1
|
Ebadpour N, Mahmoudi M, Kamal Kheder R, Abavisani M, Baridjavadi Z, Abdollahi N, Esmaeili SA. From mitochondrial dysfunction to neuroinflammation in Parkinson's disease: Pathogenesis and mitochondrial therapeutic approaches. Int Immunopharmacol 2024; 142:113015. [PMID: 39222583 DOI: 10.1016/j.intimp.2024.113015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and intricate neurological condition resulting from a combination of several factors, such as genetics, environment, and the natural process of aging. Degeneration of neurons in the substantia nigra pars compacta (SN) can cause motor and non-motor impairments in patients with PD. In PD's etiology, inflammation and mitochondrial dysfunction play significant roles in the disease's development. Studies of individuals with PD have revealed increased inflammation in various brain areas. Furthermore, mitochondrial dysfunction is an essential part of PD pathophysiology. Defects in the components of the mitochondrial nucleus, its membrane or internal signaling pathways, mitochondrial homeostasis, and morphological alterations in peripheral cells have been extensively documented in PD patients. According to these studies, neuroinflammation and mitochondrial dysfunction are closely connected as pathogenic conditions in neurodegenerative diseases like PD. Given the mitochondria's role in cellular homeostasis maintenance in response to membrane structural flaws or mutations in mitochondrial DNA, their dynamic nature may present therapeutic prospects in this area. Recent research investigates mitochondrial transplantation as a potential treatment for Parkinson's disease in damaged neurons. This review delves into the impact of inflammation and mitochondrial dysfunction on PD occurrence, treatment approaches, and the latest developments in mitochondrial transplantation, highlighting the potential consequences of these discoveries.
Collapse
Affiliation(s)
- Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pliszka M, Szablewski L. Associations between Diabetes Mellitus and Selected Cancers. Int J Mol Sci 2024; 25:7476. [PMID: 39000583 PMCID: PMC11242587 DOI: 10.3390/ijms25137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the major causes of mortality and is the second leading cause of death. Diabetes mellitus is a serious and growing problem worldwide, and its prevalence continues to grow; it is the 12th leading cause of death. An association between diabetes mellitus and cancer has been suggested for more than 100 years. Diabetes is a common disease diagnosed among patients with cancer, and evidence indicates that approximately 8-18% of patients with cancer have diabetes, with investigations suggesting an association between diabetes and some particular cancers, increasing the risk for developing cancers such as pancreatic, liver, colon, breast, stomach, and a few others. Breast and colorectal cancers have increased from 20% to 30% and there is a 97% increased risk of intrahepatic cholangiocarcinoma or endometrial cancer. On the other hand, a number of cancers and cancer therapies increase the risk of diabetes mellitus. Complications due to diabetes in patients with cancer may influence the choice of cancer therapy. Unfortunately, the mechanisms of the associations between diabetes mellitus and cancer are still unknown. The aim of this review is to summarize the association of diabetes mellitus with selected cancers and update the evidence on the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Monika Pliszka
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Zhang Y, Ye J, Zhou L, Xuan X, Xu L, Cao X, Lv T, Yan J, Zhang S, Wang Y, Huang Q, Tian M. Association of barium deficiency with Type 2 diabetes mellitus incident risk was mediated by mitochondrial DNA copy number (mtDNA-CN): a follow-up study. Metallomics 2024; 16:mfae027. [PMID: 38772737 DOI: 10.1093/mtomcs/mfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Accumulating evidence indicates that plasma metal levels may be associated with Type 2 diabetes mellitus (T2DM) incident risk. Mitochondrial function such as mitochondrial DNA copy number (mtDNA-CN) might be linked to metal exposure and physiological metabolism. Mediation analysis was conducted to determine the mediating roles of mtDNA-CN in the association between plasma metals and diabetes risk. In the present study, we investigated associations between plasma metals levels, mtDNA-CN, and T2DM incident in the elderly population with a 6-year follow-up (two times) study. Ten plasma metals [i.e. manganese, aluminum, calcium, iron, barium (Ba), arsenic, copper, selenium, titanium, and strontium] were measured using inductively coupled plasma mass spectrometry. mtDNA-CN was measured by real-time polymerase chain reaction. Multivariable linear regression and logistic regression analyses were carried out to estimate the relationship between plasma metal concentrations, mtDNA-CN, and T2DM incident risk in the current work. Plasma Ba deficiency and mtDNA-CN decline were associated with T2DM incident risk during the aging process. Meanwhile, plasma Ba was found to be positively associated with mtDNA-CN. Mitochondrial function mtDNA-CN demonstrated mediating effects in the association between plasma Ba deficiency and T2DM incident risk, and 49.8% of the association was mediated by mtDNA-CN. These findings extend the knowledge of T2DM incident risk factors and highlight the point that mtDNA-CN may be linked to plasma metal elements and T2DM incident risk.
Collapse
Affiliation(s)
- Yiqin Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Jing Ye
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Lina Zhou
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Xianfa Xuan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Liping Xu
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Xia Cao
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Tianyu Lv
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Jianhua Yan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Siyu Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Yuxin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
4
|
Batista JEDS, Rodrigues MB, Bristot IJ, Silva V, Bernardy S, Rodrigues OED, Dornelles L, Carvalho FB, de Sousa FJF, Fernandes MDC, Zanatta G, Soares FAA, Klamt F. Systematic screening of synthetic organochalcogen compounds with anticancer activity using human lung adenocarcinoma spheroids. Chem Biol Interact 2024; 396:111047. [PMID: 38735454 DOI: 10.1016/j.cbi.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 h of incubation at the 12th DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.
Collapse
Affiliation(s)
- Jéssica Eduarda Dos Santos Batista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | | | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Valquíria Silva
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil
| | - Silvia Bernardy
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Luciano Dornelles
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | | | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Geancarlo Zanatta
- Department of Biophysics, UFRGS, Porto Alegre, RS, 91501-970, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil; National Institutes of Science and Technology-Translational Medicine (INCT-TM), Brazil.
| |
Collapse
|
5
|
Ayyappan V, Jenkinson NM, Tressler CM, Tan Z, Cheng M, Shen XE, Guerrero A, Sonkar K, Cai R, Adelaja O, Roy S, Meeker A, Argani P, Glunde K. Context-dependent roles for ubiquitous mitochondrial creatine kinase CKMT1 in breast cancer progression. Cell Rep 2024; 43:114121. [PMID: 38615320 PMCID: PMC11100297 DOI: 10.1016/j.celrep.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.
Collapse
Affiliation(s)
- Vinay Ayyappan
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Jenkinson
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin M Tressler
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheqiong Tan
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglin Cheng
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyi Elaine Shen
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandro Guerrero
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanchan Sonkar
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoqing Cai
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwatobi Adelaja
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujayita Roy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Szablewski L. Insulin Resistance: The Increased Risk of Cancers. Curr Oncol 2024; 31:998-1027. [PMID: 38392069 PMCID: PMC10888119 DOI: 10.3390/curroncol31020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Insulin resistance, also known as impaired insulin sensitivity, is the result of a decreased reaction of insulin signaling to blood glucose levels. This state is observed when muscle cells, adipose tissue, and liver cells, improperly respond to a particular concentration of insulin. Insulin resistance and related increased plasma insulin levels (hyperinsulinemia) may cause metabolic impairments, which are pathological states observed in obesity and type 2 diabetes mellitus. Observations of cancer patients confirm that hyperinsulinemia is a major factor influencing obesity, type 2 diabetes, and cancer. Obesity and diabetes have been reported as risks of the initiation, progression, and metastasis of several cancers. However, both of the aforementioned pathologies may independently and additionally increase the cancer risk. The state of metabolic disorders observed in cancer patients is associated with poor outcomes of cancer treatment. For example, patients suffering from metabolic disorders have higher cancer recurrence rates and their overall survival is reduced. In these associations between insulin resistance and cancer risk, an overview of the various pathogenic mechanisms that play a role in the development of cancer is discussed.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Bayanbold K, Singhania M, Fath MA, Searby CC, Stolwijk JM, Henrich JB, Pulliam CF, Schoenfeld JD, Mapuskar KA, Sho S, Caster JM, Allen BG, Buettner GR, Spies M, Goswami PC, Petronek MS, Spitz DR. Depletion of Labile Iron Induces Replication Stress and Enhances Responses to Chemoradiation in Non-Small-Cell Lung Cancer. Antioxidants (Basel) 2023; 12:2005. [PMID: 38001858 PMCID: PMC10669787 DOI: 10.3390/antiox12112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.
Collapse
Affiliation(s)
- Khaliunaa Bayanbold
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Mekhla Singhania
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Melissa A. Fath
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Charles C. Searby
- University of Iowa Hospitals and Clinics, Department Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey M. Stolwijk
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - John B. Henrich
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Casey F. Pulliam
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Joshua D. Schoenfeld
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Kranti A. Mapuskar
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Sei Sho
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Joseph M. Caster
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Bryan G. Allen
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Garry R. Buettner
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Maria Spies
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
- University of Iowa Hospitals and Clinics, Holden Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Iowa City, IA 52242, USA
| | - Prabhat C. Goswami
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Michael S. Petronek
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Douglas R. Spitz
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| |
Collapse
|
8
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Menchikov LG, Popov AV. Physiological Activity of Trace Element Germanium including Anticancer Properties. Biomedicines 2023; 11:1535. [PMID: 37371629 PMCID: PMC10295216 DOI: 10.3390/biomedicines11061535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Germanium is an essential microelement, and its deficiency can result in numerous diseases, particularly oncogenic conditions. Consequently, water-soluble germanium compounds, including inorganic and coordination compounds, have attracted significant attention due to their biological activity. The review analyzes the primary research from the last decade related to the anticancer activity of germanium compounds. Furthermore, the review clarifies their actual toxicity, identifies errors and misconceptions that have contributed to the discrediting of their biological activity, and briefly suggests a putative mechanism of germanium-mediated protection from oxidative stress. Finally, the review provides clarifications on the discovery history of water-soluble organic germanium compounds, which was distorted and suppressed for a long time.
Collapse
Affiliation(s)
- Leonid G. Menchikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia;
| | - Anatoliy V. Popov
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Anatomy Chemistry Building, Rm 317, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Occhiuto CJ, Moerland JA, Leal AS, Gallo KA, Liby KT. The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis. Mol Cells 2023; 46:176-186. [PMID: 36994476 PMCID: PMC10070161 DOI: 10.14348/molcells.2023.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/31/2023] Open
Abstract
The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ana S. Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Kathleen A. Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Chugunova E, Gibadullina E, Matylitsky K, Bazarbayev B, Neganova M, Volcho K, Rogachev A, Akylbekov N, Nguyen HBT, Voloshina A, Lyubina A, Amerhanova S, Syakaev V, Burilov A, Appazov N, Zhanakov M, Kuhn L, Sinyashin O, Alabugin I. Diverse Biological Activity of Benzofuroxan/Sterically Hindered Phenols Hybrids. Pharmaceuticals (Basel) 2023; 16:ph16040499. [PMID: 37111256 PMCID: PMC10145285 DOI: 10.3390/ph16040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Combining two pharmacophores in a molecule can lead to useful synergistic effects. Herein, we show hybrid systems that combine sterically hindered phenols with dinitrobenzofuroxan fragments exhibit a broad range of biological activities. The modular assembly of such phenol/benzofuroxan hybrids allows variations in the phenol/benzofuroxan ratio. Interestingly, the antimicrobial activity only appears when at least two benzofuroxan moieties are introduced per phenol. The most potent of the synthesized compounds exhibit high cytotoxicity against human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7), and human cervical carcinoma cell lines. This toxicity is associated with the induction of apoptosis via the internal mitochondrial pathway and an increase in ROS production. Encouragingly, the index of selectivity relative to healthy tissues exceeds that for the reference drugs Doxorubicin and Sorafenib. The biostability of the leading compounds in whole mice blood is sufficiently high for their future quantification in biological matrices.
Collapse
|
12
|
Shimura T. Mitochondrial Signaling Pathways Associated with DNA Damage Responses. Int J Mol Sci 2023; 24:ijms24076128. [PMID: 37047099 PMCID: PMC10094106 DOI: 10.3390/ijms24076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Under physiological and stress conditions, mitochondria act as a signaling platform to initiate biological events, establishing communication from the mitochondria to the rest of the cell. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander response, apoptosis, cellular senescence, and inflammation response. In this review paper, the mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcinogenesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial radiation effect, as hypothesized, is critical in assessing radiation risks to human health.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Saitama, Japan
| |
Collapse
|
13
|
Moerland JA, Leal AS, Lockwood B, Demireva EY, Xie H, Krieger-Burke T, Liby KT. The Triterpenoid CDDO-Methyl Ester Redirects Macrophage Polarization and Reduces Lung Tumor Burden in a Nrf2-Dependent Manner. Antioxidants (Basel) 2023; 12:116. [PMID: 36670978 PMCID: PMC9854457 DOI: 10.3390/antiox12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The NRF2/KEAP1 pathway protects healthy cells from malignant transformation and maintains cellular homeostasis. Up to 30% of human lung tumors gain constitutive NRF2 activity which contributes to cancer cell survival and chemoresistance, but the effects of NRF2 activation in immune cells within the tumor microenvironment are underexplored. Macrophages can promote cancer progression or regression depending on context, and NRF2 activation affects macrophage activity. The NRF2 activator CDDO-Methyl ester (CDDO-Me or bardoxolone methyl) reprogrammed Nrf2 wild-type (WT) tumor-educated bone marrow-derived macrophages (TE-BMDMs) from a tumor-promoting to a tumor-inhibiting phenotype, marked by an increase in M1 markers TNFα, IL-6, and MHC-II and a decrease in the tumor-promoting factors VEGF, CCL2, and CD206. No changes were observed in Nrf2 knockout (KO) TE-BMDMs. CDDO-Me decreased tumor burden (p < 0.001) and improved pathological grade (p < 0.05) in WT but not Nrf2 KO A/J mice. Tumor burden in Nrf2 KO mice was 4.6-fold higher (p < 0.001) than in WT mice, irrespective of treatment. CDDO-Me increased the number of lung-infiltrating macrophages in WT mice but lowered CD206 expression in these cells (p < 0.0001). In summary, Nrf2 KO exacerbates lung tumorigenesis in A/J mice, and CDDO-Me promotes an Nrf2-dependent, anti-cancer macrophage phenotype.
Collapse
Affiliation(s)
- Jessica A. Moerland
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Ana S. Leal
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Beth Lockwood
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Karen T. Liby
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Zhang J, Yu Y, Mekhail MA, Wu H, Green KN. A macrocyclic molecule with multiple antioxidative activities protects the lens from oxidative damage. Front Chem 2022; 10:996604. [PMID: 36385982 PMCID: PMC9650109 DOI: 10.3389/fchem.2022.996604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 10/25/2023] Open
Abstract
Growing evidence links oxidative stress to the development of a cataract and other diseases of the eye. Treatments for lens-derived diseases are still elusive outside of the standard surgical interventions, which still carry risks today. Therefore, a potential drug molecule OHPy2N2 was explored for the ability to target multiple components of oxidative stress in the lens to prevent cataract formation. Several pathways were identified. Here we show that the OHPy2N2 molecule activates innate catalytic mechanisms in primary lens epithelial cells to prevent damage induced by oxidative stress. This protection was linked to the upregulation of Nuclear factor erythroid-2-related factor 2 and downstream antioxidant enzyme for glutathione-dependent glutaredoxins, based on Western Blot methods. The anti-ferroptotic potential was established by showing that OHPy2N2 increases levels of glutathione peroxidase, decreases lipid peroxidation, and readily binds iron (II) and (III). The bioenergetics pathway, which has been shown to be negatively impacted in many diseases involving oxidative stress, was also enhanced as evidence by increased levels of Adenosine triphosphate product when the lens epithelial cells were co-incubated with OHPy2N2. Lastly, OHPy2N2 was also found to prevent oxidative stress-induced lens opacity in an ex vivo organ culture model. Overall, these results show that there are multiple pathways that the OHPy2N2 has the ability to impact to promote natural mechanisms within cells to protect against chronic oxidative stress in the eye.
Collapse
Affiliation(s)
- Jinmin Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yu Yu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Magy A. Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, United States
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
16
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
17
|
Sundquist K, Sundquist J, Palmer K, Memon AA. Role of mitochondrial DNA copy number in incident cardiovascular diseases and the association between cardiovascular disease and type 2 diabetes: A follow-up study on middle-aged women. Atherosclerosis 2021; 341:58-62. [PMID: 34876297 DOI: 10.1016/j.atherosclerosis.2021.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Mitochondrial DNA copy number (mtDNA-CN) is a surrogate biomarker of mitochondrial dysfunction and is associated with type 2 diabetes (T2D) and cardiovascular disease (CVD). However, despite being associated with both CVD and T2D, it is not known what role mtDNA-CN has in the association between T2D and CVD. Our aims were to investigate whether, (1) baseline mtDNA-CN is associated with CVD incidence and (2) mtDNA-CN has a role as a mediator between T2D and CVD. METHOD We quantified absolute mtDNA-CN by droplet digital PCR method in a population-based follow-up study of middle aged (52-65 years) women (n = 3062). The median follow-up period was 17 years. RESULTS Our results show that low baseline levels of mtDNA-CN (<111 copies/μL) were associated with an increased risk of CVD (HR = 1.32, 95% CI = 1.08; 1.63) as well as with specific CVDs: coronary heart disease (HR = 1.28, 95% CI = 0.99; 1.66), stroke (HR = 1.26, 95% CI = 0.87; 1.84) and abdominal aortic aneurysm (HR = 2.61, 95% CI = 1.03; 6.62). The associations decreased but persisted even after adjustment for potential confounders. Furthermore, our results show that the total effect of T2D on future risk of CVD was reduced after controlling for mtDNA-CN and the proportion mediated by mtDNA-CN was estimated to be 4.9%. CONCLUSIONS Lower baseline mtDNA-CN is associated with incident CVD and may have a mediating effect on the association between T2D and CVD; however, this novel observation needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Karolina Palmer
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden.
| |
Collapse
|
18
|
Gokani S, Bhatt LK. Caveolin-1: A promising therapeutic target for diverse diseases. Curr Mol Pharmacol 2021; 15:701-715. [PMID: 34847854 DOI: 10.2174/1874467214666211130155902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The plasma membrane of eukaryotic cells contains small flask-shaped invaginations known as caveolae that are involved in the regulation of cellular signaling. Caveolin-1 is a 21-24kDa protein localized in the caveolar membrane. Caveolin-1 (Cav-1) has been considered as a master regulator among the various signaling molecules. It has been emerging as a chief protein regulating cellular events associated with homeostasis, caveolae formation, and caveolae trafficking. In addition to the physiological role of cav-1, it has a complex role in the progression of various diseases. Caveolin-1 has been identified as a prognosticator in patients with cancer and has a dual role in tumorigenesis. The expression of Cav-1 in hippocampal neurons and synapses is related to neurodegeneration, cognitive decline, and aging. Despite the ubiquitous association of caveolin-1 in various pathological processes, the mechanisms associated with these events are still unclear. Caveolin-1 has a significant role in various events of the viral cycle, such as viral entry. This review will summarize the role of cav-1 in the development of cancer, neurodegeneration, glaucoma, cardiovascular diseases, and infectious diseases. The therapeutic perspectives involving clinical applications of Caveolin-1 have also been discussed. The understanding of the involvement of caveolin-1 in various diseased states provides insights into how it can be explored as a novel therapeutic target.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| |
Collapse
|
19
|
Association of mitochondrial DNA copy number with prevalent and incident type 2 diabetes in women: A population-based follow-up study. Sci Rep 2021; 11:4608. [PMID: 33633270 PMCID: PMC7907271 DOI: 10.1038/s41598-021-84132-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction is an important factor of the aging process and may play a key role in various diseases. Mitochondrial DNA copy number (mtDNA-CN) is an indirect measure of mitochondrial dysfunction and is associated with type 2 diabetes mellitus (T2DM); however, whether mtDNA-CN can predict the risk of developing T2DM is not well-known. We quantified absolute mtDNA-CN in both prevalent and incident T2DM by well-optimized droplet digital PCR (ddPCR) method in a population-based follow-up study of middle aged (50-59 years) Swedish women (n = 2387). The median follow-up period was 17 years. Compared to those who were free of T2DM, mtDNA-CN was significantly lower in both prevalent T2DM and in women who developed T2DM during the follow-up period. Mitochondrial DNA-copy number was also associated with glucose intolerance, systolic blood pressure, smoking status and education. In multivariable Cox regression analysis, lower baseline mtDNA-CN was prospectively associated with a higher risk of T2DM, independent of age, BMI, education, smoking status and physical activity. Moreover, interaction term analysis showed that smoking increased the effect of low mtDNA-CN at baseline on the risk of incident T2DM. Mitochondrial DNA-copy number may be a risk factor of T2DM in women. The clinical usefulness of mtDNA-CN to predict the future risk of T2DM warrants further investigation.
Collapse
|
20
|
Abstract
The liquid biopsy preserves a noninvasive technique to analyze promising biomarkers in cell-free bodyfluids, mainly in cell-free plasma. The most cells secrete extracellular vesicles into the extracellular place which can be isolated, analyzed easily due to the wide range of different protocols and commercial kits. The mitochondrial DNA isolated from biofluids can serve as new view in early diagnosis of various diseases (e.g. cancers, cardiovascular diseases). In this chapter, possible protocols of mitochondrial DNA copy number quantification are discussed presenting some ways to determine the mtDNA level of extracellular vesicles in different diseases.
Collapse
|
21
|
Physical activity and cancer risk. Actual knowledge and possible biological mechanisms. Radiol Oncol 2021; 55:7-17. [PMID: 33885236 PMCID: PMC7877262 DOI: 10.2478/raon-2020-0063] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Scientific evidence has shown that an increase in regular physical activity is associated with a decrease in the development of many types of cancer. Potential mechanisms that link physical activity to reduced cancer risk include a decrease in systemic inflammation, hyperinsulinemia, insulin-like growth factor (IGF-I), sex hormones, pro-inflammatory leptin and other obesity-related cytokines, and a significant increase in anti-inflammatory adiponectin levels. In addition, physical activity improves immune function and the composition and diversity of the gastrointestinal microbiota. Moderate physical activity is important for cancer protection, but the most significant changes in the inflammatory profile are conferred by physical activity performed at higher intensities. Thus, there is a need for further investigation into the type, intensity, and duration of physical activity for the prevention of some types of cancer and the development of effective recommendations. Conclusions There is a strong evidence that physical activity of moderate to vigorous intensity protects against colon and breast cancer, and probably against cancer at all other sites.
Collapse
|
22
|
Azelaic Acid Exerts Antileukemia Effects against Acute Myeloid Leukemia by Regulating the Prdxs/ROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1295984. [PMID: 33425206 PMCID: PMC7775164 DOI: 10.1155/2020/1295984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a poor prognosis attributed to elevated reactive oxygen species (ROS) levels. Thus, agents that inhibit ROS generation in AML should be exploited. Azelaic acid (AZA), a small molecular compound, can scavenge ROS and other free radicals, exerting antitumor effects on various tumor cells. Herein, this study evaluated the antileukemic activity of AZA against AML via regulation of the ROS signaling pathway. We found that AZA reduced intracellular ROS levels and increased total antioxidant capacity in AML cell lines and AML patient cells. AZA suppressed the proliferation of AML cell lines and AML patient cells, expending minimal cytotoxicity on healthy cells. Laser confocal microscopy showed that AZA-treated AML cells surged and ruptured gradually on microfluidic chips. Additionally, AZA promoted AML cell apoptosis and arrested the cell cycle at the G1 phase. Further analysis demonstrated that peroxiredoxin (Prdx) 2 and Prdx3 were upregulated in AZA-treated AML cells. In vivo, AZA prolonged survival and attenuated AML by decreasing CD33+ immunophenotyping in the bone marrow of a patient-derived xenograft AML model. Furthermore, mice in the AZA-treated group had an increased antioxidant capacity and Prdx2/Prdx3 upregulation. The findings indicate that AZA may be a potential agent against AML by regulating the Prdxs/ROS signaling pathway.
Collapse
|
23
|
Ahmed W, Lingner J. PRDX1 Counteracts Catastrophic Telomeric Cleavage Events That Are Triggered by DNA Repair Activities Post Oxidative Damage. Cell Rep 2020; 33:108347. [DOI: 10.1016/j.celrep.2020.108347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
|
24
|
Şener MU, Sönmez Ö, Keyf İA, Erel Ö, Alışık M, Bulut S, Erdoğan Y. Evaluation of Thiol/Disulfide Homeostasis in Lung Cancer. Turk Thorac J 2020; 21:255-260. [PMID: 32687786 DOI: 10.5152/turkthoracj.2019.19033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Lung cancer is one of the most common causes of mortality all around the world. The increased production of reactive oxygen species occurs with cell damage, and cysteine is an important factor in preventing oxidative damage by its functional thiol group. The objective of this study was to evaluate the relationship between thiol/disulfide homeostasis (TDH) and the risk factors, disease severity, and physical condition of patients with lung cancer. MATERIALS AND METHODS This is a prospective, controlled, nonblinded study, which included healthy volunteers and patients diagnosed with lung cancer who had not yet started any treatment. RESULTS There were 45 male (90%) and five female (5%) patients (mean age 64±9 years), and 41 male (82%) and nine female (18%) healthy volunteers (mean age 65±17 years) were included in this research. Overall, the thiol levels were lower in patients than the control group (p<0.001). The native thiol level means were 275±72 μmol/l in the patient group and 414±80 μmol/l in the control group, and the total thiol level means were 309±74 and 451±79 μmol/l, respectively. However, the disulfide parameter was not statistically significantly different between the two groups. There were no correlations between the tumor size and overall survival and the total thiol, native thiol, and disulfide levels. CONCLUSION This study showed that there is a significant relationship between lung cancer and TDH, but there were no correlations with the disease stage and the clinical performance status.
Collapse
Affiliation(s)
- Melahat Uzel Şener
- Department of Chest Diseases, Ministry of Health, University of Health Sciences, Atatürk Chest Diseases and Thorasic Surgery Training and Research Hospital, Ankara, Turkey
| | - Özlem Sönmez
- Department of Chest Diseases, Ministry of Health, University of Health Sciences, Atatürk Chest Diseases and Thorasic Surgery Training and Research Hospital, Ankara, Turkey
| | - İhsan Atila Keyf
- Department of Chest Diseases, Ministry of Health, University of Health Sciences, Atatürk Chest Diseases and Thorasic Surgery Training and Research Hospital, Ankara, Turkey
| | - Özcan Erel
- Department of Biochemistry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | - Murat Alışık
- Clinic of Clinical Biochemistry, Polatlı Duatepe State Hospital, Ankara, Turkey
| | - Sertan Bulut
- Department of Chest Diseases, Ministry of Health, University of Health Sciences, Atatürk Chest Diseases and Thorasic Surgery Training and Research Hospital, Ankara, Turkey
| | - Yurdanur Erdoğan
- Department of Chest Diseases, Ministry of Health, University of Health Sciences, Atatürk Chest Diseases and Thorasic Surgery Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
25
|
Sezgin B, Pirinççi F, Camuzcuoğlu A, Erel Ö, Neşelioğlu S, Camuzcuoğlu H. Assessment of thiol disulfide balance in early‐stage endometrial cancer. J Obstet Gynaecol Res 2020; 46:1140-1147. [DOI: 10.1111/jog.14301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Burak Sezgin
- Department of Obstetrics and Gynecology, Faculty of Medicine Muğla Sıtkı Koçman University Muğla Turkey
| | - Fatih Pirinççi
- Department of Obstetrics and Gynecology, Faculty of Medicine Muğla Sıtkı Koçman University Muğla Turkey
| | - Aysun Camuzcuoğlu
- Department of Obstetrics and Gynecology Private Adatıp Sakarya Hospital Sakarya Turkey
| | - Özcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine Yıldırım Beyazit University Ankara Turkey
| | - Salim Neşelioğlu
- Department of Clinical Biochemistry, Faculty of Medicine Yıldırım Beyazit University Ankara Turkey
| | | |
Collapse
|
26
|
Locateli G, Peralta RM, Koehnlein EA. Recommended Consumption of Fruits and Vegetables Increases the Intake of Polyphenols and Flavonoids in Brazilian Adults. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190704155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Adequate consumption of fruits and vegetables (FV) is associated with reduced
risks of various diseases, especially due to their nutrient, fiber, and bioactive compound content.
Polyphenols are included in this last class. In Brazil, as in several other regions of the world,
consumption of FV is low. Data on the importance of the recommended intake of FV for the ingestion
of these compounds and subclasses are scarce.
Objective:
To estimate the intake of polyphenols by Brazilian adults and to verify the impact of the
recommended consumption of FV for this intake.
Methods:
Data from 21,959 adults were obtained from the Brazilian Dairy Survey of the Household
Budget Survey (POF 2008-2009). Food intake was estimated from a single food register. Polyphenol
intake was calculated using the Phenol-Explorer database. To evaluate the impact of FV on the consumption
of polyphenols, the population was divided into two groups according to the FV intake as
recommended by the World Health Organization.
Results:
The average consumption of phenolic compounds was 441.04 mg among individuals consuming
less than 400 g of FV daily, and 651.86 mg those consuming equal or more than 400 g daily.
In addition, individuals consuming 400 g or more FV per day consumed approximately 12 times
more phenolic from FV, especially flavonoids and the anthocyanin and flavanone subclasses.
Conclusions:
The high consumption of FV is essential for a higher dietary intake and diversity of
polyphenols and flavonoids compounds by the Brazilian population.
Collapse
Affiliation(s)
- Gelvani Locateli
- Post Graduate Program Health Sciences, Community University of the Region of Chapeco, Chapeco, Santa Catarina, Brazil
| | | | | |
Collapse
|
27
|
Decreased mitochondrial DNA copy number in children with cerebral palsy quantified by droplet digital PCR. Clin Chim Acta 2020; 503:122-127. [DOI: 10.1016/j.cca.2020.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
|
28
|
Bel’skaya LV, Sarf EA, Kosenok VK, Gundyrev IA. Biochemical Markers of Saliva in Lung Cancer: Diagnostic and Prognostic Perspectives. Diagnostics (Basel) 2020; 10:E186. [PMID: 32230883 PMCID: PMC7235830 DOI: 10.3390/diagnostics10040186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the work is to study the metabolic characteristics of saliva in lung cancer for use in early diagnosis and determining the prognosis of the disease. The patient group included 425 lung cancer patients, 168 patients with non-cancerous lung diseases, and 550 healthy volunteers. Saliva samples were collected from all participants in the experiment before treatment and 34 biochemical saliva parameters were determined. Participants were monitored for six years to assess survival rates. The statistical analysis was performed by means of Statistica 10.0 (StatSoft) program and R package (version 3.2.3). To construct the classifier, the Random Forest method was used; the classification quality was assessed using the cross-validation method. Prognostic factors were analyzed by multivariate analysis using Cox's proportional hazard model in a backward step-wise fashion to adjust for potential confounding factors. A complex of metabolic changes occurring in saliva in lung cancer is described. Seven biochemical parameters were identified (catalase, triene conjugates, Schiff bases, pH, sialic acids, alkaline phosphatase, chlorides), which were used to construct the classifier. The sensitivity and specificity of the method were 69.5% and 87.5%, which is practically not inferior to the diagnostic characteristics of markers routinely used in the diagnosis of lung cancer. Significant independent factors in the poor prognosis of lung cancer are imidazole compounds (ICs) above 0.478 mmol/L and salivary lactate dehydrogenase activity below 545 U/L. Saliva has been shown to have great potential for the development of diagnostic and prognostic tests for lung cancer.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Laboratory of biochemistry, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Elena A. Sarf
- Laboratory of biochemistry, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Victor K. Kosenok
- Department of Oncology, Omsk State Medical University, 12, Lenina str, 644099 Omsk, Russia;
| | | |
Collapse
|
29
|
Fernandes IPG, Oliveira-Brett AM. Caveolin proteins electrochemical oxidation and interaction with cholesterol. Bioelectrochemistry 2020; 133:107451. [PMID: 32109845 DOI: 10.1016/j.bioelechem.2019.107451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Caveolae consist in lipid raft domains composed of caveolin proteins, cholesterol, glycosphingolipids, and GPI-anchored proteins. Caveolin proteins present three different types, caveolin 1 (CAV-1), caveolin 2 (CAV-2) and caveolin 3 (CAV-3), with a very similar structure and amino acid composition. The native caveolin proteins oxidation mechanism was investigated for the first time, at a glassy carbon electrode, using cyclic, square wave and differential pulse voltammetry. The three native caveolin proteins oxidation mechanism presented only one tyrosine and tryptophan amino acid residues oxidation peak. Denatured caveolin proteins presented also the tyrosine, tryptophan and cysteine amino acid residues oxidation peaks. The reverse cholesterol transport is related to caveolae and caveolin proteins, and CAV-1 is directly connected to cholesterol transport. The influence of cholesterol on the three caveolin proteins electrochemical behaviour was evaluated. In the absence and in the presence of cholesterol, significant differences in the CAV-1 oxidation peak current were observed.
Collapse
Affiliation(s)
- Isabel P G Fernandes
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana Maria Oliveira-Brett
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
30
|
Geicu OI, Stanca L, Voicu SN, Dinischiotu A, Bilteanu L, Serban AI, Calu V. Dietary AGEs involvement in colonic inflammation and cancer: insights from an in vitro enterocyte model. Sci Rep 2020; 10:2754. [PMID: 32066788 PMCID: PMC7026081 DOI: 10.1038/s41598-020-59623-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023] Open
Abstract
The number of colon cancer cases is increasing worldwide, and type II diabetes patients have an increased risk of developing colon cancer. Diet-borne advanced glycation end-products (AGEs) may promote neoplastic transformation; however, the mechanisms involved remain elusive. The present study helped to define the relationship between dietary AGEs and cancer progression. C2BBe1 adenocarcinoma enterocytes were exposed to 200 µg/mL glycated casein (AGEs-Csn) for up to 24 h. AGEs-Csn exposure resulted in increased cell proliferation, maladaptative changes in SOD and CAT activity and moderate levels of hydrogen peroxide (H2O2) intracellular accumulation. AGEs-Csn activated pro-survival and proliferation signalling, such as the phosphorylation of mTOR (Ser2448) and Akt (Ser473). GSK-3β phosphorylation also increased, potentially inducing extracellular matrix remodelling and thus enabling metastasis. Moreover, AGEs-Csn induced MMP-1, -3, -7, -9 and -10 expression and activated MMP-2 and MMP-9, which are regulators of the extracellular matrix and cytokine functions. AGEs-Csn induced inflammatory responses that included extracellular IL-1β at 6 h; time-dependent increases in IL-8; RAGE and NF-κB p65 upregulation; and IκB inhibition. Co-treatment with anti-RAGE or anti-TNF-α blocking antibodies and AGEs-Csn partially counteracted these changes; however, IL-8, MMP-1 and -10 expression and MMP-9 activation were difficult to prevent. AGEs-Csn perpetuated signalling that led to cell proliferation and matrix remodelling, strengthening the link between AGEs and colorectal cancer aggressiveness.
Collapse
Affiliation(s)
- Ovidiu I Geicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania.,Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea I Serban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania. .,Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.
| | - Valentin Calu
- Department of General Surgery, University of Medicine and Pharmacy "Carol Davila" Bucharest, 8 Blvd., Eroii Sanitari, 050474, Bucharest, Romania
| |
Collapse
|
31
|
Cosemans C, Nawrot TS, Janssen BG, Vriens A, Smeets K, Baeyens W, Bruckers L, Den Hond E, Loots I, Nelen V, Van Larebeke N, Schoeters G, Martens D, Plusquin M. Breastfeeding predicts blood mitochondrial DNA content in adolescents. Sci Rep 2020; 10:387. [PMID: 31941967 PMCID: PMC6962168 DOI: 10.1038/s41598-019-57276-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nutrition during early childhood is linked to metabolic programming. We hypothesized that breastfeeding has long-term consequences on the energy metabolism exemplified by mitochondrial DNA (mtDNA). As part of the third cycle of the Flemish Environment and Health Study (FLEHSIII) cohort, 303 adolescents aged 14–15 years were included. We associated breastfeeding and blood mtDNA content 14–15 years later while adjusting for confounding variables. Compared with non-breastfed adolescents, mtDNA content was 23.1% (95%CI: 4.4–45.2; p = 0.013) higher in breastfed adolescents. Being breastfed for 1–10 weeks, 11–20 weeks, and >20 weeks, was associated with a higher mtDNA content of respectively 16.0% (95%CI: −7.1–44.9; p = 0.191), 23.5% (95%CI: 0.8–51.3; p = 0.042), and 31.5% (95%CI: 4.3–65.7; p = 0.021). Our study showed a positive association between breastfeeding and mtDNA content in adolescents which gradually increased with longer periods of breastfeeding. Higher mtDNA content may be an underlying mechanism of the beneficial effects of breastfeeding on children’s metabolism.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Annette Vriens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | | | - Ilse Loots
- Faculty of Social Sciences and IMDO-Institute, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium.,Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Dries Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
32
|
Sekar D, Johnson J, Biruntha M, Lakhmanan G, Gurunathan D, Ross K. Biological and Clinical Relevance of microRNAs in Mitochondrial Diseases/Dysfunctions. DNA Cell Biol 2019; 39:1379-1384. [PMID: 31855060 DOI: 10.1089/dna.2019.5013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction arises from an inadequate number of mitochondria, an inability to provide necessary substrates to mitochondria, or a dysfunction in their electron transport and a denosine triphosphate synthesis machinery. Occurrences of mitochondrial dysfunction are due to genetic or environmental changes in the mitochondria or in the nuclear DNA that codes mitochondrial components. Currently, drug options are available, yet no treatment exists in sight of this disease and needs a new insight into molecular and signaling pathways for this disease. microRNAs (miRNAs) are small, endogenous, and noncoding RNAs function as a master regulator of gene expression. The evolution of miRNAs in the past two decades emerged as a key regulator of gene expression that controls physiological pathological cellular differentiation processes, and metabolic homeostasis such as development and cancer. It has been known that miRNAs are a potential biomarker in both communicable and noncommunicable diseases. But, in the case of mitochondrial dysfunction in miRNAs, the number of studies and investigations are comparatively less than those on other diseases and dysfunctions. In this review, we have elaborated the roles of miRNAs in the mitochondrial diseases and dysfunctions.
Collapse
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Jayapriya Johnson
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - Ganesh Lakhmanan
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Deepa Gurunathan
- Department of Pedodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
33
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
34
|
Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics 2019; 36:1522-1532. [DOI: 10.1093/bioinformatics/btz758] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/05/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
The time evolution or dynamic change of many biological systems during disease progression is not always smooth but occasionally abrupt, that is, there is a tipping point during such a process at which the system state shifts from the normal state to a disease state. It is challenging to predict such disease state with the measured omics data, in particular when only a single sample is available.
Results
In this study, we developed a novel approach, i.e. single-sample landscape entropy (SLE) method, to identify the tipping point during disease progression with only one sample data. Specifically, by evaluating the disorder of a network projected from a single-sample data, SLE effectively characterizes the criticality of this single sample network in terms of network entropy, thereby capturing not only the signals of the impending transition but also its leading network, i.e. dynamic network biomarkers. Using this method, we can characterize sample-specific state during disease progression and thus achieve the disease prediction of each individual by only one sample. Our method was validated by successfully identifying the tipping points just before the serious disease symptoms from four real datasets of individuals or subjects, including influenza virus infection, lung cancer metastasis, prostate cancer and acute lung injury.
Availability and implementation
https://github.com/rabbitpei/SLE.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
35
|
Gibadullina E, Nguyen TT, Strelnik A, Sapunova A, Voloshina A, Sudakov I, Vyshtakalyuk A, Voronina J, Pudovik M, Burilov A. New 2,6-diaminopyridines containing a sterically hindered benzylphosphonate moiety in the aromatic core as potential antioxidant and anti-cancer drugs. Eur J Med Chem 2019; 184:111735. [PMID: 31610378 DOI: 10.1016/j.ejmech.2019.111735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
A series of 2,6-diaminopyridines was synthesized for the first time, containing phosphoryl sterically hindered phenolic fragments in the aromatic core. The antioxidant activity of these compounds was investigated, 2,6-diaminopyridine derivatives were shown to exhibit higher activity in comparison with their structural analogues. For dialkyl/diphenyl [(3,5-di-tert-butyl-4-hydroxyphenyl) (2,6-diaminopyridin-3-yl) methyl] phosphonates, their structural analogues based on meta-phenylenediamine, phosphorus-containing sterically hindered phenols and the corresponding cyclohexadienones cytotoxicity against tumor lines of epithelioid carcinoma of the cervix uteri (M-Hela) and breast adenocarcinoma (MCF-7) has been studied in vitro, as well as on normal human Chang liver cell lines. Diphenyl [(3,5-di-tert-butyl-4-hydroxyphenyl) (2,6-diaminopyridin-3-yl) methyl] phosphonate was shown to be the most active against the epithelioid line M-Hela - IC50 comprises 7.4 μM. It was shown that apoptosis induced by the lead compound proceeds along the internal pathway of caspase-9 activation. It was established that all studied compounds do not possess hemolytic activity.
Collapse
Affiliation(s)
- Elmira Gibadullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation.
| | - Thi Thu Nguyen
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation; Kazan National Research Technological University, 68 K. Marx str., 420015, Kazan, Russia
| | - Anna Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| | - Igor Sudakov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| | - Alexandra Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| | - Julya Voronina
- N. S. Kurnakov Institute of General and Inorganic Chemistry, RAS, 31 Leninsky Av., 119991, Moscow, Russian Federation
| | - Michael Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russian Federation
| |
Collapse
|
36
|
Nguyen C, Pandey S. Exploiting Mitochondrial Vulnerabilities to Trigger Apoptosis Selectively in Cancer Cells. Cancers (Basel) 2019; 11:E916. [PMID: 31261935 PMCID: PMC6678564 DOI: 10.3390/cancers11070916] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
The transformation of normal cells to the cancerous stage involves multiple genetic changes or mutations leading to hyperproliferation, resistance to apoptosis, and evasion of the host immune system. However, to accomplish hyperproliferation, cancer cells undergo profound metabolic reprogramming including oxidative glycolysis and acidification of the cytoplasm, leading to hyperpolarization of the mitochondrial membrane. The majority of drug development research in the past has focused on targeting DNA replication, repair, and tubulin polymerization to induce apoptosis in cancer cells. Unfortunately, these are not cancer-selective targets. Recently, researchers have started focusing on metabolic, mitochondrial, and oxidative stress vulnerabilities of cancer cells that can be exploited as selective targets for inducing cancer cell death. Indeed, the hyperpolarization of mitochondrial membranes in cancer cells can lead to selective importing of mitocans that can induce apoptotic effects. Herein, we will discuss recent mitochondrial-selective anticancer compounds (mitocans) that have shown selective toxicity against cancer cells. Increased oxidative stress has also been shown to be very effective in selectively inducing cell death in cancer cells. This oxidative stress could lead to mitochondrial dysfunction, which in turn will produce more reactive oxygen species (ROS). This creates a vicious cycle of mitochondrial dysfunction and ROS production, irreversibly leading to cell suicide. We will also explore the possibility of combining these compounds to sensitize cancer cells to the conventional anticancer agents. Mitocans in combination with selective oxidative-stress producing agents could be very effective anticancer treatments with minimal effect on healthy cells.
Collapse
Affiliation(s)
- Christopher Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9E 3P4, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9E 3P4, Canada.
| |
Collapse
|
37
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
38
|
Soltész B, Urbancsek R, Pös O, Hajas O, Forgács IN, Szilágyi E, Nagy-Baló E, Szemes T, Csanádi Z, Nagy B. Quantification of peripheral whole blood, cell-free plasma and exosome encapsulated mitochondrial DNA copy numbers in patients with atrial fibrillation. J Biotechnol 2019; 299:66-71. [PMID: 31063814 DOI: 10.1016/j.jbiotec.2019.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial DNA (mtDNA) copy number changes have been associated with various diseases. Several studies showed that mtDNA content in peripheral blood was associated with oxidative stress and cardiovascular disease. Atrial fibrillation (AF) is one of the severe cardiovascular diseases. We aimed to determine the mtDNA copy numbers in peripheral blood, in cell-free plasma and in exosomes of AF patients and healthy controls. Peripheral blood was drawn from 60 AF patients and 72 healthy controls. DNA was isolated from EDTA blood and plasma. Exosomes were isolated from cell-free plasma and then exosome encapsulated DNA (exoDNA) was extracted. Quantitative-real-time PCR was performed with Human Mitochondrial DNA (mtDNA) Monitoring Primer Set. Statistical analysis of the data was performed. We found statistically significant difference in mtDNA copy numbers in DNA isolated from peripheral whole blood, cell-free plasma and exosome samples of controls' (44.4 ± 18.0, 27.2 ± 30.1, 11.5 ± 8.7), and patients' group (43.4 ± 13.6, 26.2 ± 26.4, 14.5 ± 12.3). However there was no significant difference in mtDNA copy number between the two study groups either in peripheral blood, in cell-free plasma and in exosomes, and even in different sexes and ages. We found the highest copy number of mtDNA in peripheral blood, followed by plasma and exosomes. We did not find differences between patients and controls, neither age nor gender had effect on the mtDNA copy number. According to our results the mtDNA copy numbers did not differ in AF patients.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Réka Urbancsek
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Orsolya Hajas
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Noémi Forgács
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Nagy-Baló
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Zoltán Csanádi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
39
|
El-Sisi AE, Sokar SS, El-Sayad ME, Moussa EA, Salim EI. Anticancer effect of metformin against 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine-induced rat mammary carcinogenesis is through AMPK pathway and modulation of oxidative stress markers. Hum Exp Toxicol 2019; 38:703-712. [PMID: 30924377 DOI: 10.1177/0960327119839192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Metformin, the type 2 anti-diabetes medication, showed antitumor activity both in vivo and in vitro. This study was carried out to investigate the mechanisms behind the metformin anticancer effect against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced mammary carcinogenesis in female Sprague-Dawley rats. METHODS Rats received 10 doses of PhIP (75 mg/kg, p.o., days 1-5 and 8-12). Then, rats were treated with metformin for 26 weeks at a dose of 2 mg/ml in drinking water. KEY FINDINGS Metformin antitumor effect was mediated by increasing the adenosine monophosphate protein kinase (AMPK) activity, liver kinase B1, and decreasing the aromatase and insulin levels compared with the PhIP-administered group. Also, this treatment resulted in a significant decrease in mammary tissue oxidative stress markers and serum lipid profile. In parallel, mammary gland tumors found in PhIP+metformin group were all histologically benign included only (hyperplasia). However, most of the mammary gland tumors found in PhIP group were histologically malignant. CONCLUSIONS These results showed that metformin antitumor effect was mediated through AMPK pathway, reducing oxidative stress and serum lipid levels. This study supports the potential benefit of using metformin as adjuvant therapy during breast cancer treatment.
Collapse
Affiliation(s)
- A E El-Sisi
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - S S Sokar
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - M E El-Sayad
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - E A Moussa
- 1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - E I Salim
- 2 Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
40
|
Du X, Zhang P, Fu H, Ahsan HM, Gao J, Chen Q. Smart mitochondrial-targeted cancer therapy: Subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity. Int J Pharm 2019; 555:346-355. [DOI: 10.1016/j.ijpharm.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023]
|
41
|
Jin Y, Yang Q, Liang L, Ding L, Liang Y, Zhang D, Wu B, Yang T, Liu H, Huang T, Shen H, Tu H, Pan Y, Wei Y, Yang Y, Zhou F. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:277. [PMID: 30454068 PMCID: PMC6245615 DOI: 10.1186/s13046-018-0948-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The increase in the levels of reactive oxygen species (ROS) in acute myeloid leukemia (AML) patients has been previously described; thus, it is important to regulate ROS levels in AML. METHODS Flow cytometry were used to assess the in vitro effect of compound kushen injection (CKI). Quantitative proteomics were used to analyse the mechanism. The AML patient-derived xenograft (PDX) model were used to evaluate the in vivo effect of CKI. RESULTS We found that intracellular ROS levels in AML cells were decreased, the antioxidant capacity were increased when treated with CKI. CKI inhibited the proliferation of AML cells and enhanced the cytotoxicity of AML cells, which has few toxic effects on haematopoietic stem cells (HSCs) and T cells. At the single-cell level, individual AML cells died gradually by CKI treatment on optofluidic chips. CKI promoted apoptosis and arrested cell cycle at G1/G0 phase in U937 cells. Furthermore, higher peroxiredoxin-3 (Prdx3) expression levels were identified in CKI-treated U937 cells through quantitative proteomics detection. Mechanically, the expression of Prdx3 and peroxiredoxin-2 (Prdx2) was up-regulated in CKI-treated AML cells, while thioredoxin 1 (Trx1) was reduced. Laser confocal microscopy showed that the proteins Prdx2 could be Interacted with Trx1 by CKI treatment. In vivo, the survival was longer and the disease was partially alleviated by decreased CD45+ immunophenotyping in peripheral blood in the CKI-treated group in the AML PDX model. CONCLUSIONS Antioxidant CKI possess better clinical application against AML through the Prdxs/ROS/Trx1 signalling pathway.
Collapse
Affiliation(s)
- Yanxia Jin
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Qian Yang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Li Liang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lu Ding
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Yuxing Liang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Dongdong Zhang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Balu Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Tian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Hailing Liu
- Department of Clinical Haematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tingting Huang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Hui Shen
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Honglei Tu
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
42
|
Barroso MES, Oliveira BG, Pimentel EF, Pereira PM, Ruas FG, Andrade TU, Lenz D, Scherer R, Fronza M, Ventura JA, Vaz BG, Kondratyuk TP, Romão W, Endringer DC. Phytochemical profile of genotypes of Euterpe edulis Martius - Juçara palm fruits. Food Res Int 2018; 116:985-993. [PMID: 30717031 DOI: 10.1016/j.foodres.2018.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/26/2018] [Accepted: 09/12/2018] [Indexed: 02/02/2023]
Abstract
Juçara fruit (Euterpe edulis) has received attention due to its similarities to Euterpe oleracea (Açaí). The aim of this study was to evaluate the cytotoxicity, bioactive compounds, antioxidant capacities and chemopreventive activities of the fruit pulps of six populations of E. edulis (J1-J6) and one population of E. espiritosantense from different ecological regions. ESI(-)-FT-ICR-MS was used to evaluate the pulp composition. The varieties J1 and J4 presented higher polyphenol contents, while J2 and J5 showed higher anthocyanin contents. ESI-FT-ICR MS identified cyanidin-3-rutinoside (J1, J2, J3, J4, J5, J7), protocatechuic acid, methylhydroxybenzoate hexoside and rutin (J1 to J7) and malvidin-glicoside (J2 to J5). The J2, J3, J4, J5 and J6 samples inhibited inducible nitric oxide synthase (iNOS). The chemoprevention biomarker quinone reductase was significantly induced by J6. Pulp from plants J3, J4, J6 and J7 significantly reduced the inflammatory cytokine TNF-α, and J6 was selected as having the most potential for cultivation and consumption.
Collapse
Affiliation(s)
- Maria E S Barroso
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Bruno G Oliveira
- Forensic Chemistry Laboratory, Department of Chemistry, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória 29075-910, Brazil
| | - Elisângela F Pimentel
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Pedro M Pereira
- Capixaba Institute for Research, Technical Assistance and Rural Extension, R. Afonso Sarlo, 160 - Bento Ferreira, Vitoria, ES 29052-010, Brazil
| | - Fabiana G Ruas
- Capixaba Institute for Research, Technical Assistance and Rural Extension, R. Afonso Sarlo, 160 - Bento Ferreira, Vitoria, ES 29052-010, Brazil
| | - Tadeu U Andrade
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Dominik Lenz
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Rodrigo Scherer
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - Marcio Fronza
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil
| | - José A Ventura
- Capixaba Institute for Research, Technical Assistance and Rural Extension, R. Afonso Sarlo, 160 - Bento Ferreira, Vitoria, ES 29052-010, Brazil
| | - Boniek G Vaz
- Federal University of Goiás, Samambaia Campus, Chemistry Institute, Avenida Esperança, s/n Campus Universitário, 74690-900 Goiânia, GO, Brazil
| | - Tamara P Kondratyuk
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, HI, USA
| | - Wanderson Romão
- Forensic Chemistry Laboratory, Department of Chemistry, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória 29075-910, Brazil; Federal Instituto of Espírito Santo, Av. Ministro Salgado Filho, Soteco, Vila Velha, ES 29106-010, Brazil
| | - Denise C Endringer
- Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, 29102-770 Espírito Santo, Brazil.
| |
Collapse
|
43
|
Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, e Sousa JMDC, Rolim HML, de Medeiros MDGF, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, Melo-Cavalcante AADC. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB Life 2018; 70:1084-1092. [DOI: 10.1002/iub.1932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory; School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University; Sagar 470003 Madhya Pradesh India
| | - Swati Tripathi
- Amity Institute of Microbial Technology; Amity University; Noida 201313 Uttar Pradesh India
| | | | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
| | - Maria das Graças Freire de Medeiros
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí 64 049-550 Brazil
| | - Razina Rouf
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline; Life Science School, Khulna University; Khulna Bangladesh
| | | | | |
Collapse
|
44
|
Dučić T, Paunesku T, Chen S, Ninković M, Speling S, Wilke C, Lai B, Woloschak G. Structural and elemental changes in glioblastoma cells in situ: complementary imaging with high resolution visible light- and X-ray microscopy. Analyst 2018; 142:356-365. [PMID: 27981320 DOI: 10.1039/c6an02532c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different sample preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. Each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.
Collapse
Affiliation(s)
- Tanja Dučić
- CELLS - ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 300 E. Superior St, Chicago, IL 60611, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Milena Ninković
- Department of Neurosurgery, Georg-August University Medical Centre, 37075 Göttingen, Germany
| | - Swetlana Speling
- Department of Neurosurgery, Georg-August University Medical Centre, 37075 Göttingen, Germany
| | - Charlene Wilke
- Northwestern University, Biological Imaging Facility, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University, 300 E. Superior St, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, Berretta M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine. Oncotarget 2018; 9:24837-24856. [PMID: 29872510 PMCID: PMC5973856 DOI: 10.18632/oncotarget.24984] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
Culinary and medicinal mushrooms are widely used in Asian countries, both as dietary supplements and as nutraceutical foods. They have recently become popular in Europe, as well, for their nutritional and health benefits. In particular, epidemiological studies conducted in Asia suggest that mushroom intake, together with other phytotherapy substances, protects against cancer, specifically gastrointestinal (GI) and breast cancers. Most of the data come from in vitro studies and in vivo experimental animal models. Therefore, in order to translate the updated knowledge to clinical research (i.e., from bench to bedside) a systematic translational research program should be initiated. Future randomized controlled trials comparing the effects of G. frondosa and G. lucidum on conventional treatment outcomes are warranted. The purpose of this review was to describe the emerging mechanisms of action of the mushrooms' anticancer functions which makes their use in clinical practice so promising. Clinical effects of mycotherapy (specifically, the use of Ganoderma lucidum and Grifola frondosa) on long-term survival, tumor response, host immune functions, inflammation, and QoL in cancer patients were also addressed. Adverse events associated with mycotherapy were also investigated. Emerging data point to a potential role of G. lucidum for modulating the carcinogenic potential of GI microbiota, which suggests a new complementary and integrated approach to breast cancer treatment.
Collapse
Affiliation(s)
- Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | | | - Vincenzo Quagliariello
- Department of Abdominal Oncology, National Cancer Institute, IRCCS - Foundation G. Pascale, Naples, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, Italy
| | | | | | - Massimiliano Berretta
- Department of Medical Oncology, National Cancer Institute, IRCCS, Aviano (PN), Italy
| |
Collapse
|
46
|
Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectal cancer. Oncotarget 2018; 8:49318-49328. [PMID: 28525387 PMCID: PMC5564770 DOI: 10.18632/oncotarget.17595] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/17/2017] [Indexed: 12/25/2022] Open
Abstract
Sestrin 2 is a conserved antioxidant protein that reduces reactive oxygen species (ROS) and inhibits mammalian target of rapamycin complex 1 (mTORC1). We previously showed that sestrin 2 is abnormally decreased in colorectal cancer (CRC). To elucidate the molecular mechanism behind the potential contribution of sestrin 2 to CRC, we used a lentiviral expression vector system to determine the effects of sestrin 2 overexpression on human CRC cells. We found that sestrin 2 overexpression decreased ROS production, inhibited cell growth, and stimulated apoptosis in two CRC cell lines. In parallel, expression of the proliferation marker PCNA was decreased, proapoptotic caspase 3, 7, and 9 levels were increased, and expression of the anti-apoptotic protein survivin was reduced. Sestrin 2 overexpression also activated the adenosine monophosphate-activated protein kinase (AMPK) pathway, and suppressed mTORC1 signaling. Treating CRC cells with compound C, an AMPK inhibitor, reversed or attenuated changes in proliferation, apoptosis, and signaling proteins of the AMPK/mTORC1 axis. In a xenograft mouse model, CRC growth was attenuated by sestrin 2 overexpression. These results suggest that sestrin 2 suppresses CRC cell growth through activation of the AMPK/mTORC1 pathway and induction of apoptosis, and could be a novel pharmacological target for the treatment of CRC.
Collapse
|
47
|
Marro M, Nieva C, de Juan A, Sierra A. Unravelling the Metabolic Progression of Breast Cancer Cells to Bone Metastasis by Coupling Raman Spectroscopy and a Novel Use of Mcr-Als Algorithm. Anal Chem 2018; 90:5594-5602. [PMID: 29589914 DOI: 10.1021/acs.analchem.7b04527] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Raman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.
Collapse
Affiliation(s)
- Monica Marro
- ICFO- Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona) , Spain
| | - Claudia Nieva
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge , Av. Castelldefels, Km 2.7 , 08907 L'Hospitalet de Llobregat, Barcelona , Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain
| | - Angels Sierra
- Molecular and Translational Oncology Laboratory, Biomedical Research Center CELLEX-CRBC, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Centre de Recerca Biomèdica CELLEX , 08036 Barcelona , Spain.,Faculty of Sciences , Universitat de VIC-Universitat Central de Catalunya , 08500 Vic, Barcelona , Spain
| |
Collapse
|
48
|
Contribution of reactive oxygen species to the anticancer activity of aminoalkanol derivatives of xanthone. Invest New Drugs 2017; 36:355-369. [PMID: 29116476 PMCID: PMC5948269 DOI: 10.1007/s10637-017-0537-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) are critically involved in the action of anticancer agents. In this study, we investigated the role of ROS in the anticancer mechanism of new aminoalkanol derivatives of xanthone. Most xanthones used in the study displayed significant pro-oxidant effects similar to those of gambogic acid, one of the most active anticancer xanthones. The pro-oxidant activity of our xanthones was shown both directly (by determination of ROS induction, effects on the levels of intracellular antioxidants, and expression of antioxidant enzymes) and indirectly by demonstrating that the overexpression of manganese superoxide dismutase decreases ROS-mediated cell senescence. We also observed that mitochondrial dysfunction and cellular apoptosis enhancement correlated with xanthone-induced oxidative stress. Finally, we showed that the use of the antioxidant N-acetyl-L-cysteine partly reversed these effects of aminoalkanol xanthones. Our results demonstrated that novel aminoalkanol xanthones mediated their anticancer activity primarily through ROS elevation and enhanced oxidative stress, which led to mitochondrial cell death stimulation; this mechanism was similar to the activity of gambogic acid.
Collapse
|
49
|
Quantification of mitochondrial DNA copy number in suspected cancer patients by a well optimized ddPCR method. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 13:32-39. [PMID: 29021970 PMCID: PMC5634817 DOI: 10.1016/j.bdq.2017.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
Changes in mitochondrial DNA (mtDNA) content is a useful clinical biomarker for various diseases, however results are controversial as several analytical factors can affect measurement of mtDNA. MtDNA is often quantified by taking ratio between a target mitochondrial gene and a reference nuclear gene (mtDNA/nDNA) using quantitative real time PCR often on two separate experiments. It measures relative levels by using external calibrator which may not be comparable across laboratories. We have developed and optimized a droplet digital PCR (ddPCR) based method for quantification of absolute copy number of both mtDNA and nDNA gene in whole blood. Finally, the role of mtDNA in suspected cancer patients referred to a cancer diagnostic center was investigated. Analytical factors which can result in false quantification of mtDNA have been optimized and both target and reference have been quantified simultaneously with intra- and inter-assay coefficient variances as 3.1% and 4.2% respectively. Quantification of mtDNA show that compared to controls, solid tumors (but not hematologic malignancies) and other diseases had significantly lower copy number of mtDNA. Higher mtDNA (highest quartile) was associated with a significantly lower risk of both solid tumors and other diseases, independent of age and sex. Receiver operating curve demonstrated that mtDNA levels could differentiate controls from patients with solid tumors and other diseases. Quantification of mtDNA by a well optimized ddPCR method showed that its depletion may be a hallmark of general illness and can be used to stratify healthy individuals from patients diagnosed with cancer and other chronic diseases.
Collapse
|
50
|
Zhou F, Pan Y, Wei Y, Zhang R, Bai G, Shen Q, Meng S, Le XF, Andreeff M, Claret FX. Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress. Clin Cancer Res 2017; 23:4450-4461. [PMID: 28270496 DOI: 10.1158/1078-0432.ccr-16-2426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway.Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 (JAB1/COPS5) and thioredoxin (TRX) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines.Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivoConclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Yunbao Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Clinical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ronghua Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gaigai Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Qiuju Shen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Shan Meng
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|