1
|
Guo X, Chatterjee N, Dutta D. Subset-based method for cross-tissue transcriptome-wide association studies improves power and interpretability. HGG ADVANCES 2024; 5:100283. [PMID: 38491773 PMCID: PMC10999697 DOI: 10.1016/j.xhgg.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Integrating results from genome-wide association studies (GWASs) and studies of molecular phenotypes such as gene expressions can improve our understanding of the biological functions of trait-associated variants and can help prioritize candidate genes for downstream analysis. Using reference expression quantitative trait locus (eQTL) studies, several methods have been proposed to identify gene-trait associations, primarily based on gene expression imputation. To increase the statistical power by leveraging substantial eQTL sharing across tissues, meta-analysis methods aggregating such gene-based test results across multiple tissues or contexts have been developed as well. However, most existing meta-analysis methods have limited power to identify associations when the gene has weaker associations in only a few tissues and cannot identify the subset of tissues in which the gene is "activated." For this, we developed a cross-tissue subset-based transcriptome-wide association study (CSTWAS) meta-analysis method that improves power under such scenarios and can extract the set of potentially associated tissues. To improve applicability, CSTWAS uses only GWAS summary statistics and pre-computed correlation matrices to identify a subset of tissues that have the maximal evidence of gene-trait association. Through numerical simulations, we found that CSTWAS can maintain a well-calibrated type-I error rate, improves power especially when there is a small number of associated tissues for a gene-trait association, and identifies an accurate associated tissue set. By analyzing GWAS summary statistics of three complex traits and diseases, we demonstrate that CSTWAS could identify biological meaningful signals while providing an interpretation of disease etiology by extracting a set of potentially associated tissues.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, MD 20850, USA.
| |
Collapse
|
2
|
Chen APF, Russell G, Ashour A, Yacoub A. Presentation and Management of Acute Mania in Fanconi-Bickel Syndrome, A Metabolic Genetic Disorder. Case Rep Psychiatry 2024; 2024:5593846. [PMID: 38605735 PMCID: PMC11008969 DOI: 10.1155/2024/5593846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/17/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Fanconi-Bickel syndrome (FBS) is a rare metabolic disorder caused by decreased glucose transporter 2 (GLUT2) function due to several known mutations in the SLC2A2 gene. As of 2020, 144 cases of FBS have been described in the literature. Metabolic and somatic sequelae include dysglycemia and accumulation of glycogen in the kidney and liver. However, there are no descriptions in the literature of possible neuropsychiatric manifestations of FBS. This case report is to our knowledge the first in this regard, describing a patient with FBS who was admitted to our psychiatric inpatient unit while experiencing acute mania. We conceptualize the case as a novel psychiatric presentation of acute mania in FBS, which may inform our understanding of bipolar disorder pathophysiology because of the hypothesized functional changes in neural pathways involving the paraventricular thalamus induced by decreased GLUT2 activity in FBS.
Collapse
Affiliation(s)
- Allen P. F. Chen
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Geoffrey Russell
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Amnie Ashour
- The Division of General Surgery at New York-Presbyterian, Brooklyn, NY, USA
| | - Adeeb Yacoub
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
3
|
Li L, Sun H, Chen J, Ding C, Yang X, Han H, Sun Q. Mitigation of non-alcoholic steatohepatitis via recombinant Orosomucoid 2, an acute phase protein modulating the Erk1/2-PPARγ-Cd36 pathway. Cell Rep 2023; 42:112697. [PMID: 37355990 DOI: 10.1016/j.celrep.2023.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
The therapeutic administration of recombinant proteins is utilized in a multitude of research studies for treating various diseases. In this study, we investigate the therapeutic potential of Orosomucoid 2 (Orm2), an acute phase protein predominantly secreted by hepatocytes, for treating non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Our results show that high Orm2 expression prevents high-fat-diet (HFD)-induced obesity in mice. Pharmacological administration of recombinant ORM2 protein ameliorates hepatic steatosis, inflammation, hepatocyte injury, and fibrosis in mouse livers afflicted by NAFLD and NASH under dietary stress. Orm2 knockout mice develop spontaneous obesity under a regular diet and exacerbate HFD-induced steatosis, steatohepatitis, and fibrosis. Mechanistically, Orm2 deletion activates the Erk1/2-PPARγ-Cd36 signaling pathway, increasing fatty acid uptake and absorption in hepatocytes and mice. Overall, our findings underscore the critical role of Orm2 in preventing NASH and associated NAFLD in the context of obesity.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoming Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jionghao Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Ding
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hua Han
- Department of Biomedicine, Future Agriculture Institute, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Chen MH, Tsai SJ, Bai YM, Huang KL, Su TP, Chen TJ, Hsu JW. Type 1 Diabetes Mellitus and Risks of Major Psychiatric Disorders: A Nationwide Population-Based Cohort Study. DIABETES & METABOLISM 2022; 48:101319. [PMID: 35026379 DOI: 10.1016/j.diabet.2022.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The temporal association between type 1 diabetes mellitus (T1DM) and major psychiatric disorders, including schizophrenia, major affective disorder, autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD), remains elusive. METHODS The specialized databases of catastrophic diseases and mental disorders and the longitudinal health insurance database of Taiwan National Health Insurance Research Database were used in current study. A total of 6,226 patients with T1DM and 62,260 age- and sex-matched controls were recruited between 2001 and 2010 and were followed until the end of 2011 for the identification of diagnoses of schizophrenia (International Classification of Clinical Diseases, Ninth Edition, Clinical Modification [ICD-9-CM] code: 295), bipolar disorder (ICD-9-CM codes: 296 except 296.2x, 296.3x, 296.9x, and 296.82), major depressive disorder (ICD-9-CM codes: 296.2x and 296.3x), ASD (ICD-9-CM code: 299), and ADHD (ICD-9-CM code: 314). RESULTS Cox regression analysis revealed increased hazard ratios of schizophrenia (12.28), bipolar disorder (13.80), major depressive disorder (10.41), ASD (14.52), and ADHD (8.19) in patients with T1DM compared with controls. DISCUSSION Our findings indicate the importance of clinicians closely monitoring the mental health condition of children, adolescents, and adults with T1DM. Additional studies should be conducted to elucidate the definite pathomechanisms of comorbidities between T1DM and major psychiatric disorders.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Zhang Z, Chen G. A logical relationship for schizophrenia, bipolar, and major depressive disorder. Part 1: Evidence from chromosome 1 high density association screen. J Comp Neurol 2020; 528:2620-2635. [PMID: 32266715 DOI: 10.1002/cne.24921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was investigated systematically (Aukes et al., Genetics in Medicine, 2012, 14, 338-341) and any two or even three of these disorders could coexist in some families. Furthermore, evidence from symptomatology and psychopharmacology also imply the existence of intrinsic connections between these three major psychiatric disorders. A total of 71,445 SNPs on chromosome 1 were genotyped on 119 SCZ, 253 BPD (type-I), 177 MDD cases and 1000 controls and further validated in 986 SCZ patients in the population of Shandong province of China. Outstanding psychosis genes are systematically revealed( ATP1A4, ELTD1, FAM5C, HHAT, KIF26B, LMX1A, NEGR1, NFIA, NR5A2, NTNG1, PAPPA2, PDE4B, PEX14, RYR2, SYT6, TGFBR3, TTLL7, and USH2A). Unexpectedly, flanking genes for up to 97.09% of the associated SNPs were also replicated in an enlarged cohort of 986 SCZ patients. From the perspective of etiological rather than clinical psychiatry, bipolar, and major depressive disorder could be subtypes of schizophrenia. Meanwhile, the varied clinical feature and prognosis might be the result of interaction of genetics and epigenetics, for example, irreversible or reversible shut down, and over or insufficient expression of certain genes, which may gives other aspects of these severe mental disorders.
Collapse
Affiliation(s)
- Zhihua Zhang
- Shandong Mental Health Center, Jinan, Shandong, China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics 2018; 12:43. [PMID: 30219098 PMCID: PMC6139121 DOI: 10.1186/s40246-018-0175-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Genetic polymorphisms can contribute to phenotypic differences amongst individuals, including disease risk and drug response. Characterization of genetic polymorphisms that modulate gene expression and/or protein function may facilitate the identification of the causal variants. Here, we present the architecture of genetic polymorphisms in the human genome focusing on those predicted to be potentially functional/under natural selection and the pathways that they reside. Results In the human genome, polymorphisms that directly affect protein sequences and potentially affect function are the most constrained variants with the lowest single-nucleotide variant (SNV) density, least population differentiation and most significant enrichment of rare alleles. SNVs which potentially alter various regulatory sites, e.g. splicing regulatory elements, are also generally under negative selection. Interestingly, genes that regulate the expression of transcription/splicing factors and histones are conserved as a higher proportion of these genes is non-polymorphic, contain ultra-conserved elements (UCEs) and/or has no non-synonymous SNVs (nsSNVs)/coding INDELs. On the other hand, major histocompatibility complex (MHC) genes are the most polymorphic with SNVs potentially affecting the binding of transcription/splicing factors and microRNAs (miRNA) exhibiting recent positive selection (RPS). The drug transporter genes carry the most number of potentially deleterious nsSNVs and exhibit signatures of RPS and/or population differentiation. These observations suggest that genes that interact with the environment are highly polymorphic and targeted by RPS. Conclusions In conclusion, selective constraints are observed in coding regions, master regulator genes, and potentially functional SNVs. In contrast, genes that modulate response to the environment are highly polymorphic and under positive selection. Electronic supplementary material The online version of this article (10.1186/s40246-018-0175-1) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Hussain MS, Tripathi V. Smoking under hypoxic conditions: a potent environmental risk factor for inflammatory and autoimmune diseases. Mil Med Res 2018; 5:11. [PMID: 29598831 PMCID: PMC5877397 DOI: 10.1186/s40779-018-0158-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Autoimmune disease management presents a significant challenge to medical science. Environmental factors potentially increase the risk of developing inflammatory and autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and lupus. Among various environmental stresses, cigarette smoke and hypoxia have both been reported to lead to an enhanced risk of inflammatory and autoimmune diseases.In this review, we shed light on all reported mechanisms whereby cigarette smoke and a hypoxic environment can induce inflammatory and autoimmune diseases and discuss how hypoxic conditions influence the cigarette smoke-induced threat of inflammatory and autoimmune disease development.Cigarette smoke and hypoxia both lead to increased oxidative stress and production of reactive oxygen species and other free radicals, which have various effects including the generation of autoreactive pro-inflammatory T cells and autoantibodies, reductions in T regulatory (Treg) cell activity, and enhanced expression of pro-inflammatory mediators [e.g., interleukin-6 (IL-6), interleukin-4 (IL-4) and interleukin-8 (IL-8)]. Accordingly, smoking and hypoxic environments may synergistically act as potent environmental risk factors for inflammatory and autoimmune diseases. To our knowledge, no studies have reported the direct association of cigarette smoke and hypoxic environments with the risk of developing inflammatory and autoimmune diseases.Future studies exploring the risk of autoimmune disease development in smokers at high altitudes, particularly military personnel and mountaineers who are not acclimatized to high-altitude regions, are required to obtain a better understanding of disease risk as well as its management.
Collapse
Affiliation(s)
- Md. Saddam Hussain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201312 India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201312 India
| |
Collapse
|
8
|
Rihmer Z, Gonda X, Döme P. Is Mania the Hypertension of the Mood? Discussion of A Hypothesis. Curr Neuropharmacol 2017; 15:424-433. [PMID: 28503115 PMCID: PMC5405605 DOI: 10.2174/1570159x14666160902145635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 01/17/2023] Open
Abstract
Beyond both being biphasic/bidirectional disorders (hypo)mania and essential hypertension share a surprising number of similarities and an overlap between their genetics, biological background, underlying personality and temperamental factors, precipitating factors, comorbidity and response to treatment, indicating a possibly partially shared biological background. Based on theoretical knowledge, similarities related to characteristics, manifestation and course, and the results of pharmacological studies related to the effects and side effects of pharmacotherapies used in the treatment of these two distinct disorders, the authors outline a hypothesis discussing the similar origins of these two phenomena and thus mania being the hypertension of mood in memory of Athanasios Koukopoulos, one of the greatest researchers and theoreticists of mania of all time.
Collapse
Affiliation(s)
- Zoltán Rihmer
- Department of Clinical and Theoretical Mental Health, Semmelweis University, Budapest, Hungary, and Laboratory of Suicide Research and Prevention, National Institute for Psychiatry and Addictions, Budapest, Hungary
| | - Xénia Gonda
- Department of Clinical and Theoretical Mental Health, Semmelweis University, Budapest, Hungary, and Laboratory of Suicide Research and Prevention, National Institute for Psychiatry and Addictions, Budapest, Hungary
| | - Péter Döme
- Department of Clinical and Theoretical Mental Health, Semmelweis University, Budapest, Hungary, and Laboratory of Suicide Research and Prevention, National Institute for Psychiatry and Addictions, Budapest, Hungary
| |
Collapse
|
9
|
Angiolilli C, Baeten DL, Radstake TR, Reedquist KA. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 2017; 9:447-461. [DOI: 10.2217/epi-2016-0136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the idea that aberrancies in epigenetic processes contribute to the onset and progression of human immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). Epigenetic regulators of histone tail modifications play a role in chromatin accessibility and transcriptional responses to inflammatory stimuli. Among these, histone deacetylases (HDACs) regulate the acetylation status of histones and nonhistone proteins, essential for immune responses. Broad-spectrum HDAC inhibitors are well-known anti-inflammatory agents and reduce disease severity in animal models of arthritis; however, selective HDAC inhibitors remain poorly studied. In this review, we describe emerging findings regarding the aberrant acetyl code in RA and other rheumatic disorders which may help identify not only novel diagnostic and prognostic clinical biomarkers for RA, but also new targets for epigenetic pharmacological applications.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Department of Clinical Immunology & Rheumatology, Department of Experimental Immunology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique L Baeten
- Amsterdam Rheumatology & Immunology Center, Department of Clinical Immunology & Rheumatology, Department of Experimental Immunology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R Radstake
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kris A Reedquist
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Li D, Won S. Efficient Strategy to Identify Gene-Gene Interactions and Its Application to Type 2 Diabetes. Genomics Inform 2016; 14:160-165. [PMID: 28154506 PMCID: PMC5287119 DOI: 10.5808/gi.2016.14.4.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 01/05/2023] Open
Abstract
Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named “BOolean Operation-based Screening and Testing” (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.
Collapse
Affiliation(s)
- Donghe Li
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul 08826, Korea.; Department of Public Health Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Zhang D, Cui H, Korkin D, Wu Z. Incorporation of protein binding effects into likelihood ratio test for exome sequencing data. BMC Proc 2016; 10:275-281. [PMID: 27980649 PMCID: PMC5133515 DOI: 10.1186/s12919-016-0043-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Statistical association studies are an important tool in detecting novel disease genes. However, for sequencing data, association studies confront the challenge of low power because of relatively small data sample size and rare variants. Incorporating biological information that reflects disease mechanism is likely to strengthen the association evidence of disease genes, and thus increase the power of association studies. In this paper, we annotate non-synonymous single-nucleotide variants according to protein binding sites (BSs) by using a more accurate BS prediction method. We then incorporate this information into association study through a statistical framework of likelihood ratio test (LRT) based on weighted burden score of single-nucleotide variants (SNVs). The strategy is applied to Genetic Analysis Workshop 19 exome-sequencing data for detecting novel genes associated to hypotension. The SNV-weighting LRT idea is empirically verified by the simulated phenotypes (336 cases and 1607 controls), and the weights based on BS annotation are applied to the real phenotypes (394 cases and 1457 controls). Such strategy of weighting the prior information on protein functional sites is shown to be superior to the unweighted LRT and serves as a good complement to the existing association tests. Several putative genes are reported; some of them are functionally related to hypertension according to the previous evidence in the literature.
Collapse
Affiliation(s)
- Dongni Zhang
- Mathematics Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 USA
| | - Hongzhu Cui
- Computer Science Department, Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 USA
| | - Dmitry Korkin
- Computer Science Department, Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 USA
| | - Zheyang Wu
- Mathematics Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 USA
| |
Collapse
|
12
|
A Novel Relationship for Schizophrenia, Bipolar, and Major Depressive Disorder. Part 8: a Hint from Chromosome 8 High Density Association Screen. Mol Neurobiol 2016; 54:5868-5882. [DOI: 10.1007/s12035-016-0102-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
|
13
|
Mansur RB, Rizzo LB, Santos CM, Asevedo E, Cunha GR, Noto MN, Pedrini M, Zeni M, Cordeiro Q, McIntyre RS, Brietzke E. Impaired glucose metabolism moderates the course of illness in bipolar disorder. J Affect Disord 2016; 195:57-62. [PMID: 26866976 DOI: 10.1016/j.jad.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The longitudinal course of bipolar disorder (BD) is highly heterogeneous, and is moderated by the presence of general medical comorbidities. This study aimed to investigate the moderating effects of impaired glucose metabolism (IGM) on variables of illness course and severity in a BD population. METHODS Fifty-five patients with BD were evaluated. All subjects were evaluated with respect to current and past psychiatric and medical disorders, as well as lifetime use of any medication. Body mass index (BMI) and metabolic parameters were obtained. IGM was operationalized as pre-diabetes or type 2 diabetes mellitus. RESULTS Thirty (54.5%) individuals had IGM. After adjustment for age, gender, ethnicity, alcohol use, smoking, BMI and past and current exposure to psychotropic medications, individuals with IGM, when compared to euglycemic participants, had an earlier age of onset (RR: 0.835, p=0.024), longer illness duration (RR: 1.754, p=0.007), a higher number of previous manic/hypomanic episodes (RR: 1.483, p=0.002) and a higher ratio of manic/hypomanic to depressive episodes (RR: 1.753, p=0.028). Moreover, we observed a moderating effect of IGM on the association between number of mood episodes and other variables of illness course, with the correlation between lifetime mood episodes and frequency of episodes being significantly greater in the IGM subgroup (RR: 1.027, p=0.029). All associations observed herein remained significant after adjusting for relevant confounding factors (e.g. age, alcohol and tobacco use, exposure to psychotropic agents, BMI). LIMITATIONS Cross-sectional design, small sample size. CONCLUSIONS Comorbid IGM may be a key moderator of illness progression in BD.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada.
| | - Lucas B Rizzo
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Psychiatry, Clinic for Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Camila M Santos
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elson Asevedo
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Graccielle R Cunha
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mariane N Noto
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Vila Maria Outpatient Clinic in São Paulo, Brazil
| | - Mariana Pedrini
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maiara Zeni
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
14
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 7: A hint from chromosome 7 high density association screen. Behav Brain Res 2015; 293:241-51. [PMID: 26192912 DOI: 10.1016/j.bbr.2015.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022]
Abstract
Convergent evidence from genetics, symptology and psychopharmacology imply that there are intrinsic connection between schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD). Also, any two or even three of these disorders could co-existe in some families. A total of 47,144 single nucleotide polymorphism (SNPs) on chromosome 7 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD, and 1000 controls. Associated SNP loci were comprehensively revealed and outstanding susceptibility genes were identified including CNTNAP2. a neurexin family gene. Unexpectedly, flanking genes for up to 94.74 % of of the associated SNPs were replicated (P≤9.9 E-8) in an enlarged cohort of 986 SCZ patients. Considering other convergent evidence, our results further implicate that BPD and MDD are subtypes of SCZ.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, People's Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, People's Republic of China
| | - Bin Cai
- CapitalBio corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China
| | - Xiaohong Chen
- CapitalBio corporation, 18 Life Science Parkway, Changping District, Beijing 102206, People's Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Sharma AN, Bauer IE, Sanches M, Galvez JF, Zunta-Soares GB, Quevedo J, Kapczinski F, Soares JC. Common biological mechanisms between bipolar disorder and type 2 diabetes: Focus on inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:289-98. [PMID: 24969830 DOI: 10.1016/j.pnpbp.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) patients present a 3-5 fold greater risk of developing type 2 diabetes (T2D) compared to general population. The underlying mechanisms for the increased prevalence of T2D in BD population are poorly understood. OBJECTIVES The purpose of this review is to critically review evidence suggesting that inflammation may have an important role in the development of both BD and T2D. RESULTS The literature covered in this review suggests that inflammatory dysregulation take place among many BD patients. Such dysregulated and low grade chronic inflammatory process may also increase the prevalence of T2D in BD population. Current evidence supports the hypothesis of dysregulated inflammatory processes as a critical upstream event in BD as well as in T2D. CONCLUSIONS Inflammation may be a factor for the development of T2D in BD population. The identification of inflammatory markers common to these two medical conditions will enable researchers and clinicians to better understand the etiology of BD and develop treatments that simultaneously target all aspects of this multi-system condition.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Center for Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Isabelle E Bauer
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan F Galvez
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joao Quevedo
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Flavio Kapczinski
- Center for Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Molecular Psychiatry, Department of Psychiatry and Legal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Kesebir S. Metabolic syndrome and childhood trauma: Also comorbidity and complication in mood disorder. World J Clin Cases 2014; 2:332-337. [PMID: 25133143 PMCID: PMC4133422 DOI: 10.12998/wjcc.v2.i8.332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/20/2014] [Accepted: 06/18/2014] [Indexed: 02/05/2023] Open
Abstract
Studies for prevalence and causal relationship established that addressing comorbidities of mental illnesses with medical disease will be another revolution in psychiatry. Increasing number of evidence shows that there is a bidirectional connection between mood disorders and some medical diseases. Glucocorticoid/insulin signal mechanisms and immunoenflammatory effector systems are junction points that show pathophysiology between bipolar disorder and general medical situations susceptible to stress. A subgroup of mood disorder patients are under risk of developing obesity and diabetes. Their habits and life styles, genetic predisposition and treatment options are parameters that define this subgroup. Medical disease in adults had a significant relationship to adverse life experiences in childhood. This illustrates that adverse experiences in childhood are related to adult disease by two basic etiologic mechanisms: (1) conventional risk factors that actually are compensatory behaviors, attempts at self-help through the use of agents and foods; and (2) the effects of chronic stress.
Collapse
|
17
|
Du X, Servin B, Womack JE, Cao J, Yu M, Dong Y, Wang W, Zhao S. An update of the goat genome assembly using dense radiation hybrid maps allows detailed analysis of evolutionary rearrangements in Bovidae. BMC Genomics 2014; 15:625. [PMID: 25052253 PMCID: PMC4141111 DOI: 10.1186/1471-2164-15-625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 07/10/2014] [Indexed: 01/02/2023] Open
Abstract
Background The domestic goat (Capra hircus), an important livestock species, belongs to a clade of Ruminantia, Bovidae, together with cattle, buffalo and sheep. The history of genome evolution and chromosomal rearrangements on a small scale in ruminants remain speculative. Recently completed goat genome sequence was released but is still in a draft stage. The draft sequence used a variety of assembly packages, as well as a radiation hybrid (RH) map of chromosome 1 as part of its validation. Results Using an improved RH mapping pipeline, whole-genome dense maps of 45,953 SNP markers were constructed with statistical confidence measures and the saturated maps provided a fine map resolution of approximate 65 kb. Linking RH maps to the goat sequences showed that the assemblies of scaffolds/super-scaffolds were globally accurate. However, we observed certain flaws linked to the process of anchoring chromosome using conserved synteny with cattle. Chromosome assignments, long-range order, and orientation of the scaffolds were reassessed in an updated genome sequence version. We also present new results exploiting the updated goat genome sequence to understand genomic rearrangements and chromosome evolution between mammals during species radiations. The sequence architecture of rearrangement sites between the goat and cattle genomes presented abundant segmental duplication on regions of goat chromosome 9 and 14, as well as new insertions in homologous cattle genome regions. This complex interplay between duplicated sequences and Robertsonian translocations highlights the rearrangement mechanism of centromeric nonallelic homologous recombination (NAHR) in mammals. We observed that species-specific shifts in ANKRD26 gene duplication are coincident with breakpoint reuse in divergent lineages and this gene family may play a role in chromosome stabilization in chromosome evolution. Conclusions We generated dense maps of the complete whole goat genome. The chromosomal maps allowed us to anchor and orientate assembled genome scaffolds along the chromosomes, annotate chromosome rearrangements and thereby get a better understanding of the genome evolution of ruminants and other mammals. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-625) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Wang
- Key lab of animal genetics, breeding and reproduction of ministry education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | |
Collapse
|
18
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
19
|
Colak S, Geyikoglu F, Türkez H, Bakır TÖ, Aslan A. The ameliorative effect of Cetraria islandica against diabetes-induced genetic and oxidative damage in human blood. PHARMACEUTICAL BIOLOGY 2013; 51:1531-1537. [PMID: 23987663 DOI: 10.3109/13880209.2013.801994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT The aqueous extracts of Cetraria islandica (L.) Ach. (Parmeliaceae) is traditionally used in many countries against a number of conditions, including inflammatory conditions. OBJECTIVE The present study aimed to assess, for the first time, the effectiveness of C. islandica in cultured primary blood cells of Type 1 diabetes subjects. MATERIALS AND METHODS Diabetic and control blood samples were treated with or without aqueous lichen extract (5 and 10 μg mL(-1)) for 48 h. The activity of antioxidant enzymes in erythrocytes and also malondialdehyde levels in plasma were determined to evaluate the oxidative status. DNA damages were analyzed by SCE, MN and comet assays in cultured human lymphocytes. Additionally, proliferation index (PI) was evaluated in peripheral blood lymphocytes. RESULTS There were significant increases in observed total DNA damage (comet assay) (240.2%) and SCE (168.8%), but not in MN frequencies of cultures with diabetes as compared (p > 0.05) to controls. Whereas, the significant reductions of total DNA damage (69.2 and 65.3%) and SCE frequencies (17.7 and 12.3%) were determined when the 5 and 10 mg mL(-1) lichen extract was added to the cell culture medium, respectively. However, lichen extract did not completely inhibit the induction of SCEs in lymphocytes of patients with diabetes. C. islandica extract was also useful on PI rates. DISCUSSION In conclusion, the antioxidant role of C. islandica in alleviating diabetes-induced genomic instability and for increasing cell viability was firstly indicated in the present study.
Collapse
Affiliation(s)
- Suat Colak
- Department of Biology, Artvin Coruh University Faculty of Science and Arts , Artvin , Turkey
| | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW One-third of the world's population has hypertension and it is responsible for almost 50% of deaths from stroke or coronary heart disease. These statistics do not distinguish salt-sensitive from salt-resistant hypertension or include normotensives who are salt-sensitive even though salt sensitivity, independent of blood pressure, is a risk factor for cardiovascular and other diseases, including cancer. This review describes new personalized diagnostic tools for salt sensitivity. RECENT FINDINGS The relationship between salt intake and cardiovascular risk is not linear, but rather fits a J-shaped curve relationship. Thus, a low-salt diet may not be beneficial to everyone and may paradoxically increase blood pressure in some individuals. Current surrogate markers of salt sensitivity are not adequately sensitive or specific. Tests in the urine that could be surrogate markers of salt sensitivity with a quick turn-around time include renal proximal tubule cells, exosomes, and microRNA shed in the urine. SUMMARY Accurate testing of salt sensitivity is not only laborious but also expensive, and with low patient compliance. Patients who have normal blood pressure but are salt-sensitive cannot be diagnosed in an office setting and there are no laboratory tests for salt sensitivity. Urinary surrogate markers for salt sensitivity are being developed.
Collapse
|
21
|
Abstract
Diabetes and hypertension frequently occur together. There is substantial overlap between diabetes and hypertension in etiology and disease mechanisms. Obesity, inflammation, oxidative stress, and insulin resistance are thought to be the common pathways. Recent advances in the understanding of these pathways have provided new insights and perspectives. Physical activity plays an important protective role in the two diseases. Knowing the common causes and disease mechanisms allows a more effective and proactive approach in their prevention and treatment.
Collapse
Affiliation(s)
- Bernard M. Y. Cheung
- Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong
- Department of Medicine, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Chao Li
- Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
22
|
Deardorff MA, Sainz J, Grant SFA. Another tool in the genome-wide association study arsenal: population-based detection of somatic gene conversion. BMC Med 2011; 9:13. [PMID: 21291539 PMCID: PMC3040696 DOI: 10.1186/1741-7015-9-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
The hunt for the genetic contributors to complex disease has used a number of strategies, resulting in the identification of variants associated with many of the common diseases affecting society. However most of the genetic variants detected to date are single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) and fall far short of explaining the full genetic component of any given disease. An as yet untapped genomic mechanism is somatic gene conversion and deletion, which could be complicit in disease risk but has been challenging to detect in genome-wide datasets. In a recent publication in BMC Medicine by Kenneth Ross, the author uses existing datasets to look at somatic gene conversion and deletion in human disease. Here, we describe how Ross's recent efforts to detect such occurrences could impact the field going forward.
Collapse
Affiliation(s)
- Matthew A Deardorff
- Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
| | | | | |
Collapse
|