1
|
Ingrid E, Bavanendrakumar M, Oon S, Perera W, Day J, Ross L. Imaging findings of scleroderma-associated myopathy: A systematic literature review. Semin Arthritis Rheum 2025; 72:152672. [PMID: 40037060 DOI: 10.1016/j.semarthrit.2025.152672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
AIMS Systemic sclerosis (SSc) affects skeletal muscle directly, with SSc-associated myopathy (SSc-myopathy) increasingly recognised as a distinct immune-mediated myopathy. Manual muscle testing and creatine kinase (CK) are insensitive diagnostic tools for SSc-myopathy. We aimed to evaluate the role of imaging in SSc-myopathy diagnosis. METHODS A systematic search of MEDLINE(Ovid), Pubmed, and EMBASE databases was performed to identify studies of ≥10 SSc patients that reported skeletal muscle imaging results. Eligibility criteria were defined a priori. Risk of bias assessment was performed using the National Heart, Lung and Blood Institute (NHLBI) quality assessment tool. Descriptive summaries were used to present data owing to inter-study heterogeneity. RESULTS Of 2426 studies identified, 17 articles met the inclusion criteria. Imaging modalities varied, but magnetic resonance imaging (MRI) was the most commonly applied imaging technique (n = 9 studies). Abnormalities on MRI were reported in 38-100 % of patients and included muscle oedema, atrophy, and fatty infiltration. Changes were observed in skeletal muscles (n = 14 studies), axial muscles (n = 1), masseter muscle (n = 1), and accessory respiratory muscles (n = 2). Blood oxygenation level-dependent MRI, dynamic contrast-enhanced ultrasound, and scintigraphic evaluation have each been used to assess skeletal muscle perfusion. A lack of correlation between creatine kinase, clinical weakness, and imaging findings was consistently reported. We were unable to identify any distinct imaging patterns or relationship between imaging and histopathological skeletal muscle abnormalities owing to limited data available. CONCLUSION Imaging detects inflammatory, atrophic, and vasculopathic changes in the skeletal musculature of SSc patients. The discordance between clinical assessment and imaging findings underscores the potential role for muscle imaging to both screen and diagnose SSc-myopathy.
Collapse
Affiliation(s)
- Elvina Ingrid
- Department of Rheumatology, Western Health, 160 Gordon Street, Footscray, VIC 3011 Australia; Department of Rheumatology, Austin Health, Level 1 North Wing Heidelberg Repatriation Hospital, 300 Waterdale Road, Heidelberg Heights, VIC 3081, Australia; Department of Rheumatology, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065 Australia
| | - Mathuja Bavanendrakumar
- Department of Rheumatology, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065 Australia; Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Shereen Oon
- Department of Rheumatology, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065 Australia; Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Warren Perera
- Department of Radiology, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065 Australia
| | - Jessica Day
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Rheumatology, The Royal Melbourne Hospital, 300 Grattan Street, Parkville, VIC 3052, Australia; The Walter and Eliza Hall Institute of Medical Research, Inflammation Division, Parkville, Australia
| | - Laura Ross
- Department of Rheumatology, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065 Australia; Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Lerchner T, Mincu RI, Bühning F, Vogel J, Klingel K, Meetschen M, Schlosser T, Haubold J, Umutlu L, Dobrev D, Totzeck M, Rassaf T, Michel L. Cardiac magnetic resonance imaging in patients with suspected myocarditis from immune checkpoint inhibitor therapy - A real-world observational study. IJC HEART & VASCULATURE 2025; 56:101581. [PMID: 39882168 PMCID: PMC11775410 DOI: 10.1016/j.ijcha.2024.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/31/2025]
Abstract
Background and aims Cardiotoxicity from immune checkpoint inhibitor (ICI) therapy is a challenge in clinical practice, and the assessment of ICI-related myocarditis (ICI-M) is often complicated by a variable phenotype. Cardiac magnetic resonance imaging (CMR) is used frequently, but evidence is poor. Here, we aim to assess the role of CMR in the assessment of suspected ICI-M in a real-world clinical setting. Methods All patients receiving CMR at our centre for suspected ICI-M between September 2019 and January 2024 were included and retrospectively analysed. CMR parameters were correlated with clinical, laboratory and echocardiographic parameters and stratified for presence of myocarditis as per final diagnosis. Results A total of 55 patients who received CMR for suspected ICI-M were analysed, including 25 patients with ICI-M and 30 patients with non-myocarditis cardiotoxicity (non-M). The mean age (ICI-M versus (vs.) non-M) was 65.7 ± 13.6 vs. 67.3 ± 9.9 (p = 0.61) years, 32.0 % vs. 26.7 % (p = 0.67) were female, and 40.0 % vs. 26.7 % (p = 0.29) had pre-existing coronary heart disease. Cardiac biomarkers and echocardiographic data did not differ between the groups. In CMR analysis, presence of LGE was associated with ICI-M (56.0 % in ICI-M vs. 26.7 % in non-M, p = 0.03). Myocardial oedema was generally rare and not associated with ICI-M. Conclusion In this real-life assessment of routine clinical practice, the diagnostic assessment of ICI-M is challenged by low sensitivity of common diagnostic measures, often requiring a multimodal approach. Presence of LGE in CMR is associated with ICI-M, but sensitivity and specificity are low. Prospective data to improve diagnostic criteria is needed.
Collapse
Affiliation(s)
- Tobias Lerchner
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Raluca I. Mincu
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Florian Bühning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, Tübingen, Germany
| | - Mathias Meetschen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Germany
| | - Thomas Schlosser
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Hospital Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| |
Collapse
|
3
|
Chen H, Emu Y, Gao J, Chen Z, Aburas A, Hu C. Retrospective motion correction for cardiac multi-parametric mapping with dictionary matching-based image synthesis and a low-rank constraint. Magn Reson Med 2025; 93:550-562. [PMID: 39285623 DOI: 10.1002/mrm.30291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping. METHODS The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. RESULTS The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. CONCLUSION The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.
Collapse
Affiliation(s)
- Haiyang Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Emu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Gao
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ahmed Aburas
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxi Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Pan NY, Huang TY, Yu JJ, Peng HH, Chuang TC, Lin YR, Chung HW, Wu MT. Virtual MOLLI Target: Generative Adversarial Networks Toward Improved Motion Correction in MRI Myocardial T1 Mapping. J Magn Reson Imaging 2025; 61:209-219. [PMID: 38563660 DOI: 10.1002/jmri.29373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The modified Look-Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory-induced misregistration to a given target image. HYPOTHESIS Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory-induced misregistration of MOLLI datasets. STUDY TYPE Retrospective. POPULATION 1071 MOLLI datasets from 392 human participants. FIELD STRENGTH/SEQUENCE Modified Look-Locker inversion recovery sequence at 3 T. ASSESSMENT A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor-provided motion correction (MOCO) technique. STATISTICAL TESTS The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion-corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed-rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. RESULTS The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor-provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). DATA CONCLUSION Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory-induced heart displacements, may be beneficial for patients with difficulties in breath-holding. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Nai-Yu Pan
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Teng-Yi Huang
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Jui-Jung Yu
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Chao Chuang
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsiao-Wen Chung
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Ting Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Le JV, Mendes JK, Sideris K, Bieging E, Carter S, Stehlik J, DiBella EVR, Adluru G. Free-Breathing Ungated Radial Simultaneous Multi-Slice Cardiac T1 Mapping. J Magn Reson Imaging 2024. [PMID: 39661447 DOI: 10.1002/jmri.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Modified Look-Locker imaging (MOLLI) T1 mapping sequences are acquired during breath-holding and require ECG gating with consistent R-R intervals, which is problematic for patients with atrial fibrillation (AF). Consequently, there is a need for a free-breathing and ungated framework for cardiac T1 mapping. PURPOSE To develop and evaluate a free-breathing ungated radial simultaneous multi-slice (SMS) cardiac T1 mapping (FURST) framework. STUDY TYPE Retrospective, nonconsecutive cohort study. POPULATION Twenty-four datasets from 17 canine and 7 human subjects (4 males,51 ± 22 $$ 51\pm 22 $$ years; 3 females,56 ± 19 $$ 56\pm 19 $$ years). Canines were from studies involving AF induction and ablation treatment. The human population included separate subjects with suspected microvascular disease, acute coronary syndrome with persistent AF, and transthyretin amyloidosis with persistent AF. The remaining human subjects were healthy volunteers. FIELD STRENGTH/SEQUENCE Pre- and post-contrast T1 mapping with the free-breathing and ungated SMS inversion recovery sequence with gradient echo readout and with conventional MOLLI sequences at 1.5 T and 3.0 T. ASSESSMENT MOLLI and FURST were acquired in all subjects, and American Heart Association (AHA) segmentation was used for segment-wise analysis. Pre-contrast T1, post-contrast T1, and ECV were analyzed using correlation and Bland-Altman plots in 13 canines and 7 human subjects. T1 difference box plots for repeated acquisitions in four canine subjects were used to assess reproducibility. The PIQUE image quality metric was used to evaluate the perceptual quality of T1 maps. STATISTICAL TESTS Paired t-tests were used for all comparisons between FURST and MOLLI, withP < 0.05 $$ P<0.05 $$ indicating statistical significance. RESULTS There were no significant differences between FURST and MOLLI pre-contrast T1 reproducibility (25 ± 18 $$ 25\pm 18 $$ and19 ± 16 msec $$ 19\pm 16\ \mathrm{msec} $$ ,P = 0.19 $$ P=0.19 $$ ), FURST and MOLLI ECV (29 % ± 11 % $$ 29\%\pm 11\% $$ and28 % ± 11 % $$ 28\%\pm 11\% $$ ,P = 0.05 $$ P=0.05 $$ ), or FURST and MOLLI PIQUE scores (52 ± 8 $$ 52\pm 8 $$ and53 ± 10 $$ 53\pm 10 $$ ,P = 0.18 $$ P=0.18 $$ ). The ECV mean difference was0.48 $$ 0.48 $$ with95 % CI : 6.0 × 10 - 4 , 0.96 $$ 95\%\mathrm{CI}:\left(6.0\times {10}^{-4},0.96\right) $$ . CONCLUSIONS FURST had similar quality pre-contrast T1, post-contrast T1, and ECV maps and similar reproducibility compared to MOLLI. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Johnathan V Le
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jason K Mendes
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Erik Bieging
- Department of Cardiology, University of Utah, Salt Lake City, Utah, USA
| | - Spencer Carter
- Department of Cardiology, University of Utah, Salt Lake City, Utah, USA
| | - Josef Stehlik
- Department of Cardiology, University of Utah, Salt Lake City, Utah, USA
| | - Edward V R DiBella
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Ganesh Adluru
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Zhao W, Li K, Tang L, Zhang J, Guo H, Zhou X, Luo M, Liu H, Cui R, Zeng M. Coronary Microvascular Dysfunction and Diffuse Myocardial Fibrosis in Patients With Type 2 Diabetes Using Quantitative Perfusion MRI. J Magn Reson Imaging 2024; 60:2395-2406. [PMID: 38376091 DOI: 10.1002/jmri.29296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Imaging techniques that quantitatively and automatically measure changes in the myocardial microcirculation in patients with diabetes are lacking. PURPOSE To detect diabetic myocardial microvascular complications using a novel automatic quantitative perfusion MRI technique, and to explore the relationship between myocardial microcirculation dysfunction and fibrosis. STUDY TYPE Prospective. SUBJECTS 101 patients with type 2 diabetes mellitus (T2DM) (53 without and 48 with complications), 20 healthy volunteers. FIELD STRENGTH/SEQUENCE 3.0T; modified Look-Locker inversion-recovery sequence; saturation recovery sequence and dual-bolus technique; segmented fast low-angle shot sequence. ASSESSMENT All participants underwent MRI to determine the rest myocardial blood flow (MBF), stress MBF, myocardial perfusion reserve (MPR), and extracellular volume (ECV), which represents the extent of myocardial fibrosis. STATISTICAL TESTS Kolmogorov-Smirnov test, Shapiro-Wilk test, Kruskal-Wallis H test, Mann-Whitney U test, chi-square test, Spearman correlation coefficient, multivariable linear regression analysis. P < 0.05 was considered statistically significant. RESULTS The rest MBF was not significantly different between the T2DM without complications group (1.1, IQR: 0.9-1.3) and the control group (1.1, 1.0-1.3) (P = 1.000), but it was significantly lower in the T2DM with complications group (0.8, 0.6-1.0) than in both other groups. The stress MBF and MPR were significantly lower in the T2DM without complications group (1.9, 1.5-2.3, and 1.7, 1.4-2.1, respectively) than in the control group (3.0, 2.6-3.5, and 2.7, 2.4-3.1, respectively), and were also significantly lower in the T2DM with complications group (1.1, 0.9-1.4, and 1.4, 1.2-1.8, respectively) than in the T2DM without complications group. A decrease in MBF and MPR were significantly associated with an increase in the ECV. DATA CONCLUSION Quantitative perfusion MRI can evaluate myocardial microcirculation dysfunction. In T2DM, there was a significant decrease in both MBF and MPR compared to healthy controls, with the decrease being significantly different between T2DM with and without complications groups. The decrease of MBF was significantly associated with the development of myocardial fibrosis, as determined by ECV. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Wenjin Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leting Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiamin Zhang
- Department of Radiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd., Changsha, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Meichen Luo
- Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada
| | - Hongduan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rongrong Cui
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mu Zeng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| |
Collapse
|
7
|
Demolder A, Devos D, De Backer J, Muiño‐Mosquera L. Assessment of Myocardial Fibrosis in Marfan Syndrome Using Cardiac Magnetic Resonance Imaging. Mol Genet Genomic Med 2024; 12:e70024. [PMID: 39548726 PMCID: PMC11568239 DOI: 10.1002/mgg3.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Impaired myocardial function and arrhythmia are important manifestations of Marfan syndrome (MFS). Studies assessing myocardial fibrosis in relation to these manifestations are scarce. METHODS This cross-sectional, single-center study assessed ventricular volumes, ventricular function, and myocardial fibrosis by cardiac magnetic resonance imaging (CMR) in patients with MFS harboring a (likely) pathogenic FBN1 variant. The presence and extent of fibrosis were assessed by late gadolinium enhancement (LGE) and extracellular volume measurement (ECV). Data on 24-h Holter monitoring and clinical data were extracted from electronic patient records. RESULTS The study included 32 unselected patients with MFS (median age 38 years [range 10-69], 41% women). No focal myocardial fibrosis was detected. Six patients (21%) had diffuse fibrosis (ECV > 29%). No association was found between the presence of diffuse fibrosis and clinically relevant myocardial dysfunction. Five patients (16%) had reduced left ventricular ejection fraction (LVEF < 55%). While all of these exhibited mitral annular disjunction (MAD), only two had ECV > 29%. Patients with MAD had increased indexed LV volumes (median end-diastolic volume, 92 mL/m2 [IQR, 78-100] vs. 78 mL/m2 [IQR, 71-87]; median end-systolic volume, 31 mL/m2 [IQR, 23-46] vs. 22 mL/m2 [IQR, 21-28]), also after adjusting for the presence of mitral and aortic valve regurgitation. No differences in ECV were seen between patients with and without MAD. CONCLUSIONS In this cohort of patients with MFS, focal myocardial fibrosis was not detected using CMR. Although diffuse fibrosis was observed in 21% of patients, no evident connection to clinically relevant myocardial dysfunction was found. Further studies should evaluate the impact of diffuse fibrosis on clinical outcome prediction.
Collapse
Affiliation(s)
- Anthony Demolder
- Centre for Medical GeneticsGhent University HospitalGhentBelgium
- Department of CardiologyGhent University HospitalGhentBelgium
| | - Dan Devos
- Department of RadiologyGhent University HospitalGhentBelgium
| | - Julie De Backer
- Centre for Medical GeneticsGhent University HospitalGhentBelgium
- Department of CardiologyGhent University HospitalGhentBelgium
| | - Laura Muiño‐Mosquera
- Centre for Medical GeneticsGhent University HospitalGhentBelgium
- Division of Paediatric Cardiology, Department of PaediatricsGhent University HospitalGhentBelgium
| |
Collapse
|
8
|
Wu Q, Song J, Liu W, Li L, Li S. Recent advances in positron emission tomography for detecting early fibrosis after myocardial infarction. Front Cardiovasc Med 2024; 11:1479777. [PMID: 39529975 PMCID: PMC11552091 DOI: 10.3389/fcvm.2024.1479777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiac remodeling after myocardial infarction is one of the key factors affecting patient prognosis. Myocardial fibrosis is an important pathological link of adverse ventricular remodeling after myocardial infarction, and early fibrosis is reversible. Timely detection and intervention can effectively prevent its progression to irreversible ventricular remodeling. Although imaging modalities such as CMR and echocardiography can identify fibrosis, their sensitivity and specificity are limited, and they cannot detect early fibrosis or its activity level. Positron emission tomography (PET) allows non-invasive visualization of cellular and subcellular processes and can monitor and quantify molecules and proteins in the fibrotic pathway. It is valuable in assessing the extent of early myocardial fibrosis progression, selecting appropriate treatments, evaluating response to therapy, and determining the prognosis. In this article, we present a brief overview of mechanisms underlying myocardial fibrosis following myocardial infarction and several routine imaging techniques currently available for assessing fibrosis. Then, we focus on the application of PET molecular imaging in detecting fibrosis after myocardial infarction.
Collapse
Affiliation(s)
- Qiuyan Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Jialin Song
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Wenyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Rettl R, Calabretta R, Duca F, Kronberger C, Binder C, Willixhofer R, Poledniczek M, Hofer F, Doná C, Beitzke D, Loewe C, Nitsche C, Hengstenberg C, Badr Eslam R, Kastner J, Bergler-Klein J, Hacker M, Kammerlander AA. DPD Quantification Correlates With Extracellular Volume and Disease Severity in Wild-Type Transthyretin Cardiac Amyloidosis. JACC. ADVANCES 2024; 3:101261. [PMID: 39309666 PMCID: PMC11416666 DOI: 10.1016/j.jacadv.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Background The pathophysiological hallmark of wild-type transthyretin amyloid cardiomyopathy (ATTRwt-CM) is the deposition of amyloid within the myocardium. Objectives This study aimed to investigate associations between quantitative cardiac 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) uptake and myocardial amyloid burden, cardiac function, cardiac biomarkers, and clinical status in ATTRwt-CM. Methods Forty ATTRwt-CM patients underwent quantitative DPD single photon emission computed tomography/computed tomography to determine the standardized uptake value (SUV) retention index, cardiac magnetic resonance imaging to determine extracellular volume (ECV) and cardiac function (RV-LS), and assessment of cardiac biomarkers (N-terminal prohormone of brain natriuretic peptide [NT-proBNP], troponin T) and clinical status (6-minute walk distance [6MWD], National Amyloidosis Centre [NAC] stage). ATTRwt-CM patients were divided into 2 cohorts based on median SUV retention index (low uptake: <5.19 mg/dL, n = 20; high uptake: ≥5.19 mg/dL, n = 20). Linear regression models were used to assess associations of the SUV retention index with variables of interest and the Mann-Whitney U or chi-squared test to compare variables between groups. Results ATTRwt-CM patients (n = 40) were elderly (78.0 years) and predominantly male (75.0%). Univariable linear regression analyses revealed associations of the SUV retention index with ECV (r = 0.669, β = 0.139, P < 0.001), native T1 time (r = 0.432, β = 0.020, P = 0.005), RV-LS (r = 0.445, β = 0.204, P = 0.004), NT-proBNP (log10) (r = 0.458, β = 2.842, P = 0.003), troponin T (r = 0.422, β = 0.048, P = 0.007), 6MWD (r = 0.385, β = -0.007, P = 0.017), and NAC stage (r = 0.490, β = 1.785, P = 0.001). Cohort comparison demonstrated differences in ECV (P = 0.001), native T1 time (P = 0.013), RV-LS (P = 0.003), NT-proBNP (P < 0.001), troponin T (P = 0.046), 6MWD (P = 0.002), and NAC stage (I: P < 0.001, II: P = 0.030, III: P = 0.021). Conclusions In ATTRwt-CM, quantitative cardiac DPD uptake correlates with myocardial amyloid load, longitudinal cardiac function, cardiac biomarkers, exercise capacity, and disease stage, providing a valuable tool to quantify and monitor cardiac disease burden.
Collapse
Affiliation(s)
- René Rettl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Franz Duca
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christina Kronberger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christina Binder
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Robin Willixhofer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Felix Hofer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Carolina Doná
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Nitsche
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Roza Badr Eslam
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Johannes Kastner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andreas A. Kammerlander
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Wang J, Diao Y, Xu Y, Guo J, Li W, Li Y, Wan K, Sun J, Han Y, Chen Y. Liver T1 Mapping Derived From Cardiac Magnetic Resonance Imaging: A Potential Prognostic Marker in Idiopathic Dilated Cardiomyopathy. J Magn Reson Imaging 2024; 60:675-685. [PMID: 38174826 DOI: 10.1002/jmri.29223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hepatic alterations are common aftereffects of heart failure (HF) and ventricular dysfunction. The prognostic value of liver injury markers derived from cardiac MRI studies in nonischemic dilated cardiomyopathy (DCM) patients is unclear. PURPOSE Evaluate the prognostic performance of liver injury markers derived from cardiac MRI studies in DCM patients. STUDY TYPE Prospective. POPULATION Three hundred fifty-six consecutive DCM patients diagnosed according to ESC guidelines (age 48.7 ± 14.2 years, males 72.6%). FIELD STRENGTH/SEQUENCE Steady-state free precession, modified Look-Locker inversion recovery T1 mapping and phase sensitive inversion recovery late gadolinium enhancement (LGE) sequences at 3 T. ASSESSMENT Clinical characteristics, conventional MRI parameters (ventricular volumes, function, mass), native myocardial and liver T1, liver extracellular volume (ECV), and myocardial LGE presence were assessed. Patients were followed up for a median duration of 48.3 months (interquartile range 42.0-69.9 months). Primary endpoints included HF death, sudden cardiac death, heart transplantation, and HF readmission; secondary endpoints included HF death, sudden cardiac death, and heart transplantation. Models were developed to predict endpoints and the incremental value of including liver parameters assessed. STATISTICAL TESTS Optimal cut-off value was determined using receiver operating characteristic curve and Youden method. Survival analysis was performed using Kaplan-Meier and Cox proportional hazard. Discriminative power of models was compared using net reclassification improvement and integrated discriminatory index. P value <0.05 was considered statistically significant. RESULTS 47.2% patients reached primary endpoints; 25.8% patients reached secondary endpoints. Patients with elevated liver ECV (cut-off 34.4%) had significantly higher risk reaching primary and secondary endpoints. Cox regression showed liver ECV was an independent prognostic predictor, and showed independent prognostic value for primary endpoints and long-term HF readmission compared to conventional clinical and cardiac MRI parameters. DATA CONCLUSIONS Liver ECV is an independent prognostic predictor and may serve as an innovative approach for risk stratification for DCM. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Diao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajun Guo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Weihao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangjie Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wan
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchi Han
- Cardiovascular Medicine, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Beitzen-Heineke A, Rolling CC, Seidel C, Erley J, Molwitz I, Muellerleile K, Saering D, Senftinger J, Börschel N, Engel NW, Bokemeyer C, Adam G, Tahir E, Chen H. Long-term cardiotoxicity in germ cell cancer survivors after platinum-based chemotherapy: cardiac MR shows impaired systolic function and tissue alterations. Eur Radiol 2024; 34:4102-4112. [PMID: 37982836 PMCID: PMC11166766 DOI: 10.1007/s00330-023-10420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Long-term toxicities of germ cell cancer (GCC) treatment are of particular importance in young men with a life expectancy of several decades after curative treatment. This study aimed to investigate the long-term effects of platinum-based chemotherapy on cardiac function and myocardial tissue in GCC survivors by cardiac magnetic resonance (CMR) imaging. METHODS Asymptomatic GCC survivors ≥ 3 years after platinum-based chemotherapy and age-matched healthy controls underwent CMR assessment, including left ventricular (LV) and right ventricular (RV) ejection fraction (EF), strain analysis, late gadolinium enhancement (LGE) imaging, and T1/T2 mapping. RESULTS Forty-four survivors (age 44 [interquartile range, IQR 37-52] years; follow-up time 10 [IQR 5-15] years after chemotherapy) and 21 controls were evaluated. LV- and RVEF were lower in GCC survivors compared to controls (LVEF 56 ± 5% vs. 59 ± 5%, p = 0.017; RVEF 50 ± 7% vs. 55 ± 7%, p = 0.008). Seven percent (3/44) of survivors showed reduced LVEF (< 50%), and 41% (18/44) showed borderline LVEF (50-54%). The strain analysis revealed significantly reduced deformation compared to controls (LV global longitudinal strain [GLS] -13 ± 2% vs. -15 ± 1%, p < 0.001; RV GLS -15 ± 4% vs. -19 ± 4%, p = 0.005). Tissue characterization revealed focal myocardial fibrosis in 9 survivors (20%) and lower myocardial native T1 times in survivors compared to controls (1202 ± 25 ms vs. 1226 ± 37 ms, p = 0.016). Attenuated LVEF was observed after two cycles of platinum-based chemotherapy (54 ± 5% vs. 62 ± 5%, p < 0.001). CONCLUSION Based on CMR evaluation, combination chemotherapy with cumulative cisplatin ≥ 200 mg/m2 is associated with attenuated biventricular systolic function and myocardial tissue alterations in asymptomatic long-term GCC survivors. CLINICAL RELEVANCE STATEMENT Platinum-based chemotherapy is associated with decreased systolic function, non-ischemic focal myocardial scar, and decreased T1 times in asymptomatic long-term germ cell cancer survivors. Clinicians should be particularly aware of the risk of cardiac toxicity after platinum-based chemotherapy. KEY POINTS • Platinum-based chemotherapy is associated with attenuation of biventricular systolic function, lower myocardial T1 relaxation times, and non-ischemic late gadolinium enhancement. • Decreased systolic function and non-ischemic late gadolinium enhancement are associated with a cumulative cisplatin dose of ≥ 200 mg/m2. • Cardiac MRI can help to identify chemotherapy-associated changes in cardiac function and tissue in asymptomatic long-term germ cell cancer survivors.
Collapse
Affiliation(s)
- Antonia Beitzen-Heineke
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section of Pneumology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Christina Charlotte Rolling
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section of Pneumology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christoph Seidel
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section of Pneumology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jennifer Erley
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Isabel Molwitz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Kai Muellerleile
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Dennis Saering
- Information Technology and Image Processing, University of Applied Sciences Wedel, Wedel, Germany
| | - Juliana Senftinger
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Niklas Börschel
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section of Pneumology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Nils Wolfgang Engel
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section of Pneumology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- Department for Oncology, Hematology and Bone Marrow Transplantation with the Section of Pneumology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Enver Tahir
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Hang Chen
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Park CH, Kim PK, Kim Y, Kim TH, Hong YJ, Ahn E, Cha YJ, Choi BW. Development and validation of cardiac diffusion weighted magnetic resonance imaging for the diagnosis of myocardial injury in small animal models. Sci Rep 2024; 14:3552. [PMID: 38346998 PMCID: PMC10861543 DOI: 10.1038/s41598-024-52746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.
Collapse
Affiliation(s)
- Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pan Ki Kim
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunkyung Ahn
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Byoung Wook Choi
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Hao Y, Zhang R, Chen L, Fan G, Liu B, Jiang K, Zhu Y, Zhang M, Guo J. Distinguishing heart failure subtypes: the diagnostic power of different cardiac magnetic resonance imaging parameters. Front Cardiovasc Med 2024; 11:1291735. [PMID: 38385138 PMCID: PMC10879269 DOI: 10.3389/fcvm.2024.1291735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Objectives The aim of this retrospective study was to explore the diagnostic potential of various cardiac parameters in differentiating between heart failure with preserved ejection fraction (HFpEF) and heart failure with mid-ranged and reduced ejection fraction (HFm + rEF), and to discern their relationship with normal cardiac function. Methods This research encompassed a comparative analysis of heart failure subtypes based on multiple indicators. Participants were categorized into HFm + rEF, HFpEF, and control groups. For each participant, we investigated indicators of left ventricular function (LVEDVi, LVESVi, and LVEF) and myocardial strain parameters (GLS, GCS, GRS). Additionally, quantitative tissue evaluation parameters including native T1, enhanced T1, and extracellular volume (ECV) were examined.For comprehensive diagnostic performance analysis, receiver operating characteristic (ROC) curve evaluations for each parameters were conducted. Results HFm + rEF patients exhibited elevated LVEDVi and LVESVi and decreased LVEF compared to both HFpEF and control groups. Myocardial strain revealed significant reductions in GLS, GCS, and GRS for HFm + rEF patients compared to the other groups. HFpEF patients showed strain reductions relative to the control group. In cardiac magnetic resonance imaging (CMR) evaluations, HFm + rEF patients demonstrated heightened native T1 times and ECV fractions. Native T1 was particularly effective in distinguishing HFpEF from healthy subjects. Conclusion Native T1, ECV, and myocardial strain parameters have substantial diagnostic value in identifying HFpEF. Among them, native T1 displayed superior diagnostic efficiency relative to ECV, offering critical insights into early-stage HFpEF. These findings can play a pivotal role in refining clinical management and treatment strategies for heart failure patients.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Zhang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lihong Chen
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ganglian Fan
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bing Liu
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ke Jiang
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Yi Zhu
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Okubo T, Kawasaki K, Harada R, Nagatari T, Matsumoto M, Maru S. [Novel Application of Post-contrast T 1map for Detection of Subendocardial Infarction]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1352-1358. [PMID: 37967944 DOI: 10.6009/jjrt.2023-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In cardiac magnetic resonance (CMR) for myocardial infarction, there have been quite a few cases of obscure image contrast between subendocardial lesion and left ventricular (LV) blood pool on late gadolinium enhancement (LGE) images. This study was motivated by confirmation of usefulness of post-contrast T1map for detection of subendocardial infarction. From June 2017 to May 2018, forty-eight consecutive patients who underwent contrast-enhanced CMR to assess myocardial infarction were reviewed. We measured the contrast ratio (CR) between the infarcted myocardium and LV blood pool on LGE and on post-contrast T1map images, and compared them. The CR (mean±standard deviation) was -0.04±0.11 for LGE images and 0.02±0.04 for post-contrast T1map images (P<0.05). These results suggest that the post-contrast T1map, which uses the difference in T1 value as image contrast rather than magnitude image, can clearly depict the boundary between the infarcted myocardium and LV blood pool. The addition of post-contrast T1map to image interpretation might provide valuable information in the evaluation of subendocardial infarction.
Collapse
Affiliation(s)
- Takumi Okubo
- Department of Radiology, Chiba Cerebral and Cardiovascular Center
| | - Kohei Kawasaki
- Department of Radiology, Chiba Cerebral and Cardiovascular Center
| | - Rena Harada
- Department of Radiology, Chiba Cerebral and Cardiovascular Center
| | - Tsutomu Nagatari
- Department of Radiology, Chiba Cerebral and Cardiovascular Center
| | | | - Shigenori Maru
- Department of Radiology, Chiba Cerebral and Cardiovascular Center
| |
Collapse
|
15
|
Steffen Johansson R, Tornvall P, Sörensson P, Nickander J. Reduced stress perfusion in myocardial infarction with nonobstructive coronary arteries. Sci Rep 2023; 13:22094. [PMID: 38086910 PMCID: PMC10716406 DOI: 10.1038/s41598-023-49223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Myocardial infarction with nonobstructive coronary arteries (MINOCA) has several possible underlying causes, including coronary microvascular dysfunction (CMD). Early cardiovascular magnetic resonance imaging (CMR) is recommended, however cannot provide a diagnosis in 25% of cases. Quantitative stress CMR perfusion mapping can identify CMD, however it is unknown if CMD is present during long-term follow-up of MINOCA patients. Therefore, this study aimed to evaluate presence of CMD during long-term follow-up in MINOCA patients with an initial normal CMR scan. MINOCA patients from the second Stockholm myocardial infarction with normal coronaries study (SMINC-2), with a normal CMR scan at median 3 days after hospitalization were investigated with comprehensive CMR including stress perfusion mapping a median of 5 years after the index event, together with age- and sex-matched volunteers without symptomatic ischemic heart disease. Cardiovascular risk factors, medication and symptoms of myocardial ischemia measured by the Seattle Angina Questionnaire 7 (SAQ-7), were registered. In total, 15 patients with MINOCA and an initial normal CMR scan (59 ± 7 years old, 60% female), and 15 age- and sex-matched volunteers, underwent CMR. Patients with MINOCA and an initial normal CMR scan had lower global stress perfusion compared to volunteers (2.83 ± 1.8 vs 3.53 ± 0.7 ml/min/g, p = 0.02). There were no differences in other CMR parameters, hemodynamic parameters, or cardiovascular risk factors, except for more frequent use of statins in the MINOCA patient group compared to volunteers. In conclusion, global stress perfusion is lower in MINOCA patients during follow-up, compared to age- and sex-matched volunteers, suggesting that CMD may be a possible pathophysiological mechanism in MINOCA.Clinical Trial Registration: Clinicaltrials.gov identifier NCT02318498. Registered 2014-12-17.
Collapse
Affiliation(s)
- Rebecka Steffen Johansson
- Department of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- Klinisk Fysiologi A8:01, Karolinska University Hospital, Solna, Eugeniavägen 23, 171 76, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Cardiology Unit, Södersjukhuset, Stockholm, Sweden
| | - Peder Sörensson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jannike Nickander
- Department of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden.
- Klinisk Fysiologi A8:01, Karolinska University Hospital, Solna, Eugeniavägen 23, 171 76, Stockholm, Sweden.
| |
Collapse
|
16
|
Guo R, Si D, Fan Y, Qian X, Zhang H, Ding H, Tang X. DeepFittingNet: A deep neural network-based approach for simplifying cardiac T 1 and T 2 estimation with improved robustness. Magn Reson Med 2023; 90:1979-1989. [PMID: 37415445 DOI: 10.1002/mrm.29782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To develop and evaluate a deep neural network (DeepFittingNet) for T1 /T2 estimation of the most commonly used cardiovascular MR mapping sequences to simplify data processing and improve robustness. THEORY AND METHODS DeepFittingNet is a 1D neural network composed of a recurrent neural network (RNN) and a fully connected (FCNN) neural network, in which RNN adapts to the different number of input signals from various sequences and FCNN subsequently predicts A, B, and Tx of a three-parameter model. DeepFittingNet was trained using Bloch-equation simulations of MOLLI and saturation-recovery single-shot acquisition (SASHA) T1 mapping sequences, and T2 -prepared balanced SSFP (T2 -prep bSSFP) T2 mapping sequence, with reference values from the curve-fitting method. Several imaging confounders were simulated to improve robustness. The trained DeepFittingNet was tested using phantom and in-vivo signals, and compared to the curve-fitting algorithm. RESULTS In testing, DeepFittingNet performed T1 /T2 estimation of four sequences with improved robustness in inversion-recovery T1 estimation. The mean bias in phantom T1 and T2 between the curve-fitting and DeepFittingNet was smaller than 30 and 1 ms, respectively. Excellent agreements between both methods was found in the left ventricle and septum T1 /T2 with a mean bias <6 ms. There was no significant difference in the SD of both the left ventricle and septum T1 /T2 between the two methods. CONCLUSION DeepFittingNet trained with simulations of MOLLI, SASHA, and T2 -prep bSSFP performed T1 /T2 estimation tasks for all these most used sequences. Compared with the curve-fitting algorithm, DeepFittingNet improved the robustness for inversion-recovery T1 estimation and had comparable performance in terms of accuracy and precision.
Collapse
Affiliation(s)
- Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dongyue Si
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xiaofeng Qian
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haina Zhang
- Center for Community Health Service, Peking University Health Science Center, Beijing, China
| | - Haiyan Ding
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
17
|
Kong LC, Wu LM, Wang Z, Liu C, He B. An Integrated Algorithm for Differentiating Hypertrophic Cardiomyopathy From Hypertensive Heart Disease. J Magn Reson Imaging 2023; 58:1084-1097. [PMID: 36688928 DOI: 10.1002/jmri.28580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Differentiating hypertrophic cardiomyopathy (HCM) from hypertensive heart disease (HHD) is challenging. PURPOSE To identify differences between HCM and HHD on a patient basis using MRI. STUDY TYPE Retrospective. POPULATION A total of 219 subjects, 148 in phase I (baseline data and algorithm development: 75 HCM, 33 HHD, and 40 controls) and 71 in phase II (algorithm validation: 56 HCM and 15 HHD). FIELD STRENGTH/SEQUENCE Contrast-enhanced inversion-prepared gradient echo and cine-balanced steady-state free precession sequences at 3.0 T. ASSESSMENT MRI parameters assessed included left ventricular (LV) ejection fraction (LVEF), LV end systolic and end diastolic volumes (LVESV and LVEDV), mean maximum LV wall thickness (MLVWT), LV global longitudinal and circumferential strain (GRS, GLS, and GCS), and native T1. Parameters, which were significantly different between HCM and HHD in univariable analysis, were entered into a principal component analysis (PCA). The selected components were then introduced into a multivariable regression analysis to model an integrated algorithm (IntA) for screening the two disorders. IntA performance was assessed for patients with and without LGE in phase I (development) and phase II (validation). STATISTICAL TESTS Univariable regression, PCA, receiver operating curve (ROC) analysis. A P value <0.05 was considered statistically significant. RESULTS Derived IntA formulation included LVEF, LVESV, LVEDV, MLVWT, and GCS. In LGE-positive subjects in phase l, the cutoff point of IntA ≥81 indicated HCM (83% sensitivity and 91% specificity), with the area under the ROC curve (AUC) of 0.900. In LGE-negative subjects, a higher possibility of HCM was indicated by a cutoff point of IntA ≥84 (100% sensitivity and 82% specificity), with an AUC of 0.947. Validation of IntA in phase II resulted in an AUC of 0.846 in LGE-negative subjects and 0.857 in LGE-positive subjects. DATA CONCLUSION A per-patient-based IntA algorithm for differentiating HCM and HHD was generated from MRI data and incorporated FT, LGE and morphologic parameters. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Ling-Cong Kong
- Department of Cardiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Zi Wang
- Department of Cardiology, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Chang Liu
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, Shanghai, China
| |
Collapse
|
18
|
Braams NJ, Kianzad A, van Wezenbeek J, Wessels JN, Jansen SM, Andersen S, Boonstra A, Nossent EJ, Marcus JT, Bayoumy AA, Becher C, Goumans MJ, Andersen A, Vonk Noordegraaf A, de Man FS, Bogaard HJ, Meijboom LJ. Long-Term Effects of Pulmonary Endarterectomy on Right Ventricular Stiffness and Fibrosis in Chronic Thromboembolic Pulmonary Hypertension. Circ Heart Fail 2023; 16:e010336. [PMID: 37675561 PMCID: PMC10573098 DOI: 10.1161/circheartfailure.122.010336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Surgical removal of thromboembolic material by pulmonary endarterectomy (PEA) leads within months to the improvement of right ventricular (RV) function in the majority of patients with chronic thromboembolic pulmonary hypertension. However, RV mass does not always normalize. It is unknown whether incomplete reversal of RV remodeling results from extracellular matrix expansion (diffuse interstitial fibrosis) or cellular hypertrophy, and whether residual RV remodeling relates to altered diastolic function. METHODS We prospectively included 25 patients with chronic thromboembolic pulmonary hypertension treated with PEA. Structured follow-up measurements were performed before, and 6 and 18 months after PEA. With single beat pressure-volume loop analyses, we determined RV end-systolic elastance (Ees), arterial elastance (Ea), RV-arterial coupling (Ees/Ea), and RV end-diastolic elastance (stiffness, Eed). The extracellular volume fraction of the RV free wall was measured by cardiac magnetic resonance imaging and used to separate the myocardium into cellular and matrix volume. Circulating collagen biomarkers were analyzed to determine the contribution of collagen metabolism. RESULTS RV mass significantly decreased from 43±15 to 27±11g/m2 (-15.9 g/m2 [95% CI, -21.4 to -10.5]; P<0.0001) 6 months after PEA but did not normalize (28±9 versus 22±6 g/m2 in healthy controls [95% CI, 2.1 to 9.8]; P<0.01). On the contrary, Eed normalized after PEA. Extracellular volume fraction in the right ventricular free wall increased after PEA from 31.0±3.8 to 33.6±3.5% (3.6% [95% CI, 1.2-6.1]; P=0.013) as a result of a larger reduction in cellular volume than in matrix volume (Pinteraction=0.0013). Levels of MMP-1 (matrix metalloproteinase-1), TIMP-1 (tissue inhibitor of metalloproteinase-1), and TGF-β (transforming growth factor-β) were elevated at baseline and remained elevated post-PEA. CONCLUSIONS Although cellular hypertrophy regresses and diastolic stiffness normalizes after PEA, a relative increase in extracellular volume remains. Incomplete regression of diffuse RV interstitial fibrosis after PEA is accompanied by elevated levels of circulating collagen biomarkers, suggestive of active collagen turnover.
Collapse
Affiliation(s)
- Natalia J. Braams
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Azar Kianzad
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Jessie van Wezenbeek
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Jeroen N. Wessels
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Samara M.A. Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Denmark (S.A., A.A.)
| | - Anco Boonstra
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
| | - Esther J. Nossent
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - J. Tim Marcus
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, the Netherlands (J.T.M., L.J.M.)
| | - Ahmed A. Bayoumy
- Department of Internal Medicine, Chest Unit, Suez Canal University, School of Medicine, Ismailia, Egypt (A.A.B.)
| | - Clarissa Becher
- Department of Molecular Cell Biology, Leiden University Medical Centre, the Netherlands (C.B., M.-J.G.)
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Centre, the Netherlands (C.B., M.-J.G.)
| | - Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Denmark (S.A., A.A.)
| | - Anton Vonk Noordegraaf
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Frances S. de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Harm Jan Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX Laboratory, Department of Pulmonary Medicine, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., A.B., E.J.N., A.V.N., F.S.d.M., H.J.B.)
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
| | - Lilian J. Meijboom
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, the Netherlands (N.J.B., A.K., J.v.W., J.N.W., S.M.A.J., E.J.N., J.T.M., A.V.N., F.S.d.M., H.J.B., L.J.M.)
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, the Netherlands (J.T.M., L.J.M.)
| |
Collapse
|
19
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
20
|
Kosuge H, Hachiya S, Fujita Y, Hida S, Chikamori T. Potential of non-contrast stress T1 mapping for the assessment of myocardial injury in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2023; 25:53. [PMID: 37759307 PMCID: PMC10536753 DOI: 10.1186/s12968-023-00966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ischemia of the hypertrophied myocardium due to microvascular dysfunction is related to a worse prognosis in hypertrophic cardiomyopathy (HCM). Stress and rest T1 mapping without contrast agents can be used to assess myocardial blood flow. Herein, we evaluated the potential of non-contrast stress T1 mapping in assessing myocardial injury in patients with HCM. METHODS Forty-five consecutive subjects (31 HCM patients and 14 control subjects) underwent cardiac magnetic resonance (CMR) at 3T, including cine imaging, T1 mapping at rest and during adenosine triphosphate (ATP) stress, late gadolinium enhancement (LGE), and phase-contrast (PC) cine imaging of coronary sinus flow at rest and during stress to assess coronary flow reserve (CFR). PC cine imaging was performed on 25 subjects (17 patients with HCM and 8 control subjects). Native T1 values at rest and during stress were measured using the 16-segment model, and T1 reactivity was defined as the change in T1 values from rest to stress. RESULTS ATP stress induced a significant increase in native T1 values in both the HCM and control groups (HCM: p < 0.001, control: p = 0.002). T1 reactivity in the HCM group was significantly lower than that in the control group (4.2 ± 0.3% vs. 5.6 ± 0.5%, p = 0.044). On univariate analysis, T1 reactivity correlated with native T1 values at rest, left ventricular mass index, and CFR. Multiple linear regression analysis demonstrated that only CFR was independently correlated with T1 reactivity (β = 0.449; 95% confidence interval, 0.048-0.932; p = 0.032). Furthermore, segmental analysis showed decreased T1 reactivity in the hypertrophied myocardium and the non-hypertrophied myocardium with LGE in the HCM group. CONCLUSIONS T1 reactivity was lower in the hypertrophied myocardium and LGE-positive myocardium compared to non-injured myocardium. Non-contrast stress T1 mapping is a promising CMR method for assessing myocardial injury in patients with HCM. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Shoko Hachiya
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yasuhiro Fujita
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Satoshi Hida
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Taishiro Chikamori
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
21
|
Zsarnóczay E, Varga-Szemes A, Emrich T, Szilveszter B, van der Werf NR, Mastrodicasa D, Maurovich-Horvat P, Willemink MJ. Characterizing the Heart and the Myocardium With Photon-Counting CT. Invest Radiol 2023; 58:505-514. [PMID: 36822653 DOI: 10.1097/rli.0000000000000956] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
ABSTRACT Noninvasive cardiac imaging has rapidly evolved during the last decade owing to improvements in computed tomography (CT)-based technologies, among which we highlight the recent introduction of the first clinical photon-counting detector CT (PCD-CT) system. Multiple advantages of PCD-CT have been demonstrated, including increased spatial resolution, decreased electronic noise, and reduced radiation exposure, which may further improve diagnostics and may potentially impact existing management pathways. The benefits that can be obtained from the initial experiences with PCD-CT are promising. The implementation of this technology in cardiovascular imaging allows for the quantification of coronary calcium, myocardial extracellular volume, myocardial radiomics features, epicardial and pericoronary adipose tissue, and the qualitative assessment of coronary plaques and stents. This review aims to discuss these major applications of PCD-CT with a focus on cardiac and myocardial characterization.
Collapse
Affiliation(s)
| | - Akos Varga-Szemes
- From the Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston
| | | | | | | | | | | | | |
Collapse
|
22
|
DiLorenzo MP, Grosse-Wortmann L. Myocardial Fibrosis in Congenital Heart Disease and the Role of MRI. Radiol Cardiothorac Imaging 2023; 5:e220255. [PMID: 37404787 PMCID: PMC10316299 DOI: 10.1148/ryct.220255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 07/06/2023]
Abstract
Progress in the field of congenital heart surgery over the last century can only be described as revolutionary. Recent improvements in patient outcomes have been achieved through refinements in perioperative care. In the current and future eras, the preservation and restoration of myocardial health, beginning with the monitoring of tissue remodeling, will be central to improving cardiac outcomes. Visualization and quantification of fibrotic myocardial remodeling is one of the greatest assets that cardiac MRI brings to the field of cardiology, and its clinical use within the field of congenital heart disease (CHD) has been an area of particular interest in the last few decades. This review summarizes the physical underpinnings of myocardial tissue characterization in CHD, with an emphasis on T1 parametric mapping and late gadolinium enhancement. It describes methods and suggestions for obtaining images, extracting quantitative and qualitative data, and interpreting the results for children and adults with CHD. The tissue characterization observed in different lesions is used to examine the causes and pathomechanisms of fibrotic remodeling in this population. Similarly, the clinical consequences of elevated imaging biomarkers of fibrosis on patient health and outcomes are explored. Keywords: Pediatrics, MR Imaging, Cardiac, Heart, Congenital, Tissue Characterization, Congenital Heart Disease, Cardiac MRI, Parametric Mapping, Fibrosis, Late Gadolinium Enhancement © RSNA, 2023.
Collapse
|
23
|
Melo RJL, Assunção AN, Morais TC, Nomura CH, Scanavacca MI, Martinelli-Filho M, Ramires FJA, Fernandes F, Ianni BM, Mady C, Rochitte CE. Detection of Early Diffuse Myocardial Fibrosis and Inflammation in Chagas Cardiomyopathy with T1 Mapping and Extracellular Volume. Radiol Cardiothorac Imaging 2023; 5:e220112. [PMID: 37404789 PMCID: PMC10316290 DOI: 10.1148/ryct.220112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 07/06/2023]
Abstract
Purpose To evaluate myocardial T1 mapping and extracellular volume (ECV) parameters in different stages of Chagas cardiomyopathy and determine whether they are predictive of disease severity and prognosis. Materials and Methods Prospectively enrolled participants (July 2013 to September 2016) underwent cine and late gadolinium enhancement (LGE) cardiac MRI and T1 mapping with a precontrast (native) or postcontrast modified Look-Locker sequence. The native T1 and ECV values were measured among subgroups that were based on disease severity (indeterminate, Chagas cardiomyopathy with preserved ejection fraction [CCpEF], Chagas cardiomyopathy with midrange ejection fraction [CCmrEF], and Chagas cardiomyopathy with reduced ejection fraction [CCrEF]). Cox proportional hazards regression and the Akaike information criterion were used to determine predictors of major cardiovascular events (cardioverter defibrillator implant, heart transplant, or death). Results In 107 participants (90 participants with Chagas disease [mean age ± SD, 55 years ± 11; 49 men] and 17 age- and sex-matched control participants), the left ventricular (LV) ejection fraction and the extent of focal and diffuse or interstitial fibrosis were correlated with disease severity. Participants with CCmrEF and participants with CCrEF showed significantly higher global native T1 and ECV values than participants in the indeterminate, CCpEF, and control groups (T1: 1072 msec ± 34 and 1073 msec ± 63 vs 1010 msec ± 41, 1005 msec ± 69, and 999 msec ± 46; ECV: 35.5% ± 3.6 and 35.0% ± 5.4 vs 25.3% ± 3.5, 28.2% ± 4.9, and 25.2% ± 2.2; both P < .001). Remote (LGE-negative areas) native T1 and ECV values were also higher (T1: 1056 msec ± 32 and 1071 msec ± 55 vs 1008 msec ± 41, 989 msec ± 96, and 999 msec ± 46; ECV: 30.2% ± 4.7 and 30.8% ± 7.4 vs 25.1% ± 3.5, 25.1% ± 3.7, and 25.0% ± 2.2; both P < .001). Abnormal remote ECV values (>30%) occurred in 12% of participants in the indeterminate group, which increased with disease severity. Nineteen combined outcomes were observed (median follow-up time: 43 months), and a remote native T1 value greater than 1100 msec was independently predictive of combined outcomes (hazard ratio, 12 [95% CI: 4.1, 34.2]; P < .001). Conclusion Myocardial native T1 and ECV values were correlated with Chagas disease severity and may serve as markers of myocardial involvement in Chagas cardiomyopathy that precede LGE and LV dysfunction.Keywords: MRI, Cardiac, Heart, Imaging Sequences, Chagas Cardiomyopathy Supplemental material is available for this article. © RSNA, 2023.
Collapse
|
24
|
Greidanus PG, Pagano JJ, Escudero CA, Thompson R, Tham EB. Regional Elevation of Liver T1 in Fontan Patients. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:134-142. [PMID: 37969352 PMCID: PMC10642140 DOI: 10.1016/j.cjcpc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 11/17/2023]
Abstract
Background Fontan-associated liver disease (FALD) is characterized by hepatic congestion and progressive hepatic fibrosis in patients with the Fontan operation. This condition is generally clinically silent until late, necessitating techniques for early detection. Liver T1 mapping has been used to screen for FALD, but without consideration of regional variations in T1 values. Methods Liver T1 measured with a liver-specific T1 mapping sequence (PROFIT1) in Fontan patients was compared with cohorts of patients with biventricular congenital heart disease (BiV-CHD) and controls with normal cardiac function and anatomy. Results Liver T1 was significantly elevated in the Fontan cohort (n = 20) compared with patients with BiV-CHD (n = 12) and controls (n = 9) (781, 678, and 675 milliseconds, respectively; P < 0.001), with a consistent pattern of significantly elevated T1 values in the peripheral compared with central liver regions (ΔT1 = 54, 2, and 11 milliseconds; P < 0.001). PROFIT1 also yielded simultaneous T2∗ maps and fat fraction values that were similar in all groups. Fontan liver T1 values were also significantly elevated as compared with BiV-CHD and controls as measured with the cardiac (modified Look-Locker inversion) acquisitions (728, 583, and 583 milliseconds, respectively; P < 0.001) and values correlated with PROFIT1 liver T1 (R = 0.87, P < 0.001). Conclusions Fontan patients have globally increased liver T1 values and consistent spatial variations, with higher values in the peripheral liver regions as compared with spatially uniform values in BiV-CHD and controls. The spatial patterns may provide insight into the progression of FALD. Liver T1 mapping studies should include uniform spatial coverage to avoid bias based on slice locations in this population.
Collapse
Affiliation(s)
- Paul G. Greidanus
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph J. Pagano
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carolina A. Escudero
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Edythe B. Tham
- Division of Pediatric Cardiology, Stollery Children’s Hospital & Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Leali M, Aimo A, Ricci G, Torri F, Todiere G, Vergaro G, Grigoratos C, Giannoni A, Aquaro GD, Siciliano G, Emdin M, Passino C, Barison A. Cardiac magnetic resonance findings and prognosis in type 1 myotonic dystrophy. J Cardiovasc Med (Hagerstown) 2023; 24:340-347. [PMID: 37129928 DOI: 10.2459/jcm.0000000000001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiac involvement is a major determinant of prognosis in type 1 myotonic dystrophy (DM1), but limited information is available about myocardial remodeling and tissue changes. The aim of the study was to investigate cardiac magnetic resonance (CMR) findings and their prognostic significance in DM1. METHODS We retrospectively identified all DM1 patients referred from a neurology unit to our CMR laboratory from 2009 to 2020. RESULTS Thirty-four patients were included (aged 45 ± 12, 62% male individuals) and compared with 68 age-matched and gender-matched healthy volunteers (43 male individuals, age 48 ± 15 years). At CMR, biventricular and biatrial volumes were significantly smaller (all P < 0.05), as was left ventricular mass (P < 0.001); left ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) were significantly lower (all P < 0.01). Five (15%) patients had a LVEF less than 50% and four (12%) a RVEF less than 50%. Nine patients (26%) showed mid-wall late gadolinium enhancement (LGE; 5 ± 2% of LVM), and 14 (41%) fatty infiltration. Native T1 in the interventricular septum (1041 ± 53 ms) was higher than for healthy controls (1017 ± 28 ms) and approached the upper reference limit (1089 ms); the extracellular volume was slightly increased (33 ± 2%, reference <30%). Over 3.7 years (2.0-5.0), 6 (18%) patients died of extracardiac causes, 5 (15%) underwent device implantation; 5 of 21 (24%) developed repetitive ventricular ectopic beats (VEBs) on Holter monitoring. LGE mass was associated with the occurrence of repetitive VEBs (P = 0.002). Lower LV stroke volume (P = 0.017), lower RVEF (P = 0.016), a higher LVMi/LVEDVI ratio (P = 0.016), fatty infiltration (P = 0.04), and LGE extent (P < 0.001) were associated with death. CONCLUSION DM1 patients display structural and functional cardiac abnormalities, with variable degrees of cardiac muscle hypotrophy, fibrosis, and fatty infiltration. Such changes, as evaluated by CMR, seem to be associated with the development of ventricular arrhythmias and a worse outcome.
Collapse
Affiliation(s)
- Marco Leali
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giancarlo Todiere
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | | | - Alberto Giannoni
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Claudio Passino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Andrea Barison
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| |
Collapse
|
26
|
Zhang Y, Zhang X, Wang Y, Hu X, Wang B, Yang J, Zhao X, Zhang L. Relationship between diffuse fibrosis assessed by CMR and depressed myocardial strain in different stages of heart failure. Eur J Radiol 2023; 164:110848. [PMID: 37156180 DOI: 10.1016/j.ejrad.2023.110848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES To investigate the extent of the left ventricular (LV) diffuse myocardial fibrosis and the association with the degree of impaired myocardial strain in different stages of heart failure. BACKGROUND The increased diffuse myocardial fibrosis impairs the LV systolic and diastolic function. Previous studies found that the global longitudinal strain (GLS) impacted survival in patients with heart failure with preserved ejection fraction (HFpEF). However, limited data are available regarding the association between the degree of diffuse myocardial fibrosis and the severity of impaired myocardial strain in HFpEF. METHODS Sixty-six consecutive participants with heart failure (HF), and 15 healthy controls underwent cardiac magnetic resonance (CMR) examination. T1 mapping to calculate extracellular volume fractions (ECV) were used to assess diffuse myocardial fibrosis. ECV and myocardial strains were compared among the 3 groups. Associations between these two factors were also explored. RESULTS The patients with HFpEF showed increased myocardial ECV fractions (32.9 % ± 3.7 % vs. 29.2 % ± 2.9 %, p < 0.001) compared with the control group. The patients with HFm + rEF also had increased myocardial ECV fractions (36.8 % ± 5.4 % vs. 32.9 % ± 3.7 %, p < 0.001) compared with HFpEF. The myocardial ECV was significantly correlated with the GLS (r = 0.422, p = 0.020), global circumferential strain (GCS) (r = 0.491, p = 0.006), and global radial strain (GRS) (r = -0.533, p = 0.002) in the HFpEF groups, but no significant correlation was found in the HFm + rEF group (GLS: r = -0.002, p = 0.990; GCS: r = 0.153, p = 0.372; GRS: r = 0.070, p = 0.685) CONCLUSIONS: In patients with HF, only patients with HFpEF exhibited a significant correlation between increased diffuse myocardial fibrosis and impaired myocardial strain. Diffuse myocardial fibrosis plays a unique role in affecting myocardial strain in patients with HFpEF.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, China.
| | - Xunan Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, China.
| | - Yalan Wang
- Department of Ultrasonography, The Third People's Hospital of Bengbu, 38 Shenglizhong Road, Bengshan District, Bengbu, China.
| | - Xinxing Hu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, China.
| | - Bin Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, China.
| | - Jia Yang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, China.
| | - Xiance Zhao
- Philips Healthcare, 718 Lingshi Road, Jingan District, Shanghai, China.
| | - Lei Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, China.
| |
Collapse
|
27
|
Meléndez GC, Kavanagh K, Gharraee N, Lacy JL, Goslen KH, Block M, Whitfield J, Widiapradja A, Levick SP. Replacement substance P reduces cardiac fibrosis in monkeys with type 2 diabetes. Biomed Pharmacother 2023; 160:114365. [PMID: 36758315 DOI: 10.1016/j.biopha.2023.114365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM)-associated cardiac fibrosis contributes to heart failure. We previously showed that diabetic mice with cardiomyopathy, including cardiac fibrosis, exhibit low levels of the neuropeptide substance P; exogenous replacement of substance P reversed cardiac fibrosis, independent of body weight, blood glucose and blood pressure. We sought to elucidate the effectiveness and safety of replacement substance P to ameliorate or reverse cardiac fibrosis in type 2 diabetic monkeys. METHODS Four female T2DM African Green monkeys receive substance P (0.5 mg/Kg/day S.Q. injection) for 8 weeks. We obtained cardiac magnetic resonance imaging and blood samples to assess left ventricular function and fibrosis by T1 map-derived extracellular volume as well as circulating procollagen type I C-terminal propeptide. Hematological parameters for toxicities were also assessed in these monkeys and compared with three female T2DM monkeys receiving saline S.Q. as a safety comparison group. RESULTS Diabetic monkeys receiving replacement substance P exhibited a ∼20% decrease in extracellular volume (p = 0.01), concomitant with ∼25% decrease procollagen type I C-terminal propeptide levels (p = 0.008). Left ventricular ejection fraction was unchanged with substance P (p = 0.42); however, circumferential strain was improved (p < 0.01). Complete blood counts, glycosylated hemoglobin A1c, lipids, liver and pancreatic enzymes, and inflammation markers were unchanged (p > 0.05). CONCLUSIONS Replacement substance P reversed cardiac fibrosis in a large preclinical model of type 2 diabetes, independent of glycemic control. No hematological or organ-related toxicity was associated with replacement substance P. These results strongly support a potential application for replacement substance P as safe therapy for diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Kylie Kavanagh
- Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Nazli Gharraee
- Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jessica L Lacy
- Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kevin H Goslen
- Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Masha Block
- Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jordyn Whitfield
- Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Widiapradja
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Scott P Levick
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
28
|
Knight DS, Karia N, Cole AR, Maclean RH, Brown JT, Masi A, Patel RK, Razvi Y, Chacko L, Venneri L, Kotecha T, Martinez-Naharro A, Kellman P, Scott-Russell AM, Schreiber BE, Ong VH, Denton CP, Fontana M, Coghlan JG, Muthurangu V. Distinct cardiovascular phenotypes are associated with prognosis in systemic sclerosis: a cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2023; 24:463-471. [PMID: 35775814 PMCID: PMC10029850 DOI: 10.1093/ehjci/jeac120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiovascular involvement in systemic sclerosis (SSc) is heterogeneous and ill-defined. This study aimed to: (i) discover cardiac phenotypes in SSc by cardiovascular magnetic resonance (CMR); (ii) provide a CMR-based algorithm for phenotypic classification; and (iii) examine for associations between phenotypes and mortality. METHODS AND RESULTS A retrospective, single-centre, observational study of 260 SSc patients who underwent clinically indicated CMR including native myocardial T1 and T2 mapping from 2016 to 2019 was performed. Agglomerative hierarchical clustering using only CMR variables revealed five clusters of SSc patients with shared CMR characteristics: dilated right hearts with right ventricular failure (RVF); biventricular failure dilatation and dysfunction (BVF); and normal function with average cavity (NF-AC), normal function with small cavity (NF-SC), and normal function with large cavity (NF-LC) sizes. Phenotypes did not co-segregate with clinical or antibody classifications. A CMR-based decision tree for phenotype classification was created. Sixty-three (24%) patients died during a median follow-up period of 3.4 years. After adjustment for age and presence of pulmonary hypertension (PH), independent CMR predictors of all-cause mortality were native T1 (P < 0.001) and right ventricular ejection fraction (RVEF) (P = 0.0032). NF-SC and NF-AC groups had more favourable prognoses (P≤0.036) than the other three groups which had no differences in prognoses between them (P > 0.14). Hazard ratios (HR) were statistically significant for RVF (HR = 8.9, P < 0.001), BVF (HR = 5.2, P = 0.006), and NF-LC (HR = 4.9, P = 0.002) groups. The NF-LC group remained significantly predictive of mortality after adjusting for RVEF, native T1, and PH diagnosis (P = 0.0046). CONCLUSION We identified five CMR-defined cardiac SSc phenotypes that did not co-segregate with clinical data and had distinct outcomes, offering opportunities for a more precision-medicine based management approach.
Collapse
Affiliation(s)
- Daniel S Knight
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nina Karia
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alice R Cole
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Rory H Maclean
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - James T Brown
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ambra Masi
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Rishi K Patel
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Yousuf Razvi
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Liza Chacko
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Lucia Venneri
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Tushar Kotecha
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ana Martinez-Naharro
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institute of Health, 31 Center Dr, Bethesda, MD 20892, USA
| | - Ann M Scott-Russell
- Department of Rheumatology, Queen Alexandra Hospital, Cosham, Portsmouth, PO6 3LY, UK
| | - Benjamin E Schreiber
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
| | - Marianna Fontana
- UCL Department of Cardiac MRI, University College London (Royal Free Campus), Rowland Hill Street, London, NW3 2PF, UK
- National Amyloidosis Centre, Division of Medicine, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - J Gerry Coghlan
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Vivek Muthurangu
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
29
|
Dong Z, Yin G, Yang K, Jiang K, Wu Z, Chen X, Song Y, Yu S, Wang J, Yang S, Ma X, Xu Y, Zhao K, Lu M, Xu X, Zhao S. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping. Eur Heart J Cardiovasc Imaging 2023; 24:492-502. [PMID: 35793269 DOI: 10.1093/ehjci/jeac128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS This study aims to validate and compare the feasibility of T1ρ and native longitudinal relaxation time (T1) mapping in detection of myocardial fibrosis in patients with non-ischaemic cardiomyopathy, focusing on the performance of both methods in identifying late gadolinium enhancement (LGE) grey zone. METHODS AND RESULTS Twenty-seven hypertrophic cardiomyopathy (HCM) patients, 16 idiopathic dilated cardiomyopathy (DCM) patients, and 18 healthy controls were prospectively enrolled for native T1 and T1ρ mapping imaging and then all the patients underwent enhancement scan for LGE extent and extracellular volume (ECV) values. In LGE positive patients, the LGE areas were divided into LGE core (6 SDs above remote myocardium) and grey zone (2-6 SDs above remote myocardium) according to the signal intensity of LGE. Both HCM and DCM patients showed significantly higher native T1 values and T1ρ values than controls no matter the presence of LGE (all P < 0.01). There were significant differences in native T1 and T1ρ values among four different types of myocardia (LGE core, grey zone, remote area and control, P < 0.0001). However, the T1ρ values of grey zone were significantly higher than control (P < 0.01), while the native T1 values were not (P = 0.089). T1ρ values were significantly associated with both native T1 values (r = 0.54, P < 0.001) and ECV values (r = 0.54, P < 0.001). CONCLUSION T1ρ mapping is a feasible method to detect myocardial fibrosis in patients with non-ischaemic cardiomyopathy no matter the presence of LGE. Compared with native T1, T1ρ may serve as a better discriminator in the identification of LGE grey zone.
Collapse
Affiliation(s)
- Zhixiang Dong
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Kai Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Ke Jiang
- Philips Healthcare, Tianze Road No.16, Chaoyang District, Beijing 100020, China
| | - Zhigang Wu
- Philips Healthcare, Tianze Road No.16, Chaoyang District, Beijing 100020, China
| | - Xiuyu Chen
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Yanyan Song
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Shiqing Yu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Jiaxin Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Shujuan Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Xuan Ma
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Yangfei Xu
- Department of Cardiology, Chizhou People's Hospital, Baiya Middle Road No.3, Guichi District, Anhui 247099, China
| | - Kankan Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen 518055, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| | - Xiaodong Xu
- Department of Cardiology, Chizhou People's Hospital, Baiya Middle Road No.3, Guichi District, Anhui 247099, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China
| |
Collapse
|
30
|
Nickander J, Steffen Johansson R, Lodin K, Wahrby A, Loewenstein D, Bruchfeld J, Runold M, Xue H, Kellman P, Engblom H. Stress native T1 and native T2 mapping compared to myocardial perfusion reserve in long-term follow-up of severe Covid-19. Sci Rep 2023; 13:4159. [PMID: 36914719 PMCID: PMC10010213 DOI: 10.1038/s41598-023-30989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Severe Covid-19 may cause a cascade of cardiovascular complications beyond viral pneumonia. The severe inflammation may affect the microcirculation which can be assessed by cardiovascular magnetic resonance (CMR) imaging using quantitative perfusion mapping and calculation of myocardial perfusion reserve (MPR). Furthermore, native T1 and T2 mapping have previously been shown to identify changes in myocardial perfusion by the change in native T1 and T2 during adenosine stress. However, the relationship between native T1, native T2, ΔT1 and ΔT2 with myocardial perfusion and MPR during long-term follow-up in severe Covid-19 is currently unknown. Therefore, patients with severe Covid-19 (n = 37, median age 57 years, 24% females) underwent 1.5 T CMR median 292 days following discharge. Quantitative myocardial perfusion (ml/min/g), and native T1 and T2 maps were acquired during adenosine stress, and rest, respectively. Both native T1 (R2 = 0.35, p < 0.001) and native T2 (R2 = 0.28, p < 0.001) correlated with myocardial perfusion. However, there was no correlation with ΔT1 or ΔT2 with MPR, respectively (p > 0.05 for both). Native T1 and native T2 correlate with myocardial perfusion during adenosine stress, reflecting the coronary circulation in patients during long-term follow-up of severe Covid-19. Neither ΔT1 nor ΔT2 can be used to assess MPR in patients with severe Covid-19.
Collapse
Affiliation(s)
- Jannike Nickander
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Rebecka Steffen Johansson
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lodin
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anton Wahrby
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Loewenstein
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Runold
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henrik Engblom
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Hsu CC, Wang JS, Shyu YC, Fu TC, Juan YH, Yuan SS, Wang CH, Yeh CH, Liao PC, Wu HY, Hsu PH. Hypermethylation of ACADVL is involved in the high-intensity interval training-associated reduction of cardiac fibrosis in heart failure patients. J Transl Med 2023; 21:187. [PMID: 36894992 PMCID: PMC9999524 DOI: 10.1186/s12967-023-04032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that DNA methylation can be affected by physical activities and is associated with cardiac fibrosis. This translational research examined the implications of DNA methylation associated with the high-intensity interval training (HIIT) effects on cardiac fibrosis in patients with heart failure (HF). METHODS Twelve HF patients were included and received cardiovascular magnetic resonance imaging with late gadolinium enhancement for cardiac fibrosis severity and a cardiopulmonary exercise test for peak oxygen consumption ([Formula: see text]O2peak). Afterwards, they underwent 36 sessions of HIIT at alternating 80% and 40% of [Formula: see text]O2peak for 30 min per session in 3-4 months. Human serum from 11 participants, as a means to link cell biology to clinical presentations, was used to investigate the exercise effects on cardiac fibrosis. Primary human cardiac fibroblasts (HCFs) were incubated in patient serum, and analyses of cell behaviour, proteomics (n = 6) and DNA methylation profiling (n = 3) were performed. All measurements were conducted after completing HIIT. RESULTS A significant increase (p = 0.009) in [Formula: see text]O2peak (pre- vs. post-HIIT = 19.0 ± 1.1 O2 ml/kg/min vs. 21.8 ± 1.1 O2 ml/kg/min) was observed after HIIT. The exercise strategy resulted in a significant decrease in left ventricle (LV) volume by 15% to 40% (p < 0.05) and a significant increase in LV ejection fraction by approximately 30% (p = 0.010). LV myocardial fibrosis significantly decreased from 30.9 ± 1.2% to 27.2 ± 0.8% (p = 0.013) and from 33.4 ± 1.6% to 30.1 ± 1.6% (p = 0.021) in the middle and apical LV myocardium after HIIT, respectively. The mean single-cell migration speed was significantly (p = 0.044) greater for HCFs treated with patient serum before (2.15 ± 0.17 μm/min) than after (1.11 ± 0.12 μm/min) HIIT. Forty-three of 1222 identified proteins were significantly involved in HIIT-induced altered HCF activities. There was significant (p = 0.044) hypermethylation of the acyl-CoA dehydrogenase very long chain (ACADVL) gene with a 4.474-fold increase after HIIT, which could activate downstream caspase-mediated actin disassembly and the cell death pathway. CONCLUSIONS Human investigation has shown that HIIT is associated with reduced cardiac fibrosis in HF patients. Hypermethylation of ACADVL after HIIT may contribute to impeding HCF activities. This exercise-associated epigenetic reprogramming may contribute to reduce cardiac fibrosis and promote cardiorespiratory fitness in HF patients. TRIAL REGISTRATION NCT04038723. Registered 31 July 2019, https://clinicaltrials.gov/ct2/show/NCT04038723 .
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan.
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Jong-Shyan Wang
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan
- Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and intervention, Linkou and Taoyuan Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chao-Hung Wang
- Department of Cardiology, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Chi-Hsiao Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung, 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
32
|
Peretto G, Merlo M, Gentile P, Porcari A, Palmisano A, Vignale D, Sormani P, Rizzo S, De Gaspari M, Basso C, Bella PD, Sala S, Ammirati E, Sinagra G, Esposito A, Pedrotti P. Cardiac magnetic resonance abnormalities in patients with acute myocarditis proven by septal endomyocardial biopsy. Clin Res Cardiol 2023; 112:392-400. [PMID: 36112234 DOI: 10.1007/s00392-022-02103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Previous studies suggest low diagnostic sensitivity of cardiac magnetic resonance (CMR) imaging based on Lake Louise criteria (LLC) to identify patients with complicated presentations of acute myocarditis (AM). We evaluated classic and updated LLC in patients with AM proven by right ventricular septal endomyocardial biopsy (RVS-EMB). METHODS From an initial population of 499 patients with clinically suspected AM from a multicenter retrospective cohort, we included 74 patients with histologically proven myocarditis on RVS-EMB and available CMR within 30 days since admission. The prevalence of total and septal CMR abnormalities [namely, T2-weighted images (T2W), late gadolinium enhancement (LGE), T2 and T1 mapping, and extracellular volume (ECV)] were assessed in patients with complicated vs. uncomplicated AM. RESULTS Among 74 patients [mean age 38 ± 15 years, 65% males, left ventricular ejection fraction (LVEF) 40 ± 18%] with RVS-EMB-proven AM, 53 (72%) had a complicated presentation. The classic LLC were positive in 56/74 patients (76%), whereas the updated ones were positive in 41/41 of cases (100%). Septal involvement, documented in 48/74 patients (65%) by conventional T2W/LGE and in 39/41 cases (95%) by mapping techniques (p < 0.001), was more common in patients with complicated AM. In the 41 patients undergoing both evaluations, CMR sensitivity for myocarditis was 85% for the classic LLC vs. 100% for the updated LLC (p = 0.006). CONCLUSION In patients with myocarditis on RVS-EMB, CMR using updated LLC has high sensitivity in the detection of AM when performed within 30 days. Septal abnormalities are more common in patients with complicated AM.
Collapse
Affiliation(s)
- Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy.
| | - Marco Merlo
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Piero Gentile
- De Gasperis Cardio ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Aldostefano Porcari
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Anna Palmisano
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Vignale
- Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Sormani
- De Gasperis Cardio ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefania Rizzo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Cardiovascular Pathology, Padua University, Padua, Italy
| | - Monica De Gaspari
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Cardiovascular Pathology, Padua University, Padua, Italy
| | - Cristina Basso
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Cardiovascular Pathology, Padua University, Padua, Italy
| | - Paolo Della Bella
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Sala
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Ammirati
- De Gasperis Cardio ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gianfranco Sinagra
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Antonio Esposito
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy.,Experimental Imaging Center, Radiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Pedrotti
- De Gasperis Cardio ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
33
|
Treiber J, Novak D, Fischer-Rasokat U, Wolter JS, Kriechbaum S, Weferling M, von Jeinsen B, Hain A, Rieth AJ, Siemons T, Keller T, Hamm CW, Rolf A. Regional extracellular volume within late gadolinium enhancement-positive myocardium to differentiate cardiac sarcoidosis from myocarditis of other etiology: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2023; 25:8. [PMID: 36755275 PMCID: PMC9909902 DOI: 10.1186/s12968-023-00918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) plays a pivotal role in diagnosing myocardial inflammation. In addition to late gadolinium enhancement (LGE), native T1 and T2 mapping as well as extracellular volume (ECV) are essential tools for tissue characterization. However, the differentiation of cardiac sarcoidosis (CS) from myocarditis of other etiology can be challenging. Positron-emission tomography-computed tomography (PET-CT) regularly shows the highest Fluordesoxyglucose (FDG) uptake in LGE positive regions. It was therefore the aim of this study to investigate, whether native T1, T2, and ECV measurements within LGE regions can improve the differentiation of CS and myocarditis compared with using global native T1, T2, and ECV values alone. METHODS PET/CT confirmed CS patients and myocarditis patients (both acute and chronic) from a prospective registry were compared with respect to regional native T1, T2, and ECV. Acute and chronic myocarditis were defined based on the 2013 European Society of Cardiology position paper on myocarditis. All parametric measures and ECV were acquired in standard fashion on three short-axis slices according to the ConSept study for global values and within PET-CT positive regions of LGE. RESULTS Between 2017 and 2020, 33 patients with CS and 73 chronic and 35 acute myocarditis patients were identified. The mean ECV (± SD) in LGE regions of CS patients was higher than in myocarditis patients (CS vs. acute and chronic, respectively: 0.65 ± 0.12 vs. 0.45 ± 0.13 and 0.47 ± 0.1; p < 0.001). Acute and chronic myocarditis patients had higher global native T1 values (1157 ± 54 ms vs. 1196 ± 63 ms vs. 1215 ± 74 ms; p = 0.001). There was no difference in global T2 and ECV values between CS and acute or chronic myocarditis patients. CONCLUSION This is the first study to show that the calculation of regional ECV within LGE-positive regions may help to differentiate CS from myocarditis. Further studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Julia Treiber
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Dijana Novak
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Ulrich Fischer-Rasokat
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Jan Sebastian Wolter
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Steffen Kriechbaum
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Maren Weferling
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Beatrice von Jeinsen
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Andreas Hain
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Andreas J Rieth
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Tamo Siemons
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Till Keller
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- Medical Clinic 1, Justus-Liebig-Universität Giessen, Giessen, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Christian W Hamm
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
- Medical Clinic 1, Justus-Liebig-Universität Giessen, Giessen, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany
| | - Andreas Rolf
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.
- Medical Clinic 1, Justus-Liebig-Universität Giessen, Giessen, Germany.
- German Center for Cardiovascular Research (DZHK), Rhine-Main Partner Site, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Ross L, Costello B, Lindqvist A, Hansen D, Brown Z, Stevens W, Burns A, Prior D, Pianta M, Perera W, La Gerche A, Nikpour M. Disease specific determinants of cardiopulmonary fitness in systemic sclerosis. Semin Arthritis Rheum 2023; 58:152137. [PMID: 36434894 DOI: 10.1016/j.semarthrit.2022.152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We aimed to quantify the burden of exercise intolerance in systemic sclerosis (SSc) and explore the disease features that contribute to impaired exercise capacity (measured as peak oxygen uptake, peak VO2) to provide novel mechanistic insights into the causes of physical disability in SSc. METHODS Thirty-three SSc patients with no history of cardiac disease and no active myositis underwent cardiac and skeletal muscle MRI, transthoracic echocardiography, pulmonary function tests and cardiopulmonary exercise testing (CPET). CPET results were compared to an age-, sex-, and weight-matched controls with no overt cardiopulmonary disease. Native T1 and T2-mapping sequences were used to quantify diffuse fibroinflammatory myocardial disease and qualitative assessment of skeletal muscle oedema was performed. The associations between parameters of cardiorespiratory function and skeletal muscle abnormalities and peak VO2 were evaluated with linear regression analysis. RESULTS Exercise capacity was markedly impaired in SSc and significantly reduced when compared to control subjects (percent predicted peak VO2: 70% vs 98%, p < 0⋅01). Diffuse myocardial fibroinflammatory disease (p < 0⋅01) and skeletal muscle oedema (p = 0⋅01) were significantly associated with reduced exercise capacity. There was no association between impaired exercise capacity and left ventricular ejection fraction. CONCLUSION SSc is associated with marked functional impairment that is not explained by commonly used parameters of cardiac function such as left ventricular ejection fraction. Rather, only more sensitive measures of organ involvement are associated with impaired exercise tolerance. Our results show diffuse interstitial changes of the myocardium and skeletal muscle affect oxygen uptake and are important contributors to functional limitation in SSc.
Collapse
Affiliation(s)
- Laura Ross
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Rheumatology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.
| | - Benedict Costello
- Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiology, St Vincent's Hospital, Melbourne, Fitzroy, VIC, Australia
| | - Anniina Lindqvist
- Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Dylan Hansen
- Department of Rheumatology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Zoe Brown
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Rheumatology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Wendy Stevens
- Department of Rheumatology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Andrew Burns
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Cardiology, St Vincent's Hospital, Melbourne, Fitzroy, VIC, Australia
| | - David Prior
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Cardiology, St Vincent's Hospital, Melbourne, Fitzroy, VIC, Australia
| | - Marcus Pianta
- Department of Medical Imaging, St Vincent's Hospital, Melbourne, Fitzroy, VIC, Australia
| | - Warren Perera
- Department of Medical Imaging, St Vincent's Hospital, Melbourne, Fitzroy, VIC, Australia
| | - André La Gerche
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiology, St Vincent's Hospital, Melbourne, Fitzroy, VIC, Australia
| | - Mandana Nikpour
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Rheumatology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
35
|
Suwa K, Rahsepar AA, Geiger J, Dolan R, Ghasemiesfe A, Barker AJ, Collins JD, Markl M, Carr JC. A Left ventricle remodeling in patients with bicuspid aortic valve. Int J Cardiovasc Imaging 2023; 39:391-399. [PMID: 36315365 DOI: 10.1007/s10554-022-02727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE We assessed the impact of bicuspid aortic valve (BAV), aortic stenosis (AS), and regurgitation (AR) on the metrics of left ventricular (LV) remodeling, as measured by electrocardiogram (ECG), transthoracic echocardiography (TTE), and cardiac magnetic resonance (CMR). METHODS This retrospective CMR study included 11 patients with both AS and AR (BAV-ASR), 30 with AS (BAV-AS), 28 with AR (BAV-AR), 47 with neither AS nor AR (BAV-no_AS/AR), and 40 with trileaflet aortic valve (TAV-no_AS/AR). CMR analysis included the LV end-diastolic volume index (LVEDVi), mass index (LVMi), and extracellular volume fraction (ECV). The Sokolow-Lyon and Cornell products by ECG and TTE-derived E/e' were measured. RESULTS There were no differences in the ECG, TTE, and CMR parameters between BAV-no_AS/AR and TAV-no_AS/AR. However, the presence of aortic valve dysfunction resulted in an elevated Sokolow-Lyon product for BAV-ASR (p = 0.017) and BAV-AR (p = 0.001), as well as increased Cornell product (p = 0.04) and E/e' (p < 0.001) for BAV-AS compared with BAV-no_AS/AR. LVEDVi and LVMi were elevated in patients with BAV-ASR and BAV-AR compared with those with BAV-no_AS/AR (LVEDVi: 101 ± 29 ml/m2 and 112 ± 32 ml/m2 vs. 74 ± 15 ml/m2, p = 0.005 and p < 0.001, LVMi: 75 ± 7 g/m2 and 64 ± 14 g/m2 vs. 47 ± 9 g/m2, respectively; p < 0.001). There was no difference in ECV between the BAV and TAV-no_AS/AR subgroups. CONCLUSION Normally functioning BAV did not result in LV remodeling. However, concomitant AV dysfunction was associated with statistically significant morphological remodeling.
Collapse
Affiliation(s)
- Kenichiro Suwa
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA.
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Amir Ali Rahsepar
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
| | - Julia Geiger
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Diagnostic Imaging, University Children`s Hospital Zürich, Zürich, Switzerland
- University of Zürich, Zürich, Switzerland
| | - Ryan Dolan
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
| | - Ahmadreza Ghasemiesfe
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Alex J Barker
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeremy D Collins
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, USA
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
| |
Collapse
|
36
|
Yu CY, Huang TY, Chung HW. Single breath-hold MR T1 mapping in the heart: Hybrid MOLLI combining saturation and inversion recovery. Magn Reson Imaging 2023; 96:85-92. [PMID: 36470451 DOI: 10.1016/j.mri.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The native T1 values of the myocardium provide valuable information for tissue characterization and assessment of cardiomyopathies. In this study, we proposed a novel hybrid MOLLI sequence for myocardial T1 mapping. Unlike the two groups of inversion-recovery sampling of the conventional MOLLI5(3 s)3 sequence, the hybrid MOLLI sequence consisted of an inversion-recovery block followed by a saturation-recovery block. Since the second block employed a saturation pulse to spoil the longitudinal magnetization, it did not require a waiting period as MOLLI5(3 s)3 did. As a result, the hybrid MOLLI required less acquisition time leading to a practical application for patients with breath-hold difficulties. Phantom and healthy subject experiments were performed to evaluate the proposed sequence against the MOLLI5(3 s)3 sequence. The phantom study showed that the heart-rate dependency of one variant of the hybrid MOLLI sequences, hbMOLLI4, was comparable to that of MOLLI5(3 s)3. In addition, both hbMOLLI4 and MOLLI53 derived T1 values under 2% variations with simulated heart rates from 50 to 90 beats-per-minute within the range of T1 values for myocardium and blood before contrast administration. Simulation results suggested slightly reduced T1 fitting precision in hbMOLLI4 compared with MOLLI5(3 s)3, but prominently better than saturation recovery. Bland-Altman analysis on accuracy assessment revealed that hbMOLLI4 partially reduced the T1 underestimation of MOLLI5(3 s)3. In the human study, The T1 values of both methods were consistent (hbMOLLI4 vs. MOLLI5(3 s)3, slope = 1.14, R2 > 0.97), with equal reproducibility. The results supported that hybrid MOLLI produced comparable T1 mapping results in terms of accuracy, reproducibility, and heart-rate dependency, at the expense of slightly reduced precision. We concluded that the hybrid MOLLI sequence presents a competitive alternative to the MOLLI5(3 s)3 sequence when a speedy acquisition is required.
Collapse
Affiliation(s)
- Chun-Yang Yu
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Teng-Yi Huang
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Using T1 mapping indices to evaluate muscle function and predict conservative treatment outcomes in diabetic patients with peripheral arterial disease. Eur Radiol 2023:10.1007/s00330-023-09392-8. [PMID: 36651955 DOI: 10.1007/s00330-023-09392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To investigate interstitial muscle fibrosis via T1 mapping indices and its relationships with muscle function and conservative treatment outcomes. METHODS A total of 49 DM patients with PAD were prospectively recruited from 2016 to 2017. All PAD patients underwent pre-treatment MRI with conservative treatment via a rehabilitation program and antiplatelet therapy. The need to require percutaneous transluminal angioplasty intervention was recorded as intolerance to conservative treatment outcomes. We quantified calf interstitial muscle fibrosis using T1 mapping indices (native T1, post-contrast T1, and the extracellular volume fraction [ECV]). Muscle function was evaluated using a 6-min walking test (6MWT) and a 3-min stepping test (3MST). PAD patients were divided into two groups according to their tolerance or intolerance of the conservative treatment. Pearson's correlation, reproducibility, and multivariable Cox hazard analyses were performed with p < 0.05 indicating statistical significance. RESULTS Among the T1 mapping indices in the posterior compartment of the calf in PAD patients, the native T1 value was significantly correlated with 6MWT (r = -0.422, p = 0.010) and 3MST (r = -0.427, p = 0.009). All T1 mapping indices showed excellent intra-observer and inter-observer correlations. ECV was an independent predictor of conservative treatment intolerance (average ECV, hazard ratio: 1.045, 95% confidence interval: 1.011-1.079, p = 0.009). CONCLUSIONS T1 mapping measurements are reproducible with excellent intra-observer and inter-observer correlations. T1 mapping indices may be predictive of treatment and functional outcomes and carry promise in patient evaluation. TRIAL REGISTRATION Clinical Trials Identifier: NCT02850432 . KEY POINTS • T1 mapping measurements of the calf muscles are reproducible with excellent intra-observer and inter-observer correlations (0.98 and 0.95 for anterior and posterior compartment muscle extracellular volume matrix [ECV] measurements, respectively). • ECV is shown to independently predict conservative treatment intolerance. • T1 mapping indices may be predictive of treatment and functional outcomes and carry promise in patient evaluation.
Collapse
|
38
|
Rempakos A, Papamichail A, Loritis K, Androulakis E, Lama N, Briasoulis A. Non-LGE Cardiac Magnetic Resonance Imaging in Patients with Cardiac Amyloidosis. Curr Pharm Des 2023; 29:527-534. [PMID: 36515044 DOI: 10.2174/1381612829666221212100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiac involvement is the leading cause of death in patients with cardiac amyloidosis. Early recognition is crucial as it can significantly change the course of the disease. Until now, the imaging modality of choice for diagnosing cardiac amyloidosis has been cardiac magnetic resonance imaging (CMR) with late gadolinium enhancement (LGE). LGE-CMR in patients with cardiac amyloidosis reveals characteristic LGE patterns that lead to a diagnosis while also correlating well with disease prognosis. However, LGE-CMR has numerous drawbacks that the newer CMR modality, T1 mapping, aims to improve. T1 mapping can be further subdivided into native T1 mapping, which does not require the use of contrast, and ECV measurement, which requires the use of contrast. Numerous T1 mapping techniques have been developed, each one with its own advantages and disadvantages when it comes to procedure difficulty and image quality. A literature review to identify relevant published articles was performed by two authors. This review aimed to present the value of T1 mapping in diagnosing cardiac amyloidosis, quantifying the amyloid burden, and evaluating the prognosis of patients with amyloidosis with cardiac involvement.
Collapse
Affiliation(s)
- Athanasios Rempakos
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Adamantia Papamichail
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Loritis
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikki Lama
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa College of Medicine, Iowa City, IA, USA
| |
Collapse
|
39
|
Canada JM, Weiss E, Grizzard JD, Trankle CR, Gharai LR, Dana F, Buckley LF, Carbone S, Kadariya D, Ricco A, Jordan JH, Evans RK, Garten RS, Van Tassell BW, Hundley WG, Abbate A. Influence of extracellular volume fraction on peak exercise oxygen pulse following thoracic radiotherapy. CARDIO-ONCOLOGY 2022; 8:1. [PMID: 35042565 PMCID: PMC8764840 DOI: 10.1186/s40959-021-00127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Background Radiation-induced myocardial fibrosis increases heart failure (HF) risk and is associated with a restrictive cardiomyopathy phenotype. The myocardial extracellular volume fraction (ECVF) using contrast-enhanced cardiac magnetic resonance (CMR) quantifies the extent of fibrosis which, in severe cases, results in a noncompliant left ventricle (LV) with an inability to augment exercise stroke volume (SV). The peak exercise oxygen pulse (O2Pulse), a noninvasive surrogate for exercise SV, may provide mechanistic insight into cardiac reserve. The relationship between LV ECVF and O2Pulse following thoracic radiotherapy has not been explored. Methods Patients who underwent thoracic radiotherapy for chest malignancies with significant incidental heart dose (≥5 Gray (Gy), ≥10% heart) without a pre-cancer treatment history of HF underwent cardiopulmonary exercise testing to determine O2Pulse, contrast-enhanced CMR, and N-terminal pro-brain natriuretic peptide (NTproBNP) measurement. Multivariable-analyses were performed to identify factors associated with O2Pulse normalized for age/gender/anthropometrics. Results Thirty patients (median [IQR] age 63 [57–67] years, 18 [60%] female, 2.0 [0.6–3.8] years post-radiotherapy) were included. The peak VO2 was 1376 [1057–1552] mL·min− 1, peak HR = 150 [122–164] bpm, resulting in an O2Pulse of 9.2 [7.5–10.7] mL/beat or 82 (66–96) % of predicted. The ECVF, LV ejection fraction, heart volume receiving ≥10 Gy, and NTproBNP were independently associated with %O2Pulse (P < .001). Conclusions In patients with prior radiotherapy heart exposure, %-predicted O2Pulse is inversely associated markers of diffuse fibrosis (ECVF), ventricular wall stress (NTproBNP), radiotherapy heart dose, and positively related to LV function. Increased LV ECVF may reflect a potential etiology of impaired LV SV reserve in patients receiving thoracic radiotherapy for chest malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s40959-021-00127-6.
Collapse
|
40
|
Le JV, Mendes JK, McKibben N, Wilson BD, Ibrahim M, DiBella EV, Adluru G. Accelerated cardiac T1 mapping with recurrent networks and cyclic, model-based loss. Med Phys 2022; 49:6986-7000. [PMID: 35703369 PMCID: PMC9742165 DOI: 10.1002/mp.15801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Using the spin-lattice relaxation time (T1) as a biomarker, the myocardium can be quantitatively characterized using cardiac T1 mapping. The modified Look-Locker inversion (MOLLI) recovery sequences have become the standard clinical method for cardiac T1 mapping. However, the MOLLI sequences require an 11-heartbeat breath-hold that can be difficult for subjects, particularly during exercise or pharmacologically induced stress. Although shorter cardiac T1 mapping sequences have been proposed, these methods suffer from reduced precision. As such, there is an unmet need for accelerated cardiac T1 mapping. PURPOSE To accelerate cardiac T1 mapping MOLLI sequences by using neural networks to estimate T1 maps using a reduced number of T1-weighted images and their corresponding inversion times. MATERIALS AND METHODS In this retrospective study, 911 pre-contrast T1 mapping datasets from 202 subjects (128 males, 56 ± 15 years; 74 females, 54 ± 17 years) and 574 T1 mapping post-contrast datasets from 193 subjects (122 males, 57 ± 15 years; 71 females, 54 ± 17 years) were acquired using the MOLLI-5(3)3 sequence and the MOLLI-4(1)3(1)2 sequence, respectively. All acquisition protocols used similar scan parameters:T R = 2.2 ms $TR\; = \;2.2\;{\rm{ms}}$ ,T E = 1.12 ms $TE\; = \;1.12\;{\rm{ms}}$ , andF A = 35 ∘ $FA\; = \;35^\circ $ , gadoteridol (ProHance, Bracco Diagnostics) dose∼ 0.075 mmol / kg $\sim 0.075\;\;{\rm{mmol/kg}}$ . A bidirectional multilayered long short-term memory (LSTM) network with fully connected output and cyclic model-based loss was used to estimate T1 maps from the first three T1-weighted images and their corresponding inversion times for pre- and post-contrast T1 mapping. The performance of the proposed architecture was compared to the three-parameter T1 recovery model using the same reduction of the number of T1-weighted images and inversion times. Reference T1 maps were generated from the scanner using the full MOLLI sequences and the three-parameter T1 recovery model. Correlation and Bland-Altman plots were used to evaluate network performance in which each point represents averaged regions of interest in the myocardium corresponding to the standard American Heart Association 16-segment model. The precision of the network was examined using consecutively repeated scans. Stress and rest pre-contrast MOLLI studies as well as various disease test cases, including amyloidosis, hypertrophic cardiomyopathy, and sarcoidosis were also examined. Paired t-tests were used to determine statistical significance withp < 0.05 $p < 0.05$ . RESULTS Our proposed network demonstrated similar T1 estimations to the standard MOLLI sequences (pre-contrast:1260 ± 94 ms $1260 \pm 94\;{\rm{ms}}$ vs.1254 ± 91 ms $1254 \pm 91\;{\rm{ms}}$ withp = 0.13 $p\; = \;0.13$ ; post-contrast:484 ± 92 ms $484 \pm 92\;{\rm{ms}}$ vs.493 ± 91 ms $493 \pm 91\;{\rm{ms}}$ withp = 0.07 $p\; = \;0.07$ ). The precision of standard MOLLI sequences was well preserved with the proposed network architecture (24 ± 28 ms $24 \pm 28\;\;{\rm{ms}}$ vs.18 ± 13 ms $18 \pm 13\;{\rm{ms}}$ ). Network-generated T1 reactivities are similar to stress and rest pre-contrast MOLLI studies (5.1 ± 4.0 % $5.1 \pm 4.0\;\% $ vs.4.9 ± 4.4 % $4.9 \pm 4.4\;\% $ withp = 0.84 $p\; = \;0.84$ ). Amyloidosis T1 maps generated using the proposed network are also similar to the reference T1 maps (pre-contrast:1243 ± 140 ms $1243 \pm 140\;\;{\rm{ms}}$ vs.1231 ± 137 ms $1231 \pm 137\;{\rm{ms}}$ withp = 0.60 $p\; = \;0.60$ ; post-contrast:348 ± 26 ms $348 \pm 26\;{\rm{ms}}$ vs.346 ± 27 ms $346 \pm 27\;{\rm{ms}}$ withp = 0.89 $p\; = \;0.89$ ). CONCLUSIONS A bidirectional multilayered LSTM network with fully connected output and cyclic model-based loss was used to generate high-quality pre- and post-contrast T1 maps using the first three T1-weighted images and their corresponding inversion times. This work demonstrates that combining deep learning with cardiac T1 mapping can potentially accelerate standard MOLLI sequences from 11 to 3 heartbeats.
Collapse
Affiliation(s)
- Johnathan V. Le
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jason K. Mendes
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, 84108, USA
| | - Nicholas McKibben
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, 84108, USA
| | - Brent D. Wilson
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Mark Ibrahim
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Edward V.R. DiBella
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ganesh Adluru
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
41
|
Lundin M, Ferrannini G, Mellbin L, Johansson I, Norhammar A, Näsman P, Shahim B, Smetana S, Venkateshvaran A, Wang A, Sörensson P, Rydén L. SOdium-glucose CO-transporter inhibition in patients with newly detected Glucose Abnormalities and a recent Myocardial Infarction (SOCOGAMI). Diabetes Res Clin Pract 2022; 193:110141. [PMID: 36336088 DOI: 10.1016/j.diabres.2022.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/10/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Established dysglycaemia (impaired glucose tolerance [IGT] or type 2 diabetes [T2DM]) is a risk factor for further cardiovascular events in patients with coronary artery disease. Sodium-glucose cotransporter 2 inhibitors reduce this risk. The aim of the present investigation was to test the hypothesis that empagliflozin exerts beneficial effects on myocardial function in patients with a recent acute coronary syndrome and newly detected dysglycaemia. METHODS Forty-two patients (mean age 67.5 years, 81 % male) with recent myocardial infarction (n = 36) or unstable angina (n = 6) and newly detected IGT (n = 27) or T2DM (n = 15) were randomised to 25 mg of empagliflozin daily (n = 20) or placebo (n = 22) on top of ongoing therapy. They were investigated with oral glucose tolerance tests, stress-perfusion cardiac magnetic resonance imaging (CMR) and echocardiography at three occasions: before randomisation, after seven months on study drug and three months following cessation of such drug. Primary outcome was a change in left ventricular (LV) end-diastolic volume (LVEDV) and secondary outcomes were a change in a) systolic and diastolic LV function; b) coronary flow reserve; c) myocardial extracellular volume (ECV) in non-infarcted myocardium; d) aortic pulse wave velocity. RESULTS Empagliflozin induced a significant decrease in fasting and post load glucose (p < 0.05) and body weight (p < 0.01). Empagliflozin did not influence LVEDV, LV systolic or mass indexes, coronary flow reserve, ECV or aortic pulse wave velocity. Echocardiographic indices of LV diastolic function (E/e' and mitral E/A ratio) were not influenced. No safety concerns were identified. CONCLUSIONS/INTERPRETATION Empagliflozin had predicted effects on the dysglycaemia but did not influence variables expressing LV function, coronary flow reserve and ECV. An explanation may be that the LV function of the patients was within the normal range.
Collapse
Affiliation(s)
- Magnus Lundin
- Department of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Ferrannini
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Linda Mellbin
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anna Norhammar
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Capio S:t Görans Hospital, Stockholm, Sweden
| | - Per Näsman
- Center for Safety Research, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bahira Shahim
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Stina Smetana
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anne Wang
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peder Sörensson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Rydén
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
42
|
Shaw M, Ojha V, Ganga KP, Malhi AS, Chandrashekhara SH, Kumar S, Khan MA, Jagia P, Sharma S. Reference values of myocardial native T1 and T2 mapping values in normal Indian population at 1.5 Tesla scanner. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:2403-2411. [PMID: 36434341 DOI: 10.1007/s10554-022-02648-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
T1 and T2 mapping techniques on cardiovascular magnetic resonance (CMR) provide insights into the myocardial tissue characterisation. We sought to establish the normal reference values of native T1 and T2 mapping in Indian population which can be used subsequently in clinical practice for addressing various cardiac pathologies. This prospective study included consecutive healthy volunteers (18-60 years) who underwent CMR on a 1.5 Tesla scanner using standard protocol. T1 mapping sequence was performed using MOLLI sequence with two different flip angles (FA) (35° and 50°). T2 mapping was performed using a hybrid gradient and spin-echo sequence sequence with two different FA (70° and 12°). Images were analysed with ROIs drawn in all the 16 AHA myocardial segments. 50 volunteers (average age-34 years, males-72%) were included. All the scans were normal. The mean T1 value at 35-degree FA was 946.86 + 14.16 ms and at 50-degree FA was 941.60 + 11.89 ms. The mean T2 mapping value at 70-degree FA was 45.67 + 1.39 ms and at 12-degree FA was 45.61 + 1.47 ms. The mapping values were not statistically different between males and females (all p > 0.2). The T1 and T2 mapping values did not show any significant correlation with LVEF, age, BMI or heart rate (all r < 0.33). The T1 mapping values significantly differ at 35- and 50-degree FAs (p = 0.002). The results establish the normal reference T1 and T2 mapping value for Indian population in institutes using the same protocol and parameters at 1.5 Tesla and may guide future research.
Collapse
Affiliation(s)
- Manish Shaw
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| | - Vineeta Ojha
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| | - Kartik P Ganga
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| | - Amarindar Singh Malhi
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| | - S H Chandrashekhara
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Jagia
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India.
| | - Sanjiv Sharma
- Department of Cardiovascular Radiology and Endovascular Interventions, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, Room 10A, New Delhi, 110029, India
| |
Collapse
|
43
|
Jablonowski R, Bennet L, Engblom H, Aletras AH, Xue H, Kellman P, Carlsson M, Arheden H. Quantitative myocardial perfusion during stress using CMR is impaired in healthy Middle Eastern immigrants without CV risk factors. Sci Rep 2022; 12:18237. [PMID: 36309585 PMCID: PMC9617937 DOI: 10.1038/s41598-022-23131-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Middle Eastern immigrants constitute a growing proportion of the European population and compared to native Swedes are more insulin resistant, which can contribute to atherosclerosis. Quantitative first pass perfusion (qFPP) using cardiovascular magnetic resonance (CMR) can detect early signs of cardiovascular disease (CVD). The aim was to study if myocardial perfusion differs between healthy male Middle Eastern immigrants and native male Swedes. Eighteen Iraqi- and twelve Swedish born controls, all males, never smokers with no CVD risk factors were included. Global myocardial perfusion at rest and stress was assessed using qFPP and by phase-contrast CMR imaging of coronary sinus flow. Quantitative first pass perfusion analysis (mean ± SD) demonstrated no difference at rest between Iraqi and Swedish males (0.8 ± 0.2 vs 1.0 ± 0.4 ml/min/g, P = 0.38) but lower perfusion during adenosine in Iraqi males (2.9 ± 0.7 vs 3.5 ± 0.7 ml/min/g, P = 0.02). Myocardial perfusion assessed by coronary sinus flow demonstrated similar results with no difference in resting perfusion between groups (0.7 ± 0.2 vs 0.8 ± 0.2 ml/min/g, P = 0.21) but a lower perfusion during adenosine in the Iraqi group (3.0 ± 0.2 vs 3.7 ± 0.6 ml/min/g, P = 0.01. Myocardial perfusion during adenosine stress was lower in healthy Iraqi immigrants compared to Swedish controls suggesting impaired microvascular function and risk of underestimating CVD risk in healthy individuals of Middle Eastern origin.
Collapse
Affiliation(s)
- Robert Jablonowski
- grid.411843.b0000 0004 0623 9987Clinical Physiology, Department of Clinical Sciences Lund, Lund University Hospital, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Louise Bennet
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Henrik Engblom
- grid.411843.b0000 0004 0623 9987Clinical Physiology, Department of Clinical Sciences Lund, Lund University Hospital, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Anthony H. Aletras
- grid.411843.b0000 0004 0623 9987Clinical Physiology, Department of Clinical Sciences Lund, Lund University Hospital, Lund University, Skane University Hospital, 221 85 Lund, Sweden ,grid.4793.90000000109457005Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hui Xue
- grid.279885.90000 0001 2293 4638National Heart-Lung and Blood Institute, Bethesda, MD USA
| | - Peter Kellman
- grid.279885.90000 0001 2293 4638National Heart-Lung and Blood Institute, Bethesda, MD USA
| | - Marcus Carlsson
- grid.411843.b0000 0004 0623 9987Clinical Physiology, Department of Clinical Sciences Lund, Lund University Hospital, Lund University, Skane University Hospital, 221 85 Lund, Sweden ,grid.279885.90000 0001 2293 4638National Heart-Lung and Blood Institute, Bethesda, MD USA
| | - Håkan Arheden
- grid.411843.b0000 0004 0623 9987Clinical Physiology, Department of Clinical Sciences Lund, Lund University Hospital, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
44
|
Rucker D, Joseph J. Defining the Phenotypes for Heart Failure With Preserved Ejection Fraction. Curr Heart Fail Rep 2022; 19:445-457. [PMID: 36178663 DOI: 10.1007/s11897-022-00582-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE OF REVIEW Heart failure with preserved ejection fraction (HFpEF) imposes a significant burden on society and healthcare. The lack in efficacious therapies is likely due to the significant heterogeneity of HFpEF. In this review, we define various phenotypes based on underlying comorbidities or etiologies, discuss phenotypes arrived at by novel methods, and explore therapeutic targets. RECENT FINDINGS A few studies have used machine learning methods to uncover sub-phenotypes within HFpEF in an unbiased manner based on clinical features, echocardiographic findings, and biomarker levels. We synthesized the literature and propose three broad phenotypes: (1) young, with few comorbidities, usually obese and with low natriuretic peptide levels, (2) obese with substantive cardiometabolic burden and comorbidities and impaired ventricular relaxation, (3) old, multimorbid, with high rates of atrial fibrillation, renal and coronary artery disease, chronic obstructive pulmonary disease, and left ventricular hypertrophy. We also propose potential therapeutic strategies for these phenotypes.
Collapse
Affiliation(s)
- Dane Rucker
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research & Information Center, Veterans Affairs Boston Healthcare System, Cardiology Section (111), 1400 VFW Parkway, West Roxbury, Boston, MA, 02132, USA. .,Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA.
| |
Collapse
|
45
|
Gorecka M, Jex N, Thirunavukarasu S, Chowdhary A, Corrado J, Davison J, Tarrant R, Poenar AM, Sharrack N, Parkin A, Sivan M, Swoboda PP, Xue H, Vassiliou V, Kellman P, Plein S, Halpin SJ, Simms AD, Greenwood JP, Levelt E. Cardiovascular magnetic resonance imaging and spectroscopy in clinical long-COVID-19 syndrome: a prospective case-control study. J Cardiovasc Magn Reson 2022; 24:50. [PMID: 36089591 PMCID: PMC9464490 DOI: 10.1186/s12968-022-00887-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The underlying pathophysiology of post-coronavirus disease 2019 (long-COVID-19) syndrome remains unknown, but increased cardiometabolic demand and state of mitochondrial dysfunction have emerged as candidate mechanisms. Cardiovascular magnetic resonance (CMR) provides insight into pathophysiological mechanisms underlying cardiovascular disease and 31-phosphorus CMR spectroscopy (31P-CMRS) allows non-invasive assessment of the myocardial energetic state. The main aim of the study was to assess whether long COVID-19 syndrome is associated with abnormalities of myocardial structure, function, perfusion and energy metabolism. METHODS Prospective case-control study. A total of 20 patients with a clinical diagnosis of long COVID-19 syndrome (seropositive) and no prior underlying cardiovascular disease (CVD) and 10 matching healthy controls underwent 31P-CMRS and CMR at 3T at a single time point. All patients had been symptomatic with acute COVID-19, but none required hospital admission. RESULTS Between the long COVID-19 syndrome patients and matched contemporary healthy controls there were no differences in myocardial energetics (phosphocreatine to ATP ratio), in cardiac structure (biventricular volumes), function (biventricular ejection fractions, global longitudinal strain), tissue characterization (T1 mapping and late gadolinium enhancement) or perfusion (myocardial rest and stress blood flow, myocardial perfusion reserve). One patient with long COVID-19 syndrome showed subepicardial hyperenhancement on late gadolinium enhancement imaging compatible with prior myocarditis, but no accompanying abnormality in cardiac size, function, perfusion, extracellular volume fraction, native T1, T2 or cardiac energetics. CONCLUSIONS In this prospective case-control study, the overwhelming majority of patients with a clinical long COVID-19 syndrome with no prior CVD did not exhibit any abnormalities in myocardial energetics, structure, function, blood flow or tissue characteristics.
Collapse
Affiliation(s)
- Miroslawa Gorecka
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas Jex
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Sharmaine Thirunavukarasu
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanna Corrado
- Department of Rehabilitation Medicine, Leeds Teaching Hospitals Trust, Leeds, UK
| | | | | | - Ana-Maria Poenar
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Noor Sharrack
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy Parkin
- Leeds Community Healthcare NHS Trust, Leeds, UK
| | - Manoj Sivan
- Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, Bethesda, MD, 20892, USA
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, Bethesda, MD, 20892, USA
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen J Halpin
- Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
46
|
Brendel JM, Klingel K, Kübler J, Müller KAL, Hagen F, Gawaz M, Nikolaou K, Greulich S, Krumm P. Comprehensive Cardiac Magnetic Resonance to Detect Subacute Myocarditis. J Clin Med 2022; 11:jcm11175113. [PMID: 36079039 PMCID: PMC9457022 DOI: 10.3390/jcm11175113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Compared to acute myocarditis in the initial phase, detection of subacute myocarditis with cardiac magnetic resonance (CMR) parameters can be challenging due to a lower degree of myocardial inflammation compared to the acute phase. (2) Objectives: To systematically evaluate non-invasive CMR imaging parameters in acute and subacute myocarditis. (3) Methods: 48 patients (age 37 (IQR 28−55) years; 52% female) with clinically suspected myocarditis were consecutively included. Patients with onset of symptoms ≤2 weeks prior to 1.5T CMR were assigned to the acute group (n = 25, 52%), patients with symptom duration >2 to 6 weeks were assigned to the subacute group (n = 23, 48%). CMR protocol comprised morphology, function, 3D-strain, late gadolinium enhancement (LGE) imaging and mapping (T1, ECV, T2). (4) Results: Highest diagnostic performance in the detection of subacute myocarditis was achieved by ECV evaluation either as single parameter or in combination with T1 mapping (applying a segmental or global increase of native T1 > 1015 ms and ECV > 28%), sensitivity 96% and accuracy 91%. Compared to subacute myocarditis, acute myocarditis demonstrated higher prevalence and extent of LGE (AUC 0.76) and increased T2 (AUC 0.66). (5) Conclusions: A comprehensive CMR approach allows reliable diagnosis of clinically suspected subacute myocarditis. Thereby, ECV alone or in combination with native T1 mapping indicated the best performance for diagnosing subacute myocarditis. Acute vs. subacute myocarditis is difficult to discriminate by CMR alone, due to chronological connection and overlap of pathologic findings.
Collapse
Affiliation(s)
- Jan M. Brendel
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University of Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Jens Kübler
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Karin A. L. Müller
- Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Florian Hagen
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Simon Greulich
- Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
- Correspondence:
| | - Patrick Krumm
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| |
Collapse
|
47
|
Ramchand J, Iskandar JP, Layoun H, Puri R, Chetrit M, Burrell LM, Krishnaswamy A, Griffin BP, Yun JJ, Flamm SD, Kapadia SR, Kwon DH, Harb SC. Effect of Myocardial Tissue Characterization Using Native T1 to Predict the Occurrence of Adverse Events in Patients With Chronic Kidney Disease and Severe Aortic Stenosis. Am J Cardiol 2022; 183:85-92. [PMID: 36031412 DOI: 10.1016/j.amjcard.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Among patients with chronic kidney disease (CKD), aortic stenosis (AS) is associated with a significantly higher rate of mortality. We aimed to evaluate whether diffuse myocardial fibrosis, determined using native T1 mapping, has prognostic utility in predicting major adverse cardiovascular events (MACEs), including all-cause mortality or heart failure hospitalization, in patients with CKD and severe AS who are evaluated for transcatheter aortic valve implantation. Cardiac magnetic resonance with T1 mapping using the modified Look-Locker inversion recovery technique was performed in 117 consecutive patients with severe AS and CKD (stage ≥3). Patients were followed up to determine the occurrence of MACE. The mean age of the 117 patients in the cohort was 82 ± 8 years. Native T1 was 1,055 ms (25th- to 75th percentiles 1,031 to 1,078 ms), which is higher than previously reported in healthy controls. Patients with higher T1 times were more likely to have higher N-terminal pro-B-type natriuretic peptide levels (4,122 [IQR 1,578 to 7,980] pg/ml vs 1,678 [IQR 493 to 2,851] pg/ml, p = 0.005) and a history of heart failure (33% vs 9%, p = 0.034). After median follow-up of 3.4 years, MACE occurred in 71 patients (61%). The Society of Thoracic Surgeons predicted risk of mortality score (hazard ratio [HR] 1.07, 95% confidence interval [CI] 1.02 to 1.12, p = 0.006), native T1 >1,024 ms (HR 2.10, 95% CI 1.09 to 4.06, p = 0.028), and New York Heart Association class (HR 1.56, 95% 1.09 to 2.34, p = 0.016) were independent predictors of MACE. Longer native T1 was associated with MACE occurrence in patients with CKD and severe AS.
Collapse
Affiliation(s)
- Jay Ramchand
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.
| | | | - Habib Layoun
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rishi Puri
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Michael Chetrit
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | | | - Brian P Griffin
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - James J Yun
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Scott D Flamm
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Samir R Kapadia
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deborah H Kwon
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Serge C Harb
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
48
|
Guo R, Chen Z, Amyar A, El-Rewaidy H, Assana S, Rodriguez J, Pierce P, Goddu B, Nezafat R. Improving accuracy of myocardial T 1 estimation in MyoMapNet. Magn Reson Med 2022; 88:2573-2582. [PMID: 35916305 DOI: 10.1002/mrm.29397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To improve the accuracy and robustness of T1 estimation by MyoMapNet, a deep learning-based approach using 4 inversion-recovery T1 -weighted images for cardiac T1 mapping. METHODS MyoMapNet is a fully connected neural network for T1 estimation of an accelerated cardiac T1 mapping sequence, which collects 4 T1 -weighted images by a single Look-Locker inversion-recovery experiment (LL4). MyoMapNet was originally trained using in vivo data from the modified Look-Locker inversion recovery sequence, which resulted in significant bias and sensitivity to various confounders. This study sought to train MyoMapNet using signals generated from numerical simulations and phantom MR data under multiple simulated confounders. The trained model was then evaluated by phantom data scanned using new phantom vials that differed from those used for training. The performance of the new model was compared with modified Look-Locker inversion recovery sequence and saturation-recovery single-shot acquisition for measuring native and postcontrast T1 in 25 subjects. RESULTS In the phantom study, T1 values measured by LL4 with MyoMapNet were highly correlated with reference values from the spin-echo sequence. Furthermore, the estimated T1 had excellent robustness to changes in flip angle and off-resonance. Native and postcontrast myocardium T1 at 3 Tesla measured by saturation-recovery single-shot acquisition, modified Look-Locker inversion recovery sequence, and MyoMapNet were 1483 ± 46.6 ms and 791 ± 45.8 ms, 1169 ± 49.0 ms and 612 ± 36.0 ms, and 1443 ± 57.5 ms and 700 ± 57.5 ms, respectively. The corresponding extracellular volumes were 22.90% ± 3.20%, 28.88% ± 3.48%, and 30.65% ± 3.60%, respectively. CONCLUSION Training MyoMapNet with numerical simulations and phantom data will improve the estimation of myocardial T1 values and increase its robustness to confounders while also reducing the overall T1 mapping estimation time to only 4 heartbeats.
Collapse
Affiliation(s)
- Rui Guo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
| | - Amine Amyar
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hossam El-Rewaidy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Salah Assana
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Patrick Pierce
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Beth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
49
|
Badr Eslam R, Öztürk B, Rettl R, Capelle CDJ, Qin H, Binder C, Dachs TM, Camuz Ligios L, Duca F, Dalos D, Schrutka L, Alasti F, Kastner J, Vila G, Bonderman D. Impact of Tafamidis and Optimal Background Treatment on Physical Performance in Patients With Transthyretin Amyloid Cardiomyopathy. Circ Heart Fail 2022; 15:e008381. [PMID: 35766028 DOI: 10.1161/circheartfailure.121.008381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In patients with transthyretin amyloid cardiomyopathy, tafamidis was shown to slow the decline in 6-minute walking distance as compared with placebo. We aimed to define the impact of tafamidis and optimal background treatment on functional capacity as determined by cardiopulmonary exercise testing (CPET). METHODS Seventy-eight consecutive patients were enrolled in the study. They underwent CPET at baseline, and outcome defined as death or heart failure hospitalization was obtained for a time period of up to 30 months. Fifty-four patients completed a follow-up CPET at 9±3 months (range, 4-16 months). Improvement in peak VO2 at follow-up was defined as ∆peak VO2≥1.0 mL/(kg·min), stable peak VO2 was defined as 0≤∆peak VO2<1.0 mL/(kg·min), and decline in peak VO2 was defined by ∆peak VO2<0 mL/(kg·min). RESULTS Baseline peak VO2>14 mL/(kg·min) as well as minute ventilation/carbon dioxide production slope≤34 were associated with a lower risk of death or heart failure hospitalization (P=0.002, P=0.007, respectively). In 54 patients, who received tafamidis and underwent repeat CPET testing, an improvement in physical performance (P=0.002) was observed at follow-up. When comparing pre and post-treatment parameters, 29 patients (54%) showed an increase in percent predicted peak VO2 (P<0.0001), an improvement of peak VO2 (P<0.0001), and better physical performance at follow-up (P<0.0001). Patients with stable or improved peak VO2 had less advanced heart disease at baseline (P=0.046). CONCLUSIONS Our findings demonstrate that baseline peak VO2 and baseline minute ventilation/carbon dioxide production slope predict outcomes and an improvement in physical performance as measured by CPET was observed in patients receiving tafamidis, who had less advanced disease at baseline, emphasizing the importance of early diagnosis.
Collapse
Affiliation(s)
- Roza Badr Eslam
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Begüm Öztürk
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - René Rettl
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Christophe Denis Josef Capelle
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Hong Qin
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Christina Binder
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Theresa-Marie Dachs
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Luciana Camuz Ligios
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Franz Duca
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Daniel Dalos
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Lore Schrutka
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Farideh Alasti
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria (F.A.)
| | - Johannes Kastner
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| | - Greisa Vila
- Division of Endocrinology and Metabolism, Department of Internal Medicine III (G.V.), Medical University of Vienna, Austria
| | - Diana Bonderman
- Division of Cardiology, Department of Internal Medicine II (R.B.E., B.O., R.R., C.D.J.C., H.Q., C.B., T.-M.D., L.C.L., F.D., D.D., L.S., J.K., D.B.), Medical University of Vienna, Austria
| |
Collapse
|
50
|
Fuertes Kenneally L, García-Álvarez MI, Feliu Rey E, García Barrios A, Climent-Payá V. Fabry Disease Cardiomyopathy: A Review of the Role of Cardiac Imaging from Diagnosis to Treatment. Rev Cardiovasc Med 2022; 23:192. [PMID: 39077169 PMCID: PMC11273868 DOI: 10.31083/j.rcm2306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 07/31/2024] Open
Abstract
Fabry disease is a rare X-linked inherited lysosomal storage disorder caused by the absence or reduction of alfa-galactosidase A activity in lysosomes, resulting in accumulation of glycosphingolipids in various tissues. The main organ affected is the heart, which frequently manifests as left ventricular hypertrophy and can ultimately lead to cardiac fibrosis, heart failure, valve disease, cardiac conduction abnormalities and sudden cardiac death. Today we know that myocyte damage starts before these signs and symptoms are detectable on routine studies, during the designated pre-clinical phase of Fabry disease. The initiation of specific therapy for Fabry disease during the early stages of the disease has a great impact on the prognosis of these patients avoiding progression to irreversible fibrosis and preventing cardiovascular complications. Cardiac imaging has become an essential tool in the management of Fabry disease as it can help physicians suspect the disorder, diagnose patients in the early stages and improve outcomes. The recent development of novel imaging techniques makes necessary an update on the subject. This review discusses the role of multimodal imaging in the diagnosis, staging, patient selection for treatment and prognosis of Fabry disease and discusses recent advances in imaging techniques that provide new insights into the pathogenesis of the disorder and the possibility of novel treatment targets.
Collapse
Affiliation(s)
- Laura Fuertes Kenneally
- Heart Failure and Inherited Cardiac Diseases Unit, Cardiology Department, Hospital General Universitario Dr. Balmis, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - María Isabel García-Álvarez
- Heart Failure and Inherited Cardiac Diseases Unit, Cardiology Department, Hospital General Universitario Dr. Balmis, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Eloísa Feliu Rey
- Radiology Department, Hospital General Universitario Dr. Balmis, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Ana García Barrios
- Heart Failure and Inherited Cardiac Diseases Unit, Cardiology Department, Hospital General Universitario Dr. Balmis, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Vicente Climent-Payá
- Heart Failure and Inherited Cardiac Diseases Unit, Cardiology Department, Hospital General Universitario Dr. Balmis, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|