immunopotentiating regimens to achieve clinically effective therapeutic vaccination strategies for cancer patients.
Collapse
|
21
|
Abstract
Mutations in the TP53 gene are a feature of 50% of all reported cancer cases. In the other 50% of cases, the TP53 gene itself is not mutated but the p53 pathway is often partially inactivated. Cancer therapies that target specific mutant genes are proving to be highly active and trials assessing agents that exploit the p53 system are ongoing. Many trials are aimed at stratifying patients on the basis of TP53 status. In another approach, TP53 is delivered as a gene therapy; this is the only currently approved p53-based treatment. The p53 protein is overexpressed in many cancers and p53-based vaccines are undergoing trials. Processed cell-surface p53 is being exploited as a target for protein-drug conjugates, and small-molecule drugs that inhibit the activity of MDM2, the E3 ligase that regulates p53 levels, have been developed by several companies. The first MDM2 inhibitors are being trialed in both hematologic and solid malignancies. Finally, the first agent found to restore the active function of mutant TP53 has just entered the clinic. Here we discuss the basis of these trials and the future of p53-based therapy.
Collapse
|
22
|
Potential target antigens for a universal vaccine in epithelial ovarian cancer. Clin Dev Immunol 2010; 2010. [PMID: 20885926 PMCID: PMC2946591 DOI: 10.1155/2010/891505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023]
Abstract
The prognosis of epithelial ovarian cancer (EOC), the primary cause of death from gynaecological malignancies, has only modestly improved over the last decades. Immunotherapeutic treatment using a cocktail of antigens has been proposed as a "universal" vaccine strategy. We determined the expression of tumor antigens in the context of MHC class I expression in 270 primary tumor samples using tissue microarray. Expression of tumor antigens p53, SP17, survivin, WT1, and NY-ESO-1 was observed in 120 (48.0%), 173 (68.9%), 208 (90.0%), 129 (56.3%), and 27 (11.0%) of 270 tumor specimens, respectively. In 93.2% of EOC, at least one of the investigated tumor antigens was (over)expressed. Expression of MHC class I was observed in 78.1% of EOC. In 3 out 4 primary tumors, (over)expression of a tumor antigen combined with MHC class I was observed. These results indicate that a multiepitope vaccine, comprising these antigens, could serve as a universal therapeutic vaccine for the vast majority of ovarian cancer patients.
Collapse
|
23
|
Leffers N, Lambeck AJA, Gooden MJM, Hoogeboom BN, Wolf R, Hamming IE, Hepkema BG, Willemse PHB, Molmans BHW, Hollema H, Drijfhout JW, Sluiter WJ, Valentijn ARPM, Fathers LM, Oostendorp J, van der Zee AGJ, Melief CJ, van der Burg SH, Daemen T, Nijman HW. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int J Cancer 2009; 125:2104-13. [PMID: 19621448 DOI: 10.1002/ijc.24597] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The prognosis of ovarian cancer, the primary cause of death from gynecological malignancies, has only modestly improved over the last decades. Immunotherapy is one of the new treatment modalities explored for this disease. To investigate safety, tolerability, immunogenicity and obtain an impression of clinical activity of a p53 synthetic long peptide (p53-SLP) vaccine, twenty patients with recurrent elevation of CA-125 were included, eighteen of whom were immunized 4 times with 10 overlapping p53-SLP in Montanide ISA51. The first 5 patients were extensively monitored for toxicity, but showed no > or = grade 3 toxicity, thus accrual was continued. Overall, toxicity was limited to grade 1 and 2, mostly locoregional, inflammatory reactions. IFN-gamma producing p53-specific T-cell responses were induced in all patients who received all 4 immunizations as measured by IFN-gamma ELISPOT. An IFN-gamma secretion assay showed that vaccine-induced p53-specific T-cells were CD4(+), produced both Th1 and Th2 cytokines as analyzed by cytokine bead array. Notably, Th2 cytokines dominated the p53-specific response. P53-specific T-cells were present in a biopsy of the last immunization site of at least 9/17 (53%) patients, reflecting the migratory capacity of p53-specific T-cells. As best clinical response, stable disease evaluated by CA-125 levels and CT-scans, was observed in 2/20 (10%) patients, but no relationship was found with vaccine-induced immunity. This study shows that the p53-SLP vaccine is safe, well tolerated and induces p53-specific T-cell responses in ovarian cancer patients. Upcoming trials will focus on improving T helper-1 polarization and clinical efficacy.
Collapse
Affiliation(s)
- Ninke Leffers
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Speetjens FM, Kuppen PJ, Welters MJ, Essahsah F, Voet van den Brink AME, Lantrua MGK, Valentijn ARP, Oostendorp J, Fathers LM, Nijman HW, Drijfhout JW, van de Velde CJ, Melief CJ, van der Burg SH. Induction of p53-Specific Immunity by a p53 Synthetic Long Peptide Vaccine in Patients Treated for Metastatic Colorectal Cancer. Clin Cancer Res 2009; 15:1086-95. [DOI: 10.1158/1078-0432.ccr-08-2227] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. Gynecol Oncol 2008; 110:365-73. [PMID: 18571704 DOI: 10.1016/j.ygyno.2008.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/18/2008] [Accepted: 04/24/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The adaptive immune system seems to play an essential role in the natural course of ovarian cancer. Aim of this study was to establish whether disease-specific survival for patients expressing the tumour antigen p53 is influenced by MHC class I expression or the presence of p53 autoantibodies (p53-Aab). METHODS P53 and MHC class I expression were analysed in ovarian cancer tissue of 329 patients by immunohistochemistry using tissue microarrays. For 233 patients, pre-treatment serum samples were available to study the presence of p53 autoantibodies by ELISA. Data were linked to clinicopathological parameters and disease-specific survival. RESULTS P53 overexpression, MHC class I down-regulation in neoplastic cells and serum p53 autoantibodies were observed in 49.4, 38.9 and 15.9% of patients, respectively. MHC class I down-regulation in p53-overexpressing tumours correlated with a 10-month reduced disease-specific survival in univariate analysis (log-rank 4.10; p=0.043). p53-Aab were strongly correlated with p53 overexpression (p<0.001), but did not influence disease-specific survival. CONCLUSIONS As the prognosis of patients with p53-overexpressing ovarian cancer is affected by the MHC class I status of tumour cells and ovarian cancer patients can generate immune responses to the p53 tumour antigen, the further development of immunotherapy should evaluate strategies to improve MHC class I expression by tumour cells to facilitate antigen presentation in an attempt to increase clinical responses.
Collapse
|
26
|
Phase I Study and Preliminary Pharmacology of the Novel Innate Immune Modulator rBBX-01 in Gynecologic Cancers. Clin Cancer Res 2008; 14:3089-97. [DOI: 10.1158/1078-0432.ccr-07-4250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Lambeck A, Leffers N, Hoogeboom BN, Sluiter W, Hamming I, Klip H, ten Hoor K, Esajas M, van Oven M, Drijfhout JW, Platteel I, Offringa R, Hollema H, Melief K, van der Burg S, van der Zee A, Daemen T, Nijman H. P53-specific T cell responses in patients with malignant and benign ovarian tumors: implications for p53 based immunotherapy. Int J Cancer 2007; 121:606-14. [PMID: 17415711 DOI: 10.1002/ijc.22710] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite intensive treatment, 70% of the ovarian cancer patients will develop recurrent disease, emphasizing the need for new approaches such as immunotherapy. A promising antigenic target for immunotherapy in ovarian cancer is the frequently overexpressed p53 protein. The aim of the study was to evaluate the nature and magnitude of the baseline anti-p53 immune response in ovarian cancer patients. P53-specific T cell responses were detected in both half of the ovarian cancer patients as in the group of control subjects, consisting of women with benign ovarian tumors and healthy controls. Importantly, while in the control group p53-specific immunity was detected among the CD45RA(+) naïve subset of T cells only, the p53-specific T-cell responses in ovarian cancer patients were also present in the CD45RO(+) memory T-cell subset, suggesting that in the cancer patients sufficient amounts of cancer-derived p53 was presented to induce the formation of a p53-specific memory T-cell response. Further characterization of the p53-specific memory T-cell responses revealed that in addition to the type 1 cytokine IFN-gamma also the type 2 cytokines IL-4 and IL-5, as well as the immunosuppressive cytokine IL-10 were produced. Notably, p53-specific T cells were not only detected in the peripheral blood, but also among tumor infiltrating lymphocytes and in tumor-draining lymph nodes. In conclusion, the existence of a weak mixed T-helper type 1 and 2 p53-specific T-cell repertoire supports the rationale of using p53 long peptides in vaccination strategies aiming at the induction of p53-specific Th1/CTL immunity.
Collapse
Affiliation(s)
- Annechien Lambeck
- Department of Gynaecology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|