1
|
Zhu Y, Cao S, Hu F, Zhou X, Xue Q. Vitamin D status and neuromyelitis optica spectrum disease: A systematic review and meta-analysis. Clin Neurol Neurosurg 2024; 239:108190. [PMID: 38520792 DOI: 10.1016/j.clineuro.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND OBJECTIVE There's an increasing body of evidence on vitamin D deficiency and the risk of neuromyelitis optica spectrum disorder (NMOSD). The aim of this meta-analysis was to assess serum vitamin D levels in patients with NMOSD versus healthy controls. METHODS We searched PubMed, EMBASE, Cochrane Library, Web of Science and CNKI for publications up to November 2022 and explored the relationship between NMOSD and serum vitamin D levels. The standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated using a random-effects model. Subgroup analysis and sensitivity analysis were applied to explore the sources of heterogeneity. Begg's test, Egger's test, and Egger's funnel plot were adopted to evaluate publication bias. RESULTS 6 studies (including 319 patients and 595 healthy controls) met the inclusion criteria and all compared vitamin D levels in patients with NMOSD versus healthy controls. Levels of serum vitamin D detected in NMOSD patients were significantly lower than those in healthy controls (SMD=-1.57, 95% CI=-2.27 ∼ -0.87, P<0.001, I2 = 94.6%). The results of the different sensitivity analysis remained statistically significant, which demonstrated the robustness of the meta-analysis. There was no significant publication bias in our meta-analysis (P>0.05). CONCLUSION Patients with NMOSD showed significantly reduced vitamin D levels compared with healthy controls. Our findings highlighted the importance of measuring vitamin D levels in patients with NMOSD. Multi-center randomized controlled trials with large samples will further confirm whether the association is casual and modifiable.
Collapse
Affiliation(s)
- Yunfei Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Shugang Cao
- Department of Neurology, Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, China
| | - Fangzhou Hu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaoling Zhou
- Department of Neurology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, China.
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
2
|
Carder J, Barile B, Shisler KA, Pisani F, Frigeri A, Hipps KW, Nicchia GP, Brozik JA. Thermodynamics and S-Palmitoylation Dependence of Interactions between Human Aquaporin-4 M1 Tetramers in Model Membranes. J Phys Chem B 2024; 128:603-621. [PMID: 38212942 PMCID: PMC10824246 DOI: 10.1021/acs.jpcb.3c04529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Aquaporin-4 (AQP4) is a water channel protein found primarily in the central nervous system (CNS) that helps to regulate water-ion homeostasis. AQP4 exists in two major isoforms: M1 and M23. While both isoforms have a homotetrameric quaternary structure and are functionally identical when transporting water, the M23 isoform forms large protein aggregates known as orthogonal arrays of particles (OAPs). In contrast, the M1 isoform creates a peripheral layer around the outside of these OAPs, suggesting a thermodynamically stable interaction between the two. Structurally, the M1 isoform has an N-terminal tail that is 22 amino acids longer than the M23 isoform and contains two solvent-accessible cysteines available for S-palmitoylation at cysteine-13 (Cys-13) and cysteine-17 (Cys-17) in the amino acid sequence. Earlier work suggests that the palmitoylation of these cysteines might aid in regulating AQP4 assemblies. This work discusses the thermodynamic driving forces for M1 protein-protein interactions and how the palmitoylation state of M1 affects them. Using temperature-dependent single-particle tracking, the standard state free energies, enthalpies, and entropies were measured for these interactions. Furthermore, we present a binding model based on measured thermodynamics and a structural modeling study. The results of this study demonstrate that the M1 isoform will associate with itself according to the following expressions: 2[AQP4-M1]4 ↔ [[AQP4-M1]4]2 when palmitoylated and 3[AQP4-M1]4 ↔ [AQP4-M1]4 + [[AQP4-M1]4]2 ↔ [[AQP4-M1]4]3 when depalmitoylated. This is primarily due to a conformational change induced by adding the palmitic acid groups at Cys-13 and Cys-17 in the N-terminal tails of the homotetramers. In addition, a statistical mechanical model was developed to estimate the Gibbs free energy, enthalpy, and entropy for forming dimers and trimers. These results were in good agreement with experimental values.
Collapse
Affiliation(s)
- Jessica
D. Carder
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
| | - Barbara Barile
- Department
of Bioscience, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70124, Italy
| | - Krista A. Shisler
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
| | - Francesco Pisani
- Department
of Bioscience, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70124, Italy
| | - Antonio Frigeri
- Department
of Translational Medicine and Neuroscience, University of Bari Aldo Moro, Bari 70124, Italy
- Dominick
P. Purpura Department of Neuroscience, Albert
Einstein College of Medicine, 840 Kennedy Center, Bronx, New York 10461, United States
| | - K. W. Hipps
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
- Materials
Science & Engineering Program, Washington
State University, Pullman, Washington 99163-2711, United States
| | - Grazia Paola Nicchia
- Department
of Bioscience, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70124, Italy
- Dominick
P. Purpura Department of Neuroscience, Albert
Einstein College of Medicine, 840 Kennedy Center, Bronx, New York 10461, United States
| | - James A. Brozik
- Department
of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630, United States
- Materials
Science & Engineering Program, Washington
State University, Pullman, Washington 99163-2711, United States
| |
Collapse
|
3
|
Wang S, Wang L, Wang J, Zhu M. Causal relationships between susceptibility and severity of COVID-19 and neuromyelitis optica spectrum disorder (NMOSD) in European population: a bidirectional Mendelian randomized study. Front Immunol 2023; 14:1305650. [PMID: 38111568 PMCID: PMC10726038 DOI: 10.3389/fimmu.2023.1305650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background Neurological disorders can be caused by viral infections. The association between viral infections and neuromyelitis optica spectrum disorder (NMOSD) has been well-documented for a long time, and this connection has recently come to attention with the occurrence of SARS-CoV-2 infection. However, the precise nature of the causal connection between NMOSD and COVID-19 infection remains uncertain. Methods To investigate the causal relationship between COVID-19 and NMOSD, we utilized a two-sample Mendelian randomization (MR) approach. This analysis was based on the most extensive and recent genome-wide association study (GWAS) that included SARS-CoV-2 infection data (122616 cases and 2475240 controls), hospitalized COVID-19 data (32519 cases and 2062805 controls), and data on severe respiratory confirmed COVID-19 cases (13769 cases and 1072442 controls). Additionally, we incorporated a GWAS meta-analysis comprising 132 cases of AQP4-IgG-seropositive NMOSD (NMO-IgG+), 83 cases of AQP4-IgG-seronegative NMOSD (NMO-IgG-), and 1244 controls. Results The findings of our study indicate that the risk of developing NMO-IgG+ is elevated when there is a genetic predisposition to SARS-CoV-2 infection (OR = 5.512, 95% CI = 1.403-21.657, P = 0.014). Furthermore, patients with genetically predicted NMOSD did not exhibit any heightened susceptibility to SARS-CoV2 infection, COVID-19 hospitalization, or severity. Conclusion our study using Mendelian randomization (MR) revealed, for the first time, that the presence of genetically predicted SARS-CoV2 infection was identified as a contributing factor for NMO-IgG+ relapses.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lijuan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Dhar D, Mahadevan A, Nagaraj AR, Mahale R, Prasad C, Shreedevi AU, Mailankody P, Mathuranath PS, Padmanabha H. Rare Encephalitis-Like Presentation of a Pediatric Patient with Dual Positive Aquaporin-4 and Myelin Oligodendrocyte Antibodies: A Case Report with Review of Literature. Ann Indian Acad Neurol 2023; 26:1021-1024. [PMID: 38229648 PMCID: PMC10789396 DOI: 10.4103/aian.aian_689_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - A. R. Nagaraj
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Chandrajit Prasad
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Athyadi U. Shreedevi
- Department of Psychiatry Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - P. S. Mathuranath
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Xu L, Xu H, Chen S, Jiang W, Afridi SK, Wang Y, Ren X, Zhao Y, Lai S, Qiu X, Alvin Huang YW, Cui Y, Yang H, Qiu W, Tang C. Inhibition of complement C3 signaling ameliorates locomotor and visual dysfunction in autoimmune inflammatory diseases. Mol Ther 2023; 31:2715-2733. [PMID: 37481702 PMCID: PMC10492028 DOI: 10.1016/j.ymthe.2023.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system (CNS) characterized by transverse myelitis and optic neuritis. The pathogenic serum IgG antibody against the aquaporin-4 (AQP4) on astrocytes triggers the activation of the complement cascade, causing astrocyte injury, followed by oligodendrocyte injury, demyelination, and neuronal loss. Complement C3 is positioned as a central player that relays upstream initiation signals to activate downstream effectors, potentially stimulating and amplifying host immune and inflammatory responses. However, whether targeting the inhibition of C3 signaling could ameliorate tissue injury, locomotor defects, and visual impairments in NMO remains to be investigated. In this study, using the targeted C3 inhibitor CR2-Crry led to a significant decrease in complement deposition and demyelination in both slice cultures and focal intracerebral injection models. Moreover, the treatment downregulated the expression of inflammatory cytokines and improved motor dysfunction in a systemic NMO mouse model. Similarly, employing serotype 2/9 adeno-associated virus (AAV2/9) to induce permanent expression of CR2-Crry resulted in a reduction in visual dysfunction by attenuating NMO-like lesions. Our findings reveal the therapeutic value of inhibiting the complement C3 signaling pathway in NMO.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Siqi Chen
- Department of Medical Retina and Neuro-Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province 510060, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Xin Ren
- Department of Medical Retina and Neuro-Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province 510060, China
| | - Yipeng Zhao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy 19 of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, 600 21 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship 15 Street, Providence, RI 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Yang
- Department of Medical Retina and Neuro-Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province 510060, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
6
|
Lin Y, Oji S, Miyamoto K, Narita T, Kameyama M, Matsuo H. Real-world application of plasmapheresis for neurological disease: Results from the Japan-Plasmapheresis Outcome and Practice Patterns Study. Ther Apher Dial 2023; 27:123-135. [PMID: 35765859 PMCID: PMC10084057 DOI: 10.1111/1744-9987.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Plasmapheresis is a well-recognized treatment for autoimmune neurological diseases in Japan. However, the practice varies depending on the facility, and the actual treatment conditions are unclear. METHODS To clarify real-world conditions, a prospective observational study was conducted on patients with neurological diseases who were scheduled to receive plasmapheresis. A dataset was analyzed that included 887 treatments from 210 patients with myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and other diseases for 82, 30, 24, and 74 patients, respectively. RESULTS The types of plasmapheresis performed included immunoadsorption plasmapheresis, plasma exchange, and double filtration plasmapheresis with 620, 213, and 54 treatments, respectively. Approximately, 60% of the treatments were performed using peripheral blood access alone. Non-serious adverse events were observed in 10 patients. CONCLUSIONS A statistically significant improvement was observed after plasmapheresis in patients with MG, MS, and NMOSD. These were evaluated using the modified Rankin Scale.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Satoru Oji
- Department of Neurology, Saitama Medical Center, Kawagoe, Japan
| | | | - Tomoko Narita
- Department of Neurology, Nagasaki Kawatana Medical Center, Kawatana, Japan
| | - Mana Kameyama
- Clinical Development Department, Asahi-Kasei Medical Co., Tokyo, Japan
| | - Hidenori Matsuo
- Department of Neurology, Nagasaki Kawatana Medical Center, Kawatana, Japan.,Department of Neurology, Nagasaki National Hospital, Nagasaki, Japan
| |
Collapse
|
7
|
Xue H, Wu M, Wang Y, Zhao Y, Zhang M, Zhang H. The circadian rhythms regulated by Cx43-signaling in the pathogenesis of Neuromyelitis Optica. Front Immunol 2023; 13:1021703. [PMID: 36726988 PMCID: PMC9885795 DOI: 10.3389/fimmu.2022.1021703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Neuromyelitis Optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS). NMO manifests as selective and severe attacks on axons and myelin of the optic nerve and spinal cord, resulting in necrotic cavities. The circadian rhythms are well demonstrated to profoundly impact cellular function, behavior, and disease. This study is aimed to explore the role and molecular basis of circadian rhythms in NMO. Methods We used an Aquaporin 4(AQP4) IgG-induced NMO cell model in isolated astrocytes. The expression of Cx43 and Bmal1 were detected by real-time PCR and Western Blot. TAT-Gap19 and DQP-1105 were used to inhibit Cx43 and glutamate receptor respectively. The knockdown of Bmal1 were performed with the shRNA containing adenovirus. The levels of glutamate, anterior visual pathway (AVP), and vasoactive intestinal peptide (VIP) were quantified by ELISA kits. Results We found that Bmal1 and Clock, two essential components of the circadian clock, were significantly decreased in NMO astrocytes, which were reversed by Cx43 activation (linoleic acid) or glutamate. Moreover, the expression levels of Bmal1 and Clock were also decreased by Cx43 blockade (TAT-Gap19) or glutamate receptor inhibition (DQP-1105). Furthermore, adenovirus-mediated Bmal1 knockdown by shRNA (Ad-sh-Bmal1) dramatically decreased the levels of glutamate, AVP, and VIP from neurons, and significantly down-regulated the protein level of Cx43 in NMO astrocytes with Cx43 activation (linoleic acid) or glutamate treatment. However, Bmal1 knockdown did not alter these levels in normal astrocytes with Cx43 blockade (TAT-Gap19) or glutamate receptor inhibition (DQP-1105). Discussion Collectively, these results suggest that Cx43-glutamate signaling would be a critical upstream regulator that contributes to the NMO-induced rhythmic damage in SCN astrocytes.
Collapse
Affiliation(s)
- Huiru Xue
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Minghui Wu
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongle Wang
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yunfei Zhao
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meini Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Meini Zhang, ; Hui Zhang,
| | - Hui Zhang
- First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China,Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Meini Zhang, ; Hui Zhang,
| |
Collapse
|
8
|
Fazlinejad N, Hosseini S, Yaghoobpoor S, Dehghani M, Bazrafshan H, Khanzadeh S, Lucke-Wold B. The Diagnostic Value of Neutrophil to Lymphocyte Ratio as an Effective Biomarker for Neuromyelitis Optica Spectrum Disorder. JOURNAL OF PHYSICAL MEDICINE AND REHABILITATION (WILMINGTON, DEL.) 2023; 5:16-25. [PMID: 37654690 PMCID: PMC10469024 DOI: 10.33696/rehabilitation.5.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Background Neuromyelitis Optica (NMO) is a serious condition associated with inflammation. Early diagnosis and detection are critical for early intervention. In this systematic review, we investigate the role of the neutrophil to lymphocyte ratio (NLR) as an important biomarker for NMO. Methods Ten studies were selected that were sufficiently high quality and then checked for quality. The studies were organized by English language and selective inclusion criteria. Results NLR was significantly increased in NMO patients compared to controls. The ratio was specifically proportional to severity of disease. More severe disease had a higher ratio. Conclusion NLR offers a reliable and affordable method for early detection of disease severity. This can help guide appropriate treatment selection and monitor treatment response.
Collapse
Affiliation(s)
| | - Samaneh Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Dehghani
- School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Bazrafshan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokoufeh Khanzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Brandon Lucke-Wold
- Endovascular Fellow, University of Florida, Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
9
|
Munera M, Buendía E, Sanchez A, Viasus D, Sanchez J. AQP4 as a vintage autoantigen: what do we know till now? Heliyon 2022; 8:e12132. [PMID: 36506380 PMCID: PMC9730132 DOI: 10.1016/j.heliyon.2022.e12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- M. Munera
- Medical Research Group (GINUMED), Universitary Corporation Rafael Nuñez, Colombia,Corresponding author.
| | - E. Buendía
- Faculty of Medicine, University of Cartagena, Cartagena, Colombia,Department of Internal Medicine, Centro Hospitalario Serena del Mar, Cartagena, Colombia,Clinical and Biomedical Research Group, Faculty of Medicine, University of Cartagena, Colombia
| | - A. Sanchez
- Faculty of Medicine, University of Cartagena, Cartagena, Colombia,Clinical and Biomedical Research Group, Faculty of Medicine, University of Cartagena, Colombia
| | - D. Viasus
- Division of Health Sciences, Universidad del Norte, Barranquilla, Colombia
| | - J. Sanchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, University of Antioquia, Medellín, Colombia
| |
Collapse
|
10
|
Lotan I, Nishiyama S, Manzano GS, Lydston M, Levy M. COVID-19 and the risk of CNS demyelinating diseases: A systematic review. Front Neurol 2022; 13:970383. [PMID: 36203986 PMCID: PMC9530047 DOI: 10.3389/fneur.2022.970383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Viral infections are a proposed possible cause of inflammatory central nervous system (CNS) demyelinating diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). During the past 2 years, CNS demyelinating events associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, but causality is unclear. Objective To investigate the relationship between CNS demyelinating disease development and exacerbation with antecedent and/or concurrent SARS-CoV-2 infection. Methods A systematic literature review of all publications describing either a new diagnosis or relapse of CNS demyelinating diseases (MS, NMOSD, MOGAD) in association with SARS-CoV-2 infection was performed utilizing PRISMA guidelines. Descriptive statistics were used for data analysis, using a case analysis approach. Results Sixty-seven articles met the inclusion criteria for the study. Most of the reported cases of NMOSD (n = 13, 72.2% of reported cases) and MOGAD (n = 27, 96.5% of reported cases) were of new disease onset, presenting with typical clinical and radiographic features of these conditions, respectively. In contrast, reported MS cases varied amongst newly diagnosed cases (n = 10, 10.5% of reported cases), relapses (n = 63, 66.4%) and pseudo-relapses (n = 22, 23.2%). The median duration between COVID-19 infection and demyelinating event onset was 11.5 days (range 0–90 days) in NMOSD, 6 days (range−7 to +45 days) in MOGAD, and 13.5 days (range−21 to +180 days) in MS. Most cases received high-dose corticosteroids with a good clinical outcome. Conclusion Based upon available literature, the rate of CNS demyelinating events occurring in the setting of preceding or concurrent SARS-CoV-2 infection is relatively low considering the prevalence of SARS-CoV-2 infection. The clinical outcomes of new onset or relapsing MS, NMOSD, or MOGAD associated with antecedent or concurrent infection were mostly favorable. Larger prospective epidemiological studies are needed to better delineate the impact of COVID-19 on CNS demyelinating diseases.
Collapse
Affiliation(s)
- Itay Lotan
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Itay Lotan ;
| | - Shuhei Nishiyama
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Giovanna S. Manzano
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Melissa Lydston
- Treadwell Virtual Library for the Massachusetts General Hospital, Boston, MA, United States
| | - Michael Levy
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Sachdeva J, Goyal MK, Singh R, Kapila AT, Singh P, Saikia B, Lal V. Neuromyelitis Optica Spectrum Disorders in North Indian Population: Experience from a Tertiary Care Center. Neurol India 2022; 70:1500-1505. [PMID: 36076650 DOI: 10.4103/0028-3886.355118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction To understand neuromyelitis optica spectrum disorders (NMOSDs) better we need to study them in different populations. This prospective study was conducted to characterize clinical, serological, radiological, and therapeutic profile of NMOSDs in a North Indian population. Materials and Methods This study included 81 patients with NMOSDs. All patients underwent detailed history and examinations and were followed at 3 monthly intervals. They were evaluated using standard investigations including gadolinium-enhanced magnetic resonance imaging (MRI) of the brain and spine with thin section optic nerve cuts and treated as per the standard guidelines. Data were recorded meticulously. Results The mean age was 33.7 ± 13.4 years. The mean age at disease onset was 31.2 ± 13.5 years. Female-to-male ratio was 1.9:1. About 32.1% of patients presented with optic neuritis (ON), 56.8% with transverse myelitis (TM), and 11.1% with both ON and TM. The mean time from disease onset to diagnosis was 16.17 ± 23.09 months. Muscle atrophy, Lhermitte symptom, and tonic spasms were common. Foster-Kennedy syndrome-like presentation was seen in 8.6%. NMO antibodies were positive in 41 patients. MRI revealed involvement of <4 vertebral segments in 16.4% of patients with TM. Patients were managed as per standard guidelines. The mean follow-up duration was 15.3 ± 6 months. Approximately 88.9% had good functional outcome. Conclusion NMOSDs are a common cause of demyelinating illnesses in Northern India. The response to treatment is excellent and most patients recover without residual disability.
Collapse
Affiliation(s)
| | | | | | | | - Paramjeet Singh
- Department of Radiodiagnosis and Intervention Radiology, PGIMER, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, PGIMER, Chandigarh, India
| | - Vivek Lal
- Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
12
|
Lost or fragmented bony septum of the optic canal facing the sphenoid sinus: a histological study using elderly donated cadavers. Surg Radiol Anat 2022; 44:511-519. [PMID: 35244748 DOI: 10.1007/s00276-022-02910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To histologically describe a direct contact (the so-called dehiscence) of the optic nerve (ON) and/or internal carotid artery (ICA) to the mucosa of posterior paranasal sinuses represented by the sphenoid sinus (SS). METHODS Observations of histological sections of unilateral or bilateral skull bases (parasellar area and orbital apex) from 22 elderly cadavers were made. RESULTS A bony septum was less than 300 µm between the SS and ICA and 200 µm between the SS and optic nerve. Parts of the septa were sometimes absent due to fragmentation and holes of the bony lamella (2/22 facing the ICA; 4 facing the ICA in combination with an absent bony septum facing the nerve). In these dehiscence sites, the SS submucosal tissue attached to a thick sheath (50-100 µm in thickness) enclosing the optic nerve and ophthalmic artery and/or the ICA adventitia (50-200 µm in thickness). The ICA sometimes contained a sclerotic plaque that attached to or even protruded into the SS. With or without dehiscence, the SS mucosa was always thin (50-100 µm in thickness) and accompanied no mononuclear cellular infiltration or tumor. CONCLUSIONS A thin bony septum of the optic nerve or ICA had been notable as a danger point during surgery, but even a 0.05-mm-thick bone lamella might be an effective barrier against cellular infiltration or bacterial invasion from the SS. Fragmentation and holes of the bony lamella in 4 cadavers might allow cellular invasion to the optic nerve. Accordingly, unknown immunological cross talks might occur to cause demyelination.
Collapse
|
13
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
14
|
Kitchens N, Nichols L, Hope T. Educational Case: Neuromyelitis optica. Acad Pathol 2022; 9:100041. [PMID: 36035764 PMCID: PMC9403343 DOI: 10.1016/j.acpath.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 05/21/2022] [Indexed: 10/26/2022] Open
|
15
|
Xie H, Zhao Y, Pan C, Zhang J, Zhou Y, Li Y, Duan R, Yao Y, Gong Z, Teng J, Jia Y. Association of neutrophil-to-lymphocyte ratio (NLR) with the prognosis of first attack neuromyelitis optica spectrum disorder (NMOSD): a retrospective cohort study. BMC Neurol 2021; 21:389. [PMID: 34625035 PMCID: PMC8499497 DOI: 10.1186/s12883-021-02432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background To investigate the relationship between the neutrophil-to-lymphocyte ratio (NLR) and prognosis after the first attack of optic neuromyelitis optica spectrum disorder (NMOSD). Methods In this retrospective study, we included the medical records of 324 patients with first episode NMOSD and collected data on clinical parameters. Follow-up extended disability status scale (EDSS) score and relapse rate were analyzed using logistic regression models to determine the independent effect of NLR on outcomes; receiver operating characteristic (ROC) curves were applied to analyze the predictive value of NLR for the prognosis of NMOSD. Interaction and stratification analyses were used to explore the association between NLR and prognosis of patients with NMOSD, and Kaplan-Meier analysis was used to investigate the relationship between NLR and outcome. The association between NLR level with relapse rate and poor recovery was assessed by a Cox regression analysis. Results Patients in the high-NLR group had significantly higher EDSS scores and relapse rates at follow-up (both, P < 0.001) than did those in the low-NLR group. Univariate analysis showed revealed that NLR was significantly associated with relapse (odds ratio [OR] = 1.28, 95% confidence interval [CI]: 1.16–1.41, P < 0.001) and poor recovery (OR = 1.32, 95% CI: 1.20–1.46, P < 0.001), and these associations remained significant, even after multifactorial analysis (OR = 1.33, 95% CI: 1.11–1.59, P = 0.002; OR = 1.23, 95% CI: 1.06–1.43, P = 0.007, respectively). Stratified analysis showed that sex, platelet-to-lymphocyte ratio (PLR) level, and lymphocyte-to-monocyte technical ratio (LMR) level were strongly associated with relapse owing to elevated NLR; Kaplan-Meier survival curve analysis showed that the median time to relapse was significantly lower in the high-NLR group than in the low-NLR group (P < 0.001). A multivariate analysis showed a significant relationship between NLR level with relapse (HR = 1.07, 95%CI: 1.03–1.10, P = 0.001) and poor recovery (HR = 1.08, 95%CI: 1.04–1.11, P = 0.001). Conclusions NLR may be used as a prognostic indicator for first onset NMOSD, and a high NLR may be significantly associated with high relapse rates and poor recovery.
Collapse
Affiliation(s)
- Haojie Xie
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunyang Pan
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinwei Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongyan Zhou
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanfei Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ranran Duan
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yaobing Yao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhe Gong
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjie Jia
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Zhang L, Tian J, Dong X, Jia Z, Sun Y, Guo L, Tan G, Li B. Efficacy of azathioprine, mycophenolate mofetil, and rituximab in the treatment of neuromyelitis optica spectrum disorder and analysis of prognostic factors. Neurol Sci 2021; 43:2651-2658. [PMID: 34585292 DOI: 10.1007/s10072-021-05609-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The study aims to compare the efficacies of the immunosuppressants most commonly prescribed for patients with neuromyelitis optica spectrum disorder (NMOSD). The predictors, which might be associated with relapse and disability in NMOSD, were also analyzed. METHODS This retrospective study included NMOSD patients treated with azathioprine (AZA), mycophenolate mofetil (MMF), and rituximab (RTX). The annual relapse rate (ARR) and the incidence rates of adverse events were compared. Cox proportional-hazards model calculated the potential predictors of NMOSD relapse and disability. RESULTS A total of 83 patients were included. The median treatment time of AZA group (n = 34), MMF group (n = 20), and RTX group (n = 29) were 19.5, 15.5, and 12 months, respectively. ARR of the three groups reduced significantly after treatment. In the three groups, 55.9%, 50%, and 79.3% of patients, respectively, were free from relapse. However, the difference among the three groups was of no statistical significance, possibly due to the small sample size. During the treatment, 32.4%, 15%, and 24.1% of patients experienced adverse events in the AZA group, MMF group, and RTX group, respectively. Additionally, the multivariate Cox analyses indicated that history of a severe attack and disease duration were associated with the risk of relapse after immunotherapy. Late-onset (≥ 50 years old) NMOSD patients were probably more susceptible to motor disability, and those with optic neuritis at onset were more likely to develop visual disability. CONCLUSIONS AZA, MMF, and low-dose RTX were all effective in reducing the relapse rate in NMOSD. The age at onset, disease duration, history of severe attacks, and primary syndromes might be significant prognostic predictors in NMOSD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Jingyuan Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Xiuyu Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China. .,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China.
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China. .,Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
17
|
Mansour M, Ben Younes T, Kacem W, Mrissa R. Association of Neuromyelitis Optica Spectrum Disease and Sjogren Syndrome in a Tunisian Patient. Neurol India 2021; 69:1065-1066. [PMID: 34507450 DOI: 10.4103/0028-3886.325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Malek Mansour
- Department of Neurology, Military Hospital, 1008, Montfleury, 1089 Tunis, Tunisia
| | - Thouraya Ben Younes
- Department of Neurology, Military Hospital, 1008, Montfleury, 1089 Tunis, Tunisia
| | - Wafa Kacem
- Department of Physiology, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ridha Mrissa
- Department of Neurology, Military Hospital, 1008, Montfleury, 1089 Tunis, Tunisia
| |
Collapse
|
18
|
Sangani V, Pokal M, Balla M, Merugu GP, Adapa S, Naramala S, Konala VM. A case of neuromyelitis optica spectrum disorder with coexisting systemic lupus erythematosus. J Community Hosp Intern Med Perspect 2021; 11:531-535. [PMID: 34211664 PMCID: PMC8221122 DOI: 10.1080/20009666.2021.1915533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis Optica or Devic disease is changed to Neuromyelitis Optica spectrum disorder to include more diverse neurological and autoimmune manifestations. This is a severe relapsing autoimmune demyelinating disorder commonly affecting the optic nerve and spinal cord. It has been reported as either the first manifestation of SLE or as a coexisting condition with other autoimmune disorders commonly included but not limited to SLE and SS. We discussed a case of a 49-year-old female patient who was initially presented with a left-sided weakness that rapidly progressed to quadriparesis and bladder dysfunction within a few days. She had positive autoimmune serology tests for SLE posing a diagnostic challenge as SLE is associated with neurological manifestations. Due to a lack of definitive diagnostic criteria for SLE, presence of AQP-4 antibodies in CSF, and evidence of longitudinal extensive transverse myelitis in MRI cervical spine, we conclude that she has Neuromyelitis Optica spectrum disorder with probable SLE. It is possible that she may develop more signs and symptoms of SLE with time and will need close follow up. Timely diagnosis and prompt treatment are vital to decrease morbidity and mortality, as done in our case. The patient was started on high-dose steroids with significant improvement in her symptoms. These patients may need early treatment with plasmapheresis and long-term follow-up with immunotherapy to prevent relapse. There are few case reports in the literature, and more information is needed to understand and better diagnose NMO with coexisting SLE.
Collapse
Affiliation(s)
- Vikram Sangani
- Hospitalist, Department of Internal Medicine, Quantum HC, Navicent Health, Macon, Georgia
| | - Mytri Pokal
- Hospitalist, Department of Internal Medicine, Quantum HC, Navicent Health, Macon, Georgia
| | - Mamtha Balla
- Department of Internal Medicine, University of Toledo and Promedica Toledo Hospital, Toledo, Ohio, USA
| | - Ganesh Prasad Merugu
- Division Chief and Geriatric Fellowship Program Director, Division of Geriatric Medicine, Department of Family Medicine, University of Toledo, Toledo, Ohio, USA
| | - Sreedhar Adapa
- Department of Internal Medicine, Division of Nephrology, Adventist Medical Center, Hanford, California, USA
| | - Srikanth Naramala
- Department of Internal Medicine, Division of Rheumatology, Adventist Medical Center, Hanford, California, USA
| | - Venu Madhav Konala
- Department of Internal Medicine, Division of Medical Oncology, Ashland Bellefonte Cancer Center, Ashland, Kentucky, USA
| |
Collapse
|
19
|
Absence of Decussation in Optic Pathway Inflammation in Neuromyelitis Optica and Its Implications for Astrocyte Localization. J Neuroophthalmol 2021; 41:e202-e204. [PMID: 32590613 DOI: 10.1097/wno.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT A 39-year-old woman presented with acute visual loss in her right eye. Brain and orbit MRI demonstrated T2 hyperintensity along a long section of her right optic nerve, chiasm, and tract with no evidence of decussation of the inflammation. Subsequent seropositivity for the aquaporin 4 antibody confirmed a diagnosis of neuromyelitis optica. Posterior pathway involvement is typical in neuromyelitis optica and supports the hypothesis that the condition is an astrocytopathy. Furthermore, the absence of decussation in the condition may be a function of astrocyte localization within the chiasm.
Collapse
|
20
|
Muraki Y, Nishimoto Y, Yamasaki M, Miyakawa S, Sato S. The evaluation of lymph node cell proliferation response by liposomes loaded with major histocompatibility complex class II binding aquaporin 4 antigen peptide. Biosci Biotechnol Biochem 2021; 85:537-544. [PMID: 33624776 DOI: 10.1093/bbb/zbaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 11/14/2022]
Abstract
Autoimmune responses to aquaporin 4 (AQP4) cause neuromyelitis optica (NMO); thus, specific immunotolerance to this self-antigen could represent a new NMO treatment. We generated the liposome-encapsulated AQP4 peptide 201-220 (p201-220) to induce immunotolerance. Liposomes were generated using phosphatidylserine and the polyglycidol species PG8MG. The in vivo tissue distribution of the liposomes was tested using an ex vivo imaging system. To confirm the antigen presentation capacity of PG8MG liposomes, dendritic cells were treated with PG8MG liposome-encapsulated AQP4 p201-220 (AQP4-PG8MG liposomes). Immunotolerance induction by AQP4-PG8MG liposomes was evaluated using the ex vivo cell proliferation of lymph node cells isolated from AQP4 p201-220-immunized AQP4-deficient mice. Fluorescent dye-labeled PG8MG liposomes were distributed to the lymph nodes. AQP4 p201-220 was presented on dendritic cells. AQP4-PG8MG liposomes were tended to suppress immune responses to AQP4 p201-220. Thus, the encapsulation of AQP4 peptides in PG8MG liposomes represents a new strategy for suppressing autoimmune responses to AQP4.
Collapse
Affiliation(s)
- Yo Muraki
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yutaka Nishimoto
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Midori Yamasaki
- T-CiRA, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shuuichi Miyakawa
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shuji Sato
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
21
|
Alvarenga MP, do Carmo LF, Vasconcelos CCF, Alvarenga MP, Alvarenga-Filho H, de Melo Bento CA, Paiva CLA, Leyva-Fernández L, Fernández Ó, Papais-Alvarenga RM. Neuromyelitis optica is an HLA associated disease different from Multiple Sclerosis: a systematic review with meta-analysis. Sci Rep 2021; 11:152. [PMID: 33420337 PMCID: PMC7794341 DOI: 10.1038/s41598-020-80535-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Neuromyelitis Optica and Multiple Sclerosis are idiopathic inflammatory demyelinating diseases of the central nervous system that currently are considered distinct autoimmune diseases, so differences in genetic susceptibility would be expected. This study aimed to investigate the HLA association with Neuromyelitis Optica by a systematic review with meta-analysis. The STROBE instrument guided research paper assessments. Thirteen papers published between 2009 and 2020 were eligible. 568 Neuromyelitis Optica patients, 41.4% Asians, 32.4% Latin Americans and 26.2% Europeans were analyzed. Only alleles of the DRB1 locus were genotyped in all studies. Neuromyelitis Optica patients have 2.46 more chances of having the DRB1*03 allelic group than controls. Ethnicity can influence genetic susceptibility. The main HLA association with Neuromyelitis Optica was the DRB1*03:01 allele in Western populations and with the DPB1*05:01 allele in Asia. Differences in the Multiple Sclerosis and Neuromyelitis Optica genetic susceptibility was confirmed in Afro descendants. The DRB1*03 allelic group associated with Neuromyelitis Optica has also been described in other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Marcos Papais Alvarenga
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
- Departamento de Neurologia, Hospital Federal da Lagoa, Rua Jardim Botânico 501, Rio de Janeiro, RJ, 22470-050, Brazil
- Universidade Estácio de Sá (UNESA), Avenida Ayrton Senna, 2800, Barra da Tijuca, Rio de Janeiro, RJ, 22775-003, Brazil
| | - Luciana Ferreira do Carmo
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Claudia Cristina Ferreira Vasconcelos
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Marina Papais Alvarenga
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Helcio Alvarenga-Filho
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
- Universidade Estácio de Sá (UNESA), Avenida Ayrton Senna, 2800, Barra da Tijuca, Rio de Janeiro, RJ, 22775-003, Brazil
| | - Cleonice Alves de Melo Bento
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Carmen Lucia Antão Paiva
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil
| | - Laura Leyva-Fernández
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGCNeurociencias, Hospital Regional Universitario de Málaga, Avenida de Carlos Haya sn, 29010, Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Multiple REEM (RD 16/0015/0010), Barcelona, Spain
| | - Óscar Fernández
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, Avenida de Carlos Haya sn, 29010, Málaga, Spain
| | - Regina Maria Papais-Alvarenga
- Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rua Mariz e Barros 775, Rio de Janeiro, RJ, 20270-004, Brazil.
- Departamento de Neurologia, Hospital Federal da Lagoa, Rua Jardim Botânico 501, Rio de Janeiro, RJ, 22470-050, Brazil.
| |
Collapse
|
22
|
Tfaily MAH, Titanji B, Schniederjan MJ, Goodman A, Lava NS, Pouch SM, Collins MH, Adelman MW. Neuromyelitis Optica Presenting as Infectious Meningoencephalitis: Case Report and Literature Review. Am J Med Sci 2020; 361:534-541. [PMID: 33342552 DOI: 10.1016/j.amjms.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
In this patient-focused review, we present a 34-year-old previously healthy man admitted for fever and headache two weeks after a motor vehicle accident. On admission, his workup was concerning for meningoencephalitis based on elevated cerebrospinal fluid (CSF) white blood cell count and elevated CSF protein. He was admitted for management of meningoencephalitis. During his course, no causative infectious agent was identified despite an extensive workup. He additionally underwent an autoimmune and paraneoplastic workup that was negative. During his hospitalization, he developed acute transverse myelitis manifested by bilateral lower extremity paralysis. After four weeks marked by persistent clinical deterioration, brain biopsy was performed. Pathologic examination was consistent with neuromyelitis optica spectrum disorder (NMOSD). In this case report and literature review, we explore the presentations of NMOSD that mimic an infection. Clinicians should be aware of the possibility of NMOSD masquerading as infectious meningoencephalitis or acute transverse myelitis.
Collapse
Affiliation(s)
| | - Boghuma Titanji
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abigail Goodman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Neil S Lava
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie M Pouch
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Max W Adelman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Asseyer S, Cooper G, Paul F. Pain in NMOSD and MOGAD: A Systematic Literature Review of Pathophysiology, Symptoms, and Current Treatment Strategies. Front Neurol 2020; 11:778. [PMID: 33473247 PMCID: PMC7812141 DOI: 10.3389/fneur.2020.00778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) are autoimmune inflammatory disorders of the central nervous system (CNS). Pain is highly prevalent and debilitating in NMOSD and MOGAD with a severe impact on quality of life, and there is a critical need for further studies to successfully treat and manage pain in these rare disorders. In NMOSD, pain has a prevalence of over 80%, and pain syndromes include neuropathic, nociceptive, and mixed pain, which can emerge in acute relapse or become chronic during the disease course. The impact of pain in MOGAD has only recently received increased attention, with an estimated prevalence of over 70%. These patients typically experience not only severe headache, retrobulbar pain, and/or pain on eye movement in optic neuritis but also neuropathic and nociceptive pain. Given the high relevance of pain in MOGAD and NMOSD, this article provides a systematic review of the current literature pertaining to pain in both disorders, focusing on the etiology of their respective pain syndromes and their pathophysiological background. Acknowledging the challenge and complexity of diagnosing pain, we also provide a mechanism-based classification of NMOSD- and MOGAD-related pain syndromes and summarize current treatment strategies.
Collapse
Affiliation(s)
- Susanna Asseyer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
| | - Graham Cooper
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
da Silva APB, Silva RBM, Goi LDS, Molina RD, Machado DC, Sato DK. Experimental Models of Neuroimmunological Disorders: A Review. Front Neurol 2020; 11:389. [PMID: 32477252 PMCID: PMC7235321 DOI: 10.3389/fneur.2020.00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira Silva
- Research Center in Toxicology and Pharmacology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leise Daniele Sckenal Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rachel Dias Molina
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
25
|
Rosso M, Saxena S, Chitnis T. Targeting IL-6 receptor in the treatment of neuromyelitis optica spectrum: a review of emerging treatment options. Expert Rev Neurother 2020; 20:509-516. [PMID: 32306778 DOI: 10.1080/14737175.2020.1757434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Recent research has shown that IL-6 receptor (IL-6 R) inhibitors like tocilizumab and satralizumab are effective in reducing the relapse rate in patients with NMOSD.Areas covered: This review article explores current concepts in NMOSD management and focuses on IL-6 R as a therapeutic target. The authors delve into the biological and immunological role of IL-6 in the pathogenesis of NMOSD. Further, the authors summarize the most recent findings on the use of anti-IL-6 R monoclonal antibodies, tocilizumab and satralizumab, in the treatment of NMOSD.Expert opinion: A better understanding of the role of cytokines in NMOSD may provide the neurologist with novel therapies for this disease. IL-6 R appears to be a central hub to NMOSD pathogenesis and a relevant therapeutic target.
Collapse
Affiliation(s)
- Mattia Rosso
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Tsymala I, Nigritinou M, Zeka B, Schulz R, Niederschick F, Matković M, Bauer IJ, Szalay M, Schanda K, Lerch M, Misu T, Fujihara K, Bennett JL, Dahle C, Pache F, Rommer P, Leutmezer F, Illes Z, Leite MI, Palace J, Scholze P, Reindl M, Lassmann H, Bradl M. Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathol Commun 2020; 8:49. [PMID: 32293546 PMCID: PMC7160927 DOI: 10.1186/s40478-020-00920-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
Most cases of neuromyelitis optica spectrum disorders (NMOSD) harbor pathogenic autoantibodies against the water channel aquaporin 4 (AQP4). Binding of these antibodies to AQP4 on astrocytes initiates damage to these cells, which culminates in the formation of large tissue destructive lesions in the central nervous system (CNS). Consequently, untreated patients may become permanently blind or paralyzed. Studies on the induction and breakage of tolerance to AQP4 could be of great benefit for NMOSD patients. So far, however, all attempts to create suitable animal models by active sensitization have failed. We addressed this challenge and identified peptides, which mimic the conformational AQP4 epitopes recognized by pathogenic antibodies of NMOSD patients. Here we show that these mimotopes can induce the production of AQP4-reactive antibodies in Lewis rats. Hence, our results provide a conceptual framework for the formation of such antibodies in NMOSD patients, and aid to improve immunization strategies for the creation of animal models suitable for tolerance studies in this devastating disease.
Collapse
Affiliation(s)
- Irina Tsymala
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Magdalini Nigritinou
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Bleranda Zeka
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Rouven Schulz
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Felix Niederschick
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Mia Matković
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Isabel J Bauer
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Michael Szalay
- Department Pathobiology of the Nervous System, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innrain 66/2, A-6020, Innsbruck, Austria
| | - Magdalena Lerch
- Clinical Department of Neurology, Medical University of Innsbruck, Innrain 66/2, A-6020, Innsbruck, Austria
| | - Tatsuro Misu
- Departments of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, 980-8574, Japan
| | - Kazuo Fujihara
- Departments of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, 980-8574, Japan
| | - Jeffrey L Bennett
- Department of Neurology, Neuroscience Program, University of Colorado, Denver, CO, 80045, USA
| | - Charlotte Dahle
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Florence Pache
- Department of Neurology and NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paulus Rommer
- Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Petra Scholze
- Department Pathobiology of the Nervous System, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innrain 66/2, A-6020, Innsbruck, Austria
| | - Hans Lassmann
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria
| | - Monika Bradl
- Department Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, A-1090, Vienna, Austria.
| |
Collapse
|
27
|
Duan T, Tradtrantip L, Phuan PW, Bennett JL, Verkman AS. Affinity-matured 'aquaporumab' anti-aquaporin-4 antibody for therapy of seropositive neuromyelitis optica spectrum disorders. Neuropharmacology 2019; 162:107827. [PMID: 31654702 DOI: 10.1016/j.neuropharm.2019.107827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Pathogenesis in seropositive neuromyelitis optica spectrum disorders (herein called NMO) involves binding of IgG1 autoantibodies to aquaporin-4 (AQP4) on astrocytes in the central nervous system, which initiates complement and cellular injury. We previously developed an antibody blocking approach for potential therapy of NMO in which an engineered, monoclonal, anti-AQP4 antibody lacking cytotoxicity effector functions (called aquaporumab) blocked binding of NMO autoantibodies to astrocyte AQP4 (Tradtrantip et al. Ann. Neurol. 71, 314-322, 2012). Here, a high-affinity aquaporumab, which was generated by affinity maturation using saturation mutagenesis, was shown to block cellular injury caused by NMO patient sera. Anti-AQP4 antibody rAb-53, a fully human antibody with effector function neutralizing Fc mutations L234A/L235A and affinity-enhancing Fab mutations Y50R/S56R, called AQmabAM, bound to AQP4 in cell cultures with Kd ~ 18 ng/ml (~0.12 nM), ~8-fold greater affinity than the original antibody. AQmabAM, but without L234A/L235A Fc mutations, produced complement-dependent cytotoxicity (CDC) with EC50 ~ 82 ng/ml. AQmabAM prevented CDC produced by sera from eight NMO patients with IC50 ranging from 40 to 80 ng/ml, and similarly prevented antibody-dependent cellular cytotoxicity (ADCC). Mechanistic studies demonstrated that AQmabAM blocked binding of serum NMO autoantibodies to AQP4. AQmabAM offers a targeted, non-immunosuppressive approach for therapy of seropositive NMO. Autoantibody blocking may be a useful therapeutic strategy for other autoimmune diseases as well.
Collapse
Affiliation(s)
- Tianjiao Duan
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143, USA; Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143, USA
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
Duan T, Verkman AS. Experimental animal models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress and shortcomings. Brain Pathol 2019; 30:13-25. [PMID: 31587392 DOI: 10.1111/bpa.12793] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) is a heterogeneous group of neuroinflammatory conditions associated with demyelination primarily in spinal cord and optic nerve, and to a lesser extent in brain. Most NMOSD patients are seropositive for IgG autoantibodies against aquaporin-4 (AQP4-IgG), the principal water channel in astrocytes. There has been interest in establishing experimental animal models of seropositive NMOSD (herein referred to as NMO) in order to elucidate NMO pathogenesis mechanisms and to evaluate drug candidates. An important outcome of early NMO animal models was evidence for a pathogenic role of AQP4-IgG. However, available animal models of NMO, based largely on passive transfer to rodents of AQP4-IgG or transfer of AQP4-sensitized T cells, often together with pro-inflammatory maneuvers, only partially recapitulate the clinical and pathological features of human NMO, and are inherently biased toward humoral or cellular immune mechanisms. This review summarizes current progress and shortcomings in experimental animal models of seropositive NMOSD, and opines on the import of advancing animal models.
Collapse
Affiliation(s)
- Tianjiao Duan
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143.,Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143
| |
Collapse
|
29
|
|
30
|
Wu Y, Zhong L, Geng J. Visual impairment in neuromyelitis optica spectrum disorders (NMOSD). J Chem Neuroanat 2019; 97:66-70. [DOI: 10.1016/j.jchemneu.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
|
31
|
Recommendations for cerebrospinal fluid analysis. Folia Microbiol (Praha) 2018; 64:443-452. [PMID: 30552580 DOI: 10.1007/s12223-018-0663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Diseases of the central nervous system (CNS) mean for the human organism a potentially dangerous situation. An investigation of cerebrospinal fluid (CSF) provides important information about a character of CNS impairment in the decision-making diagnostic and therapeutic algorithm. The authors present a brief overview of available cerebrospinal fluid assays, shortened indication criteria, a recommended algorithm of CSF assessment in different suspected diseases, and a view of the external quality system. The whole portfolio of obtainable CSF methodology is further subdivided according to the adequate choice into the first and inevitable basic routine panel, and following complicated analyses of highly specialized character. The basic panel is considered for standard laboratories, the complete specialized assessment should be provided by a super-consulting laboratory.
Collapse
|
32
|
Wu Y, Zhong L, Geng J. Neuromyelitis optica spectrum disorder: Pathogenesis, treatment, and experimental models. Mult Scler Relat Disord 2018; 27:412-418. [PMID: 30530071 DOI: 10.1016/j.msard.2018.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/21/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Neuromyelitis optica (NMO) and NMO spectrum disorder (NMOSD) are inflammatory CNS syndromes mainly involving the optic nerve and/or spinal cord and characterized by the presence of serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). The pathology of NMOSD is complicated, while therapies for NMOSD are limited and only partially effective in most cases. This review article focuses on the main pathology of NMOSD involving AQP4-IgG and lymphocyte function. We also review the existing therapeutic methods and potential new treatments. Experimental NMO animal models are crucial for further research into NMO pathology and treatment. However, no AQP4-IgG-immunized animals have been reported. The establishment of NMO models is therefore difficult and primarily depends on the generation of transgenic mice or transcranial manipulation using human or monoclonal mouse anti-AQP4 antibodies. Advantages and disadvantages of each model are discussed.
Collapse
Key Words
- APC, antigen-presenting cell
- Abbreviations: ADCC, antibody-dependent cellular cytotoxicity
- Aqp4, aquaporin 4
- Aquaporin-4
- BAFF, b-cell activating factor
- BBB, blood-brain barrier
- BCR, b cell receptor
- CDD, complement-dependent cytotoxicity
- CFA, complete freund's adjuvant
- CSF, cerebrospinal fluid
- CXCL, c-x-c motif chemokine ligand
- EAE, experimental autoimmune encephalomyelitis
- ECD, extracellular domain
- Experimental animal models
- IGG, immunoglobulin g
- IVMP, methylprednisolone pulse
- LETM, longitudinally extensive transverse myelitis
- MAB, monoclonal antibody
- MBP, myelin-binding protein
- MOG, myelin oligodendrocyte glycoprotein
- MOG-Ab, anti-MOG antibody
- NF-H, neurofilament heavy chain
- NMO, neuromyelitis optica
- NMO-IgG, NMO with serum AQP4-IgG
- NMOSD, NMO spectrum disorder
- Neuromyelitis optica
- Neuromyelitis optica spectrum disorder
- PB, plasmablast
- PP, plasmapheresis
- Remyelination
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurology, Xichang Road No.295, Kunming 650000, China.
| | - Lianmei Zhong
- Department of Neurology, Xichang Road No.295, Kunming 650000, China
| | - Jia Geng
- Department of Neurology, Xichang Road No.295, Kunming 650000, China
| |
Collapse
|
33
|
Recurrent optic neuritis – Different patterns in multiple sclerosis, neuromyelitis optica spectrum disorders and MOG-antibody disease. J Neuroimmunol 2018; 324:115-118. [DOI: 10.1016/j.jneuroim.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022]
|
34
|
Tradtrantip L, Felix CM, Spirig R, Morelli AB, Verkman A. Recombinant IgG1 Fc hexamers block cytotoxicity and pathological changes in experimental in vitro and rat models of neuromyelitis optica. Neuropharmacology 2018; 133:345-353. [PMID: 29428821 PMCID: PMC6322534 DOI: 10.1016/j.neuropharm.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
Intravenous human immunoglobulin G (IVIG) may have therapeutic benefit in neuromyelitis optica spectrum disorders (herein called NMO), in part because of the anti-inflammatory properties of the IgG Fc region. Here, we evaluated recombinant Fc hexamers consisting of the IgM μ-tailpiece fused with the Fc region of human IgG1. In vitro, the Fc hexamers prevented cytotoxicity in aquaporin-4 (AQP4) expressing cells and in rat spinal cord slice cultures exposed to NMO anti-AQP4 autoantibody (AQP4-IgG) and complement, with >500-fold greater potency than IVIG or monomeric Fc fragments. Fc hexamers at low concentration also prevented antibody-dependent cellular cytotoxicity produced by AQP4-IgG and natural killer cells. Serum from rats administered a single intravenous dose of Fc hexamers at 50 mg/kg taken at 8 h did not produce complement-dependent cytotoxicity when added to AQP4-IgG-treated AQP4-expressing cell cultures. In an experimental rat model of NMO produced by intracerebral injection of AQP4-IgG, Fc hexamers at 50 mg/kg administered before and at 12 h after AQP4-IgG fully prevented astrocyte injury, complement activation, inflammation and demyelination. These results support the potential therapeutic utility of recombinant IgG1 Fc hexamers in AQP4-IgG seropositive NMO.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Christian M. Felix
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | | | | | - A.S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Paul F, Murphy O, Pardo S, Levy M. Investigational drugs in development to prevent neuromyelitis optica relapses. Expert Opin Investig Drugs 2018; 27:265-271. [DOI: 10.1080/13543784.2018.1443077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olwen Murphy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Santiago Pardo
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
36
|
Combination Treatment of C16 Peptide and Angiopoietin-1 Alleviates Neuromyelitis Optica in an Experimental Model. Mediators Inflamm 2018; 2018:4187347. [PMID: 29670463 PMCID: PMC5835265 DOI: 10.1155/2018/4187347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory demyelinating disease that mainly affects the spinal cord and optic nerve, causing blindness and paralysis in some individuals. Moreover, NMO may cause secondary complement-dependent cytotoxicity (CDC), leading to oligodendrocyte and neuronal damage. In this study, a rodent NMO model, showing typical NMO pathogenesis, was induced with NMO-IgG from patient serum and human complement. We then tested whether the combination of C16, an αvβ3 integrin-binding peptide, and angiopoietin-1 (Ang1), a member of the endothelial growth factor family, could alleviate NMO in the model. Our results demonstrated that this combination therapy significantly decreased disease severity, inflammatory cell infiltration, secondary demyelination, and axonal loss, thus reducing neural death. In conclusion, our study suggests a possible treatment that can relieve progressive blindness and paralysis in an animal model of NMO through improvement of the inflammatory milieu.
Collapse
|
37
|
Kornitzer JM, Kimura Y, Janow GL. Primary Sjögren Syndrome in a Child with a Neuromyelitis Optica Spectrum Disorder. J Rheumatol 2018; 43:1260-1. [PMID: 27252507 DOI: 10.3899/jrheum.151207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jeffrey M Kornitzer
- Department of Neurology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Yukiko Kimura
- Section Chief, Section of Pediatric Rheumatology, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Ginger L Janow
- Section of Pediatric Rheumatology, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey, USA.
| |
Collapse
|
38
|
Bezerra MLDS, Ferreira ACADF, de Oliveira-Souza R. Pseudotumor Cerebri and Glymphatic Dysfunction. Front Neurol 2018; 8:734. [PMID: 29387036 PMCID: PMC5775972 DOI: 10.3389/fneur.2017.00734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer's disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.
Collapse
|
39
|
Roche JV, Törnroth-Horsefield S. Aquaporin Protein-Protein Interactions. Int J Mol Sci 2017; 18:ijms18112255. [PMID: 29077056 PMCID: PMC5713225 DOI: 10.3390/ijms18112255] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1) interactions between aquaporin tetramers; (2) interactions between aquaporin monomers within a tetramer (hetero-tetramerization); and (3) transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.
Collapse
Affiliation(s)
- Jennifer Virginia Roche
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
40
|
Salahudeen A, Mistry T. Gastroparesis as the Sole Presenting Feature of Neuromyelitis Optica. ACG Case Rep J 2017; 4:e109. [PMID: 29026864 PMCID: PMC5617634 DOI: 10.14309/crj.2017.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/27/2017] [Indexed: 01/01/2023] Open
Abstract
A 33-year-old African-American woman recently diagnosed with severe idiopathic gastroparesis was readmitted for hypoxic respiratory failure secondary to aspiration pneumonia. A fiber-optic endoscopic evaluation of swallow study revealed severe pharyngeal dysphagia. Brain magnetic resonance imaging showed an ill-defined lesion in the posterior aspect of the medulla concerning for a demyelinating process. Serum neuromyelitis optica immunoglobulin G returned positive. Neuromyelitis optica treatment resulted in the patient's clinical improvement. She is currently on a suppressive regimen of intravenous rituximab and is recovering well.
Collapse
Affiliation(s)
- Ahmed Salahudeen
- Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Tejal Mistry
- Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
41
|
The HLA DRB1*03:01 allele is associated with NMO regardless of the NMO-IgG status in Brazilian patients from Rio de Janeiro. J Neuroimmunol 2017; 310:1-7. [DOI: 10.1016/j.jneuroim.2017.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
|
42
|
Wambo TO, Rodriguez RA, Chen LY. Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1310-1316. [PMID: 28455098 DOI: 10.1016/j.bbamem.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/01/2022]
Abstract
Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion. In this paper, we report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF) using the mature particle mesh Ewald technique (PME) for which the established force fields have been optimized with known accuracy. These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the in vitro measurements. The single-file diffusion approximations from our large-scale simulations are consistent with the current literature on smaller systems. From these unambiguous agreements among the in vitro and in silico studies, we observe the quantitative accuracy of the all-atom force fields of the current literature for water-channel biology. We also observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).
Collapse
Affiliation(s)
- Thierry O Wambo
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
43
|
Asgari N, Flanagan EP, Fujihara K, Kim HJ, Skejoe HP, Wuerfel J, Kuroda H, Kim SH, Maillart E, Marignier R, Pittock SJ, Paul F, Weinshenker BG. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e343. [PMID: 28451627 PMCID: PMC5400808 DOI: 10.1212/nxi.0000000000000343] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/02/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To describe leptomeningeal blood-barrier impairment reflected by MRI gadolinium-enhanced lesions in patients with aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD). METHODS A retrospective case series of 11 AQP4-IgG-positive NMOSD patients with leptomeningeal enhancement (LME) were collected from 5 centers. External neuroradiologists, blinded to the clinical details, evaluated MRIs. RESULTS LME was demonstrated on postcontrast T1-weighted and fluid-attenuated inversion recovery images as a sign of leptomeningeal blood-barrier disruption and transient leakage of contrast agent into the subarachnoid space in 11 patients, 6 in the brain and 6 in the spinal cord. The patterns of LME were linear or extensive and were accompanied by periependymal enhancement in 5 cases and intraparenchymal enhancement in all cases. The location of LME in the spinal cord was adjacent to intraparenchymal contrast enhancement with involvement of a median number of 12 (range 5-17) vertebral segments. At the time of LME on MRI, all patients had a clinical attack such as encephalopathy (36%) and/or myelopathy (70%) with median interval between symptom onset and LME of 12 days (range 2-30). LME occurred in association with an initial area postrema attack (44%), signs of systemic infection (33%), or AQP4-IgG in CSF (22%) followed by clinical progression. LME was found at initial clinical presentation in 5 cases and at clinical relapses leading to a diagnosis of NMOSD in 6 cases. CONCLUSION This study suggests that altered leptomeningeal blood barrier may be accompanied by intraparenchymal blood-brain barrier breakdown in patients with AQP4-IgG-positive NMOSD during relapses.
Collapse
Affiliation(s)
- Nasrin Asgari
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Eoin P Flanagan
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Kazuo Fujihara
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Ho Jin Kim
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Hanne P Skejoe
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Jens Wuerfel
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Hiroshi Kuroda
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Su Hyun Kim
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Elisabeth Maillart
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Romain Marignier
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Sean J Pittock
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Friedemann Paul
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| | - Brian G Weinshenker
- Department of Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (E.P.F., S.J.P., B.G.W.), Mayo Clinic, Rochester, MN; Department of Multiple Sclerosis Therapeutics (K.F.), Fukushima Medical University School of Medicine; Multiple Sclerosis and Neuromyelitis Optica Center (K.F.), Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan; Department of Neurology (H.J.K., S.H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; Department of Radiology (H.P.S.), Aleris-Hamlet Hospital, Copenhagen, Denmark; Medical Image Analysis Center Basel (J.W.); Department of Biomedical Engineering (J.W.), University Basel, Switzerland; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (J.W., F.P.), Department of Neurology, Charité Universitätsmedizin Berlin; Experimental and Clinical Research Center (J.W., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany; Department of Neurology (H.K.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (E.M.), Hôpital Pitié-Salpêtrière, APHP, Paris, France; Service de Neurologie A and Eugène Devic EDMUS Foundation against Multiple Sclerosis (R.M.), Observatoire Français de la Sclérose en Plaques (OFSEP), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; and Lyon Neurosciences Research Center (R.M.), FLUID team, Inserm U 1028/CNRS 5292, France
| |
Collapse
|
44
|
Affiliation(s)
- Izumi Kawachi
- Department of Neurology; Brain Research Institute; Niigata University; Niigata Japan
| |
Collapse
|
45
|
Hardy TA, Reddel SW, Barnett MH, Palace J, Lucchinetti CF, Weinshenker BG. Atypical inflammatory demyelinating syndromes of the CNS. Lancet Neurol 2016; 15:967-981. [DOI: 10.1016/s1474-4422(16)30043-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
|
46
|
Tuller F, Holzer H, Schanda K, Aboulenein-Djamshidian F, Höftberger R, Khalil M, Seifert-Held T, Leutmezer F, Berger T, Reindl M. Characterization of the binding pattern of human aquaporin-4 autoantibodies in patients with neuromyelitis optica spectrum disorders. J Neuroinflammation 2016; 13:176. [PMID: 27371173 PMCID: PMC4930584 DOI: 10.1186/s12974-016-0642-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The discovery of a highly specific antibody against the aquaporin-4 (AQP4) water channel (AQP4-IgG) unified the spectrum of neuromyelitis optica spectrum disorders (NMOSD), which are considered to be antibody-mediated autoimmune diseases. The AQP4 water channel is located on astrocytic end-feet processes and consists of six transmembrane helical domains forming three extracellular loops A, C, and E in which defined amino acids were already proven to be critical for AQP4-IgG binding. However, the clinical relevance of these findings is unclear. Therefore, we have characterized the epitope specificity of AQP4-IgG-positive NMOSD patients. METHODS We established a cell-based flow cytometry assay for the quantitative detection of AQP4-IgG-positive serum samples. Human embryonic kidney (HEK) cells were transiently transfected with an EmGFP-tagged AQP4-M23, AQP4-M1, or six AQP4-M23 extracellular loop mutants including two mutations in loop A (serial AA substitution, insertion of a myc-tag), two in loop C (N153Q, insertion of a myc-tag), and two in loop E (H230G, insertion of a myc-tag). Fourty-seven baseline and 49 follow-up serum samples and six paired cerebrospinal fluid (CSF) baseline samples of 47 AQP4-IgG-positive Austrian NMOSD patients were then tested for their binding capability to AQP4-M1 and AQP4-M23 isoforms and these six extracellular loop mutants. RESULTS Overall, we could identify two broad patterns of antibody recognition based on differential sensitivity to mutations in extracellular loop A. Pattern A was characterized by reduced binding to the two mutations in loop A, whereas pattern B had only partial or no reduced binding to these mutations. These two patterns were not associated with significant differences in demographic and clinical parameters or serum titers in this retrospective study. Interestingly, we found a change of AQP4-IgG epitope recognition pattern in seven of 20 NMOSD patients with available follow-up samples. Moreover, we found different binding patterns in five of six paired CSF versus serum samples, with a predominance of pattern A in CSF. CONCLUSIONS Our study demonstrates that AQP4-IgG in sera of NMOSD patients show distinct patterns of antibody recognition. The clinical and diagnostic relevance of these findings have to be addressed in prospective studies.
Collapse
Affiliation(s)
- Friederike Tuller
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Holzer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fahmy Aboulenein-Djamshidian
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Sozialmedizinisches Zentrum Ost Donauspital, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
47
|
Volman V, Ng LJ. Perinodal glial swelling mitigates axonal degradation in a model of axonal injury. J Neurophysiol 2015; 115:1003-17. [PMID: 26683073 DOI: 10.1152/jn.00912.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has been associated with the damage to myelinated axons in white matter tracts. Animal models and in vitro studies suggest that axonal degradation develops during a latent period following a traumatic event. This delay has been attributed to slowly developing axonal membrane depolarization that is initiated by injury-induced ionic imbalance and in turn, leads to the activation of Ca(2+) proteases via pathological accumulation of Ca(2+). However, the mechanisms mitigating the transition to axonal degradation after injury remain elusive. We addressed this question in a detailed biophysical model of axonal injury that incorporated ion exchange and glial swelling mechanisms. We show that glial swelling, which often co-occurs with mTBI, promotes axonal survival by regulating extracellular K(+) dynamics, extending the range of injury parameters in which axons exhibit stable membrane potential postinjury. In addition, glial swelling was instrumental in reducing axonal sensitivity to repetitive stretch injury that occurred several minutes following the first one. Results of this study suggest that acute post-traumatic swelling of perinodal astrocytes helps prevent or postpone axonal degradation by maintaining physiologically relevant levels of extracellular K(+).
Collapse
Affiliation(s)
- Vladislav Volman
- Simulation, Engineering, and Testing, L-3 Applied Technologies Incorporated, San Diego, California
| | - Laurel J Ng
- Simulation, Engineering, and Testing, L-3 Applied Technologies Incorporated, San Diego, California
| |
Collapse
|
48
|
Detection of Antibodies against Human and Plant Aquaporins in Patients with Multiple Sclerosis. Autoimmune Dis 2015; 2015:905208. [PMID: 26290755 PMCID: PMC4529886 DOI: 10.1155/2015/905208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the body's central nervous system. Around 90% of MS sufferers are diagnosed with relapsing-remitting MS (RRMS). We used ELISA to measure IgG, IgA, and IgM antibodies against linear epitopes of human and plant aquaporins (AQP4) as well as neural antigens in RRMS patients and controls to determine whether patients suffering from RRMS have simultaneous elevations in antibodies against these peptides and antigens. In comparison to controls, significant elevations in isotype-specific antibodies against human and plant AQP4 and neural antigens such as MBP, MOG, and S100B were detected in RRMS patients, indicating a high correlation in antibody reaction between plant aquaporins and brain antigens. This correlation between the reactivities of RRMS patients with various tested antigens was the most significant for the IgM isotype. We conclude that a subclass of patients with RRMS reacts to both plant and human AQP4 peptides. This immune reaction against different plant aquaporins may help in the development of dietary modifications for patients with MS and other neuroimmune disorders.
Collapse
|
49
|
Pereira WLDCJ, Reiche EMV, Kallaur AP, Kaimen-Maciel DR. Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: A review. J Neurol Sci 2015; 355:7-17. [PMID: 26050520 DOI: 10.1016/j.jns.2015.05.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/16/2023]
Abstract
The aim of this study was to review the epidemiological and clinical characteristics of neuromyelitis optica (NMO) and the immunopathological mechanisms involved in the neuronal damage. NMO is an inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. NMO is thought to be more prevalent among non-Caucasians and where multiple sclerosis (MS) prevalence is low. NMO follows a relapsing course in more than 80-90% of cases, which is more commonly in women. It is a complex disease with an interaction between host genetic and environmental factors and the main immunological feature is the presence of anti-aquaporin 4 (AQP4) antibodies in a subset of patients. NMO is frequently associated with multiple other autoantibodies and there is a strong association between NMO with other systemic autoimmune diseases. AQP4-IgG can cause antibody-dependent cellular cytotoxicity (ADCC) when effector cells are present and complement-dependent cytotoxicity (CDC) when complement is present. Acute therapies, including corticosteroids and plasma exchange, are designed to minimize injury and accelerate recovery. Several aspects of NMO pathogenesis remain unclear. More advances in the understanding of NMO disease mechanisms are needed in order to identify more specific biomarkers to NMO diagnosis.
Collapse
Affiliation(s)
- Wildéa Lice de Carvalho Jennings Pereira
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil; Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná 86061-335, Brazil.
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| | - Ana Paula Kallaur
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| | - Damacio Ramón Kaimen-Maciel
- Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná 86061-335, Brazil; Department of Clinical Medicine, Health Sciences Center, State University of Londrina, Londrina, Paraná 86038-440, Brazil.
| |
Collapse
|
50
|
Alam A, Patel R, Locicero B, Rivera N. Neuromyelitis optica presenting with psychiatric symptoms and catatonia: a case report. Gen Hosp Psychiatry 2015; 37:274.e1-2. [PMID: 25835509 DOI: 10.1016/j.genhosppsych.2015.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is an aggressive disease characteristically affecting the spinal cord and optic nerves that has recently been differentiated from multiple sclerosis. We present a case of a 16-year-old Antiguan female previously diagnosed with NMO who presented with a 1-week history of confusion and agitation. She had symptoms of psychosis, including delusional thinking and auditory and visual hallucinations, and scored 11/23 on the Bush-Francis Catatonia Scale. This case demonstrates an NMO exacerbation that presented with psychotic symptoms and catatonia.
Collapse
Affiliation(s)
- Abdulkader Alam
- Psychiatry and Internal Medicine, Stony Brook Medicine Emergency Psychiatry Program, 101 Nichols Rd., Stony Brook, NY 11794 United States.
| | - Rachit Patel
- Stamford Hospital, Affiliate of the Columbia University College of Physicians and Surgeons.
| | - Briana Locicero
- Stony Brook School of Medicine, 101 Nichols Rd, Stony Brook, NY 11794 United States.
| | - Nicole Rivera
- Stony Brook School of Medicine, 101 Nichols Rd, Stony Brook, NY 11794 United States.
| |
Collapse
|