1
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Calcagno C, David JA, Motaal AG, Coolen BF, Beldman T, Corbin A, Kak A, Ramachandran S, Pruzan A, Sridhar A, Soler R, Faries CM, Fayad ZA, Mulder WJM, Strijkers GJ. Self-gated, dynamic contrast-enhanced magnetic resonance imaging with compressed-sensing reconstruction for evaluating endothelial permeability in the aortic root of atherosclerotic mice. NMR IN BIOMEDICINE 2023; 36:e4823. [PMID: 36031706 PMCID: PMC10078106 DOI: 10.1002/nbm.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 05/16/2023]
Abstract
High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe-/- atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe-/- mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages. Eight additional mice were kept on a high-fat diet and imaged longitudinally at the same time points. Aortic-root pseudo-concentration curves were analyzed using a validated piecewise linear model. Contrast agent wash-in and washout slopes (b1 and b2 ) were measured as surrogates of aortic root endothelial permeability and compared with macrophage density by immunohistochemistry. b2 , indicating contrast agent washout, was significantly higher in mice kept on an high-fat diet for longer periods of time (p = 0.03). Group comparison revealed significant differences between mice on a high-fat diet for 4 versus 16 weeks (p = 0.03). Macrophage density also significantly increased with diet duration (p = 0.009). Spearman correlation between b2 from DCE-MRI and macrophage density indicated a weak relationship between the two parameters (r = 0.28, p = 0.20). Validated piecewise linear modeling of the DCE-MRI data showed that the aortic root contrast agent washout rate is significantly different during disease progression. Further development of this technique from a single-slice to a 3D acquisition may enable better investigation of the relationship between in vivo imaging of endothelial permeability and atherosclerotic plaques' genetic, molecular, and cellular makeup in this important model of disease.
Collapse
Affiliation(s)
- Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John A David
- Amsterdam University Medical Centers, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Abdallah G Motaal
- Siemens Healthineers, Cardiovascular Care Group, Advanced Therapies Business, Erlangen, Germany
| | - Bram F Coolen
- Amsterdam University Medical Centers, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs Beldman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandra Corbin
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arnav Kak
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarayu Ramachandran
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison Pruzan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthi Sridhar
- Department of Hematology/Oncology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Raphael Soler
- CNRS, CRMBM, Marseille, France
- Department of Vascular and Endovascular Surgery, Hôpital Universitaire de la Timone, APHM, Marseille, France
| | - Christopher M Faries
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Amsterdam University Medical Centers, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Li H, Metze P, Abaei A, Rottbauer W, Just S, Lu Q, Rasche V. Feasibility of real-time cardiac MRI in mice using tiny golden angle radial sparse. NMR IN BIOMEDICINE 2020; 33:e4300. [PMID: 32227427 DOI: 10.1002/nbm.4300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cardiovascular magnetic resonance imaging has proven valuable for the assessment of structural and functional cardiac abnormalities. Even although it is an established imaging method in small animals, the long acquisition times of gated or self-gated techniques still limit its widespread application. In this study, the application of tiny golden angle radial sparse MRI (tyGRASP) for real-time cardiac imaging was tested in 12 constitutive nexilin (Nexn) knock-out (KO) mice, both heterozygous (Het, N = 6) and wild-type (WT, N = 6), and the resulting functional parameters were compared with a well-established self-gating approach. Real-time images were reconstructed for different temporal resolutions of between 16.8 and 79.8 ms per image. The suggested approach was additionally tested for dobutamine stress and qualitative first-pass perfusion imaging. Measurements were repeated twice within 2 weeks for reproducibility assessment. In direct comparison with the high-quality, self-gated technique, the real-time approach did not show any significant differences in global function parameters for acquisition times below 50 ms (rest) and 31.5 ms (stress). Compared with WT, the end-diastolic volume (EDV) and end-systolic volume (ESV) were markedly higher (P < 0.05) and the ejection fraction (EF) was significantly lower in the Het Nexn-KO mice at rest (P < 0.001). For the stress investigation, a clear decrease of EDV and ESV, and an increase in EF, but maintained stroke volume, could be observed in both groups. Combined with ECG-triggering, tyGRASP provided first-pass perfusion data with a temporal resolution of one image per heartbeat, allowing the quantitative assessment of upslope curves in the blood-pool and myocardium. Excellent inter-study reproducibility was achieved in all the functional parameters. The tyGRASP is a valuable real-time MRI technique for mice, which significantly reduces the scan time in preclinical cardiac functional imaging, providing sufficient image quality for deriving accurate functional parameters, and has the potential to investigate real-time and beat-to-beat changes.
Collapse
Affiliation(s)
- Hao Li
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Moussavi A, Mietsch M, Drummer C, Behr R, Mylius J, Boretius S. Cardiac MRI in common marmosets revealing age-dependency of cardiac function. Sci Rep 2020; 10:10221. [PMID: 32576909 PMCID: PMC7311402 DOI: 10.1038/s41598-020-67157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to establish a feasible and robust magnetic resonance imaging protocol for the quantitative assessment of cardiac function in marmosets and to present normal values of cardiac function across different ages from young adult, middle-aged, to very old clinically healthy animals. Cardiac MRI of 33 anesthetized marmosets at the age of 2-15 years was performed at 9.4 T using IntraGate-FLASH that operates without any ECG-triggering and breath holding. Normalized to post-mortem heart weight, the left ventricular end-diastolic volume (LV-EDV) was significantly reduced in older marmosets. The LV end-systolic volume (LV-ESV) and the LV stroke volume (LV-SV) showed a similar trend while the LV ejection fraction (LV-EF) and wall thickening remained unchanged. Similar observations were made for the right ventricle. Moreover, the total ventricular myocardial volume was lower in older monkeys while no significant difference in heart weight was found. In conclusion, IntraGate-FLASH allowed for quantification of left ventricular cardiac function but seems to underestimate the volumes of the right ventricle. Although less strong and without significant sex differences, the observed age related changes were similar to previously reported findings in humans supporting marmosets as a model system for age related cardiovascular human diseases.
Collapse
Affiliation(s)
- Amir Moussavi
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| | - Matthias Mietsch
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Department of Laboratory Animal Science, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Charis Drummer
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rüdiger Behr
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Judith Mylius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
de Senneville BD, Cardiet CR, Trotier AJ, Ribot EJ, Lafitte L, Facq L, Miraux S. Optimizing 4D abdominal MRI: image denoising using an iterative back-projection approach. Phys Med Biol 2020; 65:015003. [PMID: 31714255 DOI: 10.1088/1361-6560/ab563e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
4D-MRI is a promising tool for organ exploration, target delineation and treatment planning. Intra-scan motion artifacts may be greatly reduced by increasing the imaging frame rate. However, poor signal-to-noise ratios (SNR) are observed when increasing spatial and/or frame number per physiological cycle, in particular in the abdomen. In the current work, the proposed 4D-MRI method favored spatial resolution, frame number, isotropic voxels and large field-of-view (FOV) during MR-acquisition. The consequential SNR penalty in the reconstructed data is addressed retrospectively using an iterative back-projection (IBP) algorithm. Practically, after computing individual spatial 3D deformations present in the images using a deformable image registration (DIR) algorithm, each 3D image is individually enhanced by fusing several successive frames in its local temporal neighborood, these latter being likely to cover common independent informations. A tuning parameter allows one to freely readjust the balance between temporal resolution and precision of the 4D-MRI. The benefit of the method was quantitatively evaluated on the thorax of 6 mice under free breathing using a clinically acceptable duration. Improved 4D cardiac imaging was also shown in the heart of 1 mice. Obtained results are compared to theoretical expectations and discussed. The proposed implementation is easily parallelizable and optimized 4D-MRI could thereby be obtained with a clinically acceptable duration.
Collapse
Affiliation(s)
- B Denis de Senneville
- 'Institut de Mathématiques de Bordeaux', University of Bordeaux/CNRS UMR 5251, 351 Cours de la Libération, 33405 Talence Cedex, France. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
6
|
Weisell J, Ruotsalainen AK, Laakso H, Ylä-Herttuala E, Näpänkangas J, Levonen AL, Liimatainen T, Rysä J. Characterizing valve dynamics in mice by high-resolution cine-MRI. NMR IN BIOMEDICINE 2019; 32:e4108. [PMID: 31112347 DOI: 10.1002/nbm.4108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
AIMS In calcific aortic valve disease (CAVD), progressive valvular sclerosis and calcification cause narrowing of the orifice and an impairment of the valve's function. We applied high-resolution cine-MRI to perform quantitative analysis of the dynamics of the aortic valve in a mice model of CAVD. METHODS AND RESULTS LDLr-/- ApoB100/100 mice were fed a Western diet (WD) or a standard diet (control) for 22 weeks. The mice were imaged in a 7 T horizontal MRI scanner, and aortic valve dynamics was examined by imaging the cross-section of the aorta at valve level using cine sequences. From these images, the area of the aortic valve orifice was determined during the heart cycle. MRI results were compared with echocardiographic and histopathologic results. The data revealed evidence of clear aortic valve dysfunction in WD mice as compared with control mice (interaction P < 0.001). MRI showed narrowing (14%, P < 0.05) of the orifice area, and this was also seen in histology (34%, P < 0.05), indicating more severe aortic stenosis after WD than in controls. Additionally, MRI revealed a reduction in the ejection fraction (EF) (-11%, P < 0.01), a result confirmed with echocardiography (-27%, P < 0.001) in mice fed with WD. EF detected by MRI and echocardiography also correlated strongly with the degree of stenosis assessed by histology. CONCLUSIONS Cine-MRI can be used for quantitative analysis of the aortic valve orifice over the cardiac cycle in mice. MRI showed the cusps clearly, and we were able to detect aortic valve dysfunction over time through the cardiac cycle.
Collapse
Affiliation(s)
- Jonna Weisell
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elias Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha Näpänkangas
- Department of Pathology, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Timo Liimatainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, University Hospital of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Tavares de Sousa M, Hecher K, Yamamura J, Kording F, Ruprecht C, Fehrs K, Behzadi C, Adam G, Schoennagel BP. Dynamic fetal cardiac magnetic resonance imaging in four-chamber view using Doppler ultrasound gating in normal fetal heart and in congenital heart disease: comparison with fetal echocardiography. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 53:669-675. [PMID: 30381848 DOI: 10.1002/uog.20167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the diagnostic performance of dynamic fetal cardiac magnetic resonance imaging (MRI), using a MR-compatible Doppler ultrasound (DUS) device for fetal cardiac gating, in differentiating fetuses with congenital heart disease from those with a normal heart, and to compare the technique with fetal echocardiography. METHODS This was a prospective study of eight fetuses with a normal heart and four with congenital heart disease (CHD), at a median of 34 (range, 28-36) weeks' gestation. Dynamic fetal cardiac MRI was performed using a DUS device for direct cardiac gating. The four-chamber view was evaluated according to qualitative findings. Measurements of the length of the left and right ventricles, diameter of the tricuspid and mitral valves, myocardial wall thickness, transverse cardiac diameter and left ventricular planimetry were performed. Fetal echocardiography and postnatal diagnoses were considered the reference standards. RESULTS Direct cardiac gating allowed continuous triggering of the fetal heart, showing high temporal and spatial resolution. Both fetal cardiac MRI and echocardiography in the four-chamber view detected pathological findings in three of the 12 fetuses. Qualitative evaluation revealed overall consistency between echocardiography and MRI. On both echocardiography and MRI, quantitative measurements revealed significant differences between fetuses with a normal heart and those with CHD with respect to the length of the right (P < 0.01 for both) and left (P < 0.01 for both) ventricles and transverse cardiac diameter (P < 0.05 and P < 0.01, respectively). Tricuspid valve diameter on cardiac MRI was found to be significantly different in healthy fetuses from in those with CHD (P < 0.05). CONCLUSIONS For the first time, this study has shown that dynamic fetal cardiac MRI in the four-chamber view, using external cardiac gating, allows evaluation of cardiac anatomy and diagnosis of congenital heart disease in agreement with fetal echocardiography. Dynamic fetal cardiac MRI may be useful as a second-line investigation if conditions for fetal echocardiography are unfavorable. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Tavares de Sousa
- University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg, Germany
| | - K Hecher
- University Medical Center Hamburg-Eppendorf, Department of Obstetrics and Fetal Medicine, Hamburg, Germany
| | - J Yamamura
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - F Kording
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - C Ruprecht
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - K Fehrs
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - C Behzadi
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - G Adam
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - B P Schoennagel
- University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| |
Collapse
|
8
|
Russo I, Micotti E, Fumagalli F, Magnoli M, Ristagno G, Latini R, Staszewsky L. A novel echocardiographic method closely agrees with cardiac magnetic resonance in the assessment of left ventricular function in infarcted mice. Sci Rep 2019; 9:3580. [PMID: 30837662 PMCID: PMC6400943 DOI: 10.1038/s41598-019-40393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac Magnetic Resonance (CMR) is the gold standard for left ventricular (LV) function assessment in small rodents and, though echocardiography (ECHO) has been proposed as an alternative method, LV volumes may be underestimated when marked eccentric remodeling is present. In the present study we described a novel echocardiographic method and we tested the agreement with CMR for LV volumes and ejection fraction calculation in mice with experimental myocardial infarction. Sham-operated and infarcted mice, subjected to Coronary Artery Ligation, underwent ECHO and CMR. Volumes and ejection fraction were calculated by ECHO using a standard Simpson’s modified method (ECHO pLAX) or a method from sequential parasternal short axis (ECHO pSAX) acquired mechanically by translating the probe every 1 mm along the left ventricle. The mean differences ±1.96 standard deviation near to zero suggested close agreement between ECHO pSAX and CMR; contrarily ECHO pLAX agreement with CMR was lower. In addition, ECHO was three times shorter and cheaper (Relative cost difference: pLAX: −66% and pSAX −57%) than CMR. In conclusion, ECHO pSAX is a new, fast, cheap and accurate method for LV function assessment in mice.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Edoardo Micotti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Michela Magnoli
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Lidia Staszewsky
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
9
|
Fetal dynamic phase-contrast MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements. Eur Radiol 2019; 29:4169-4176. [PMID: 30617486 DOI: 10.1007/s00330-018-5940-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/28/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the feasibility of fetal phase-contrast (PC)-MR angiography of the descending aorta (AoD) using an MR-compatible Doppler ultrasound sensor (DUS) for fetal cardiac gating and to compare velocimetry with Doppler ultrasound measurements. METHODS In this prospective study, 2D PC-MR angiography was performed in 12 human fetuses (mean gestational age 32.8 weeks) using an MR-compatible DUS for gating of the fetal heart at 1.5 T. Peak flow velocities in the fetal AoD were compared with Doppler ultrasound measurements performed on the same day. Reproducibility of PC-MR measurements was tested by repeated PC-MR in five fetuses. RESULTS Dynamic PC-MR angiography in the AoD was successfully performed in all fetuses using the DUS, with an average fetal heart rate of 140 bpm (range 129-163). Time-velocity curves revealed typical arterial blood flow patterns. PC-MR mean flow velocity and mean flux were 21.2 cm/s (range 8.6-36.8) and 8.4 ml/s (range 3.2-14.6), respectively. A positive association between PC-MR mean flux and stroke volume with gestational age was obtained (r = 0.66, p = 0.02 and r = 0.63, p = 0.03). PC-MR and Doppler ultrasound peak velocities revealed a highly significant correlation (r = 0.8, p < 0.002). Peak velocities were lower for PC-MR with 69.1 cm/s (range 39-125) compared with 96.7 cm/s (range 60-142) for Doppler ultrasound (p < 0.001). Reproducibility of PC-MR was high (p > 0.05). CONCLUSION The MR-compatible DUS for fetal cardiac gating allows for PC-MR angiography in the fetal AoD. Comparison with Doppler ultrasound revealed a highly significant correlation of peak velocities with underestimation of PC-MR velocities. This new technique for direct fetal cardiac gating indicates the potential of PC-MR angiography for assessing fetal hemodynamics. KEY POINTS • The developed MR-compatible Doppler ultrasound sensor allows direct fetal cardiac gating and can be used for prenatal dynamic cardiovascular MRI. • The MR-compatible Doppler ultrasound sensor was successfully applied to perform intrauterine phase-contrast MR angiography of the fetal aorta, which revealed a highly significant correlation with Doppler ultrasound measurements. • As fetal flow hemodynamics is an important parameter in the diagnosis and management of fetal pathologies, fetal phase-contrast MR angiography may offer an alternative imaging method in addition to Doppler ultrasound and develop as a second line tool in the evaluation of fetal flow hemodynamics.
Collapse
|
10
|
Takahashi Y, Saito S. [5. Evaluation of Pathology of Heart Disease Models Using Preclinical Ultra-high Field MRI]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2018; 74:404-411. [PMID: 29681609 DOI: 10.6009/jjrt.2018_jsrt_74.4.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Takahashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University
| |
Collapse
|
11
|
Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedström E, Aletras AH, Ellen Grant P, Powell AJ, Fehrs K, Adam G, Kooijman H, Schoennagel BP. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson 2018; 20:17. [PMID: 29530064 PMCID: PMC5846256 DOI: 10.1186/s12968-018-0440-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating. METHODS Fifteen fetuses (gestational age 30-39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model. RESULTS Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57-0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction). CONCLUSION High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anthony H. Aletras
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - P. Ellen Grant
- Departments of Radiology and Medicine, Boston Children’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Andrew J. Powell
- Department of Cardiology and Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | | - Bjoern P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Hoerr V, Franz M, Pletz MW, Diab M, Niemann S, Faber C, Doenst T, Schulze PC, Deinhardt-Emmer S, Löffler B. S. aureus endocarditis: Clinical aspects and experimental approaches. Int J Med Microbiol 2018. [PMID: 29526448 DOI: 10.1016/j.ijmm.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening disease, caused by septic vegetations and inflammatory foci on the surface of the endothelium and the valves. Due to its complex and often indecisive presentation the mortality rate is still about 30%. Most frequently bacterial microorganisms entering the bloodstream are the underlying origin of the intracardiac infection. While the disease was primarily restricted to younger patients suffering from rheumatic heart streptococci infections, new at risk categories for Staphylococcus (S.) aureus infections arose over the last years. Rising patient age, increasing drug resistance, intensive treatment conditions such as renal hemodialysis, immunosuppression and long term indwelling central venous catheters but also the application of modern cardiac device implants and valve prosthesis have led to emerging incidences of S. aureus IE in health care settings and community. The aetiologic change has impact on the pathophysiology of IE, the clinical presentation and the overall patient management. Despite intensive research on appropriate in vitro and in vivo models of IE and gained knowledge about the fundamental mechanisms in the formation of bacterial vegetations and extracardiac complications, improved understanding of relevant bacterial virulence factors and triggered host immune responses is required to help developing novel antipathogenic treatment strategies and pathogen specific diagnostic markers. In this review, we summarize and discuss the two main areas affected by the changing patient demographics and provide first, recent knowledge about the pathogenic strategies of S. aureus in the induction of IE, including available experimental models of IE used to study host-pathogen interactions and diagnostic and therapeutic targets. In a second focus we present diagnostic (imaging) regimens for patients with S. aureus IE according to current guidelines as well as treatment strategies and surgical recommendations.
Collapse
Affiliation(s)
- V Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - M Franz
- Department of Internal Medicine I, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - M W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - M Diab
- Department of Cardiothoracic Surgery, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - S Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - C Faber
- Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A16, 48149 Münster, Germany
| | - T Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - P C Schulze
- Department of Internal Medicine I, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - S Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - B Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
13
|
Abstract
Cardiac magnetic resonance (MR) imaging of mice is a valuable tool for the precise in vivo diagnosis and prognosis of heart defects. This detailed protocol describes the method of cardiac MR imaging in mice step by step. A series of MR images captures the contractile function of the mouse heart and post-processing of the image data yields morphometric parameters (myocardial mass, myocardial wall thickness, ventricular end-systolic and end-diastolic volume) as well as functional parameters (stroke volume and ejection fraction). This protocol may also serve as a starting point for MR imaging of rats, by using larger image dimensions (field-of-view) and MR hardware suitable for larger animals.
Collapse
|
14
|
Krämer M, Motaal AG, Herrmann KH, Löffler B, Reichenbach JR, Strijkers GJ, Hoerr V. Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging. J Cardiovasc Magn Reson 2017; 19:39. [PMID: 28359292 PMCID: PMC5374606 DOI: 10.1186/s12968-017-0351-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its performance in healthy mice by comparing the results with those obtained with an ECG-triggered 4D PC fast low angle shot (FLASH) sequence. METHODS Cardiac 4D PC CMR images were acquired at 9.4 T in healthy mice using the proposed self-gated radial center-out UTE acquisition scheme (TE/TR of 0.5 ms/3.1 ms) and a standard Cartesian 4D PC imaging sequence (TE/TR of 2.1 ms/5.0 ms) with a four-point Hadamard flow encoding scheme. To validate the proposed UTE flow imaging technique, experiments on a flow phantom with variable pump rates were performed. RESULTS The anatomical images and flow velocity maps of the proposed 4D PC UTE technique showed reduced artifacts and an improved SNR (left ventricular cavity (LV): 8.9 ± 2.5, myocardium (MC): 15.7 ± 1.9) compared to those obtained using a typical Cartesian FLASH sequence (LV: 5.6 ± 1.2, MC: 10.1 ± 1.4) that was used as a reference. With both sequences comparable flow velocities were obtained in the flow phantom as well as in the ascending aorta (UTE: 132.8 ± 18.3 cm/s, FLASH: 134.7 ± 13.4 cm/s) and pulmonary artery (UTE: 78.5 ± 15.4 cm/s, FLASH: 86.6 ± 6.2 cm/s) of the animals. Self-gated navigator signals derived from information of the oversampled k-space center were successfully extracted for all animals with a higher gating efficiency of time spent on acquiring gated data versus total measurement time (UTE: 61.8 ± 11.5%, FLASH: 48.5 ± 4.9%). CONCLUSIONS The proposed self-gated 4D PC UTE sequence enables robust and accurate flow velocity mapping of the mouse heart in vivo at high magnetic fields. At the same time SNR, gating efficiency, flow artifacts and image quality all improved compared to the images obtained using the well-established, ECG-triggered, 4D PC FLASH sequence.
Collapse
Affiliation(s)
- M. Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - A. G. Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - K-H. Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - B. Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - J. R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
- Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - G. J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands
| | - V. Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
15
|
Haris K, Hedström E, Bidhult S, Testud F, Maglaveras N, Heiberg E, Hansson SR, Arheden H, Aletras AH. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study. J Magn Reson Imaging 2017; 46:207-217. [PMID: 28152243 DOI: 10.1002/jmri.25599] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To develop and assess a technique for self-gated fetal cardiac cine magnetic resonance imaging (MRI) using tiny golden angle radial sampling combined with iGRASP (iterative Golden-angle RAdial Sparse Parallel) for accelerated acquisition based on parallel imaging and compressed sensing. MATERIALS AND METHODS Fetal cardiac data were acquired from five volunteers in gestational week 29-37 at 1.5T using tiny golden angles for eddy currents reduction. The acquired multicoil radial projections were input to a principal component analysis-based compression stage. The cardiac self-gating (CSG) signal for cardiac gating was extracted from the acquired radial projections and the iGRASP reconstruction procedure was applied. In all acquisitions, a total of 4000 radial spokes were acquired within a breath-hold of less than 15 seconds using a balanced steady-state free precession pulse sequence. The images were qualitatively compared by two independent observers (on a scale of 1-4) to a single midventricular cine image from metric optimized gating (MOG) and real-time acquisitions. RESULTS For iGRASP and MOG images, good overall image quality (2.8 ± 0.4 and 2.6 ± 1.3, respectively, for observer 1; 3.6 ± 0.5 and 3.4 ± 0.9, respectively, for observer 2) and cardiac diagnostic quality (3.8 ± 0.4 and 3.4 ± 0.9, respectively, for observer 1; 3.6 ± 0.5 and 3.6 ± 0.9, respectively, for observer 2) were obtained, with visualized myocardial thickening over the cardiac cycle and well-defined myocardial borders to ventricular lumen and liver/lung tissue. For iGRASP, MOG, and real time, left ventricular lumen diameter (14.1 ± 2.2 mm, 14.2 ± 1.9 mm, 14.7 ± 1.1 mm, respectively) and wall thickness (2.7 ± 0.3 mm, 2.6 ± 0.3 mm, 3.0 ± 0.4, respectively) showed agreement and no statistically significant difference was found (all P > 0.05). Images with iGRASP tended to have higher overall image quality scores compared with MOG and particularly real-time images, albeit not statistically significant in this feasibility study (P > 0.99 and P = 0.12, respectively). CONCLUSION Fetal cardiac cine MRI can be performed with iGRASP using tiny golden angles and CSG. Comparison with other fetal cardiac cine MRI methods showed that the proposed method produces high-quality fetal cardiac reconstructions. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:207-217.
Collapse
Affiliation(s)
- Kostas Haris
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece.,Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik Hedström
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden.,Department of Diagnostic Radiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Sebastian Bidhult
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | | | - Nicos Maglaveras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Einar Heiberg
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Skåne University Hospital,Lund University, Lund, Sweden
| | - Håkan Arheden
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Anthony H Aletras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece.,Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Balligand JL, Feron O, Moniotte S. High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 2016; 111:46. [PMID: 27287250 DOI: 10.1007/s00395-016-0565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.
Collapse
Affiliation(s)
- Laetitia Vanhoutte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium. .,Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.
| | - Bernhard L Gerber
- Division of Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium.,Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique Biologique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Julie Magat
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Inserm U1045, Bordeaux, France
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Stéphane Moniotte
- Department of Paediatric Cardiology, Cliniques universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
17
|
Castets CR, Lefrançois W, Wecker D, Ribot EJ, Trotier AJ, Thiaudière E, Franconi JM, Miraux S. Fast 3D ultrashort echo-time spiral projection imaging using golden-angle: A flexible protocol for in vivo mouse imaging at high magnetic field. Magn Reson Med 2016; 77:1831-1840. [PMID: 27170060 DOI: 10.1002/mrm.26263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a fast three-dimensional (3D) k-space encoding method based on spiral projection imaging (SPI) with an interleaved golden-angle approach and to validate this novel sequence on small animal models. METHODS A disk-like trajectory, in which each disk contained spirals, was developed. The 3D encoding was performed by tilting the disks with a golden angle. The sharpness was first calculated at different T2* values. Then, the sharpness was measured on phantom using variable undersampling ratios. Finally, the sampling method was validated by whole brain time-of-flight angiography and ultrasmall superparamagnetic iron oxide (USPIO) enhanced free-breathing liver angiography on mouse. RESULTS The in vitro results demonstrated the robustness of the method for short T2* and high undersampling ratios. In vivo experiments showed the ability to properly detect small vessels in the brain with an acquisition time shorter than 1 min. Free-breathing mice liver angiography showed the insensitivity of this protocol toward motions and flow artifacts, and enabled the visualization of liver motion during breathing. CONCLUSIONS The method implemented here allowed fast 3D k-space sampling with a high undersampling ratio. Combining the advantages of center-out spirals with the flexibility of the golden angle approach could have major implications for real-time imaging. Magn Reson Med 77:1831-1840, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | | | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Trotier AJ, Castets CR, Lefrançois W, Ribot EJ, Franconi JM, Thiaudière E, Miraux S. USPIO-enhanced 3D-cine self-gated cardiac MRI based on a stack-of-stars golden angle short echo time sequence: Application on mice with acute myocardial infarction. J Magn Reson Imaging 2016; 44:355-65. [PMID: 26778077 DOI: 10.1002/jmri.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. MATERIALS AND METHODS A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. RESULTS The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P < 0.05), enabling reducing the acquisition time to 15 minutes. EF was significantly different between healthy and MI mice (P < 0.05). CONCLUSION The method proposed here showed that 3D-cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365.
Collapse
Affiliation(s)
- Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Winter P, Kampf T, Helluy X, Gutjahr FT, Meyer CB, Bauer WR, Jakob PM, Herold V. Self-navigation under non-steady-state conditions: Cardiac and respiratory self-gating of inversion recovery snapshot FLASH acquisitions in mice. Magn Reson Med 2016; 76:1887-1894. [PMID: 26743137 DOI: 10.1002/mrm.26068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/06/2015] [Accepted: 11/02/2015] [Indexed: 01/30/2023]
Abstract
PURPOSE An algorithm is presented to enable cardiac and respiratory self-gating in combination with Inversion Recovery Look-Locker read-outs. METHODS A radial inversion recovery snapshot FLASH sequence was adapted for retrospective cardiac T1 measurements in mice. Cardiac and respiratory data were extracted from the k-space center of radial projections and an adapted method for retrospective cardiac synchronization is introduced. Electrocardiogram (ECG) data was acquired concurrently for validation of the proposed self-gating technique. T1 maps generated by the proposed technique were compared with maps reconstructed with the ECG reference. RESULTS Respiratory gating and cardiac trigger points could be obtained for the whole time course of the relaxation dynamic and correlate very well to the ECG signal. T1 maps reconstructed with the self-gating technique are in very good agreement with maps reconstructed with the external reference. CONCLUSION The proposed method extends "wireless" cardiac MRI to non-steady-state inversion recovery measurements. T1 maps were generated with a quality comparable to ECG based reconstructions. As the method does not rely on an ECG trigger signal it provides easier animal handling. Magn Reson Med 76:1887-1894, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Patrick Winter
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Kampf
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Xavier Helluy
- Department of Neuroscience, Neuroimaging Research Centre, Ruhr-Universität, Bochum, Germany
| | - Fabian T Gutjahr
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Cord B Meyer
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Universität Würzburg, Medizinische Klinik und Poliklinik I, Würzburg, Germany
| | - Peter M Jakob
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Volker Herold
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Pennell DJ, Baksi AJ, Prasad SK, Raphael CE, Kilner PJ, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider J, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2014. J Cardiovasc Magn Reson 2015; 17:99. [PMID: 26589839 PMCID: PMC4654908 DOI: 10.1186/s12968-015-0203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/19/2023] Open
Abstract
There were 102 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2014, which is a 6% decrease on the 109 articles published in 2013. The quality of the submissions continues to increase. The 2013 JCMR Impact Factor (which is published in June 2014) fell to 4.72 from 5.11 for 2012 (as published in June 2013). The 2013 impact factor means that the JCMR papers that were published in 2011 and 2012 were cited on average 4.72 times in 2013. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - A J Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - C E Raphael
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - P J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - R H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - F Alpendurada
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S V Babu-Narayan
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - J Schneider
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - D N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| |
Collapse
|
21
|
Siu AG, Ramadeen A, Hu X, Morikawa L, Zhang L, Lau JYC, Liu G, Pop M, Connelly KA, Dorian P, Wright GA. Characterization of the ultrashort-TE (UTE) MR collagen signal. NMR IN BIOMEDICINE 2015; 28:1236-1244. [PMID: 26268158 DOI: 10.1002/nbm.3372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Although current cardiovascular MR (CMR) techniques for the detection of myocardial fibrosis have shown promise, they nevertheless depend on gadolinium-based contrast agents and are not specific to collagen. In particular, the diagnosis of diffuse myocardial fibrosis, a precursor of heart failure, would benefit from a non-invasive imaging technique that can detect collagen directly. Such a method could potentially replace the need for endomyocardial biopsy, the gold standard for the diagnosis of the disease. The objective of this study was to measure the MR properties of collagen using ultrashort TE (UTE), a technique that can detect short T2* species. Experiments were performed in collagen solutions. Via a model of bi-exponential T2* with oscillation, a linear relationship (slope = 0.40 ± 0.01, R(2) = 0.99696) was determined between the UTE collagen signal fraction associated with these properties and the measured collagen concentration in solution. The UTE signal of protons in the collagen molecule was characterized as having a mean T2* of 0.75 ± 0.05 ms and a mean chemical shift of -3.56 ± 0.01 ppm relative to water at 7 T. The results indicated that collagen can be detected and quantified using UTE. A knowledge of the collagen signal properties could potentially be beneficial for the endogenous detection of myocardial fibrosis.
Collapse
Affiliation(s)
- Adrienne G Siu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Andrew Ramadeen
- Keenan Research Center, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Xudong Hu
- Keenan Research Center, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Lily Morikawa
- Center for Modeling Human Disease, Toronto Center for Phenogenomics, Toronto, ON, Canada
| | - Li Zhang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Justin Y C Lau
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Garry Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Mihaela Pop
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kim A Connelly
- Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, ON, Canada
- Keenan Research Center, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Paul Dorian
- Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, ON, Canada
- Keenan Research Center, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Graham A Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Cardiovascular Sciences Collaborative Program, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
22
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
23
|
Trotier AJ, Lefrançois W, Van Renterghem K, Franconi JM, Thiaudière E, Miraux S. Positive contrast high-resolution 3D-cine imaging of the cardiovascular system in small animals using a UTE sequence and iron nanoparticles at 4.7, 7 and 9.4 T. J Cardiovasc Magn Reson 2015; 17:53. [PMID: 26149628 PMCID: PMC4493959 DOI: 10.1186/s12968-015-0167-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To show that 3D sequences with ultra-short echo times (UTEs) can generate a positive contrast whatever the magnetic field (4.7, 7 or 9.4 T) and whatever Ultra Small Particles of Iron Oxide (USPIO) concentration injected and to use it for 3D time-resolved imaging of the murine cardiovascular system with high spatial and temporal resolutions. METHODS Three different concentrations (50, 200 and 500 μmol Fe/kg) of USPIO were injected in mice and static images of the middle part of the animals were acquired at 4.7, 7 and 9.4 T pre and post-contrast with UTE (TE/TR = 0.05/4.5 ms) sequences. Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) of blood and static tissus were evaluated before and after contrast agent injection. 3D-cine images (TE/TR = 0.05/3.5 ms, scan time < 12 min) at 156 μm isotropic resolution of the mouse cardiopulmonary system were acquired prospectively with the UTE sequence for the three magnetic fields and with an USPIO dose of 200 μmol Fe/kg. SNR, CNR and signal homogeneity of blood were measured. High spatial (104 μm) or temporal (3.5 ms) resolution 3D-cine imaging (scan time < 35 min) isotropic resolution were also performed at 7 T with a new sequence encoding scheme. RESULTS UTE imaging generated positive contrast and higher SNR and CNR whatever the magnetic field and the USPIO concentration used compared to pre-contrast images. Time-resolved 3D acquisition enables high blood SNR (66.6 ± 4.5 at 7 T) and CNR (33.2 ± 4.2 at 7 T) without flow or motion artefact. Coronary arteries and aortic valve were visible on images acquired at 104 μm resolution. CONCLUSIONS We have demonstrated that by combining the injection of iron nanoparticles with 3D-cine UTE sequences, it was possible to generate a strong positive contrast between blood and surrounding tissues. These properties were exploited to produce images of the cardiovascular system in small animals at high magnetic fields with a high spatial and temporal resolution. This approach might be useful to measure the functional cardiac parameters or to assess anatomical modifications to the blood vessels in cardio-vascular disease models.
Collapse
Affiliation(s)
- Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université de Bordeaux, 146 rue Léo Saignat, Cedex 33076, Bordeaux, France.
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université de Bordeaux, 146 rue Léo Saignat, Cedex 33076, Bordeaux, France.
| | - Kris Van Renterghem
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université de Bordeaux, 146 rue Léo Saignat, Cedex 33076, Bordeaux, France.
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université de Bordeaux, 146 rue Léo Saignat, Cedex 33076, Bordeaux, France.
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université de Bordeaux, 146 rue Léo Saignat, Cedex 33076, Bordeaux, France.
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université de Bordeaux, 146 rue Léo Saignat, Cedex 33076, Bordeaux, France.
| |
Collapse
|
24
|
Krämer M, Herrmann KH, Biermann J, Freiburger S, Schwarzer M, Reichenbach JR. Self-gated cardiac Cine MRI of the rat on a clinical 3 T MRI system. NMR IN BIOMEDICINE 2015; 28:162-167. [PMID: 25417764 DOI: 10.1002/nbm.3234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
The ability to perform small animal functional cardiac imaging on clinical MRI scanners may be of particular value in cases in which the availability of a dedicated high field animal MRI scanner is limited. Here, we propose radial MR cardiac imaging in the rat on a whole-body clinical 3 T scanner in combination with interspersed projection navigators for self-gating without any additional external triggering requirements for electrocardiogram (ECG) and respiration. Single navigator readouts were interspersed using the same TR and a high navigator frequency of 54 Hz into a radial golden-angle acquisition. The extracted navigator function was thresholded to exclude data for reconstruction from inhalation phases during the breathing cycle, enabling free breathing acquisition. To minimize flow artifacts in the dynamic cine images a center-out half echo radial acquisition scheme with ramp sampling was used. Navigator functions were derived from the corresponding projection navigator data from which both respiration and cardiac cycles were extracted. Self-gated cine acquisition resulted in high-quality cardiac images which were free of major artifacts with spatial resolution of up to 0.21 × 0.21 × 1.00 mm(3) and a contrast-to-noise ratio (CNR) of 21 ± 3 between the myocardium and left ventricle. Self-gated golden ratio based radial acquisition successfully acquired cine images of the rat heart on a clinical MRI system without the need for dedicated animal ECG equipment.
Collapse
Affiliation(s)
- Martin Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Pennell DJ, Baksi AJ, Kilner PJ, Mohiaddin RH, Prasad SK, Alpendurada F, Babu-Narayan SV, Neubauer S, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2013. J Cardiovasc Magn Reson 2014; 16:100. [PMID: 25475898 PMCID: PMC4256918 DOI: 10.1186/s12968-014-0100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/19/2023] Open
Abstract
There were 109 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2013, which is a 21% increase on the 90 articles published in 2012. The quality of the submissions continues to increase. The editors are delighted to report that the 2012 JCMR Impact Factor (which is published in June 2013) has risen to 5.11, up from 4.44 for 2011 (as published in June 2012), a 15% increase and taking us through the 5 threshold for the first time. The 2012 impact factor means that the JCMR papers that were published in 2010 and 2011 were cited on average 5.11 times in 2012. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley John Pennell
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Arun John Baksi
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Philip John Kilner
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Raad Hashem Mohiaddin
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Sanjay Kumar Prasad
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Francisco Alpendurada
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Sonya Vidya Babu-Narayan
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | | | - David Nigel Firmin
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| |
Collapse
|
26
|
Ring J, Hoerr V, Tuchscherr L, Kuhlmann MT, Löffler B, Faber C. MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS One 2014; 9:e107179. [PMID: 25229324 PMCID: PMC4167704 DOI: 10.1371/journal.pone.0107179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Infective endocarditis (IE) is a severe and often fatal disease, lacking a fast and reliable diagnostic procedure. The purpose of this study was to establish a mouse model of Staphylococcus aureus-induced IE and to develop a MRI technology to characterize and diagnose IE. To establish the mouse model of hematogenous IE, aortic valve damage was induced by placing a permanent catheter into right carotid artery. 24 h after surgery, mice were injected intravenously with either iron particle-labeled or unlabeled S. aureus (strain 6850). To distinguish the effect of IE from mere tissue injury or recruited macrophages, subgroups of mice received sham surgery prior to infection (n = 17), received surgery without infection (n = 8), or obtained additionally injection of free iron particles to label macrophages (n = 17). Cardiac MRI was performed 48 h after surgery using a self-gated ultra-short echo time (UTE) sequence (TR/TE, 5/0.31 ms; in-plane/slice, 0.125/1 mm; duration, 12∶08 min) to obtain high-resolution, artifact-free cinematographic images of the valves. After MRI, valves were either homogenized and plated on blood agar plates for determination of bacterial titers, or sectioned and stained for histology. In the animal model, both severity of the disease and mortality increased with bacterial numbers. Infection with 105 S. aureus bacteria reliably caused endocarditis with vegetations on the valves. Cinematographic UTE MRI visualised the aortic valve over the cardiac cycle and allowed for detection of bacterial vegetations, while mere tissue trauma or labeled macrophages were not detected. Iron labeling of S. aureus was not required for detection. MRI results were consistent with histology and microbial assessment. These data showed that S. aureus-induced IE in mice can be detected by MRI. The established mouse model allows for investigation of the pathophysiology of IE, testing of novel drugs and may serve for the development of a clinical diagnostic strategy.
Collapse
Affiliation(s)
- Janine Ring
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Verena Hoerr
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Michael T. Kuhlmann
- European Institute for Molecular Imaging, Westfalian Wilhelms-University, Münster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
27
|
Functional imaging of murine hearts using accelerated self-gated UTE cine MRI. Int J Cardiovasc Imaging 2014; 31:83-94. [DOI: 10.1007/s10554-014-0531-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
|
28
|
Meßner NM, Zöllner FG, Kalayciyan R, Schad LR. Pre-clinical functional Magnetic Resonance Imaging Part II: The heart. Z Med Phys 2014; 24:307-22. [PMID: 25023418 DOI: 10.1016/j.zemedi.2014.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/09/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022]
Abstract
One third of all deaths worldwide in 2008 were caused by cardiovascular diseases (CVD), and the incidence of CVD related deaths rises ever more. Thus, improved imaging techniques and modalities are needed for the evaluation of cardiac morphology and function. Cardiac magnetic resonance imaging (CMRI) is a minimally invasive technique that is increasingly important due to its high spatial and temporal resolution, its high soft tissue contrast and its ability of functional and quantitative imaging. It is widely accepted as the gold standard of cardiac functional analysis. In the short period of small animal MRI, remarkable progress has been achieved concerning new, fast imaging schemes as well as purpose-built equipment. Dedicated small animal scanners allow for tapping the full potential of recently developed animal models of cardiac disease. In this paper, we review state-of-the-art cardiac magnetic resonance imaging techniques and applications in small animals at ultra-high fields (UHF).
Collapse
Affiliation(s)
- Nadja M Meßner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Raffi Kalayciyan
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
|
30
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|