1
|
Wang M, Liu Y, Luo L, Feng Y, Wang Z, Yang T, Yuan H, Liu C, He G. Genomic insights into Neolithic founding paternal lineages around the Qinghai-Xizang Plateau using integrated YanHuang resource. iScience 2024; 27:111456. [PMID: 39759003 PMCID: PMC11696643 DOI: 10.1016/j.isci.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Indigenous populations of the Qinghai-Xizang Plateau exhibit unique high-altitude adaptations, especially within Tibeto-Burman (TB) groups. However, the paternal genetic heritage of eastern Plateau regions remains less explored. We present one integrative Y chromosome dataset of 9,901 modern and ancient individuals, including whole Y chromosome sequences from 1,297 individuals and extensive Y-SNP/STR genotype data. We reveal the Paleolithic common origin and following divergence of Qinghai-Xizang Plateau ancestors from East Asian lowlands, marked by subsequent isolation and Holocene expansion involving local hunter-gatherers and millet-farming communities. We identified two key TB-related founding lineages, D-Z31591 and O-CTS4658, which underwent significant expansions around 5,000 years ago on the Qinghai-Xizang Plateau and its eastern Tibetan-Yi Corridor. The genetic legacy of these TB lineages highlights crucial migration pathways linking the Plateau and lowland southwestern China. Our findings align paternal genetic structures with East Asian geography and linguistic groups, underscoring the utility of Y chromosome analyses in unraveling complex paternal histories.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Ting Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| |
Collapse
|
2
|
Weller RB. Sunlight: Time for a Rethink? J Invest Dermatol 2024; 144:1724-1732. [PMID: 38661623 DOI: 10.1016/j.jid.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 04/26/2024]
Abstract
UVR is a skin carcinogen, yet no studies link sun exposure to increased all-cause mortality. Epidemiological studies from the United Kingdom and Sweden link sun exposure with reduced all-cause, cardiovascular, and cancer mortality. Vitamin D synthesis is dependent on UVB exposure. Individuals with higher serum levels of vitamin D are healthier in many ways, yet multiple trials of oral vitamin D supplementation show little benefit. Growing evidence shows that sunlight has health benefits through vitamin D-independent pathways, such as photomobilization of nitric oxide from cutaneous stores with reduction in cardiovascular morbidity. Sunlight has important systemic health benefit as well as risks.
Collapse
Affiliation(s)
- Richard B Weller
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom; Department of Dermatology, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Bai F, Liu Y, Wangdue S, Wang T, He W, Xi L, Tsho Y, Tsering T, Cao P, Dai Q, Liu F, Feng X, Zhang M, Ran J, Ping W, Payon D, Mao X, Tong Y, Tsring T, Chen Z, Fu Q. Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Curr Biol 2024; 34:2594-2605.e7. [PMID: 38781957 DOI: 10.1016/j.cub.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi'an 710054, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Jingkun Ran
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Danzin Payon
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
6
|
Chen J, Zhang H, Yang M, Wang R, Zhang H, Ren Z, Wang Q, Liu Y, Chen J, Ji J, Zhao J, He G, Guo J, Zhu K, Yang X, Ma H, Wang CC, Huang J. Genomic formation of Tibeto-Burman speaking populations in Guizhou, Southwest China. BMC Genomics 2023; 24:672. [PMID: 37936086 PMCID: PMC10630991 DOI: 10.1186/s12864-023-09767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Sino-Tibetan is the most prominent language family in East Asia. Previous genetic studies mainly focused on the Tibetan and Han Chinese populations. However, due to the sparse sampling, the genetic structure and admixture history of Tibeto-Burman-speaking populations in the low-altitude region of Southwest China still need to be clarified. We collected DNA from 157 individuals from four Tibeto-Burman-speaking groups from the Guizhou province in Southwest China. We genotyped the samples at about 700,000 genome-wide single nucleotide polymorphisms. Our results indicate that the genetic variation of the four Tibeto-Burman-speaking groups in Guizhou is at the intermediate position in the modern Tibetan-Tai-Kadai/Austronesian genetic cline. This suggests that the formation of Tibetan-Burman groups involved a large-scale gene flow from lowland southern Chinese. The southern ancestry could be further modelled as deriving from Vietnam's Late Neolithic-related inland Southeast Asia agricultural populations and Taiwan's Iron Age-related coastal rice-farming populations. Compared to the Tibeto-Burman speakers in the Tibetan-Yi Corridor reported previously, the Tibeto-Burman groups in the Guizhou region received additional gene flow from the southeast coastal area of China. We show a difference between the genetic profiles of the Tibeto-Burman speakers of the Tibetan-Yi Corridor and the Guizhou province. Vast mountain ranges and rivers in Southwest China may have decelerated the westward expansion of the southeast coastal East Asians. Our results demonstrate the complex genetic profile in the Guizhou region in Southwest China and support the multiple waves of human migration in the southern area of East Asia.
Collapse
Affiliation(s)
- Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China.
- Department of Anthropology and Human Genetics, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Silcocks M, Dunstan SJ. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun Biol 2023; 6:1037. [PMID: 37833496 PMCID: PMC10575886 DOI: 10.1038/s42003-023-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Two Layer hypothesis is fast becoming the favoured narrative describing East Asian population history. Under this model, hunter-gatherer groups who initially peopled East Asia via a route south of the Himalayas were assimilated by agriculturalist migrants who arrived via a northern route across Eurasia. A lack of ancient samples from tropical East Asia limits the resolution of this model. We consider insight afforded by patterns of variation within the human pathogen Mycobacterium tuberculosis (Mtb) by analysing its phylogeographic signatures jointly with the human Y-chromosome. We demonstrate the Y-chromosome lineages enriched in the traditionally hunter-gatherer groups associated with East Asia's first layer of peopling to display deep roots, low long-term effective population size, and diversity patterns consistent with a southern entry route. These characteristics mirror those of the evolutionarily ancient Mtb lineage 1. The remaining East Asian Y-chromosome lineage is almost entirely absent from traditionally hunter-gatherer groups and displays spatial and temporal characteristics which are incompatible with a southern entry route, and which link it to the development of agriculture in modern-day China. These characteristics mirror those of the evolutionarily modern Mtb lineage 2. This model paves the way for novel host-pathogen coevolutionary research hypotheses in East Asia.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Sarah J Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
8
|
Zhang G, Cui C, Wangdue S, Lu H, Chen H, Xi L, He W, Yuan H, Tsring T, Chen Z, Yang F, Tsering T, Li S, Tashi N, Yang T, Tong Y, Wu X, Li L, He Y, Cao P, Dai Q, Liu F, Feng X, Wang T, Yang R, Ping W, Zhang M, Gao X, Liu Y, Wang W, Fu Q. Maternal genetic history of ancient Tibetans over the past 4000 years. J Genet Genomics 2023; 50:765-775. [PMID: 36933795 DOI: 10.1016/j.jgg.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The settlement of the Tibetan Plateau epitomizes human adaptation to a high-altitude environment that poses great challenges to human activity. Here, we reconstruct a 4000-year maternal genetic history of Tibetans using 128 ancient mitochondrial genome data from 37 sites in Tibet. The phylogeny of haplotypes M9a1a, M9a1b, D4g2, G2a'c, and D4i show that ancient Tibetans share the most recent common ancestor with ancient Middle and Upper Yellow River populations around the Early and Middle Holocene. In addition, the connections between Tibetans and Northeastern Asians vary over the past 4000 years, with a stronger matrilineal connection between the two during 4000 BP-3000 BP, and a weakened connection after 3000 BP, that are coincident with climate change, followed by a reinforced connection after the Tubo period (1400 BP-1100 BP). Besides, an over 4000-year matrilineal continuity is observed in some of the maternal lineages. We also find the maternal genetic structure of ancient Tibetans is correlated to the geography and interactions between ancient Tibetans and ancient Nepal and Pakistan populations. Overall, the maternal genetic history of Tibetans can be characterized as a long-term matrilineal continuity with frequent internal and external population interactions that are dynamically shaped by geography, climate changes, as well as historical events.
Collapse
Affiliation(s)
- Ganyu Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Cui
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Hongliang Lu
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Honghai Chen
- School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lin Xi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Haibing Yuan
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Zujun Chen
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Feng Yang
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Shuai Li
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Tsho Yang
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Linhui Li
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Yuanhong He
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Qi Zhi Institute, Shanghai 200232, China.
| |
Collapse
|
9
|
Yang SB, Lee JE, Lee HY. Forensic genetic analysis of single-nucleotide polymorphisms and microhaplotypes in Koreans through next-generation sequencing using precision ID identity panel. Genes Genomics 2023; 45:1281-1293. [PMID: 37440105 DOI: 10.1007/s13258-023-01424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Forensic DNA analysis has seen remarkable advancements with the advent of Next Generation Sequencing (NGS). In particular, NGS analysis of single nucleotide polymorphisms (SNPs) offers significant advantages in the analysis of challenging samples compared to conventional STR analysis. OBJECTIVE This study aimed to investigate the SNPs of the Precision ID Identity Panel, a commercially available NGS panel for personal identification, by generating genetic profiles of 298 Koreans and comparing them with other global populations. METHODS A total of 124 SNPs, including 90 autosomal and 34 Y-SNPs, were analyzed using the Precision ID Identity Panel, and forensic parameters, microhaplotypes, and population differences were investigated. RESULTS The NGS data were successfully obtained from 298 Koreans. The analysis of forensic parameters exhibited a low combined match probability of 1.532 × 10- 34, which is comparable to that obtained from commonly used STR analysis. Additionally, the microhaplotype analysis revealed that the use of 16 microhaplotypes provided higher discriminatory power compared to single target SNPs. Furthermore, the adoption of microhaplotype data resulted in an increase of over 20% in expected heterozygosity at five loci. Inter-population analysis showed a close genetic relationship between Koreans and individuals from China and Myanmar in East and Southeast Asia, which are geographically adjacent to Korea. CONCLUSIONS The results of this study show that the Precision ID Identity panel can be a useful alternative where traditional STR typing is not feasible. Also, the data from our study will be useful as a reference for Koreans in forensic investigations and the prosecution of criminal justice.
Collapse
Affiliation(s)
- Soo-Bin Yang
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Fan B, Huang X, Zhang X, Huang L, Yang Z, Ma S, Chu J, Huang K, Weng Y, Zhang L, Lin K, Sun H. Comprehensive research on the distribution of HLA-DRB1 in Chinese populations. HLA 2023; 101:239-248. [PMID: 36479840 DOI: 10.1111/tan.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
By presenting antigen peptides, HLA-DRB1 plays an important role in the immune system. However, the allele frequency of HLA-DRB1 exon 2 across China has not been comprehensively studied, especially in minority populations. We sampled 3757 individuals from 59 population. The HLA-DRB1 region from 212 to 463 bp (NM_002124.4 exon 2) in each population was sequenced by Sanger sequencing and genotyped via SBTengine® software, and the allele frequency was calculated by GenAlEx 6.5. Eighty-two DRB1 alleles were identified. The expected heterozygosity of DRB1 was lower in the south than in the north, which was inconsistent with the Y chromosome and mitochondrial DNA results. The Mantel test and nonparametric correlation analysis showed that the correlations of the genetic distance with geographical distance and of DRB1 allele frequencies with latitude weakened after the southern and northern groups were considered separately. Principal coordinate analysis showed that populations speaking the same languages were not codistributed. Compared with other genetic markers, the distribution of DRB1 seems less affected by geographic distance and ethnic origin. Local factors such as gene flow with neighbouring populations, geographic isolation or natural selection are important forces shaping the DRB1 gene pool of local populations.
Collapse
Affiliation(s)
- Baitong Fan
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaoqin Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaochao Zhang
- Pharmaceutical College & Key Laboratory of Pharmacology for Natural Products of Yunnan Province, Kunming Medical University, Kunming, China
| | - Lifan Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiayou Chu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kai Huang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuting Weng
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Zhang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hao Sun
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
11
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
12
|
Ancient DNA from Tubo Kingdom-related tombs in northeastern Tibetan Plateau revealed their genetic affinity to both Tibeto-Burman and Altaic populations. Mol Genet Genomics 2022; 297:1755-1765. [PMID: 36152077 DOI: 10.1007/s00438-022-01955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The rise of the Tubo Kingdom is considered as the key period for the formation of modern groups on the Tibetan Plateau. The ethnic origin of the residents of the Tubo Kingdom is quite complex, and their genetic structure remains unclear. The tombs of the Tubo Kingdom period in Dulan County, Qinghai Province, dating back to the seventh century, are considered to be the remains left by Tubo conquerors or the Tuyuhun people dominated by the Tubo Kingdom. The human remains of these tombs are ideal materials for studying the population dynamics in the Tubo Kingdom. In this paper, we analyzed the genome-wide data of eight remains from these tombs by shotgun sequencing and multiplex PCR panels and compared the results with data of available ancient and modern populations across East Asia. Genetic continuity between ancient Dulan people with ancient Xianbei tribes in Northeast Asia, ancient settlers on the Tibetan Plateau, and modern Tibeto-Burman populations was found. Surprisingly, one out of eight individuals showed typical genetic features of populations from Central Asia. In summary, the genetic diversity of ancient Dulan people and their affiliations with other populations provide an example of the complex origin of the residents in the Tubo Kingdom and their long-distance connection with populations in a vast geographic region across ancient Asia.
Collapse
|
13
|
Ma L, Wang R, Feng S, Yang X, Li J, Zhang Z, Zhan H, Wang Y, Xia Z, Wang CC, Kang L. Genomic insight into the population history and biological adaptations of high-altitude Tibetan highlanders in Nagqu. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibetan, one of the largest indigenous populations living in the high-altitude region of the Tibetan Plateau (TP), has developed a suite of physiological adaptation strategies to cope with the extreme highland environment in TP. Here, we reported genome-wide SNP data from 48 Kham-speaking Nagqu Tibetans and analyzed it with published data from 1,067 individuals in 167 modern and ancient populations to characterize the detailed Tibetan subgroup history and population substructure. Overall, the patterns of allele sharing and haplotype sharing suggested (1) the relatively genetic homogeny between the studied Nagqu Tibetans and ancient Nepalese as well as present-day core Tibetans from Lhasa, Nagqu, and Shigatse; and (2) the close relationship between our studied Kham-speaking Nagqu Tibetans and Kham-speaking Chamdo Tibetans. The fitted qpAdm models showed that the studied Nagqu Tibetans could be fitted as having the main ancestry from late Neolithic upper Yellow River millet farmers and deeply diverged lineages from Southern East Asians (represented by Upper Paleolithic Guangxi_Longlin and Laos_Hoabinhian), and a non-neglectable western Steppe herder-related ancestry (∼3%). We further scanned the candidate genomic regions of natural selection for our newly generated Nagqu Tibetans and the published core Tibetans via FST, iHS, and XP-EHH tests. The genes overlapping with these regions were associated with essential human biological functions such as immune response, enzyme activity, signal transduction, skin development, and energy metabolism. Together, our results shed light on the admixture and evolutionary history of Nagqu Tibetan populations.
Collapse
|
14
|
Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures. Forensic Sci Int Genet 2022; 59:102705. [DOI: 10.1016/j.fsigen.2022.102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
|
15
|
Zho Z, Zhou Y, Li Z, Yao Y, Yang Q, Qian J, Shao C, Qian X, Sun K, Tang Q, Xie J. Identification and assessment of a subset of Y-SNPs with recurrent mutation for forensic purpose. Forensic Sci Int 2022; 334:111270. [DOI: 10.1016/j.forsciint.2022.111270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
|
16
|
Fan GY, Song DL, Jin HY, Zheng XK. Gene flow and phylogenetic analyses of paternal lineages in the Yi-Luo valley using Y-STR genetic markers. Ann Hum Biol 2022; 48:627-634. [DOI: 10.1080/03014460.2021.2017480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guang-Yao Fan
- Forensic Center, College of Medicine, Shaoxing University, Shaoxing, China
| | - Dan-Lu Song
- Ningbo Health Gene Technologies Co. Ltd., Ningbo, China
| | - Hai-Ying Jin
- Ningbo Health Gene Technologies Co. Ltd., Ningbo, China
| | | |
Collapse
|
17
|
Guo J, Wang W, Zhao K, Li G, He G, Zhao J, Yang X, Chen J, Zhu K, Wang R, Ma H, Xu B, Wang C. Genomic insights into
Neolithic
farming‐related migrations in the junction of east and southeast
Asia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Weitao Wang
- Yunnan Modern Forensic Institute Kunming China
| | - Kai Zhao
- Yunnan Modern Forensic Institute Kunming China
| | | | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Jinwen Chen
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Kongyang Zhu
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Rui Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Hao Ma
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Bingying Xu
- Research Center of Biomedical Engineering Kunming Medical University Kunming China
| | - Chuan‐Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| |
Collapse
|
18
|
Wang M, Yuan D, Zou X, Wang Z, Yeh HY, Liu J, Wei LH, Wang CC, Zhu B, Liu C, He G. Fine-Scale Genetic Structure and Natural Selection Signatures of Southwestern Hans Inferred From Patterns of Genome-Wide Allele, Haplotype, and Haplogroup Lineages. Front Genet 2021; 12:727821. [PMID: 34504517 PMCID: PMC8421688 DOI: 10.3389/fgene.2021.727821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
The evolutionary and admixture history of Han Chinese have been widely discussed via traditional autosomal and uniparental genetic markers [e.g., short tandem repeats, low-density single nucleotide polymorphisms). However, their fine-scale genetic landscapes (admixture scenarios and natural selection signatures) based on the high-density allele/haplotype sharing patterns have not been deeply characterized. Here, we collected and generated genome-wide data of 50 Han Chinese individuals from four populations in Guizhou Province, one of the most ethnolinguistically diverse regions, and merged it with over 3,000 publicly available modern and ancient Eurasians to describe the genetic origin and population admixture history of Guizhou Hans and their neighbors. PCA and ADMIXTURE results showed that the studied four populations were homogeneous and grouped closely to central East Asians. Genetic homogeneity within Guizhou populations was further confirmed via the observed strong genetic affinity with inland Hmong-Mien people through the observed genetic clade in Fst and outgroup f3/f4-statistics. qpGraph-based phylogenies and f4-based demographic models illuminated that Guizhou Hans were well fitted via the admixture of ancient Yellow River Millet farmers related to Lajia people and southern Yangtze River farmers related to Hanben people. Further ChromoPainter-based chromosome painting profiles and GLOBETROTTER-based admixture signatures confirmed the two best source matches for southwestern Hans, respectively, from northern Shaanxi Hans and southern indigenes with variable mixture proportions in the historical period. Further three-way admixture models revealed larger genetic contributions from coastal southern East Asians into Guizhou Hans compared with the proposed inland ancient source from mainland Southeast Asia. We also identified candidate loci (e.g., MTUS2, NOTCH4, EDAR, ADH1B, and ABCG2) with strong natural selection signatures in Guizhou Hans via iHS, nSL, and ihh, which were associated with the susceptibility of the multiple complex diseases, morphology formation, alcohol and lipid metabolism. Generally, we provided a case and ideal strategy to reconstruct the detailed demographic evolutionary history of Guizhou Hans, which provided new insights into the fine-scale genomic formation of one ethnolinguistically specific targeted population from the comprehensive perspectives of the shared unlinked alleles, linked haplotypes, and paternal and maternal lineages.
Collapse
Affiliation(s)
- Mengge Wang
- Guangzhou Forensic Science Institute, Guangzhou, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Didi Yuan
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xing Zou
- College of Basic Medicine, Chongqing University, Chongqing, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Singapore, Singapore
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lan-Hai Wei
- State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| | - Bofeng Zhu
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Guanglin He
- School of Humanities, Nanyang Technological University, Singapore, Singapore.,State Key Laboratory of Marine Environmental Science, State Key Laboratory of Cellular Stress Biology, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
He G, Wang M, Zou X, Chen P, Wang Z, Liu Y, Yao H, Wei LH, Tang R, Wang CC, Yeh HY. Peopling History of the Tibetan Plateau and Multiple Waves of Admixture of Tibetans Inferred From Both Ancient and Modern Genome-Wide Data. Front Genet 2021; 12:725243. [PMID: 34650596 PMCID: PMC8506211 DOI: 10.3389/fgene.2021.725243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Archeologically attested human occupation on the Tibetan Plateau (TP) can be traced back to 160 thousand years ago (kya) via the archaic Xiahe people and 30∼40 kya via the Nwya Devu anatomically modern human. However, the history of the Tibetan populations and their migration inferred from the ancient and modern DNA remains unclear. Here, we performed the first ancient and modern genomic meta-analysis among 3,017 Paleolithic to present-day Eastern Eurasian genomes (2,444 modern individuals from 183 populations and 573 ancient individuals). We identified a close genetic connection between the ancient-modern highland Tibetans and lowland island/coastal Neolithic Northern East Asians (NEA). This observed genetic affinity reflected the primary ancestry of high-altitude Tibeto-Burman speakers originated from the Neolithic farming populations in the Yellow River Basin. The identified pattern was consistent with the proposed common north-China origin hypothesis of the Sino-Tibetan languages and dispersal patterns of the northern millet farmers. We also observed the genetic differentiation between the highlanders and lowland NEAs. The former harbored more deeply diverged Hoabinhian/Onge-related ancestry and the latter possessed more Neolithic southern East Asian (SEA) or Siberian-related ancestry. Our reconstructed qpAdm and qpGraph models suggested the co-existence of Paleolithic and Neolithic ancestries in the Neolithic to modern East Asian highlanders. Additionally, we found that Tibetans from Ü-Tsang/Ando/Kham regions showed a strong population stratification consistent with their cultural background and geographic terrain. Ü-Tsang Tibetans possessed a stronger Chokhopani-affinity, Ando Tibetans had more Western Eurasian related ancestry and Kham Tibetans harbored greater Neolithic southern EA ancestry. Generally, ancient and modern genomes documented multiple waves of human migrations in the TP's past. The first layer of local hunter-gatherers mixed with incoming millet farmers and arose the Chokhopani-associated Proto-Tibetan-Burman highlanders, which further respectively mixed with additional genetic contributors from the western Eurasian Steppe, Yellow River and Yangtze River and finally gave rise to the modern Ando, Ü-Tsang and Kham Tibetans.
Collapse
Affiliation(s)
- Guanglin He
- School of Humanities, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
- Guangzhou Forensic Science Institute, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Pengyu Chen
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Liu
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Hongbin Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu Institute of Political Science and Law, Lanzhou, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hui-Yuan Yeh
- School of Humanities, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels. Forensic Sci Int Genet 2021; 54:102565. [PMID: 34332322 DOI: 10.1016/j.fsigen.2021.102565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
The Mongolian people, one of the Mongolic-speaking populations, are native to the Mongolian Plateau in North China and southern Siberia. Many ancient DNA studies recently reported extensive population transformations during the Paleolithic to historic periods in this region, while little is known about the paternal genetic legacy of modern geographically different Mongolians. Here, we genotyped 215 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 37 Y-chromosomal short tandem repeats (Y-STRs) among 679 Mongolian individuals from Hohhot, Hulunbuir, and Ordos in North China using the AGCU Y37 kit and our developed eight Y-SNP SNaPshot panels (including two panels first reported herein). The C-M130 Y-SNP SNaPshot panel defines 28 subhaplogroups, and the N/O/Q complementary Y-SNP SNaPshot panel defines 30 subhaplogroups of N1b-F2930, N1a1a1a1a3-B197, Q-M242, and O2a2b1a1a1a4a-CTS4658, which improved the resolution our developed Y-SNP SNaPshot panel set and could be applied for dissecting the finer-scale paternal lineages of Mongolic speakers. We found a strong association between Mongolian-prevailing haplogroups and some observed microvariants among the newly generated Y-STR haplotype data, suggesting the possibility of haplogroup prediction based on the distribution of Y-STR haplotypes. We identified three main ancestral sources of the observed Mongolian-dominant haplogroups, including the local lineage of C2*-M217 and incoming lineages from other regions of southern East Asia (O2*-M122, O1b*-P31, and N1*-CTS3750) and western Eurasia (R1*-M173). We also observed DE-M145, D1*-M174, C1*-F3393, G*-M201, I-M170, J*-M304, L-M20, O1a*-M119, and Q*-M242 at relatively low frequencies (< 5.00%), suggesting a complex admixture history between Mongolians and other incoming Eurasians from surrounding regions. Genetic clustering analyses indicated that the studied Mongolians showed close genetic affinities with other Altaic-speaking populations and Sinitic-speaking Hui people. The Y-SNP haplotype/haplogroup-based genetic legacy not only revealed that the stratification among geographically/linguistically/ethnically different Chinese populations was highly consistent with the geographical division and language classification, but also demonstrated that patrilineal genetic materials could provide fine-scale genetic structures among geographically different Mongolian people, suggesting that our developed high-resolution Y-SNP SNaPshot panels have the potential for forensic pedigree searches and biogeographical ancestry inference.
Collapse
|
21
|
Yang XY, Rakha A, Chen W, Hou J, Qi XB, Shen QK, Dai SS, Sulaiman X, Abdulloevich NT, Afanasevna ME, Ibrohimovich KB, Chen X, Yang WK, Adnan A, Zhao RH, Yao YG, Su B, Peng MS, Zhang YP. Tracing the Genetic Legacy of the Tibetan Empire in the Balti. Mol Biol Evol 2021; 38:1529-1536. [PMID: 33283852 PMCID: PMC8042757 DOI: 10.1093/molbev/msaa313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rise and expansion of Tibetan Empire in the 7th to 9th centuries AD affected the course of history across East Eurasia, but the genetic impact of Tibetans on surrounding populations remains undefined. We sequenced 60 genomes for four populations from Pakistan and Tajikistan to explore their demographic history. We showed that the genomes of Balti people from Baltistan comprised 22.6–26% Tibetan ancestry. We inferred a single admixture event and dated it to about 39–21 generations ago, a period that postdated the conquest of Baltistan by the ancient Tibetan Empire. The analyses of mitochondrial DNA, Y, and X chromosome data indicated that both ancient Tibetan males and females were involved in the male-biased dispersal. Given the fact that the Balti people adopted Tibetan language and culture in history, our study suggested the impact of Tibetan Empire on Baltistan involved dominant cultural and minor demic diffusion.
Collapse
Affiliation(s)
- Xing-Yan Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Juzhi Hou
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xue-Bin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xierzhatijiang Sulaiman
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Manilova Elena Afanasevna
- E.N. Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, Tajikistan
| | | | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Atif Adnan
- Department of Human Anatomy, School of Basic Medicine, China Medical University, Shenyang, China
| | - Ruo-Han Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Yu X, Li H. Origin of ethnic groups, linguistic families, and civilizations in China viewed from the Y chromosome. Mol Genet Genomics 2021; 296:783-797. [PMID: 34037863 DOI: 10.1007/s00438-021-01794-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
East Asia, geographically extending to the Pamir Plateau in the west, to the Himalayan Mountains in the southwest, to Lake Baikal in the north and to the South China Sea in the south, harbors a variety of people, cultures, and languages. To reconstruct the natural history of East Asians is a mission of multiple disciplines, including genetics, archaeology, linguistics, and ethnology. Geneticists confirm the recent African origin of modern East Asians. Anatomically modern humans arose in Africa and immigrated into East Asia via a southern route approximately 50,000 years ago. Following the end of the Last Glacial Maximum approximately 12,000 years ago, rice and millet were domesticated in the south and north of East Asia, respectively, which allowed human populations to expand and linguistic families and ethnic groups to develop. These Neolithic populations produced a strong relation between the present genetic structures and linguistic families. The expansion of the Hongshan people from northeastern China relocated most of the ethnic populations on a large scale approximately 5300 years ago. Most of the ethnic groups migrated to remote regions, producing genetic structure differences between the edge and center of East Asia. In central China, pronounced population admixture occurred and accelerated over time, which subsequently formed the Han Chinese population and eventually the Chinese civilization. Population migration between the north and the south throughout history has left a smooth gradient in north-south changes in genetic structure. Observation of the process of shaping the genetic structure of East Asians may help in understanding the global natural history of modern humans.
Collapse
Affiliation(s)
- Xueer Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China.
| |
Collapse
|
23
|
Wang F, Song F, Song M, Li J, Xie M, Hou Y. Genetic reconstruction and phylogenetic analysis by 193 Y-SNPs and 27 Y-STRs in a Chinese Yi ethnic group. Electrophoresis 2021; 42:1480-1487. [PMID: 33909307 DOI: 10.1002/elps.202100003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023]
Abstract
Yi is the seventh-largest ethnic group in China and features mountainous regional characteristics. The Liangshan Yi Autonomous Prefecture is the largest Yi agglomeration with isolated geographical conditions, profoundly impeding genetic communication. Here, we investigated 427 unrelated males of Liangshan from 193 Y-chromosome single nucleotide polymorphisms (Y-SNPs) and 27 Y-chromosome short tandem repeats (Y-STRs) to reveal the genetic structure and paternal phylogeny of the group. The haplogroup diversity reached 0.9169 with 46 different subhaplogroups by 193 Y-SNPs, and the haplotype diversity reached 0.9999 by 27 Y-STR loci. Multidimensional scaling (MDS), N-J tree, and Network were constructed to decipher and visualize the genetic relations between Yi and worldwide groups. Our results revealed: (1) the Network by Y-STRs and Y-SNPs showed the haplogroup D1a1a-M15 in the Liangshan Yi population was a ramification of Tibetan groups' expansion from west to east on the plateau; (2) the haplogroup distribution and the mismatch mutation analysis indicated the haplogroup O2a2b1a1a1a4a2-Z25929 of Liangshan Yi derived from manifold Southeast Asian immigrants; (3) a high-resolution Y-SNPs panel is vital to depict accurate paternal derivations and build an integrated and refining genetic structure of ethnic groups.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| | - Mengyuan Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Mingkun Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
24
|
OSADA NAOKI, KAWAI YOSUKE. Exploring models of human migration to the Japanese archipelago using genome-wide genetic data. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.201215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- NAOKI OSADA
- Faculty of Information Science and Technology, Hokkaido University, Sapporo
| | - YOSUKE KAWAI
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo
| |
Collapse
|
25
|
Ding J, Fan H, Zhou Y, Wang Z, Wang X, Song X, Zhu B, Qiu P. Genetic polymorphisms and phylogenetic analyses of the Ü-Tsang Tibetan from Lhasa based on 30 slowly and moderately mutated Y-STR loci. Forensic Sci Res 2020; 7:181-188. [PMID: 35784414 PMCID: PMC9245999 DOI: 10.1080/20961790.2020.1810882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As a result of the expansion of old Tibet on the Qinghai-Tibet Plateau, Tibetans diverged into three main branches, Ü-Tsang, Amdo, and Kham Tibetan. Ü-Tsang Tibetans are geographically distributed across the wide central and western portions of the Qinghai-Tibet Plateau while Lhasa is the central gathering place for Tibetan culture. The AGCU Y30, a 6-dye fluorescence kit including 30 slowly and moderately mutated Y-STR loci, has been validated for its stability and sensitivity in different biomaterials and diverse Chinese populations (Han and other minorities), and widely used in the practical work of forensic science. However, the 30 Y-STR profiling of Tibetan, especially for Ü-Tsang Tibetan, were insufficient. We utilized the AGCU Y30 to genotype 577 Ü-Tsang Tibetan unrelated males from Lhasa in the Tibet Autonomous Region of China to fill up the full and accurate Y-STR profiles. A total of 552 haplotypes were observed, 536 (97.10%) of which were unique. One hundred and ninety-four alleles were observed at 26 single copy loci and the allelic frequencies ranged from 0.0017 to 0.8180. For the two multi-copy loci DYS385a/b and DYS527a/b, 64 and 36 allelic combinations were observed, respectively. The gene diversity (GD) values ranged from 0.3079 at DYS391 to 0.9142 at DYS385a/b and the overall haplotype diversity (HD) was 0.9998, and its discrimination capacity (DC) was 0.9567. The population genetic analyses demonstrated that Lhasa Ü-Tsang Tibetan had close relationships with other Tibetan populations from Tibet and Qinghai, especially with Ü-Tsang Tibetan. From the perspective of Y haplogroups, the admixture of the southward Qiang people with dominant haplogroup O-M122 and the northward migrations of the initial settlers of East Asia with haplogroup D-M175 hinted the Sino-Tibetan homologous, thus, we could not ignore the gene flows with other Sino-Tibetan populations, especially for Han Chinese, to characterize the forensic genetic landscape of Tibetan.
Collapse
Affiliation(s)
- Jiuyang Ding
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yongsong Zhou
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Zhuo Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Wang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuheng Song
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Zhou Z, Zhou Y, Yao Y, Qian J, Liu B, Yang Q, Shao C, Li H, Sun K, Tang Q, Xie J. A 16-plex Y-SNP typing system based on allele-specific PCR for the genotyping of Chinese Y-chromosomal haplogroups. Leg Med (Tokyo) 2020; 46:101720. [PMID: 32505804 DOI: 10.1016/j.legalmed.2020.101720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Y-chromosomal SNP (Y-SNP), with its stable inheritance and low mutation, can provide Supplementary information in forensic investigation. While commonly used Y-chromosomal STR haplotypes show their limitations, typing of Y-SNP would become a powerful complement. In this study, a 16-plex Y-SNP typing system based on allele-specific PCR (AS-PCR) was developed to discriminate four dominant Y-chromosomal haplogroups (C-M130, D-CTS3946, N-M231, and O-M175) and 12 predominant sub-haplogroups of O-M175 (O1a-M119, O1a1a1a-CTS3265, O1b-M268, O1b1a2-Page59, O2-M122, O2a1-L127.1, O2a1b-F240, O2a1b1a1-CTS5820, O2a2-P201, O2a2b1a1-M177, O2a2b1a1a1a-Y17728, O2a2b1a2-F114). A series of experimental validation studies including sensitivity, species specificity, male-female mixture and inhibition were performed. The discrimination of the typing system was preliminarily proved with a haplogroup diversity of 0.9239. Altogether, the Y-SNP typing system based on AS-PCR should be capable of distinguishing China's dominant Y-chromosomal haplogroups in a rapid and reliable manner, thus can be employed as a useful complement in forensic casework.
Collapse
Affiliation(s)
- Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiang Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinglei Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baonian Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qinrui Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Kuan Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Yin C, Ren Y, Adnan A, Tian J, Guo K, Xia M, He Z, Zhai D, Chen X, Wang L, Li X, Qin X, Li S, Jin L. Title: Developmental validation of Y-SNP pedigree tagging system: A panel via quick ARMS PCR. Forensic Sci Int Genet 2020; 46:102271. [DOI: 10.1016/j.fsigen.2020.102271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022]
|
28
|
Kampuansai J, Kutanan W, Dudás E, Vágó-Zalán A, Galambos A, Pamjav H. Paternal genetic history of the Yong population in northern Thailand revealed by Y-chromosomal haplotypes and haplogroups. Mol Genet Genomics 2020; 295:579-589. [PMID: 31932897 DOI: 10.1007/s00438-019-01644-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022]
Abstract
We have determined the distribution of Y-chromosomal haplotypes and haplogroups in the Yong population, one of the largest and well-known ethnic groups that began migrating southward from China to Thailand centuries ago. Their unique mass migration pattern provided great opportunities for researchers to study the genetic links of the transboundary migration movements among the peoples of China, Myanmar and Thailand. We analysed relevant male-specific markers, such as Y-STRs and Y-SNPs, and the distribution of 23 Y-STRs of 111 Yong individuals and 116 nearby ethnic groups including the Shan, Northern Thai, Lawa, Lua, Skaw, Pwo and Padong groups. We found that the general haplogroup distribution values were similar among different populations; however, the haplogroups O1b-M268 and O2-M112 constituted the vast majority of these values. In contrast with previous maternal lineage studies, the paternal lineage of the Yong did not relate to the Xishuangbanna Dai people, who represent their historically documented ancestors. However, they did display a close genetic affinity to other prehistoric Tai-Kadai speaking groups in China such as the Zhuang and Bouyei. Low degrees of genetic admixture within the populations who belonged to the Austroasiatic and Sino-Tibetan linguistic families were observed in the gene pool of the Yong populations. Resettlement in northern Thailand in the early part of the nineteenth century AD, by way of mass migration trend, was able to preserve the Yong's ancestral genetic background in terms of the way they had previously lived in China and Myanmar. Our study has revealed similar genetic structures among ethnic populations in northern Thailand and southern China, and has identified and emphasized an ancient Tai-Kadai patrilineal ancestry line in the Yong ethnic group.
Collapse
Affiliation(s)
- Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Eszter Dudás
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Andrea Vágó-Zalán
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Anikó Galambos
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Horolma Pamjav
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary.
| |
Collapse
|
29
|
Wang M, Wang Z, He G, Wang S, Zou X, Liu J, Wang F, Ye Z, Hou Y. Whole mitochondrial genome analysis of highland Tibetan ethnicity using massively parallel sequencing. Forensic Sci Int Genet 2019; 44:102197. [PMID: 31756629 DOI: 10.1016/j.fsigen.2019.102197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Mitochondrial DNA (mtDNA) is a key player in numerous multifaceted and intricate biological processes and plays a pivotal role in dissecting the peopling of different populations, due to its maternally inherited property and comparatively high mutation rate. In this study, 119 Tibetan individuals from the Muli Tibetan Autonomous County of China (average altitude above 3,000 m) were employed in mitochondrial genome (mitogenome) sequencing by massively parallel sequencing (MPS) techniques using the Precision ID mtDNA Whole Genome Panel on an Ion S5XL system. The dataset presented 88 distinct haplotypes, resulting in the haplotype diversity of 0.9909. The majority of haplotypes were assigned to East Asian lineages and the distribution of haplogroups of Muli Tibetan significantly differed from reference Tibetan populations. The maximum parsimony phylogeny reconstructed by 119 newly generated mitogenomes revealed 12 major Muli Tibetan lineages. Intriguingly, a Sherpa-specific sub-haplogroup A15c1 with the lack of mutations at 4216 and 15,924 was discerned in our dataset, which suggested that the maternal gene pool of Sherpas may derive from Tibetan populations. The shared haplogroups between Muli Tibetan and lowland Han Chinese hinted that these lineages may derive from non-Tibetans and have already differentiated before their arrival on the Tibetan Plateau. Furthermore, extensive pairwise population comparisons displayed that Muli Tibetan had a closer genetic relationship with ethnically or linguistically close Nyingtri Tibetan, Nyingtri Lhoba and Chamdo Tibetan populations. Genetic affinity was also observed between the Muli Tibetan and North Han Chinese. Collectively, the results generated in this study enriched the existing forensic mtDNA database and raised additional interest in the application of whole mitogenome sequencing in forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
He Y, Lou H, Cui C, Deng L, Gao Y, Zheng W, Guo Y, Wang X, Ning Z, Li J, Li B, Bai C, Liu S, Wu T, Xu S, Qi X, Su B. De novo assembly of a Tibetan genome and identification of novel structural variants associated with high-altitude adaptation. Natl Sci Rev 2019; 7:391-402. [PMID: 34692055 PMCID: PMC8288928 DOI: 10.1093/nsr/nwz160] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%–1.53%) compared to other East Asian genomes (0.70%–0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence—a 662-bp intronic insertion in the SCUBE2 gene—is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.
Collapse
Affiliation(s)
- Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyi Lou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Lian Deng
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoji Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhilin Ning
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Bin Li
- Center for Disease Control, Tibet Autonomous Region, Lhasa 850000, China
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Dejiquzong
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Bianba
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Shiming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Shuhua Xu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
- Corresponding author. E-mail:
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
- Corresponding author. E-mail:
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Corresponding author. E-mail:
| |
Collapse
|
31
|
Haber M, Jones AL, Connell BA, Asan, Arciero E, Yang H, Thomas MG, Xue Y, Tyler-Smith C. A Rare Deep-Rooting D0 African Y-Chromosomal Haplogroup and Its Implications for the Expansion of Modern Humans Out of Africa. Genetics 2019; 212:1421-1428. [PMID: 31196864 PMCID: PMC6707464 DOI: 10.1534/genetics.119.302368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Present-day humans outside Africa descend mainly from a single expansion out ∼50,000-70,000 years ago, but many details of this expansion remain unclear, including the history of the male-specific Y chromosome at this time. Here, we reinvestigate a rare deep-rooting African Y-chromosomal lineage by sequencing the whole genomes of three Nigerian men described in 2003 as carrying haplogroup DE* Y chromosomes, and analyzing them in the context of a calibrated worldwide Y-chromosomal phylogeny. We confirm that these three chromosomes do represent a deep-rooting DE lineage, branching close to the DE bifurcation, but place them on the D branch as an outgroup to all other known D chromosomes, and designate the new lineage D0. We consider three models for the expansion of Y lineages out of Africa ∼50,000-100,000 years ago, incorporating migration back to Africa where necessary to explain present-day Y-lineage distributions. Considering both the Y-chromosomal phylogenetic structure incorporating the D0 lineage, and published evidence for modern humans outside Africa, the most favored model involves an origin of the DE lineage within Africa with D0 and E remaining there, and migration out of the three lineages (C, D, and FT) that now form the vast majority of non-African Y chromosomes. The exit took place 50,300-81,000 years ago (latest date for FT lineage expansion outside Africa - earliest date for the D/D0 lineage split inside Africa), and most likely 50,300-59,400 years ago (considering Neanderthal admixture). This work resolves a long-running debate about Y-chromosomal out-of-Africa/back-to-Africa migrations, and provides insights into the out-of-Africa expansion more generally.
Collapse
Affiliation(s)
- Marc Haber
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Bruce A Connell
- Glendon College, York University, Toronto, Ontario M4N 3N6, Canada
| | - Asan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Elena Arciero
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK, and University College London (UCL) Genetics Institute, University College London, WC1E 6BT, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
32
|
Polymorphisms and microvariant sequences in the Japanese population for 25 Y-STR markers and their relationships to Y-chromosome haplogroups. Forensic Sci Int Genet 2019; 41:e1-e7. [DOI: 10.1016/j.fsigen.2019.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 03/03/2019] [Indexed: 01/22/2023]
|
33
|
Xu B, Guo J, Huang Y, Chen X, Deng X, Wang CC. The paternal genetic structure of Jingpo and Dai in southwest China. Ann Hum Biol 2019; 46:279-283. [PMID: 31179767 DOI: 10.1080/03014460.2019.1624821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Yunnan province harbours substantial genetic, cultural and linguistic diversity, with the largest number of Aborigines in China, but the relationship among these Aborigines remains enigmatic. This study genotyped 45 Y chromosomal single nucleotide polymorphisms (SNPs) of 500 males from two aboriginal cross-border populations, Jingpo and Dai, from Dehong, Yunnan. It is reported that Haplogroup O2a2b1a1-M117 is the dominant lineage in both Jingpo and Dai. The Jingpo people show affinity with Tibeto-Burman speaking populations with a relatively high frequency of Haplogroup D-M174, and the Dai people are generally genetically similar with Tai-Kadai speaking populations with high frequencies of Haplogroup O1a-M119 and O1b1a1a-M95, which is consistent with their language classification.
Collapse
Affiliation(s)
- Bingying Xu
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Jianxin Guo
- Department of History, Xiamen University, Xiamen, PR China.,Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, PR China
| | - Ying Huang
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Xueyun Chen
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Xiaohua Deng
- Fujian University of Technology, Fuzhou, PR China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, PR China
| |
Collapse
|
34
|
He G, Wang Z, Su Y, Zou X, Wang M, Chen X, Gao B, Liu J, Wang S, Hou Y. Genetic structure and forensic characteristics of Tibeto-Burman-speaking Ü-Tsang and Kham Tibetan Highlanders revealed by 27 Y-chromosomal STRs. Sci Rep 2019; 9:7739. [PMID: 31123281 PMCID: PMC6533295 DOI: 10.1038/s41598-019-44230-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Culturally diverse Tibetans (Ü-Tsang, Kham and Ando) harboring a unique molecular mechanism that allows them to successfully adapt to hypoxic environments in the Qinghai-Tibet Plateau have been a subject of great interest in medical genetics, linguistics, archeology and forensic science. However, forensic characteristics and genetic variations of the Y-chromosomal 27-marker haplotype included in the Yfiler Plus system in the Ü-Tsang and Kham Tibeto-Burman-speaking Tibetans remain unexplored. Thus, we genotyped 27 Y-STRs in 230 Shigatse Ü-Tsang Tibetans (SUT) and 172 Chamdo Kham Tibetans (CKT) to investigate the forensic characterization and genetic affinity of Chinese Tibetan Highlanders. The haplotype diversities were 0.999962028 in SUT and 0.999796002 in CKT. Forensic diversity measures indicated that this 27-Y-STR amplification system is appropriate for routine forensic applications, such as identifying and separating unrelated males in deficiency paternity cases, male disaster victims and missing person identification and determining male components in sexual assault cases. Moreover, the genetic relationships among 63 worldwide populations (16,282 individuals), 16 Asian populations, and 21 Chinese populations were analyzed and reconstructed using principal component analysis, multidimensional scaling plots and a phylogenetic tree. Considerable genetic differences were observed between Tibetan populations and other geographically/ethnically diverse populations (Han Chinese). Our studied SUT and CKT have a genetically closer relationship with Gansu Ando Tibetans than with other Asians. In total, our analyses indicated that subpopulation structures exist among Asian and Chinese populations, and population-specific reference databases should be established for forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongdong Su
- Forensic Identification Center, Public Security Bureau of Tibet Tibetan Autonomous Region, Lhasa, Tibet Tibetan Autonomous Region, 850000, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xu Chen
- Department of Clinical Laboratory, the First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, Sichuan, 615000, China
| | - Bo Gao
- Yili Public Security Bureau, Yili, Xinjiang Uygur Autonomous Region, 418000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
35
|
Bai H, Guo X, Narisu N, Lan T, Wu Q, Xing Y, Zhang Y, Bond SR, Pei Z, Zhang Y, Zhang D, Jirimutu J, Zhang D, Yang X, Morigenbatu M, Zhang L, Ding B, Guan B, Cao J, Lu H, Liu Y, Li W, Dang N, Jiang M, Wang S, Xu H, Wang D, Liu C, Luo X, Gao Y, Li X, Wu Z, Yang L, Meng F, Ning X, Hashenqimuge H, Wu K, Wang B, Suyalatu S, Liu Y, Ye C, Wu H, Leppälä K, Li L, Fang L, Chen Y, Xu W, Li T, Liu X, Xu X, Gignoux CR, Yang H, Brody LC, Wang J, Kristiansen K, Burenbatu B, Zhou H, Yin Y. Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia. Nat Genet 2018; 50:1696-1704. [PMID: 30397334 DOI: 10.1038/s41588-018-0250-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
Abstract
The genetic variation in Northern Asian populations is currently undersampled. To address this, we generated a new genetic variation reference panel by whole-genome sequencing of 175 ethnic Mongolians, representing six tribes. The cataloged variation in the panel shows strong population stratification among these tribes, which correlates with the diverse demographic histories in the region. Incorporating our results with the 1000 Genomes Project panel identifies derived alleles shared between Finns and Mongolians/Siberians, suggesting that substantial gene flow between northern Eurasian populations has occurred in the past. Furthermore, we highlight that North, East, and Southeast Asian populations are more aligned with each other than these groups are with South Asian and Oceanian populations.
Collapse
Affiliation(s)
- Haihua Bai
- School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, China.,Inner Mongolia Engineering Research Center of Personalized Medicine, Tongliao, China
| | - Xiaosen Guo
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tianming Lan
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Qizhu Wu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yanping Xing
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Zhang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Stephen R Bond
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhili Pei
- College of Computer Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yanru Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dandan Zhang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jirimutu Jirimutu
- College of Mathematics, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Dong Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xukui Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Morigenbatu Morigenbatu
- College of Mongolian Studies, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Li Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bingyi Ding
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Baozhu Guan
- Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Junwei Cao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Haorong Lu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yiyi Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wangsheng Li
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ningxin Dang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Mingyang Jiang
- College of Computer Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Shenyuan Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Huixin Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Dingzhu Wang
- College of Mongolian Studies, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Chunxia Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xin Luo
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ying Gao
- School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Xueqiong Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zongze Wu
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Liqing Yang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Fanhua Meng
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolian Ning
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Kaifeng Wu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Suyalatu Suyalatu
- School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yingchun Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chen Ye
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Huiguang Wu
- School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Kalle Leppälä
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lu Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Fang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yujie Chen
- School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Wenhao Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, China
| | - Tao Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Lawrence C Brody
- Gene and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Burenbatu Burenbatu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China.
| | - Huanmin Zhou
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China.
| | - Ye Yin
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,BGI Genomics, BGI-Shenzhen, Shenzhen, China. .,School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
36
|
Rowold DJ, Gayden T, Luis JR, Alfonso-Sanchez MA, Garcia-Bertrand R, Herrera RJ. Investigating the genetic diversity and affinities of historical populations of Tibet. Gene 2018; 682:81-91. [PMID: 30266503 DOI: 10.1016/j.gene.2018.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 11/30/2022]
Abstract
This study elucidates Y chromosome distribution patterns in the three general provincial populations of historical Tibet, Amdo (n = 88), Dotoe (n = 109) and U-Tsang (n = 153) against the backdrop of 37 Asian reference populations. The central aim of this study is to investigate the genetic affinities of the three historical Tibetan populations among themselves and to neighboring populations. Y-SNP and Y-STR profiles were assessed in these historical populations. Correspondence analyses (CA) were generated with Y-SNP haplogroup data. Y-STR haplotypes were determined and employed to generate multidimensional scaling (MDS) plots based on Rst distances. Frequency contour maps of informative Y haplogroups were constructed to visualize the distributions of specific chromosome types. Network analyses based on Y-STR profiles of individuals under specific Y haplogroups were generated to examine the genetic heterogeneity among populations. Average gene diversity values and other parameters of population genetics interest were estimated to characterize the populations. The Y chromosomal results generated in this study indicate that using two sets of markers (Y-SNP, and Y-STR) the three Tibetan populations are genetically distinct. In addition, U-Tsang displays the highest gene diversity, followed by Amdo and Dotoe. The results of this transcontinental biogeographical investigation also indicate various degrees of paternal genetic affinities among these three Tibetan populations depending on the type of loci (Y-SNP or Y-STR) analyzed. The CA generated with Y-SNP haplogroup data demonstrates that Amdo and U-Tsang are closer to each other than to any neighboring non-Tibetan group. In contrast, the MDS plot based on Y-STR haplotypes displays Rst distances that are much shorter between U-Tsang and its geographic nearby populations of Ladakh, Punjab, Kathmandu and Newar than between it and Amdo. Moreover, although Dotoe is isolated from all other groups using both types of marker systems, it lies nearer to the other Tibetan collections in the Y-SNP CA than in the Y-STR MDS plot. High resolution and shallow evolutionary time frames engendered by Y-STR based analyses may reflect a more recent demographic history than that delineated by the more conserved Y-SNP markers.
Collapse
Affiliation(s)
- Diane J Rowold
- Foundation for Applied Molecular Evolution, Gainesville, FL 32601, USA
| | - Tenzin Gayden
- PRecision Oncology For Young PeopLE (PROFYLE), Montreal Node, Canada
| | - Javier Rodriguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Campus Sur s/n, 15782 Santiago de Compostela, Spain
| | - Miguel A Alfonso-Sanchez
- Departamento de Genetica y Antropologia Fisica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV/EHU), Bilbao, Spain
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
37
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
38
|
Wang LX, Lu Y, Zhang C, Wei LH, Yan S, Huang YZ, Wang CC, Mallick S, Wen SQ, Jin L, Xu SH, Li H. Reconstruction of Y-chromosome phylogeny reveals two neolithic expansions of Tibeto-Burman populations. Mol Genet Genomics 2018; 293:1293-1300. [DOI: 10.1007/s00438-018-1461-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
|
39
|
Yuasa I, Akane A, Yamamoto T, Matsusue A, Endoh M, Nakagawa M, Umetsu K, Ishikawa T, Iino M. Japaneseplex: A forensic SNP assay for identification of Japanese people using Japanese-specific alleles. Leg Med (Tokyo) 2018; 33:17-22. [PMID: 29705644 DOI: 10.1016/j.legalmed.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/15/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
Abstract
It is sometimes necessary to determine whether a forensic biological sample came from a Japanese person. In this study, we developed a 60-locus SNP assay designed for the differentiation of Japanese people from other East Asians using entirely and nearly Japanese-specific alleles. This multiplex assay consisted of 6 independent PCR reactions followed by single nucleotide extension. The average number and standard deviation of Japanese-specific alleles possessed by an individual were 0.81 ± 0.93 in 108 Koreans from Seoul, 8.87 ± 2.89 in 103 Japanese from Tottori, 17.20 ± 3.80 in 88 Japanese from Okinawa, and 0 in 220 Han Chinese from Wuxi and Changsha. The Koreans had 0-4 Japanese-specific alleles per individual, whereas the Japanese had 4-26 Japanese-specific alleles. Almost all Japanese were distinguished from the Koreans and other people by the factorial correspondence and principal component analyses. The Snipper program was also useful to estimate the degree of Japaneseness. The method described here was successfully applied to the differentiation of Japanese from non-Japanese people in forensic cases. This Japanese-specific SNP assay was named Japaneseplex.
Collapse
Affiliation(s)
- Isao Yuasa
- Division of Legal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| | - Atsushi Akane
- Department of Legal Medicine, Kansai Medical University, Hirakata, Japan
| | - Toshimichi Yamamoto
- Department of Legal Medicine and Bioethics, Nagoya University School of Medicine, Nagoya, Japan
| | - Aya Matsusue
- Department of Forensic Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Minoru Endoh
- Division of Legal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mayumi Nakagawa
- Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuo Umetsu
- Department of Forensic Medicine, Yamagata University School of Medicine, Yamagata, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
| | - Morio Iino
- Division of Legal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
40
|
Yang XY, Dai SS, Liu HQ, Peng MS, Zhang YP. The uncertainty of population relationship and divergence time inferred by the multiple sequentially Markovian coalescent model. J Hum Genet 2018; 63:775-777. [PMID: 29545589 DOI: 10.1038/s10038-018-0424-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Xing-Yan Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China.
| |
Collapse
|
41
|
Lan D, Ji W, Lin B, Chen Y, Huang C, Xiong X, Fu M, Mipam TD, Ai Y, Zeng B, Li Y, Cai Z, Zhu J, Zhang D, Li J. Correlations between gut microbiota community structures of Tibetans and geography. Sci Rep 2017; 7:16982. [PMID: 29209019 PMCID: PMC5717229 DOI: 10.1038/s41598-017-17194-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/22/2017] [Indexed: 01/30/2023] Open
Abstract
Microbial communities of human gut directly influence health and bear adaptive potential to different geography environment and lifestyles. However, knowledge about the influences of altitude and geography on the gut microbiota of Tibetans is currently limited. In this study, fecal microbiota from 208 Tibetans across six different locations were analyzed by MiSeq sequencing; these locations included Gannan, Gangcha, Tianzhu, Hongyuan, Lhasa and Nagqu, with altitudes above sea level ranging from 2800 m to 4500 m across the Tibetan plateau. Significant differences were observed in microbial diversity and richness in different locations. At the phylum level, gut populations of Tibetans comprised Bacteroidetes (60.00%), Firmicutes (29.04%), Proteobacteria (5.40%), and Actinobacteria (3.85%) and were marked by a low ratio (0.48) of Firmicutes to Bacteroidetes. Analysis based on operational taxonomic unit level revealed that core microbiotas included Prevotella, Faecalibacterium, and Blautia, whereas Prevotella predominated all locations, except Gangcha. Four community state types were detected in all samples, and they mainly belong to Prevotella, Bacteroides, and Ruminococcaceae. Principal component analysis and related correspondence analysis results revealed that bacterial profiles in Tibetan guts varied significantly with increasing altitude, BMI, and age, and facultative anaerobes were rich in Tibetan guts. Gut microbiota may play important roles in regulating high-altitude and geographical adaptations.
Collapse
Affiliation(s)
- Daoliang Lan
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China. .,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.
| | - Wenhui Ji
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Baoshan Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.,Animal Disease Prevention and Control Center of Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province, 624000, People's Republic of China
| | - Yabing Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Cai Huang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Xianrong Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Mei Fu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Tserang Donko Mipam
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Yi Ai
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhixin Cai
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Jiangjiang Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Dawei Zhang
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Jian Li
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China. .,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
42
|
Gao T, Yun L, Zhou D, Lang M, Wang Z, Qian X, Liu J, Hou Y. Next-generation sequencing of 74 Y-SNPs to construct a concise consensus phylogeny tree for Chinese population. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.09.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Abstract
Homo sapiens phylogeography begins with the species' origin nearly 200 kya in Africa. First signs of the species outside Africa (in Arabia) are from 125 kya. Earliest dates elsewhere are now 100 kya in China, 45 kya in Australia and southern Europe (maybe even 60 kya in Australia), 32 kya in northeast Siberia, and maybe 20 kya in the Americas. Humans reached arctic regions and oceanic islands last-arctic North America about 5 kya, mid- and eastern Pacific islands about 2-1 kya, and New Zealand about 700 y ago. Initial routes along coasts seem the most likely given abundant and easily harvested shellfish there as indicated by huge ancient oyster shell middens on all continents. Nevertheless, the effect of geographic barriers-mountains and oceans-is clear. The phylogeographic pattern of diasporas from several single origins-northeast Africa to Eurasia, southeast Eurasia to Australia, and northeast Siberia to the Americas-allows the equivalent of a repeat experiment on the relation between geography and phylogenetic and cultural diversity. On all continents, cultural diversity is high in productive low latitudes, presumably because such regions can support populations of sustainable size in a small area, therefore allowing a high density of cultures. Of course, other factors operate. South America has an unusually low density of cultures in its tropical latitudes. A likely factor is the phylogeographic movement of peoples from the Old World bringing novel and hence, lethal diseases to the New World, a foretaste, perhaps, of present day global transport of tropical diseases.
Collapse
|
44
|
Peng Y, Cui C, He Y, Ouzhuluobu, Zhang H, Yang D, Zhang Q, Bianbazhuoma, Yang L, He Y, Xiang K, Zhang X, Bhandari S, Shi P, Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan Y, Cirenyangji, Baimayangji, Gonggalanzi, Bai C, Bianba, Basang, Ciwangsangbu, Xu S, Chen H, Liu S, Wu T, Qi X, Su B. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Mol Biol Evol 2017; 34:818-830. [PMID: 28096303 PMCID: PMC5400376 DOI: 10.1093/molbev/msw280] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tibetans are well adapted to the hypoxic environments at high altitude, yet the molecular mechanism of this adaptation remains elusive. We reported comprehensive genetic and functional analyses of EPAS1, a gene encoding hypoxia inducible factor 2α (HIF-2α) with the strongest signal of selection in previous genome-wide scans of Tibetans. We showed that the Tibetan-enriched EPAS1 variants down-regulate expression in human umbilical endothelial cells and placentas. Heterozygous EPAS1 knockout mice display blunted physiological responses to chronic hypoxia, mirroring the situation in Tibetans. Furthermore, we found that the Tibetan version of EPAS1 is not only associated with the relatively low hemoglobin level as a polycythemia protectant, but also is associated with a low pulmonary vasoconstriction response in Tibetans. We propose that the down-regulation of EPAS1 contributes to the molecular basis of Tibetans’ adaption to high-altitude hypoxia.
Collapse
Affiliation(s)
- Yi Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Deying Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qu Zhang
- Perspective Sciences, Chongqing, China
| | - Bianbazhuoma
- The Municipal People's Hospital of Lhasa, Lhasa, China
| | - Lixin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yibo He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Sushil Bhandari
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yangla
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Dejiquzong
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Yongyue Pan
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Cirenyangji
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Baimayangji
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Bianba
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Basang
- People's Hospital of Dangxiong County, Dangxiong, China
| | - Ciwangsangbu
- People's Hospital of Dangxiong County, Dangxiong, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Hua Chen
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shiming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| |
Collapse
|
45
|
Santosa E, Lian CL, Sugiyama N, Misra RS, Boonkorkaew P, Thanomchit K. Population structure of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) in Asia. PLoS One 2017; 12:e0180000. [PMID: 28658282 PMCID: PMC5489206 DOI: 10.1371/journal.pone.0180000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
The corms and leaves of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) are important foods in the local diet in many Asian regions. The crop has high productivity and wide agroecological adaptation and exhibits suitability for the agroforestry system. Although the plant is assumed to reproduce via panmixia, a comprehensive study on the genetic background across regions to enhance wider consumer palatability is still lacking. Here, ten informative microsatellites were analyzed in 29 populations across regions in India, Indonesia and Thailand to understand the genetic diversity, population structure and distribution to improve breeding and conservation programs. The genetic diversity was high among and within regions. Some populations exhibited excess heterozygosity and bottlenecking. Pairwise FST indicated very high genetic differentiation across regions (FST = 0.274), and the Asian population was unlikely to be panmictic. Phylogenetic tree construction grouped the populations according to country of origin with the exception of the Medan population from Indonesia. The current gene flow was apparent within the regions but was restricted among the regions. The present study revealed that Indonesia and Thailand populations could be alternative centers of the gene pool, together with India. Consequently, regional action should be incorporated in genetic conservation and breeding efforts to develop new varieties with global acceptance.
Collapse
Affiliation(s)
- Edi Santosa
- Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Chun Lan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Nobuo Sugiyama
- Department of Horticulture, Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Raj Shekhar Misra
- Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala, India
| | | | - Kanokwan Thanomchit
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
46
|
Nothnagel M, Fan G, Guo F, He Y, Hou Y, Hu S, Huang J, Jiang X, Kim W, Kim K, Li C, Li H, Li L, Li S, Li Z, Liang W, Liu C, Lu D, Luo H, Nie S, Shi M, Sun H, Tang J, Wang L, Wang CC, Wang D, Wen SQ, Wu H, Wu W, Xing J, Yan J, Yan S, Yao H, Ye Y, Yun L, Zeng Z, Zha L, Zhang S, Zheng X, Willuweit S, Roewer L. Revisiting the male genetic landscape of China: a multi-center study of almost 38,000 Y-STR haplotypes. Hum Genet 2017; 136:485-497. [PMID: 28138773 DOI: 10.1007/s00439-017-1759-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023]
Abstract
China has repeatedly been the subject of genetic studies to elucidate its prehistoric and historic demography. While some studies reported a genetic distinction between Northern and Southern Han Chinese, others showed a more clinal picture of small differences within China. Here, we investigated the distribution of Y chromosome variation along administrative as well as ethnic divisions in the mainland territory of the People's Republic of China, including 28 administrative regions and 19 recognized Chinese nationalities, to assess the impact of recent demographic processes. To this end, we analyzed 37,994 Y chromosomal 17-marker haplotype profiles from the YHRD database with respect to forensic diversity measures and genetic distance between groups defined by administrative boundaries and ethnic origin. We observed high diversity throughout all Chinese provinces and ethnicities. Some ethnicities, including most prominently Kazakhs and Tibetans, showed significant genetic differentiation from the Han and other groups. However, differences between provinces were, except for those located on the Tibetan plateau, less pronounced. This discrepancy is explicable by the sizeable presence of Han speakers, who showed high genetic homogeneity all across China, in nearly all studied provinces. Furthermore, we observed a continuous genetic North-South gradient in the Han, confirming previous reports of a clinal distribution of Y chromosome variation and being in notable concordance with the previously observed spatial distribution of autosomal variation. Our findings shed light on the demographic changes in China accrued by a fast-growing and increasingly mobile population.
Collapse
Affiliation(s)
- Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Cologne, Germany.
| | - Guangyao Fan
- Department of Public Security Technology, The Center for Forensic Science Research, Railway Police College, Zhengzhou, 450053, People's Republic of China
| | - Fei Guo
- Department of Forensic Medicine, National Police University of China, Shenyang, 110854, People's Republic of China
| | - Yongfeng He
- Department of Criminal Investigation, Shaanxi Provincial Public Security Bureau, Xi'an, 710016, People's Republic of China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shengping Hu
- Molecular Biology and Forensic Genetics Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Beijing Road, 9th, Guiyang, 550004, People's Republic of China
| | - Xianhua Jiang
- Liaoning Criminal and Science Technology Research Institute, Shenyang, 110032, People's Republic of China
| | - Wook Kim
- Department of Biological Sciences, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Kicheol Kim
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai, 200063, People's Republic of China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liming Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Shilin Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhao Li
- Department of Criminal Investigation, Hebei Provincial Public Security Bureau, Shijiazhuang City, 050000, People's Republic of China
| | - Weibo Liang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, 510030, People's Republic of China
| | - Di Lu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Haibo Luo
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Meisen Shi
- Center of Cooperative Innovation for Judicial Civilization, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, 100088, People's Republic of China
| | - Hongyu Sun
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089, People's Republic of China
| | - Jianpin Tang
- Department of Forensic Medicine, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Lei Wang
- Department of Forensic Sciences, Police Station of Zhengzhou, Zhengzhou, Henan, 450008, People's Republic of China
| | - Chuan-Chao Wang
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Dan Wang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Shao-Qing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Hongyan Wu
- Xinxiang Medical University School of Basic Medical, Xinxiang, Henan, 453003, People's Republic of China
| | - Weiwei Wu
- Institute of Forensic Science, Zhejiang Provincial Public Security Bureau, Hangzhou, 310009, People's Republic of China
| | - Jiaxin Xing
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jiangwei Yan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shi Yan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Hongbing Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu Institute of Political Science and Law, Lanzhou, 730070, People's Republic of China
| | - Yi Ye
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhaoshu Zeng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Lagabaiyila Zha
- Forensic Science Department, School of Basic Medical Sciences, Central South University, Changsha, 410013, People's Republic of China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai, 200063, People's Republic of China
| | - Xiufen Zheng
- Department of Pathology, Department of Surgery, Department of Oncology, University of Western Ontario, Lawson Health Research Institute, London, Canada
| | - Sascha Willuweit
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Jeong C, Peter BM, Basnyat B, Neupane M, Beall CM, Childs G, Craig SR, Novembre J, Di Rienzo A. A longitudinal cline characterizes the genetic structure of human populations in the Tibetan plateau. PLoS One 2017; 12:e0175885. [PMID: 28448508 PMCID: PMC5407838 DOI: 10.1371/journal.pone.0175885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/02/2017] [Indexed: 12/11/2022] Open
Abstract
Indigenous populations of the Tibetan plateau have attracted much attention for their good performance at extreme high altitude. Most genetic studies of Tibetan adaptations have used genetic variation data at the genome scale, while genetic inferences about their demography and population structure are largely based on uniparental markers. To provide genome-wide information on population structure, we analyzed new and published data of 338 individuals from indigenous populations across the plateau in conjunction with worldwide genetic variation data. We found a clear signal of genetic stratification across the east-west axis within Tibetan samples. Samples from more eastern locations tend to have higher genetic affinity with lowland East Asians, which can be explained by more gene flow from lowland East Asia onto the plateau. Our findings corroborate a previous report of admixture signals in Tibetans, which were based on a subset of the samples analyzed here, but add evidence for isolation by distance in a broader geospatial context.
Collapse
Affiliation(s)
- Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, IL, United States of America
| | - Benjamin M. Peter
- Department of Human Genetics, University of Chicago, Chicago, IL, United States of America
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Hospital, Kathmandu, Nepal
| | | | - Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Geoff Childs
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Sienna R. Craig
- Department of Anthropology, Dartmouth College, Hanover, NH, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
48
|
Mondal M, Bergström A, Xue Y, Calafell F, Laayouni H, Casals F, Majumder PP, Tyler-Smith C, Bertranpetit J. Y-chromosomal sequences of diverse Indian populations and the ancestry of the Andamanese. Hum Genet 2017; 136:499-510. [PMID: 28444560 DOI: 10.1007/s00439-017-1800-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 01/25/2023]
Abstract
We present 42 new Y-chromosomal sequences from diverse Indian tribal and non-tribal populations, including the Jarawa and Onge from the Andaman Islands, which are analysed within a calibrated Y-chromosomal phylogeny incorporating South Asian (in total 305 individuals) and worldwide (in total 1286 individuals) data from the 1000 Genomes Project. In contrast to the more ancient ancestry in the South than in the North that has been claimed, we detected very similar coalescence times within Northern and Southern non-tribal Indian populations. A closest neighbour analysis in the phylogeny showed that Indian populations have an affinity towards Southern European populations and that the time of divergence from these populations substantially predated the Indo-European migration into India, probably reflecting ancient shared ancestry rather than the Indo-European migration, which had little effect on Indian male lineages. Among the tribal populations, the Birhor (Austro-Asiatic-speaking) and Irula (Dravidian-speaking) are the nearest neighbours of South Asian non-tribal populations, with a common origin in the last few millennia. In contrast, the Riang (Tibeto-Burman-speaking) and Andamanese have their nearest neighbour lineages in East Asia. The Jarawa and Onge shared haplogroup D lineages with each other within the last ~7000 years, but had diverged from Japanese haplogroup D Y-chromosomes ~53000 years ago, most likely by a split from a shared ancestral population. This analysis suggests that Indian populations have complex ancestry which cannot be explained by a single expansion model.
Collapse
Affiliation(s)
- Mayukh Mondal
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,, UK
| | - Francesc Calafell
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,, UK.
| | - Jaume Bertranpetit
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
49
|
Ancestral Origins and Genetic History of Tibetan Highlanders. Am J Hum Genet 2016; 99:580-594. [PMID: 27569548 DOI: 10.1016/j.ajhg.2016.07.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022] Open
Abstract
The origin of Tibetans remains one of the most contentious puzzles in history, anthropology, and genetics. Analyses of deeply sequenced (30×-60×) genomes of 38 Tibetan highlanders and 39 Han Chinese lowlanders, together with available data on archaic and modern humans, allow us to comprehensively characterize the ancestral makeup of Tibetans and uncover their origins. Non-modern human sequences compose ∼6% of the Tibetan gene pool and form unique haplotypes in some genomic regions, where Denisovan-like, Neanderthal-like, ancient-Siberian-like, and unknown ancestries are entangled and elevated. The shared ancestry of Tibetan-enriched sequences dates back to ∼62,000-38,000 years ago, predating the Last Glacial Maximum (LGM) and representing early colonization of the plateau. Nonetheless, most of the Tibetan gene pool is of modern human origin and diverged from that of Han Chinese ∼15,000 to ∼9,000 years ago, which can be largely attributed to post-LGM arrivals. Analysis of ∼200 contemporary populations showed that Tibetans share ancestry with populations from East Asia (∼82%), Central Asia and Siberia (∼11%), South Asia (∼6%), and western Eurasia and Oceania (∼1%). Our results support that Tibetans arose from a mixture of multiple ancestral gene pools but that their origins are much more complicated and ancient than previously suspected. We provide compelling evidence of the co-existence of Paleolithic and Neolithic ancestries in the Tibetan gene pool, indicating a genetic continuity between pre-historical highland-foragers and present-day Tibetans. In particular, highly differentiated sequences harbored in highlanders' genomes were most likely inherited from pre-LGM settlers of multiple ancestral origins (SUNDer) and maintained in high frequency by natural selection.
Collapse
|
50
|
Zhang Y, Li J, Zhao Y, Wu X, Li H, Yao L, Zhu H, Zhou H. Genetic diversity of two Neolithic populations provides evidence of farming expansions in North China. J Hum Genet 2016; 62:199-204. [PMID: 27581844 DOI: 10.1038/jhg.2016.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022]
Abstract
The West Liao River Valley and the Yellow River Valley are recognized Neolithic farming centers in North China. The population dynamics between these two centers have significantly contributed to the present-day genetic patterns and the agricultural advances of North China. To understand the Neolithic farming expansions between the West Liao River Valley and the Yellow River Valley, we analyzed mitochondrial DNA (mtDNA) and the Y chromosome of 48 individuals from two archeological sites, Jiangjialiang (>3000 BC) and Sanguan (~1500 BC). These two sites are situated between the two farming centers and experienced a subsistence shift from hunting to farming. We did not find a significant difference in the mtDNA, but their genetic variations in the Y chromosome were different. Individuals from the Jiangjialiang belonged to two Y haplogroups, N1 (not N1a or N1c) and N1c. The individuals from the Sanguan are Y haplogroup O3. Two stages of migration are supported. Populations from the West Liao River Valley spread south at about 3000 BC, and a second northward expansion from the Yellow River Valley occurred later (3000-1500 BC).
Collapse
Affiliation(s)
- Ye Zhang
- Laboratory of Ancient DNA, School of Life Science, Jilin University, Changchun, China
| | - Jiawei Li
- Laboratory of Ancient DNA, School of Life Science, Jilin University, Changchun, China
| | - Yongbin Zhao
- Laboratory of Ancient DNA, School of Life Science, Jilin University, Changchun, China.,Laboratory of Ancient DNA, College of Life Science, Jilin Normal University, Siping, China
| | - Xiyan Wu
- Laboratory of Ancient DNA, School of Life Science, Jilin University, Changchun, China
| | - Hongjie Li
- Laboratory of Ancient DNA, School of Life Science, Jilin University, Changchun, China.,Laboratory of Anthropology, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Lu Yao
- Department of Anthropology, Committee on Evolutionary Biology, University of Chicago, Chicago, USA
| | - Hong Zhu
- Laboratory of Anthropology, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Hui Zhou
- Laboratory of Ancient DNA, School of Life Science, Jilin University, Changchun, China.,Laboratory of Anthropology, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| |
Collapse
|