1
|
Jaudas F, Bartenschlager F, Shashikadze B, Santamaria G, Reichart D, Schnell A, Stöckl JB, Degroote RL, Cambra JM, Graeber SY, Bähr A, Kartmann H, Stefanska M, Liu H, Naumann-Bartsch N, Bruns H, Berges J, Hanselmann L, Stirm M, Krebs S, Deeg CA, Blum H, Schulz C, Zawada D, Janda M, Caballero-Posadas I, Kunzelmann K, Moretti A, Laugwitz KL, Kupatt C, Saalmüller A, Fröhlich T, Wolf E, Mall MA, Mundhenk L, Gerner W, Klymiuk N. Perinatal dysfunction of innate immunity in cystic fibrosis. Sci Transl Med 2025; 17:eadk9145. [PMID: 39841805 DOI: 10.1126/scitranslmed.adk9145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF. In newborn CF pigs, we observed changes in lung immune cell composition before the onset of infection that were dominated by increased monocyte infiltration, whereas neutrophil numbers remained constant. Flow cytometric and transcriptomic profiling revealed that the infiltrating myeloid cells displayed a more immature status. Cells with comparably immature transcriptomic profiles were enriched in the blood of CF pigs at birth as well as in preschool children with CF. This pattern coincided with decreased CD16 expression in the myeloid cells of both pigs and humans, which translated into lower phagocytic activity and reduced production of reactive oxygen species in both species. These results were indicative of a congenital, translationally conserved, and functionally relevant aberration of the immune system in CF. In newborn wild-type pigs, CFTR transcription in immune cells, including lung-derived and circulating monocytes, isolated from the bone marrow, thymus, spleen, and blood was below the detection limits of highly sensitive assays, suggesting an indirect etiology of the observed effects. Our findings highlight the need for additional immunological treatments to target innate immune deficits in patients with CF.
Collapse
Affiliation(s)
- Florian Jaudas
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | | | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Daniel Reichart
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Alexander Schnell
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen 91054, Germany
| | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Planegg 82152, Germany
| | - Josep M Cambra
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin 13353, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site, Berlin 13353, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Heike Kartmann
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Monika Stefanska
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | - Huan Liu
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
| | - Nora Naumann-Bartsch
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen 91054, Germany
| | - Heiko Bruns
- Department of Pediatrics and Adolescent Medicine, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Johannes Berges
- Department of Pediatrics and Adolescent Medicine, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Lea Hanselmann
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin 14163, Germany
| | - Michael Stirm
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Planegg 82152, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU Munich, Munich 81377, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
| | - Melanie Janda
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
| | | | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg 93053, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
- Chair of Regenerative Medicine in Cardiovascular Disease, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich 80802, Germany
| | - Armin Saalmüller
- Institute of Immunology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich 81377, Germany
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich 81377, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
- Gene Center Munich, LMU Munich, Munich 81377, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin 13353, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site, Berlin 13353, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin 14163, Germany
| | - Wilhelm Gerner
- Institute of Immunology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Nikolai Klymiuk
- First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany
- Center of Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim 85764, Germany
| |
Collapse
|
2
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
4
|
Zhao X, Xiao H, Li X, Zhu L, Peng Y, Chen H, Chen L, Xu D, Wang H. Multi-organ developmental toxicity and its characteristics in fetal mice induced by dexamethasone at different doses, stages, and courses during pregnancy. Arch Toxicol 2024; 98:1891-1908. [PMID: 38522057 DOI: 10.1007/s00204-024-03707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
5
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Paramore SV, Trenado-Yuste C, Sharan R, Nelson CM, Devenport D. Vangl-dependent mesenchymal thinning shapes the distal lung during murine sacculation. Dev Cell 2024; 59:1302-1316.e5. [PMID: 38569553 PMCID: PMC11111357 DOI: 10.1016/j.devcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/18/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.
Collapse
Affiliation(s)
- Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolina Trenado-Yuste
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rishabh Sharan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
van Soldt BJ, Metscher BD, Richardson MK, Cardoso WV. Sox9 is associated with two distinct patterning events during snake lung morphogenesis. Dev Biol 2024; 506:7-19. [PMID: 37995917 PMCID: PMC10872300 DOI: 10.1016/j.ydbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
The evolutionary forces that allowed species adaptation to different terrestrial environments and led to great diversity in body shape and size required acquisition of innovative strategies of pattern formation during organogenesis. An extreme example is the formation of highly elongated viscera in snakes. What developmental patterning strategies allowed to overcome the space constraints of the snake's body to meet physiological demands? Here we show that the corn snake uses a Sox2-Sox9 developmental tool kit common to other species to generate and shape the lung in two phases. Initially Sox9 was found at low levels at the tip of the primary lung bud during outgrowth and elongation of the bronchial bud, without driving branching programs characteristic of mammalian lungs. Later, Sox9 induction is recapitulated in the formation of an extensive network of radial septae emerging along the elongated bronchial bud that generates the respiratory region. We propose that altogether these represent key patterning events for formation of both the respiratory faveolar and non-respiratory posterior compartments of the snake's lung.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, and Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, 1030, Austria
| | | | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, and Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Zong K, Liu B, Li S, Li Y, Guo S. Endobronchial optical coherence tomography helps to estimate the cartilage damage of the central airway in TBTB patients. Front Cell Infect Microbiol 2023; 13:1278281. [PMID: 38099218 PMCID: PMC10720589 DOI: 10.3389/fcimb.2023.1278281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose At present, there are few examination methods used to evaluate tracheobronchial cartilage damage. In our study, we explored whether endobronchial optical coherence tomography (EB-OCT) can be used to estimate central airway cartilage damage in tracheobronchial tuberculosis (TBTB) patients. Methods In our study, we used the OCTICS Imaging system to perform EB-OCT scanning for TBTB patients. The thickness of the central airway wall and cartilage was measured by the OCTICS software system workstation. Results There were 102 TBTB patients included in our study cohort. Their EB-OCT images of the central airway cartilage showed that abnormal cartilage manifests as thinning of the cartilage, cartilage damage, cartilage destruction, and even cartilage deficiency. The cartilage morphology becomes irregular and discontinuous. Some parts of the cartilage become brighter in grayscale. The intima of the cartilage is thickened and discontinuous, and the boundary with submucosa and mucosa is unclear. Conclusion Our study conducted EB-OCT examination of the central airway cartilage of TBTB patients in vivo for the first time. EB-OCT helps to estimate the cartilage damage of the central airway in TBTB patients to some extent.
Collapse
Affiliation(s)
- Kaican Zong
- Department of Respiratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Respiratory Medicine, The Central Hospital Affiliated Chongqing University of Technology, Chongqing, China
| | - Bin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiying Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yishi Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Bottasso-Arias N, Burra K, Sinner D, Riede T. Disruption of BMP4 signaling is associated with laryngeal birth defects in a mouse model. Dev Biol 2023; 500:10-21. [PMID: 37230380 PMCID: PMC10330877 DOI: 10.1016/j.ydbio.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Laryngeal birth defects are considered rare, but they can be life-threatening conditions. The BMP4 gene plays an important role in organ development and tissue remodeling throughout life. Here we examined its role in laryngeal development complementing similar efforts for the lung, pharynx, and cranial base. Our goal was to determine how different imaging techniques contribute to a better understanding of the embryonic anatomy of the normal and diseased larynx in small specimens. Contrast-enhanced micro CT images of embryonic larynx tissue from a mouse model with Bmp4 deletion informed by histology and whole-mount immunofluorescence were used to reconstruct the laryngeal cartilaginous framework in three dimensions. Laryngeal defects included laryngeal cleft, laryngeal asymmetry, ankylosis and atresia. Results implicate BMP4 in laryngeal development and show that the 3D reconstruction of laryngeal elements provides a powerful approach to visualize laryngeal defects and thereby overcoming shortcomings of 2D histological sectioning and whole mount immunofluorescence.
Collapse
Affiliation(s)
- N Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - K Burra
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D Sinner
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - T Riede
- Department of Physiology, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
10
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Yao H, Wallace J, Peterson AL, Scaffa A, Rizal S, Hegarty K, Maeda H, Chang JL, Oulhen N, Kreiling JA, Huntington KE, De Paepe ME, Barbosa G, Dennery PA. Timing and cell specificity of senescence drives postnatal lung development and injury. Nat Commun 2023; 14:273. [PMID: 36650158 PMCID: PMC9845377 DOI: 10.1038/s41467-023-35985-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Senescence causes age-related diseases and stress-related injury. Paradoxically, it is also essential for organismal development. Whether senescence contributes to lung development or injury in early life remains unclear. Here, we show that lung senescence occurred at birth and decreased throughout the saccular stage in mice. Reducing senescent cells at this stage disrupted lung development. In mice (<12 h old) exposed to hyperoxia during the saccular stage followed by air recovery until adulthood, lung senescence increased particularly in type II cells and secondary crest myofibroblasts. This peaked during the alveolar stage and was mediated by the p53/p21 pathway. Decreasing senescent cells during the alveolar stage attenuated hyperoxia-induced alveolar and vascular simplification. Conclusively, early programmed senescence orchestrates postnatal lung development whereas later hyperoxia-induced senescence causes lung injury through different mechanisms. This defines the ontogeny of lung senescence and provides an optimal therapeutic window for mitigating neonatal hyperoxic lung injury by inhibiting senescence.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI, 02912, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Alejandro Scaffa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Salu Rizal
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Katy Hegarty
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Hajime Maeda
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Jason L Chang
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Kelsey E Huntington
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, 02905, USA
| | - Guilherme Barbosa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
12
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
13
|
Ievlev V, Jensen-Cody CC, Lynch TJ, Pai AC, Park S, Shahin W, Wang K, Parekh KR, Engelhardt JF. Sox9 and Lef1 Regulate the Fate and Behavior of Airway Glandular Progenitors in Response to Injury. Stem Cells 2022; 40:778-790. [PMID: 35639980 PMCID: PMC9406614 DOI: 10.1093/stmcls/sxac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Albert C Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Soo Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Lewis ZR, Kerney R, Hanken J. Developmental basis of evolutionary lung loss in plethodontid salamanders. SCIENCE ADVANCES 2022; 8:eabo6108. [PMID: 35977024 PMCID: PMC9385146 DOI: 10.1126/sciadv.abo6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
One or more members of four living amphibian clades have independently dispensed with pulmonary respiration and lack lungs, but little is known of the developmental basis of lung loss in any taxon. We use morphological, molecular, and experimental approaches to examine the Plethodontidae, a dominant family of salamanders, all of which are lungless as adults. We confirm an early anecdotal report that plethodontids complete early stages of lung morphogenesis: Transient embryonic lung primordia form but regress by apoptosis before hatching. Initiation of pulmonary development coincides with expression of the lung-specification gene Wnt2b in adjacent mesoderm, and the lung rudiment expresses pulmonary markers Nkx2.1 and Sox9. Lung developmental-genetic pathways are at least partially conserved despite the absence of functional adult lungs for at least 25 and possibly exceeding 60 million years. Adult lung loss appears associated with altered expression of signaling molecules that mediate later stages of tracheal and pulmonary development.
Collapse
Affiliation(s)
- Zachary R. Lewis
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Lin Y, Wang D, Zeng Y. A Maverick Review of Common Stem/Progenitor Markers in Lung Development. Stem Cell Rev Rep 2022; 18:2629-2645. [DOI: 10.1007/s12015-022-10422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
|
16
|
Kant Tripathi S, Kumar Sahoo R, Kumar Biswal B. SOX9 as an emerging target for anticancer drugs and a prognostic biomarker for cancer drug resistance. Drug Discov Today 2022; 27:2541-2550. [DOI: 10.1016/j.drudis.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
17
|
Abstract
The trachea is a long tube that enables air passage between the larynx and the bronchi. C-shaped cartilage rings on the ventral side stabilise the structure. On its esophagus-facing dorsal side, deformable smooth muscle facilitates the passage of food in the esophagus. While the symmetry break along the dorsal-ventral axis is well understood, the molecular mechanism that results in the periodic Sox9 expression pattern that translates into the cartilage rings has remained elusive. Here, we review the molecular regulatory interactions that have been elucidated, and discuss possible patterning mechanisms. Understanding the principles of self-organisation is important, both to define biomedical interventions and to enable tissue engineering.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- *Correspondence: Dagmar Iber,
| | - Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
18
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
19
|
Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development. Biochem J 2022; 479:129-143. [PMID: 35050327 PMCID: PMC8883488 DOI: 10.1042/bcj20210557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The chemical and mechanical responses of cells via the exchange of information during growth and development result in the formation of biological tissues. Information processing within the cells through the signaling pathways and networks inherent to the constituent cells has been well-studied. However, the cell signaling mechanisms responsible for generating dynamic multicellular responses in developing tissues remain unclear. Here, I review the dynamic multicellular response systems during the development and growth of vertebrate tissues based on the extracellular signal-regulated kinase (ERK) pathway. First, an overview of the function of the ERK signaling network in cells is provided, followed by descriptions of biosensors essential for live imaging of the quantification of ERK activity in tissues. Then adducing four examples, I highlight the contribution of live imaging techniques for studying the involvement of spatio-temporal patterns of ERK activity change in tissue development and growth. In addition, theoretical implications of ERK signaling are also discussed from the viewpoint of dynamic systems. This review might help in understanding ERK-mediated dynamic multicellular responses and tissue morphogenesis.
Collapse
|
20
|
Stamellou E, Leuchtle K, Moeller MJ. Regenerating tubular epithelial cells of the kidney. Nephrol Dial Transplant 2021; 36:1968-1975. [PMID: 32666119 DOI: 10.1093/ndt/gfaa103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Acute tubular injury accounts for the most common intrinsic cause for acute kidney injury. Normally, the tubular epithelium is mitotically quiescent. However, upon injury, it can show a brisk capacity to regenerate and repair. The scattered tubular cell (STC) phenotype was discovered as a uniform reaction of tubule cells triggered by injury. The STC phenotype is characterized by a unique protein expression profile, increased robustness during tubular damage and increased proliferation. Nevertheless, the exact origin and identity of these cells have been unveiled only in part. Here, we discuss the classical concept of renal regeneration. According to this model, surviving cells dedifferentiate and divide to replace neighbouring lost tubular cells. However, this view has been challenged by the concept of a pre-existing and fixed population of intratubular progenitor cells. This review presents a significant body of previous work and animal studies using lineage-tracing methods that have investigated the regeneration of tubular cells. We review the experimental findings and discuss whether they support the progenitor hypothesis or the classical concept of renal tubular regeneration. We come to the conclusion that any proximal tubular cell may differentiate into the regenerative STC phenotype upon injury thus contributing to regeneration, and these cells differentiate back into tubular cells once regeneration is finished.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Katja Leuchtle
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marcus J Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
21
|
Kiyokawa H, Morimoto M. Molecular crosstalk in tracheal development and its recurrence in adult tissue regeneration. Dev Dyn 2021; 250:1552-1567. [PMID: 33840142 PMCID: PMC8596979 DOI: 10.1002/dvdy.345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The trachea is a rigid air duct with some mobility, which comprises the upper region of the respiratory tract and delivers inhaled air to alveoli for gas exchange. During development, the tracheal primordium is first established at the ventral anterior foregut by interactions between the epithelium and mesenchyme through various signaling pathways, such as Wnt, Bmp, retinoic acid, Shh, and Fgf, and then segregates from digestive organs. Abnormalities in this crosstalk result in lethal congenital diseases, such as tracheal agenesis. Interestingly, these molecular mechanisms also play roles in tissue regeneration in adulthood, although it remains less understood compared with their roles in embryonic development. In this review, we discuss cellular and molecular mechanisms of trachea development that regulate the morphogenesis of this simple tubular structure and identities of individual differentiated cells. We also discuss how the facultative regeneration capacity of the epithelium is established during development and maintained in adulthood.
Collapse
Affiliation(s)
- Hirofumi Kiyokawa
- Laboratory for Lung Development and RegenerationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and RegenerationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| |
Collapse
|
22
|
Ah-Cann C, Wimmer VC, Weeden CE, Marceaux C, Law CW, Galvis L, Filby CE, Liu J, Breslin K, Willson T, Ritchie ME, Blewitt ME, Asselin-Labat ML. A functional genetic screen identifies aurora kinase b as an essential regulator of Sox9-positive mouse embryonic lung progenitor cells. Development 2021; 148:269134. [PMID: 34121118 DOI: 10.1242/dev.199543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Development of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo. In vivo conditional knockout studies confirmed that Aurkb was required for lung development but was not necessary for postnatal growth and the repair of the adult lung after injury. Deletion of Aurkb in embryonic Sox9+ cells led to the formation of a stunted lung that retained the expression of Sox2 in the proximal airways, as well as Sox9 in the distal tips. Although we found no change in cell polarity, we showed that loss of Aurkb or chemical inhibition of Aurkb caused Sox9+ cells to arrest at G2/M, likely responsible for the lack of branch bifurcation. This work demonstrates the power of genetic screens in identifying novel regulators of Sox9+ progenitor cells and lung branching morphogenesis.
Collapse
Affiliation(s)
- Casey Ah-Cann
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Verena C Wimmer
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Clare E Weeden
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Claire Marceaux
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Laura Galvis
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Caitlin E Filby
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Joy Liu
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Kelsey Breslin
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Tracy Willson
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
23
|
Li E, Ustiyan V, Wen B, Kalin GT, Whitsett JA, Kalin TV, Kalinichenko VV. Blastocyst complementation reveals that NKX2-1 establishes the proximal-peripheral boundary of the airway epithelium. Dev Dyn 2021; 250:1001-1020. [PMID: 33428297 DOI: 10.1002/dvdy.298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos. RESULTS While Nkx2-1-/- mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1-/- mice. Complementation of Nkx2-1-/- embryos with NKX2-1-sufficient embryonic stem cells (ESCs) enabled the formation of all tissue components of the peripheral lung but did not enhance ESC colonization of the most proximal regions of the airways. In chimeric mice, a precise boundary was formed between NKX2-1-deficient basal cells co-expressing SOX2 and SOX9 in large airways and ESC-derived NKX2-1+ SOX9+ epithelial cells of smaller airways. NKX2-1-sufficient ESCs were able to selectively complement peripheral, rather than most proximal regions of the airways. ESC complementation did not prevent ectopic expression of SOX9 but restored β-catenin signaling in Nkx2-1-/- basal cells of large airways. CONCLUSIONS NKX2-1 and β-catenin function in an epithelial cell-autonomous manner to establish the proximal-peripheral boundary along developing airways.
Collapse
Affiliation(s)
- Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Gregory T Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Li L, Feng J, Zhao S, Rong Z, Lin Y. SOX9 inactivation affects the proliferation and differentiation of human lung organoids. Stem Cell Res Ther 2021; 12:343. [PMID: 34112251 PMCID: PMC8194236 DOI: 10.1186/s13287-021-02422-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Background The regulation of the transcription factor sex-determining region Y-box transcription factor 9 (SOX9) in lung development has been described in mouse, but the same principles apply to human lung development is unknown due to a lack of appropriate experimental approaches and models. Methods Here, we used gene editing technology to inactivate SOX9 in human embryonic stem cells that were then induced to differentiate into lung organoids to investigate the role of SOX9 in human lung epithelium development. Results Complete knockout of the transactivation domain of SOX9 by gene editing resulted in indels in both alleles of SOX9. SOX9−/− hESCs could be induced to differentiate into lung progenitor organoids. In vitro long-term expansion showed that SOX9 inactivation did not affect the differentiation of pulmonary epithelial cells, but promoted apoptosis and reduced proliferative capacity in the organoids. When lung progenitor organoids were transplanted under the kidney capsule of immunodeficient mice, expression of the club cell marker secretoglobin family 1A member 1 (SCGB1A1) was detected in SOX9−/− transplants but was absent in wild-type (WT) transplants. The maturation of goblet cells was also affected by SOX9 inactivation, as evidenced by the presence of mucin 5 AC (MUC5AC) in the cytoplasm of SOX9−/− grafts as compared to WT grafts in which most MUC5AC was secreted into the lumen. In vivo lung orthotopic transplantations showed that SOX9 inactivation had a limited effect on the differentiation of alveolar cells and lung regeneration in injured mice. Conclusions SOX9 modulates the proliferative capacity of lung epithelium but is not an indispensable transcription factor in the regulation of human lung epithelium development. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02422-6.
Collapse
Affiliation(s)
- Lian Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianqi Feng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Zhao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Ying Lin
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
27
|
Yoshida T, Matsuda M, Hirashima T. Incoherent Feedforward Regulation via Sox9 and ERK Underpins Mouse Tracheal Cartilage Development. Front Cell Dev Biol 2020; 8:585640. [PMID: 33195234 PMCID: PMC7642454 DOI: 10.3389/fcell.2020.585640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Tracheal cartilage provides architectural integrity to the respiratory airway, and defects in this structure during embryonic development cause severe congenital anomalies. Previous genetic studies have revealed genes that are critical for the development of tracheal cartilage. However, it is still unclear how crosstalk between these proteins regulates tracheal cartilage formation. Here we show a core regulatory network underlying murine tracheal chondrogenesis from embryonic day (E) 12.5 to E15.5, by combining volumetric imaging of fluorescence reporters, inhibitor assays, and mathematical modeling. We focused on SRY-box transcription factor 9 (Sox9) and extracellular signal-regulated kinase (ERK) in the tracheal mesenchyme, and observed a synchronous, inverted U-shaped temporal change in both Sox9 expression and ERK activity with a peak at E14.5, whereas the expression level of downstream cartilage matrix genes, such as collagen II alpha 1 (Col2a1) and aggrecan (Agc1), monotonically increased. Inhibitor assays revealed that the ERK signaling pathway functions as an inhibitory regulator of tracheal cartilage differentiation during this period. These results suggest that expression of the cartilage matrix genes is controlled by an incoherent feedforward loop via Sox9 and ERK, which is supported by a mathematical model. Furthermore, the modeling analysis suggests that a Sox9-ERK incoherent feedforward regulation augments the robustness against the variation of upstream factors. The present study provides a better understanding of the regulatory network underlying the tracheal development and will be helpful for efficient induction of tracheal organoids.
Collapse
Affiliation(s)
- Takuya Yoshida
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Science and Technology Agency, PRESTO, Tokyo, Japan
| |
Collapse
|
28
|
Tando S, Sakai K, Takayama S, Fukunaga K, Higashi M, Fumino S, Aoi S, Furukawa T, Tajiri T, Ogi H, Itoh K. Maldevelopment of intrapulmonary bronchial cartilage in congenital diaphragmatic hernia. Pediatr Pulmonol 2020; 55:1771-1780. [PMID: 32374083 DOI: 10.1002/ppul.24799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pulmonary hypoplasia is an important cause of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). This study aimed to verify our hypothesis that the abnormal development of bronchial cartilage as well as alveolar immaturity, might play a central role in hypoplasia of the lung in human CDH. METHOD We retrospectively analyzed autopsied lungs from 10 CDH cases and compared with nine age-matched controls to assess the bronchial cartilage and alveolar maturity using morphological techniques. RESULT Ki-67 and thyroid transcription factor-1 (TTF-1) expression in the alveoli significantly increased in bilateral lungs with CDH. The shortest distance from the bronchial cartilage to the pleura was significantly shorter in ipsilateral (left) lungs with CDH, showing a positive correlation with the radial alveolar count (RAC). Regarding the small bronchial cartilages less than 20 000 μm2 , the average cartilage area significantly decreased in left lungs with CDH, and tended to decrease in right lungs with CDH. In addition, cartilage around the bronchi less than 200 μm in diameter tended to be smaller in left lungs with CDH. In contrast, regarding the cartilage around the bronchi 200 to 400 μm in diameter, the ratio of the total cartilage area relative to the bronchial diameter tended to be higher in left lungs with CDH, although there was a large variation. CONCLUSIONS These opposite directional cartilage abnormalities around the distal and more proximal bronchi support our hypothesis that abnormal development of bronchial cartilage might play an important role in the hypoplastic lung in CDH.
Collapse
Affiliation(s)
- So Tando
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Kohei Sakai
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Shohei Takayama
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Kenji Fukunaga
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Shigeyoshi Aoi
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan.,SCREEN Holdings Co., Ltd. (SCREEN), Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine (KPUM), Kyoto, Japan
| |
Collapse
|
29
|
Lin C, Ding J, Bar-Joseph Z. Inferring TF activation order in time series scRNA-Seq studies. PLoS Comput Biol 2020; 16:e1007644. [PMID: 32069291 PMCID: PMC7048296 DOI: 10.1371/journal.pcbi.1007644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Methods for the analysis of time series single cell expression data (scRNA-Seq) either do not utilize information about transcription factors (TFs) and their targets or only study these as a post-processing step. Using such information can both, improve the accuracy of the reconstructed model and cell assignments, while at the same time provide information on how and when the process is regulated. We developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) method which integrates probabilistic modeling of scRNA-Seq data with the ability to assign TFs to specific activation points in the model. TFs are assumed to influence the emission probabilities for cells assigned to later time points allowing us to identify not just the TFs controlling each path but also their order of activation. We tested CSHMM-TF on several mouse and human datasets. As we show, the method was able to identify known and novel TFs for all processes, assigned time of activation agrees with both expression information and prior knowledge and combinatorial predictions are supported by known interactions. We also show that CSHMM-TF improves upon prior methods that do not utilize TF-gene interaction. An important attribute of time series single cell RNA-Seq (scRNA-Seq) data, is the ability to infer continuous trajectories of genes based on orderings of the cells. While several methods have been developed for ordering cells and inferring such trajectories, to date it was not possible to use these to infer the temporal activity of several key TFs. These TFs are are only post-transcriptionally regulated and so their expression does not provide complete information on their activity. To address this we developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) methods that assigns continuous activation time to TFs based on both, their expression and the expression of their targets. Applying our method to several time series scRNA-Seq datasets we show that it correctly identifies the key regulators for the processes being studied. We analyze the temporal assignments for these TFs and show that they provide new insights about combinatorial regulation and the ordering of TF activation. We used several complementary sources to validate some of these predictions and discuss a number of other novel suggestions based on the method. As we show, the method is able to scale to large and noisy datasets and so is appropriate for several studies utilizing time series scRNA-Seq data.
Collapse
Affiliation(s)
- Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yue H, Ji X, Li G, Hu M, Sang N. Maternal Exposure to PM 2.5 Affects Fetal Lung Development at Sensitive Windows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:316-324. [PMID: 31872757 DOI: 10.1021/acs.est.9b04674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lung development continues from the embryonic period to adulthood. Previous epidemiological studies have noted that maternal exposure of atmospheric pollutants during the sensitive windows disturbed the lung development and increased the risk of lung diseases after birth, but the experimental evidence was insufficient. In the present study, we exposed plug-positive mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day, and intended to test whether maternal PM2.5 exposure affected prenatal lung development in the offspring. First, maternal PM2.5 exposure decreased embryo weight and crown-rump length at E18.5 but not in earlier developmental stages (E0-E16.5). Second, maternal PM2.5 exposure did not prevent lung-bud and tracheal specification, and did not cause abnormalities in branching morphogenesis, distal lung epithelium, and mesenchyme differentiation in earlier stages of lung development (E0-E16.5). However, the exposure significantly disturbed the distal lung epithelium and mesenchyme differentiation of lung, led to reduced intact rings of trachea, and suppressed the expression of lung development-related genes (Nkx2.1, Tbx4, Tbx5, and Sox9) at E18.5. Finally, we found that the exposure not only increased PM2.5-bound metal content (Pb and Cu) but also caused inflammatory response in the placenta, which transmitted from the mother to the fetus and contributed to the developmental abnormalities.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Meng Hu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
31
|
Sinner DI, Carey B, Zgherea D, Kaufman KM, Leesman L, Wood RE, Rutter MJ, de Alarcon A, Elluru RG, Harley JB, Whitsett JA, Trapnell BC. Complete Tracheal Ring Deformity. A Translational Genomics Approach to Pathogenesis. Am J Respir Crit Care Med 2019; 200:1267-1281. [PMID: 31215789 PMCID: PMC6857493 DOI: 10.1164/rccm.201809-1626oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Complete tracheal ring deformity (CTRD) is a rare congenital abnormality of unknown etiology characterized by circumferentially continuous or nearly continuous cartilaginous tracheal rings, variable degrees of tracheal stenosis and/or shortening, and/or pulmonary arterial sling anomaly.Objectives: To test the hypothesis that CTRD is caused by inherited or de novo mutations in genes required for normal tracheal development.Methods: CTRD and normal tracheal tissues were examined microscopically to define the tracheal abnormalities present in CTRD. Whole-exome sequencing was performed in children with CTRD and their biological parents ("trio analysis") to identify gene variants in patients with CTRD. Mutations were confirmed by Sanger sequencing, and their potential impact on structure and/or function of encoded proteins was examined using human gene mutation databases. Relevance was further examined by comparison with the effects of targeted deletion of murine homologs important to tracheal development in mice.Measurements and Main Results: The trachealis muscle was absent in all of five patients with CTRD. Exome analysis identified six de novo, three recessive, and multiple compound-heterozygous or rare hemizygous variants in children with CTRD. De novo variants were identified in SHH (Sonic Hedgehog), and inherited variants were identified in HSPG2 (perlecan), ROR2 (receptor tyrosine kinase-like orphan receptor 2), and WLS (Wntless), genes involved in morphogenetic pathways known to mediate tracheoesophageal development in mice.Conclusions: The results of the present study demonstrate that absence of the trachealis muscle is associated with CTRD. Variants predicted to cause disease were identified in genes encoding Hedgehog and Wnt signaling pathway molecules, which are critical to cartilage formation and normal upper airway development in mice.
Collapse
Affiliation(s)
- Debora I. Sinner
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | | | - K. M. Kaufman
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | - Michael J. Rutter
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alessandro de Alarcon
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ravindhra G. Elluru
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | - Bruce C. Trapnell
- Division of Neonatology
- Division of Pulmonary Biology
- Translational Pulmonary Science Center
- Department of Pediatrics and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
32
|
Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem Cell Derived Lung Organoids by Gene Therapy. Sci Rep 2019; 9:13450. [PMID: 31530844 PMCID: PMC6748939 DOI: 10.1038/s41598-019-49696-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.
Collapse
|
33
|
Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. J Transl Med 2019; 99:1363-1375. [PMID: 31028279 PMCID: PMC7422700 DOI: 10.1038/s41374-019-0256-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Proper lung development depends on the precise temporal and spatial expression of several morphogenic factors, including Fgf10, Fgf9, Shh, Bmp4, and Tgf-β. Over- or under-expression of these molecules often leads to aberrant embryonic or postnatal lung development. Herein, we deleted the Tgf-β1 gene specifically within the lung embryonic mesenchymal compartment at specific gestational stages to determine the contribution of this cytokine to lung development. Mutant embryos developed severe lung hypoplasia and died at birth due to the inability to breathe. Despite the markedly reduced lung size, proliferation and differentiation of the lung epithelium was not affected by the lack of mesenchymal expression of the Tgf-β1 gene, while apoptosis was significantly increased in the mutant lung parenchyma. Lack of mesenchymal expression of the Tgf-β1 gene was also associated with reduced lung branching morphogenesis, with accompanying inhibition of the local FGF10 signaling pathway as well as abnormal development of the vascular system. To shed light on the mechanism of lung hypoplasia, we quantified the phosphorylation of 226 proteins in the mutant E12.5 lung compared with control. We identified five proteins, Hrs, Vav2, c-Kit, the regulatory subunit of Pi3k (P85), and Fgfr1, that were over- or under-phosphorylated in the mutant lung, suggesting that they could be indispensable effectors of the TGF-β signaling program during embryonic lung development. In conclusion, we have uncovered novel roles of the mesenchyme-specific Tgf-β1 ligand in embryonic mouse lung development and generated a mouse model that may prove helpful to identify some of the key pathogenic mechanisms underlying lung hypoplasia in humans.
Collapse
|
34
|
Yin W, Kim HT, Wang S, Gunawan F, Li R, Buettner C, Grohmann B, Sengle G, Sinner D, Offermanns S, Stainier DYR. Fibrillin-2 is a key mediator of smooth muscle extracellular matrix homeostasis during mouse tracheal tubulogenesis. Eur Respir J 2019; 53:13993003.00840-2018. [PMID: 30578393 DOI: 10.1183/13993003.00840-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tubes, comprised of polarised epithelial cells around a lumen, are crucial for organ function. However, the molecular mechanisms underlying tube formation remain largely unknown. Here, we report on the function of fibrillin (FBN)2, an extracellular matrix (ECM) glycoprotein, as a critical regulator of tracheal tube formation.We performed a large-scale forward genetic screen in mouse to identify regulators of respiratory organ development and disease. We identified Fbn2 mutants which exhibit shorter and narrowed tracheas as well as defects in tracheal smooth muscle cell alignment and polarity.We found that FBN2 is essential for elastic fibre formation and Fibronectin accumulation around tracheal smooth muscle cells. These processes appear to be regulated at least in part through inhibition of p38-mediated upregulation of matrix metalloproteinases (MMPs), as pharmacological decrease of p38 phosphorylation or MMP activity partially attenuated the Fbn2 mutant tracheal phenotypes. Analysis of human tracheal tissues indicates that a decrease in ECM proteins, including FBN2 and Fibronectin, is associated with tracheomalacia.Our findings provide novel insights into the role of ECM homeostasis in mesenchymal cell polarisation during tracheal tubulogenesis.
Collapse
Affiliation(s)
- Wenguang Yin
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| | - Hyun-Taek Kim
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Rui Li
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany
| | - Carmen Buettner
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Beate Grohmann
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine Cincinnati, OH, USA
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| |
Collapse
|
35
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Expression of dispatched RND transporter family member 1 is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2019; 35:35-40. [PMID: 30382378 DOI: 10.1007/s00383-018-4374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to be caused by a malformation of the diaphragmatic and pulmonary mesenchyme. Dispatched RND transporter family member 1 (Disp-1) encodes a transmembrane protein that regulates the release of cholesterol and palmitoyl, which is critical for normal diaphragmatic and airway development. Disp-1 is strongly expressed in mesenchymal compartments of fetal diaphragms and lungs. Recently, Disp-1 mutations have been identified in patients with CDH. We hypothesized that diaphragmatic and pulmonary Disp-1 expression is decreased in the nitrofen-induced CDH model. METHODS Time-mated rats received nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms and lungs were microdissected on selected endpoints D13, D15 and D18; and divided into control and nitrofen-exposed specimens (n = 12 per sample, time-point and experimental group). Diaphragmatic and pulmonary Disp-1 expression was evaluated by qRT-PCR. Immunofluorescence double staining for Disp-1 was combined with diaphragmatic and pulmonary mesenchymal markers Wt-1 and Sox-9 to localize protein expression in fetal diaphragms and lungs. RESULTS Relative mRNA levels of Disp-1 were significantly decreased in pleuroperitoneal folds/primordial lungs on D13 (0.18 ± 0.08 vs. 0.46 ± 0.41; p < 0.05/1.06 ± 0.27 vs. 1.34 ± 0.79; p < 0.05), developing diaphragms/lungs on D15 (0.18 ± 0.06 vs. 0.44 ± 0.23; p < 0.05/0.73 ± 0.36 vs. 1.16 ± 0.27; p < 0.05) and fully muscularized diaphragms/differentiated lungs on D18 (0.22 ± 0.18 vs. 0.32 ± 0.23; p < 0.05/0.56 ± 0.16 vs. 0.77 ± 0.14; p < 0.05) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished Disp-1 immunofluorescence predominately in the diaphragmatic and pulmonary mesenchyme of nitrofen-exposed fetuses on D13, D15 and D18, associated with a clear reduction of proliferating mesenchymal cells. CONCLUSIONS Decreased Disp-1 expression during diaphragmatic development and lung branching morphogenesis may interrupt mesenchymal cell proliferation, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.,Department of Pediatric Surgery, The Royal London Hospital, London, UK
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Prochnicki A, Amann K, Wegner M, Sock E, Pfister E, Shankland S, Pippin J, Daniel C. Characterization of Glomerular Sox9+ Cells in Anti-Glomerular Basement Membrane Nephritis in the Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2529-2541. [DOI: 10.1016/j.ajpath.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
37
|
Chen Y, Feng J, Zhao S, Han L, Yang H, Lin Y, Rong Z. Long-Term Engraftment Promotes Differentiation of Alveolar Epithelial Cells from Human Embryonic Stem Cell Derived Lung Organoids. Stem Cells Dev 2018; 27:1339-1349. [PMID: 30009668 DOI: 10.1089/scd.2018.0042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cell (hESC) derived 3D human lung organoids (HLOs) provide a promising model to study human lung development and disease. HLOs containing proximal or/and immature distal airway epithelial cells have been successfully generated in vitro, such as early staged alveolar type 2 (AT2) cells (SPC+/SOX9+) and immature alveolar type 1 (AT1) cells (HOPX+/SOX9+). When HLOs were transplanted into immunocompromised mice for further differentiation in vivo, only few distal epithelial cells could be observed. In this study, we transplanted different stages of HLOs into immunocompromised mice to assess whether HLOs could expand and mature in vivo. We found that short-term transplanted HLOs contained lung progenitor cells (NKX2.1+, SOX9+, and P63+), but not SPC+ AT2 cells or AQP5+ AT1 cells. Meanwhile, long-term engrafted HLOs could differentiate into lung distal bipotent progenitor cells (PDPN+/SPC+/SOX9+), AT2 cells (SPC+, SPB+), and immature AT1 cells (PDPN+, AQP5-). However, HLOs at late in vitro stage turned into mature AT1-like cells (AQP5+/SPB-/SOX9-) in vivo. Immunofluorescence staining and transmission electron microscopy (TEM) results revealed that transplanted HLOs contained mesenchymal cells (collagen I+), vasculature (ACTA2+), neuroendocrine-like cells (PGP9.5+), and nerve fiber structures (myelin sheath structure). Together, these data reveal that hESC-derived HLOs would be useful for human lung development modeling, and transplanted HLOs could mimic lung organ-like structures in vivo by possessing vascular network and neuronal network.
Collapse
Affiliation(s)
- Yong Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Jianqi Feng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Le Han
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Hongcheng Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University , Guangzhou, China
| |
Collapse
|
38
|
Kishimoto K, Tamura M, Nishita M, Minami Y, Yamaoka A, Abe T, Shigeta M, Morimoto M. Synchronized mesenchymal cell polarization and differentiation shape the formation of the murine trachea and esophagus. Nat Commun 2018; 9:2816. [PMID: 30026494 PMCID: PMC6053463 DOI: 10.1038/s41467-018-05189-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Tube morphogenesis is essential for internal-organ development, yet the mechanisms regulating tube shape remain unknown. Here, we show that different mechanisms regulate the length and diameter of the murine trachea. First, we found that trachea development progresses via sequential elongation and expansion processes. This starts with a synchronized radial polarization of smooth muscle (SM) progenitor cells with inward Golgi-apparatus displacement regulates tube elongation, controlled by mesenchymal Wnt5a-Ror2 signaling. This radial polarization directs SM progenitor cell migration toward the epithelium, and the resulting subepithelial morphogenesis supports tube elongation to the anteroposterior axis. This radial polarization also regulates esophageal elongation. Subsequently, cartilage development helps expand the tube diameter, which drives epithelial-cell reshaping to determine the optimal lumen shape for efficient respiration. These findings suggest a strategy in which straight-organ tubulogenesis is driven by subepithelial cell polarization and ring cartilage development.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Masaru Tamura
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Akira Yamaoka
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Takaya Abe
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory for Animal Resource Development, RIKEN Center for Life Science Technologies and Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Life Science Technologies and Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Mayo Shigeta
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory for Animal Resource Development, RIKEN Center for Life Science Technologies and Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
| |
Collapse
|
39
|
Fernandes-Silva H, Vaz-Cunha P, Barbosa VB, Silva-Gonçalves C, Correia-Pinto J, Moura RS. Retinoic acid regulates avian lung branching through a molecular network. Cell Mol Life Sci 2017; 74:4599-4619. [PMID: 28735443 PMCID: PMC11107646 DOI: 10.1007/s00018-017-2600-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022]
Abstract
Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rarα, and rarβ) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgfβ2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rarβ, meis2, hoxb5, tgfβ2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgfβ2, and id2 spatial distribution; to increase rarβ, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal-distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Patrícia Vaz-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Violina Baranauskaite Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Carla Silva-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, 4710-243, Braga, Portugal
| | - Rute Silva Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Biology Department, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
40
|
McCoy AM, Herington JL, Stouch AN, Mukherjee AB, Lakhdari O, Blackwell TS, Prince LS. IKKβ Activation in the Fetal Lung Mesenchyme Alters Lung Vascular Development but Not Airway Morphogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2635-2644. [PMID: 28923684 PMCID: PMC5718091 DOI: 10.1016/j.ajpath.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 01/29/2023]
Abstract
In the immature lung, inflammation and injury disrupt the epithelial-mesenchymal interactions required for normal development. Innate immune signaling and NF-κB activation disrupt the normal expression of multiple mesenchymal genes that play a key role in airway branching and alveolar formation. To test the role of the NF-κB pathway specifically in lung mesenchyme, we utilized the mesenchymal Twist2-Cre to drive expression of a constitutively active inhibitor of NF-κB kinase subunit β (IKKβca) mutant in developing mice. Embryonic Twist2-IKKβca mice were generated in expected numbers and appeared grossly normal. Airway branching also appeared normal in Twist2-IKKβca embryos, with airway morphometry, elastin staining, and saccular branching similar to those in control littermates. While Twist2-IKKβca lungs did not contain increased levels of Il1b, we did measure an increased expression of the chemokine-encoding gene Ccl2. Twist2-IKKβca lungs had increased staining for the vascular marker platelet endothelial cell adhesion molecule 1. In addition, type I alveolar epithelial differentiation appeared to be diminished in Twist2-IKKβca lungs. The normal airway branching and lack of Il1b expression may have been due to the inability of the Twist2-IKKβca transgene to induce inflammasome activity. While Twist2-IKKβca lungs had an increased number of macrophages, inflammasome expression remained restricted to macrophages without evidence of spontaneous inflammasome activity. These results emphasize the importance of cellular niche in considering how inflammatory signaling influences fetal lung development.
Collapse
Affiliation(s)
- Alyssa M McCoy
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California; Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Jennifer L Herington
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Ashley N Stouch
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California; Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Anamika B Mukherjee
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California
| | - Timothy S Blackwell
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California.
| |
Collapse
|
41
|
Landry-Truchon K, Houde N, Boucherat O, Joncas FH, Dasen JS, Philippidou P, Mansfield JH, Jeannotte L. HOXA5 plays tissue-specific roles in the developing respiratory system. Development 2017; 144:3547-3561. [PMID: 28827394 DOI: 10.1242/dev.152686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
Abstract
Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.
Collapse
Affiliation(s)
- Kim Landry-Truchon
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Olivier Boucherat
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10036, USA
| | - Polyxeni Philippidou
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10036, USA
| | - Jennifer H Mansfield
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, USA
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| |
Collapse
|
42
|
Liu X, Liu Y, Li X, Zhao J, Geng Y, Ning W. Follistatin like-1 (Fstl1) is required for the normal formation of lung airway and vascular smooth muscle at birth. PLoS One 2017; 12:e0177899. [PMID: 28574994 PMCID: PMC5456059 DOI: 10.1371/journal.pone.0177899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Fstl1, a secreted protein of the BMP antagonist class, has been implicated in the regulation of lung development and alveolar maturation. Here we generated a Fstl1-lacZ reporter mouse line as well as a Fstl1 knockout allele. We localized Fstl1 transcript in lung smooth muscle cells and identified Fstl1 as essential regulator of lung smooth muscle formation. Deletion of Fstl1 in mice led to postnatal death as a result of respiratory failure due to multiple defects in lung development. Analysis of the mutant phenotype showed impaired airway smooth muscle (SM) manifested as smaller SM line in trachea and discontinued SM surrounding bronchi, which were associated with decreased transcriptional factors myocardin/serum response factor (SRF) and impaired differentiation of SM cells. Fstl1 knockout mice also displayed abnormal vasculature SM manifested as hyperplasia SM in pulmonary artery. This study indicates a pivotal role for Fstl1 in early stage of lung airway smooth muscle development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yan Geng
- Model Animal Research Center, Nanjing University, Nanjing, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
43
|
Zhong T, Zhou J. Orientation of the Mitotic Spindle in the Development of Tubular Organs. J Cell Biochem 2017; 118:1630-1633. [DOI: 10.1002/jcb.25865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Tao Zhong
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province; Shandong Normal University; Jinan Shandong 250014 China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province; Shandong Normal University; Jinan Shandong 250014 China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
44
|
Turcatel G, Millette K, Thornton M, Leguizamon S, Grubbs B, Shi W, Warburton D. Cartilage rings contribute to the proper embryonic tracheal epithelial differentiation, metabolism, and expression of inflammatory genes. Am J Physiol Lung Cell Mol Physiol 2016; 312:L196-L207. [PMID: 27941074 DOI: 10.1152/ajplung.00127.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
The signaling cross talk between the tracheal mesenchyme and epithelium has not been researched extensively, leaving a substantial gap of knowledge in the mechanisms dictating embryonic development of the proximal airways by the adjacent mesenchyme. Recently, we reported that embryos lacking mesenchymal expression of Sox9 did not develop tracheal cartilage rings and showed aberrant differentiation of the tracheal epithelium. Here, we propose that tracheal cartilage provides local inductive signals responsible for the proper differentiation, metabolism, and inflammatory status regulation of the tracheal epithelium. The tracheal epithelium of mesenchyme-specific Sox9Δ/Δ mutant embryos showed altered mRNA expression of various epithelial markers such as Pb1fa1, surfactant protein B (Sftpb), secretoglobulin, family 1A, member 1 (Scgb1a1), and trefoil factor 1 (Tff1). In vitro tracheal epithelial cell cultures confirmed that tracheal chondrocytes secrete factors that inhibit club cell differentiation. Whole gene expression profiling and ingenuity pathway analysis showed that the tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β (TGF-β) signaling pathways were significantly altered in the Sox9 mutant trachea. TNF-α and IFN-γ interfered with the differentiation of tracheal epithelial progenitor cells into mature epithelial cell types in vitro. Mesenchymal knockout of Tgf-β1 in vivo resulted in altered differentiation of the tracheal epithelium. Finally, mitochondrial enzymes involved in fat and glycogen metabolism, cytochrome c oxidase subunit VIIIb (Cox8b) and cytochrome c oxidase subunit VIIa polypeptide 1 (Cox7a1), were strongly upregulated in the Sox9 mutant trachea, resulting in increases in the number and size of glycogen storage vacuoles. Our results support a role for tracheal cartilage in modulation of the differentiation and metabolism and the expression of inflammatory-related genes in the tracheal epithelium by feeding into the TNF-α, IFN-γ, and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California;
| | - Katelyn Millette
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Matthew Thornton
- Keck School of Medicine, University of Southern California, Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Los Angeles, California
| | | | - Brendan Grubbs
- Keck School of Medicine, University of Southern California, Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Los Angeles, California
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, and Keck School of Medicine, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, and Keck School of Medicine, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
| |
Collapse
|
45
|
Chanvorachote P, Luanpitpong S. Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 2016; 310:C728-39. [DOI: 10.1152/ajpcell.00322.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Evidence has accumulated in support of the critical impact of cancer stem cells (CSCs) behind the chemotherapeutic failure, cancer metastasis, and subsequent disease recurrence and relapse, but knowledge of how CSCs are regulated is still limited. Redox status of the cells has been shown to dramatically influence cell signaling and CSC-like aggressive behaviors. Here, we investigated how subtoxic concentrations of iron, which have been found to specifically induce cellular hydroxyl radical, affected CSC-like subpopulations of human non-small cell lung carcinoma (NSCLC). We reveal for the first time that subchronic iron exposure and higher levels of hydroxyl radical correlated well with increased CSC-like phenotypes. The iron-exposed NSCLC H460 and H292 cells exhibited a remarkable increase in propensities to form CSC spheroids and to proliferate, migrate, and invade in parallel with an increase in level of a well-known CSC marker, ABCG2. We further observed that such phenotypic changes induced by iron were not related to an epithelial-to-mesenchymal transition (EMT). Instead, the sex-determining region Y (SRY)-box 9 protein (SOX9) was substantially linked to iron treatment and hydroxyl radical level. Using gene manipulations, including ectopic SOX9 overexpression and SOX9 short hairpin RNA knockdown, we have verified that SOX9 is responsible for CSC enrichment mediated by iron. These findings indicate a novel role of iron via hydroxyl radical in CSC regulation and its importance in aggressive cancer behaviors and likely metastasis through SOX9 upregulation.
Collapse
Affiliation(s)
- Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and
| | - Sudjit Luanpitpong
- Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Ustiyan V, Zhang Y, Perl AKT, Whitsett JA, Kalin TV, Kalinichenko VV. β-catenin and Kras/Foxm1 signaling pathway are critical to restrict Sox9 in basal cells during pulmonary branching morphogenesis. Dev Dyn 2016; 245:590-604. [PMID: 26869074 DOI: 10.1002/dvdy.24393] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung morphogenesis is regulated by interactions between the canonical Wnt/β-catenin and Kras/ERK/Foxm1 signaling pathways that establish proximal-peripheral patterning of lung tubules. How these interactions influence the development of respiratory epithelial progenitors to acquire airway as compared to alveolar epithelial cell fate is unknown. During branching morphogenesis, SOX9 transcription factor is normally restricted from conducting airway epithelial cells and is highly expressed in peripheral, acinar progenitor cells that serve as precursors of alveolar type 2 (AT2) and AT1 cells as the lung matures. RESULTS To identify signaling pathways that determine proximal-peripheral cell fate decisions, we used the SFTPC gene promoter to delete or overexpress key members of Wnt/β-catenin and Kras/ERK/Foxm1 pathways in fetal respiratory epithelial progenitor cells. Activation of β-catenin enhanced SOX9 expression in peripheral epithelial progenitors, whereas deletion of β-catenin inhibited SOX9. Surprisingly, deletion of β-catenin caused accumulation of atypical SOX9-positive basal cells in conducting airways. Inhibition of Wnt/β-catenin signaling by Kras(G12D) or its downstream target Foxm1 stimulated SOX9 expression in basal cells. Genetic inactivation of Foxm1 from Kras(G12D) -expressing epithelial cells prevented the accumulation of SOX9-positive basal cells in developing airways. CONCLUSIONS Interactions between the Wnt/β-catenin and the Kras/ERK/Foxm1 pathways are essential to restrict SOX9 expression in basal cells. Developmental Dynamics 245:590-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Anne-Karina T Perl
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio.,Division of Developmental Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio.,Division of Developmental Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| |
Collapse
|
47
|
Kang HM, Huang S, Reidy K, Han SH, Chinga F, Susztak K. Sox9-Positive Progenitor Cells Play a Key Role in Renal Tubule Epithelial Regeneration in Mice. Cell Rep 2016; 14:861-871. [PMID: 26776520 DOI: 10.1016/j.celrep.2015.12.071] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/02/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
The kidney has a tremendous capacity to regenerate following injury, but factors that govern this response are still largely unknown. We isolated cells from mouse kidneys with high proliferative and multi-lineage differentiation capacity. These cells expressed a high level of Sox9. In regenerating kidneys, Sox9 expression was induced early, and 89% of proliferating cells were Sox9 positive. In vitro, Sox9-positive cells showed unlimited proliferation and multi-lineage differentiation capacity. Using an inducible Sox9 Cre line and lineage-tagging methods, we show that Sox9-positive cells can generate new daughter cells, contributing to the regeneration of proximal tubule, loop of Henle, and distal tubule segments but not to collecting duct and glomerular cells. Furthermore, inducible deletion of Sox9 resulted in reduced epithelial proliferation, more severe injury, and fibrosis development. In summary, we demonstrate that, in the kidney, Sox9-positive cells show progenitor-like properties in vitro and contribute to epithelial regeneration following injury in vivo.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly Reidy
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank Chinga
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Hines EA, Sun X. Tissue crosstalk in lung development. J Cell Biochem 2015; 115:1469-77. [PMID: 24644090 DOI: 10.1002/jcb.24811] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
Lung development follows a stereotypic program orchestrated by key interactions among epithelial and mesenchymal tissues. Deviations from this developmental program can lead to pulmonary diseases including bronchopulmonary dysplasia and pulmonary hypertension. Significant efforts have been made to examine the cellular and molecular basis of the tissue interactions underlying these stereotypic developmental processes. Genetically engineered mouse models, lung organ culture, and advanced imaging techniques are a few of the tools that have expanded our understanding of the tissue interactions that drive lung development. Intimate crosstalk has been identified between the epithelium and mesenchyme, distinct mesenchymal tissues, and individual epithelial cells types. For interactions such as the epithelial-mesenchymal crosstalk regulating lung specification and branching morphogenesis, the key molecular players, FGF, BMP, WNT, and SHH, are well established. Additionally, VEGF regulation underlies the epithelial-endothelial crosstalk that coordinates airway branching with angiogenesis. Recent work also discovered a novel role for SHH in the epithelial-to-mesenchymal (EMT) transition of the mesothelium. In contrast, the molecular basis for the crosstalk between upper airway cartilage and smooth muscle is not yet known. In this review we examine current evidence of the tissue interactions and molecular crosstalk that underlie the stereotypic patterning of the developing lung and mediate injury repair.
Collapse
Affiliation(s)
- Elizabeth A Hines
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706
| | | |
Collapse
|
49
|
SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 2015; 35:2824-33. [PMID: 26387547 PMCID: PMC4801727 DOI: 10.1038/onc.2015.351] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are a promising target for cancer therapy, particularly for metastatic lung cancers, but how CSCs are regulated is largely unknown. We identify two proteins, SLUG (encoded by SNAI2 gene) and SOX9, that are associated with advanced stage lung cancers and are implicated in the regulation of CSCs. Inhibition of either SLUG or SOX9 sufficiently inhibits CSCs in human lung cancer cells and attenuates experimental lung metastasis in a xenograft mouse model. Correlation between SLUG and SOX9 levels was observed remarkably, we therefore sought to explore their mechanistic relationship and regulation. SLUG, beyond its known function as an epithelial-mesenchymal transition transcription factor, was found to regulate SOX9 by controlling its stability via a post-translational modification process. SLUG interacts directly with SOX9 and prevents it from ubiquitin-mediated proteasomal degradation. SLUG expression and binding are necessary for SOX9 promotion of lung CSCs and metastasis in a mouse model. Together, our findings provide a novel mechanistic insight into the regulation of CSCs via SLUG-SOX9 regulatory axis, which represents a potential novel target for CSC therapy that may overcome cancer chemoresistance and relapse.
Collapse
|
50
|
Cuna A, Halloran B, Faye-Petersen O, Kelly D, Crossman DK, Cui X, Pandit K, Kaminski N, Bhattacharya S, Ahmad A, Mariani TJ, Ambalavanan N. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation. Am J Respir Cell Mol Biol 2015; 53:60-73. [PMID: 25387348 DOI: 10.1165/rcmb.2014-0160oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.
Collapse
Affiliation(s)
- Alain Cuna
- 1 University of Missouri-Kansas City, Kansas City, Missouri
| | - Brian Halloran
- 2 University of Alabama at Birmingham, Birmingham, Alabama
| | | | - David Kelly
- 2 University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Xiangqin Cui
- 2 University of Alabama at Birmingham, Birmingham, Alabama
| | - Kusum Pandit
- 3 University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Ausaf Ahmad
- 5 University of Rochester Medical Center, Rochester, New York
| | | | | |
Collapse
|